基础模块下:第8章 直线和圆的方程复习

合集下载

最新课件-中职数学基础模块下册第八单元《直线与圆的方程》 精品

最新课件-中职数学基础模块下册第八单元《直线与圆的方程》 精品




两点间距离公式及中点坐标公式都是用向 量知识推导的。 倾斜角的概念是由“坡度”等实际问题引 入的 距离、圆、直线与圆的位置关系等都与实 际生活有紧密的联系,要注意挖掘,最好 发动学生寻找例子。
渗透数学思想方法

数形结合思想
由特殊到一般

点到直线的距离公式的处理。 (两条平行线间的距离,安排在思考交流 处,没有给出公式。)
关于倾斜角和斜率

让学生充分参与认知,体验探索过程。 学习知识不是终极目标,要学会学习和研 究
理解平行于x轴的直线的斜率为0
知 识 点:知识分类:事实性知识 认知过程:说明、区别、记忆、讨论 教学目标: 1、教师说明平行于x轴的直线的斜率为0 2、给出一组图形,让学生看图区别直线的斜率 3、让学生画出斜率为0、1、的直线(考察他们的记 忆) 4、讨论平行于x轴的直线的方程形式(强化应用) 与多个认知过程联结,学生有足够的时间和反复认识,体会 这个事实性知识的过程,
(1) 从滑梯(生活实际中的事例)等感受到倾 斜,从倾斜感受角度(直线与水平线的角 度)。----观察
(2) ①从角度如何测定(两直线相交总有两个夹角, 只能选用一个来测定以防混乱),引入倾斜角的定 义。--------想 ②根据定义画直线的倾斜角,感受直线的倾斜角 的正确表示,关键把握倾斜角有锐角直角和钝角, 各种倾斜角的直线位置关系有明显的差别。------分 析 ③设计各种有干扰的情境,测试学生对直线倾斜 角的认识是否准确。------能力评价

第8章 直线和圆的方程(18学时) 共八小节。 8.5 点到直线的距离公式, 8.8直线与圆的方程应用举例 认知要求为了解。



8.2 直线的倾斜角和斜率, 8.3 直线的方程 中的一般式方程, 8.4 两条直线的位置关系 中平行、垂直的 条件, 8.7 直线与圆的位置关系 认知要求为理解

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。

中职数学基础模块下册第八单元《直线与圆的方程》word教案

中职数学基础模块下册第八单元《直线与圆的方程》word教案

第八章 直线与圆的方程教学设计课题1 直线的斜截式方程【教学目标】1.进一步复习斜率的概念,了解直线在y 轴上的截距的概念;2.理解直线的斜截式方程与点斜式方程的关系;3.初步掌握直线的斜截式方程及其简单应用;4.培养学生应用公式的能力.【教学重点】直线的斜截式方程.【教学难点】直线的斜截式方程及其应用.【教学过程】(一)复习引入(1)提问:请同学们写出直线的点斜式方程,并说明(x ,y ),(x1,y1),k 的几何意义. (答案:直线的点斜式方程是y -y1=k (x -x1);(x ,y )是已知直线上的任意一点的坐标,(x1,y1)是直线上一个已知点的坐标,k 是直线的斜率.)(2)已知直线l 的斜率为k ,与y 轴的交点是(0,b ),求直线l 的方程.(答案:y =kx +b. )(二)讲解新课(1)直线在y 轴上的截距一条直线与y 轴交点的纵坐标,叫做这条直线在y 轴上的截距.例如,引例中直线l 与y 轴交于点(0,b ),则b 就是直线l 在y 轴上的截距. 在这里特别要注意:截距是坐标的概念,而不是距离的概念.(2)直线的斜截式方程如果已知直线l 的斜率是k ,在y 轴上的截距是b ,那么直线l 的方程是y =kx +b . 由于这个方程是由直线的斜率和直线在y 轴上的截距确定的,所以叫做直线方程的斜截式.这个方程的导出过程就是引例的解题过程.这是我们同学自己推导出来的.(3)我们来认识一下这个方程①它和一次函数的解析式相似而不相同在一次函数的解析式中,k 不能得0,而直线的斜截式方程没有这个限制.②练一练根据直线l 的斜截式方程,写出它们的斜率和在y 轴上的截距:(1)y =3x -2, k =________,b =________;(2)y =23x +13, k =________,b =________; (3)y =-x -1, k =________,b =________;(4)y =3x -2, k =________,b =________.小结:通过练一练中的这些题目,告诉我们:掌握斜截式方程的第一个要求是要能够根据直线的斜截式方程写出直线的斜率和在y 轴上的截距.(4)直线的斜截式方程的应用例1 求与y 轴交于点(0,-4),且倾斜角为150°的直线方程.解:∵直线与y 轴交于点(0,-4),∴直线在y 轴上的截距是-4.又 ∵直线的倾斜角为150°,∴直线的斜率k =tan150°=-33. 将它们代入斜截式方程,得y =-33x -4, 化简,得 3x +2y +12=0. 这就是与y 轴交于点(0,-4),且倾斜角为150°的直线方程.例2 已知直线l 过点(3,0),在y 轴上的截距是-2,求直线l 的方程.解:∵直线过点(3,0),且在y 轴上的截距是-2,∴直线l 过点(3,0)和(0,-2).将它们代入斜率公式,得k =-2-00-3=23. 又知,直线l 在y 轴上的截距是-2,即b =-2.将它们代入斜截式方程,得y =23x -2, 化简,得2x -3y -6=0.这就是所求直线l 的方程.小结:通过这两个例题,告诉我们:如果知道了直线的斜率和在y 轴上的截距就可以直接写出直线的斜截式方程,如果题目没有直接给出这两个条件,那么就必须利用已知,找到这两个条件,然后再利用斜截式求直线方程.讲评:老师在带领学生做过练一练之后和讲解了两个例题之后所做的小结很好,它点明了直线的斜截式方程应用的要点,同时也明确了这一节课的重点内容.(5)练习教材 P 76练习1—3.(三)布置作业学生学习指导用书 直线的斜截式方程【教学设计说明】本教案的前一课时学习了直线的点斜式方程,本节开始直接利用点斜式方程引出斜截式方程,这种引入方法,既复习了前一节学习的知识,又引出了新课,直截了当并且显得很自然,同时还讲清了直线的斜截式方程与点斜式方程的关系.因为学生常常误认为截距是距离,实际上,截距是坐标的概念,是一个可正,可负,可零的实数,教案对此专门进行了提醒,十分必要.教案还在练一练与例题之后分别给出了小结,这对学生掌握直线的斜截式方程及其应用很有帮助.课题2 直线的一般式方程【教学目标】1.使学生了解直线与二元一次方程的关系;2.初步掌握各种方程之间的互化方法;3.初步了解分类讨论问题的思想.【教学重点】直线的一般式方程与直线各种方程之间的互化方法.【教学难点】分类讨论问题的思想.【教学过程】(一)复习引入(1)写出直线的斜截式方程和斜率不存在的直线方程.(答案:直线的斜截式方程是y =kx +b ,斜率不存在的直线方程是x =x1. )(2)求斜率为2,在y 轴上的截距为1的斜截式方程,并将其化简整理.(答案:斜截式方程是y =2x +1,化简得2x -y +1=0. )(3)能通过上面一道题就说所有的直线方程都能化简为二元一次方程吗?(答案:不能.)(二)讲解新课(1)所有的直线方程都能化简为Ax +By +C =0 (A ,B 不同时为零)的形式 . 通过下面五个层次完成教学:①所有的直线都有倾斜角,但不是所有的直线都有斜率.②将所有的直线分为两类:有斜率和没斜率,即α=90°和α≠90°.③α=90°时,直线都有斜率,其方程可以写成下面的形式:y =kx +b ,这是一个二元一次方程;④当α=90°时,直线没有斜率,其方程可以写成下面的形式x =x 1,这也是一个二元一次方程,其中y 的系数是0.⑤结论:在平面直角坐标系中,任何直线都可以求得它的方程,而且都是二元一次方程.也就是说任何直线的方程都可以写成关于x ,y 的一次方程Ax +By +C =0 (A ,B 不同时为零) .(2)方程Ax +By +C =0 (A ,B 不同时为零)总表示直线.通过下面四个层次完成教学:①方程Ax +By +C =0(A ,B 不同时为零)可根据B ≠0和B =0而分成两种情况. ②当B ≠0时,方程可以化为y =-A B x -C B.这是直线方程的斜截式,它表示斜率k =-A B ,在y 轴上的截距b =-C B的直线. ③当B =0时,必有A ≠0,方程可以化为x =-C A. 它表示一条与y 轴平行(C ≠0)或重合(C =0)的直线.④结论:关于x ,y 的一次方程总表示直线.(3)直线方程的一般式根据(1)(2)两方面的结论,我们称方程Ax +By +C =0为直线方程的一般形式 (其中A ,B 不同时为零) .直线l 的方程是Ax +By +C =0,可以简称为直线Ax +By +C =0,记作l :Ax +By +C =0.(4)直线方程一般式的应用例1 求直线l :2x -3y +6=0的斜率和在y 轴上的截距.解法1:(将直线l 的方程化为斜截式)将原方程移项,得3y =2x +6.方程两边同被3除,得 y =23x +2. 这是直线l 的斜截式方程,可以看出其斜率为23,在y 轴上的截距为2. 解法2:(利用k =-A B ,b =-C B,求k ,b . ) 在方程2x -3y +6=0中,∵A =2,B =-3,C =6,∴k =-A B =23,b =-C B=2.故直线l 的斜率为23,在y 轴上的截距为2. 例2 画出方程4x -3y -12=0表示的直线.解:在方程4x -3y -12=0中,令x =0,得y =-4,令y =0,得x =3,可知,直线过点A (0,-4),B (3,0).如图,在平面直角坐标系中,做出A (0,-4),B (3,0)两点,并过A ,B 做直线,则直线AB 就是方程4x -3y -12=0表示的直线.(5)练习教材 P 82练习1、2.【教学设计说明】本节课是在学生学习了直线方程的点斜式和斜截式的基础上引入直线一般式方程的,本节课理论性较强,是教学中的难点,教案针对难点采取了分层次讲解的方法,层层推进,步步为营,力图起到分散难点的作用.由于教材中涉及分类讨论的思想,所以要让学生通过本节课的学习,初步了解分类讨论的方法.直线的一般式方程与其他形式方程的互化是这节课教学的重点,但根据方程画直线也是直线方程教学的重要内容.教案中的两个例题突出强调了这一点,并在练习及作业中进一步作了强调.课题3 直线与圆的位置关系(一)【教学目标】1.了解直线与圆的位置关系的两种判定方法;2.了解平面几何知识在解析几何中的作用;3.会用两种判定方法解决一些简单数学问题.【教学重点】直线与圆的位置关系的两种判定方法.【教学难点】用两种判定方法解决一些简单数学问题.【教学过程】(一)复习引入(1)在平面几何中,直线与圆有哪几种位置关系?(答案:相交,相切,相离.)(2)在圆的一般方程x2+y2+Dx +Ey +F =0(D2+E2-4F >0)中,如何确定圆心坐标?[答案:圆心坐标是⎝⎛⎭⎫-D 2,-E 2. ] (3)点到直线的距离如何计算?[答案:如果点P (x0,y0)为直线l :Ax +By +C =0外一点,则点到直线的距离为 d =|Ax0+By0+C|A2+B2. ] (二)讲解新课(1)判断直线与圆的位置关系的第一种方法在平面几何中,我们已经学习过直线与圆的三种不同位置关系及它们的判断方法. 已知圆C 的半径为r ,设圆心C 到直线l 的距离为d. 如图①直线与圆有两个公共点时,称直线与圆相交,并有d <r ⇔直线l 与圆C 相交;②直线与圆有唯一公共点时,称直线与圆相切,并有d =r ⇔直线l 与圆C 相切;③直线与圆没有公共点时,称直线与圆相离,并有d >r ⇔直线l 与圆C 相离.在解析几何中,我们可以直接利用这个方法判定直线与圆的位置关系.例1 判定直线l :3x -4y -1=0与圆C :(x -1)2+(y +2)2=9的位置关系.解:根据圆C 的方程(x -1)2+(y +2)2=9,我们知道,圆的半径r =3,圆心为C (1,-2),则圆心到直线3x -4y -1=0的距离为d =|3-(-8)-1|32+(-4)2=2. 显然,有2<3, 即d <r .故直线l :3x -4y -1=0与圆C :(x -1)2+(y +2)2=9相交.(2)判断直线与圆的位置关系的第二种方法设直线方程为Ax +By +C =0(A ,B 不全为0),圆C 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),方程组⎩⎪⎨⎪⎧Ax +By +C =0x 2+y 2+Dx +Ey +F =0经消元后得到一元二次方程,设判别式为Δ,则有Δ>0⇔直线l 与圆C 相交;Δ=0⇔线l 与圆C 相切;Δ<0⇔直线l 与圆C 相离.例2 判定直线l :3x +4y -25=0与圆C :x 2+y 2=25的位置关系.解:由直线与圆的方程组成的方程组为⎩⎪⎨⎪⎧3x +4y -25=0,x 2+y 2=25. 由直线方程得y =-34x +254,代入圆的方程,得 x 2+⎝⎛⎭⎫-34x +2542=25, 整理,得x 2-6x +9=0.因为 Δ=(-6)2-4×1×9=0,所以 直线l 与圆C 相切.(3)练习教材 P 105练习1—3.(三)布置作业学生学习指导用书 直线与圆的位置关系(一)【教学设计说明】在分别学习了直线方程和圆的方程之后,教材安排了直线与圆的位置关系一节,作为直线方程和圆的方程的直接应用,同时,也突出体现了解析法的特点,即利用代数知识解决几何问题.为了减少教学过程中的障碍,教案首先对一些相关知识做了复习,然后分别介绍了判断直线与圆的位置关系的两种方法,第一种方法是结合平面几何知识,只适用于直线与圆的关系的特殊方法;第二种方法则是适用于直线与所有二次曲线关系的一般方法.对于圆来讲,第一种方法相对简单一些,第二种方法则计算量大一些.。

中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案

中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案

中职数学第八章《直线和圆的方程》单元检测(满分100分,时间:100分钟)一.选择题(3分*10=30分)题号12345678910答案1.已知A(2,-3),B(0,5),则直线AB的斜率是()A.4B.-4C.3D.-32、设A(-1,3),B(1,5),则直线AB的倾斜角为()A.30︒B.45︒C.60︒D.90︒3.下列哪对直线互相垂直A.l1:y=2x+1;l2:y=2x-5 B.l1:y=-2;l2:y=5C.l1:y=x+1;l2:y=-x-5 D.l1:y=3x+1;l2:y=-3x-54.以A(1,2),B(1,6)为直径两端点的圆的方程是()A.(x+1)2+(y-4)2=8B.(x-1)2+(y-4)2=4C.(x-1)2+(y-2)2=4D.(x+1)2+(y-4)2=165.若P(-2,3),Q(1,x)两点间的距离为5,则x的值可以是()A.5B.6C.7D.86.方程为x2+y2-2x+6y-6=0的圆的圆心坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(2,1)7.过点A(-1,2),且,倾斜角是60︒的直线方程为()A.3x+y-2-3=0B.3x-y+2+3=0C.x-y+3=0D.x+y+3=08.下列哪对直线互相平行()A.l y=-2,l:x=5B.l y=2x+1,l:y=2x-51:21:2C.l y=x+1,l:y=-x-5D.l y=3x+1,l:y=-3x-51:21:29.下列直线与直线3x-2y=1垂直的是()A.4x-6y-3=0B.4x+6y+3=0C.6x+4y+3=0D.6x-4y-3=010.过点A(2,3),且与y轴平行的直线方程为()A.x=2B.y=2C.x=3D.y=3二.填空题(4分*8=32分)11.直线3x-2y-6=0的斜率为,在y轴上的截距为12.方程x2+y2-6x+2y-6=0化为圆的标准方程为13.两直线x+2y+3=0,2x-y+1=0的位置关系是________14.点(1,3)到直线y=2x+3的距离为____________15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为16.直线2x+3y+1=0与圆x2+y2=1的位置关系是_____17.若方程x2+y2-3x+4y+k=0表示一个圆,则k的取值范围是________18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为___________三.解答题(共6题,共计38分)19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB的中点,求m+n。

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35 C . -1 D. 1 3.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ; 18.平行于y 轴的直线的倾斜角为 ; 19.倾斜角为60º的直线的斜率为 ; 20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为: 22.在y 轴上的截距为5,且斜率为4的直线方程为: 23.将y-4=31(x —6)化为直线的一般式方程为: 24.过点(-1,2)且平行于x 轴的直线方程为 25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是 26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是 27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ; 28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为 29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。

直线和圆的方程综合复习

直线和圆的方程综合复习

直线和圆的方程综合复习引言直线和圆在数学中是几何学中的基本概念,对于解决几何问题和实际应用具有重要意义。

本文将对直线和圆的方程进行综合复习,包括直线的一般方程、斜截式方程和点斜式方程,以及圆的一般方程和标准方程。

一、直线的方程1. 直线的一般方程直线的一般方程(General Equation of a Line)可以表示为Ax + By + C = 0,其中 A、B、C 为常数,且 A 和 B 不同时为 0。

这种方程形式简单直观,但不便于直接从中得到直线的性质。

2. 直线的斜截式方程直线的斜截式方程(Slope-Intercept Equation of a Line)可以表示为 y = mx + b,其中 m 为直线的斜率,b 为直线在 y 轴上的截距。

斜截式方程直观地描述了直线的斜率和截距,方便直接理解直线的特征。

3. 直线的点斜式方程直线的点斜式方程(Point-Slope Equation of a Line)可以表示为 y - y1 = m(x - x1),其中 (x1, y1) 为直线上的一点坐标,m 为直线的斜率。

点斜式方程可以通过已知直线上一点和斜率的信息,直接推导出直线的方程。

二、圆的方程1. 圆的一般方程圆的一般方程(General Equation of a Circle)可以表示为(x - h)^2 + (y - k)^2 = r^2,其中 (h, k) 为圆心坐标,r 为圆的半径。

一般方程描述了圆心和半径的关系,方便定位圆的位置和大小。

2. 圆的标准方程圆的标准方程(Standard Equation of a Circle)可以表示为(x - h)^2 + (y - k)^2 = r^2,其中 (h, k) 为圆心坐标,r 为圆的半径。

标准方程是一种更简洁、更常用的圆的方程表示形式。

三、直线和圆的综合应用直线和圆的方程在几何问题和实际应用中有广泛的应用。

例如,可以利用直线和圆的方程求解两个几何对象的交点,判断两个几何对象是否相交,以及计算两个几何对象的交点坐标等等。

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

第八章 直线与圆的方程第1节 两点间的距离与线段中点的坐标一、两点间的距离及线段中点的坐标: 设()111,y x P ,()222,y x P ,则()()21221221y y x x P P -+-=. 中点()000,y x P 的坐标为121200,22++==x x y y x y【习题】1.已知()10,28A 和()22,12B ,求线段AB 的长度。

2.已知三角形的顶点分别为)6,2(A ,)3,4(-B ,()00,C ,求ABC ∆三条边长。

3.已知()4,1A ,()1,5B ,()1,1C 说明ABC ∆为∆Rt 。

【习题】1.已知)5,1(),3,1(---N M ,求线段MN 的长度,并求线段MN 的中点坐标。

2.已知ABC ∆的三个顶点为(1,0)A 、(2,1)B -、(0,3)C ,试求BC 边上的中线AD 的长度.第2 节 直线的倾斜角与斜率一、直线的倾斜角与斜率倾斜角∂:直线l 向上的方向与x 轴正方向所夹的最小正角。

范围:001800<≤α斜率k :1212tan x x y y k --=∂= 注:①当轴x l //或重合时,0=k ②当轴x l ⊥时,k 不存在③k 与两点的位置无关【习题】1.已知直线的倾斜角,求斜率。

(1)6π=∂(2) 135=∂(3) 90=∂2.已知直线的斜率,求倾斜角。

(1)3=k (2)33-=k (3)1=k 3.求经过下列两点的直线的斜率与倾斜角。

(1)()0,2-A 和()3,1B (2)()4,1M 和()2,3N *4.证明三点()1,0-A ,()1,3B ,()3,3--C 在同一条直线上。

作业布置:1.已知点()2,41P ,()y P ,52-且过1P ,2P 的直线的斜率是31,求y 的值。

2.已知三角形的三个顶点()1,0A ,()3,8B ,()1,1-C 分别求三角形三边所在的直线的斜率。

第8章《直线与圆的方程》复习课

第8章《直线与圆的方程》复习课

由已知条件可知:k1=-2
k·k1=-1
即有 -2k =-1 解得 k 1 .
又直线l经过点M(2,-1),故其方程为
2
1 y 1 (x 2)
2
即 x – 2y – 4 = 0.
链接高考:
求直线l : 3x y 6 0与圆x2 y2 2y 4 0 的交点坐标
求圆心在直线y 4x上,且与直线l : x y 1 0 相切于点P(3,- 2)的圆的方程。
3
(么2,)已直知线直的线斜的率点为斜_式__方__程__3 是___y_,2倾 斜3 角(x 为1)_3__0____.那 3
3.写出斜率为 3 ,在y轴上的截距是-2的直线方程. 2 y 3 x2 2
1、如果直线ax+2y+2=0与直线3x-y-2=0平行,则
a=( B )
A.-3
B.-6
C.
.O r
d .D
.
C
l
相切
d
Or
. .F
l
E 相交
2、直线与圆相切 3、直线与圆相交
d=r d<r
切线的性质定理: 圆的切线垂直于过切点的半径
O
r l
A
切点
圆心与切点的连线与切线垂直
2.填空题: (1)已知直线的点斜式方程是y-2=x-1,那么,直线的
斜率为 __1__,倾斜角为___4__5________.
( 90 )
2.直线的斜率计算公式:
形式 点斜式
斜截式 一般式
直线的方程
条件
方程
过点( x0,y0), 斜率为k
y y0 k(x x0)
在y轴上的截距为b, y kx b
斜率为k

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典

中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典第八章直线与圆的方程第一节两点间的距离与线段中点的坐标一、两点间的距离及线段中点的坐标:设点P1(x1.y1)和点P2(x2.y2),则点P1P2的距离为√[(x2-x1)²+(y2-y1)²]。

线段中点P(x,y)的坐标为x=(x1+x2)/2,y=(y1+y2)/2.题】1.已知点A(28,10)和点B(12,22),求线段AB的长度。

2.已知三角形的顶点分别为A(2,6),B(-4,3),C(0,3),求三角形ABC的三条边长。

3.已知点A(1,4),点B(5,1),点C(1,1),证明三角形ABC为直角三角形。

题】1.已知点M(-1,-3)和点N(-1,5),求线段MN的长度,并求线段MN的中点坐标。

2.已知三角形ABC的三个顶点为A(1,0)、B(-2,1)、C(0,3),求BC边上的中线AD的长度。

第二节直线的倾斜角与斜率一、直线的倾斜角与斜率直线的倾斜角α:直线向上的方向与x轴正方向所夹的最小正角。

范围:0≤α<180.直线的斜率k:k=tanα=(y2-y1)/(x2-x1)。

注:①当直线平行于x轴或重合时,斜率k不存在。

②当直线垂直于x轴时,斜率k=0.③斜率k与两点的位置无关。

题】1.已知直线的倾斜角,求斜率。

(1)α=π/6 (2)α=135° (3)α=90°2.已知直线的斜率,求倾斜角。

(1)k=3 (2)k=-3 (3)k=1/33.求经过下列两点的直线的斜率与倾斜角。

(1)A(-2,-1)和B(1,3) (2)M(1,4)和N(3,2)4.证明三点A(1,-1),B(3,1),C(-3,-3)在同一条直线上。

作业布置:1.已知点P1(4,2)、点P2(-5,y),且过点P1、P2的直线的斜率为1/3,求y的值。

2.已知三角形ABC的三个顶点为A(2,1)、B(8,3)、C(1,-1),分别求三角形ABC三条边所在的直线的斜率。

复习直线和圆的方程

复习直线和圆的方程

复习直线和圆的方程第八章直线和圆的方程高考导航考试要求重难点击命题展望1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.3.能根据两条直线的斜率判定这两条直线平行或垂直.4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.5.掌握用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行线间的距离.7.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.8.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.9.能用直线和圆的方程解决简单的问题.10.初步了解用代数方法处理几何问题的思想.11.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式. 本章重点:1.倾斜角和斜率的概念;2.根据斜率判定两条直线平行与垂直;3.直线的点斜式方程、一般式方程;4.两条直线的交点坐标;5.点到直线的距离和两条平行直线间的距离的求法;6.圆的标准方程与一般方程;7.能根据给定直线,圆的方程,判断直线与圆的位置关系;8.运用数形结合的思想和代数方法解决几何问题.本章难点:1.直线的斜率与它的倾斜角之间的关系;2.根据斜率判定两条直线的位置关系;3.直线方程的应用;4.点到直线的距离公式的推导;5.圆的方程的应用;6.直线与圆的方程的综合应用. 本章内容常常与不等式、函数、向量、圆锥曲线等知识结合起来考查.直线和圆的考查,一般以选择题、填空题的形式出现,属于容易题和中档题;如果和圆锥曲线一起考查,难度比较大.同时,对空间直角坐标系的考查难度不大,一般为选择题或者填空题.本章知识点的考查侧重考学生的综合分析问题、解决问题的能力,以及函数思想和数形结合的能力等.知识网络8.1 直线与方程典例精析题型一直线的倾斜角【例1】直线2xcos &alpha;-y-3=0,&alpha;&isin;[&pi;6,&pi;3]的倾斜角的变化范围是( )A.[&pi;6,&pi;3]B.[&pi;4,&pi;3]C.[&pi;4,&pi;2]D.[&pi;4,2&pi;3]【解析】直线2xcos &alpha;-y-3=0的斜率k=2cos &alpha;,由于&alpha;&isin;[&pi;6,&pi;3],所以12&le;cos &alpha;&le;32,k=2cos &alpha;&isin;[1,3].设直线的倾斜角为&theta;,则有tan&theta;&isin;[1,3],由于&theta;&isin;[0,&pi;),所以&theta;&isin;[&pi;4,&pi;3],即倾斜角的变化范围是[&pi;4,&pi;3],故选B.【点拨】利用斜率求倾斜角时,要注意倾斜角的范围.【变式训练1】已知M(2m+3,m),N(m-2,1),当m&isin; 时,直线MN的倾斜角为锐角;当m= 时,直线MN的倾斜角为直角;当m&isin; 时,直线MN的倾斜角为钝角.【解析】直线MN的倾斜角为锐角时,k=m-12m+3-m+2=m-1m+5&gt;0&rArr;m&lt;-5或m&gt;1;直线MN的倾斜角为直角时,2m+3=m-2&rArr;m=-5;直线MN的倾斜角为钝角时,k=m-12m+3-m+2=m-1m+5&lt;0&rArr;-5题型二直线的斜率【例2】已知A(-1,-5),B(3,-2),直线l的倾斜角是直线AB的倾斜角的2倍,求直线l的斜率.【解析】由于A(-1,-5),B(3,-2),所以kAB=-2+53+1=34,设直线AB的倾斜角为&theta;,则tan &theta;=34,l的倾斜角为2&theta;,tan 2&theta;= 2tan&theta;1-tan2&theta;=2&times;341-(34)2=247.所以直线l的斜率为247.【点拨】直线的倾斜角和斜率是最重要的两个概念,应熟练地掌握这两个概念,扎实地记住计算公式,倾斜角往往会和三角函数的有关知识联系在一起.【变式训练2】设&alpha;是直线l的倾斜角,且有sin &alpha;+cos &alpha;=15,则直线l的斜率为( )A.34B.43C.-43D.-34或-43【解析】选C.sin &alpha;+cos &alpha;=15&rArr;sin &alpha;cos &alpha;=-1225&lt;0&rArr;sin &alpha;=45,cos &alpha;=-35或cos&alpha;=45,sin &alpha;=-35(舍去),故直线l的斜率k=tan &alpha;=sin &alpha;cos &alpha;=-43.题型三直线的方程【例3】求满足下列条件的直线方程.(1)直线过点(3,2),且在两坐标轴上截距相等;(2)直线过点(2,1),且原点到直线的距离为2.【解析】(1)当截距为0时,直线过原点,直线方程是2x-3y=0;当截距不为0时,设方程为xa+ya=1,把(3,2)代入,得a=5,直线方程为x+y-5=0.故所求直线方程为2x-3y=0或x+y-5=0.(2)当斜率不存在时,直线方程x-2=0合题意;当斜率存在时,则设直线方程为y-1=k(x-2),即kx-y+1-2k=0,所以|1-2k|k2+1=2,解得k=-34,方程为3x+4y-10=0.故所求直线方程为x-2=0或3x+4y-10=0.【点拨】截距可以为0,斜率也可以不存在,故均需分情况讨论.【变式训练3】求经过点P(3,-4),且横、纵截距互为相反数的直线方程.【解析】当横、纵截距都是0时,设直线的方程为y=kx.因为直线过点P(3,-4),所以-4=3k,得k=-43.此时直线方程为y=-43x.当横、纵截距都不是0时,设直线的方程为xa+y-a=1,因为直线过点P(3,-4),所以a=3+4=7.此时方程为x-y-7=0.综上,所求直线方程为4x+3y=0或x-y-7=0.题型四直线方程与最值问题【例4】过点P(2,1)作直线l分别交x、y轴的正半轴于A、B两点,点O为坐标原点,当△ABO的面积最小时,求直线l的方程.【解析】方法一:设直线方程为xa+yb=1(a&gt;0,b&gt;0),由于点P在直线上,所以2a+1b=1.2a&bull;1b&le;(2a+1b2)2=14,当2a=1b=12时,即a=4,b=2时,1a&bull;1b取最大值18,即S△AOB=12ab取最小值4,所求的直线方程为x4+y2=1,即x+2y-4=0.方法二:设直线方程为y-1=k(x-2)(k&lt;0),直线与x轴的交点为A(2k-1k,0),直线与y轴的交点为B(0,-2k+1),由题意知2k-1&lt;0,k&lt;0,1-2k&gt;0.S△AOB=12(1-2k)&bull;2k-1k=12[(-1k)+(-4k)+4]&ge;12[2(-1k)&bull;(-4 k)+4]=4.当-1k=-4k,即k=-12时,S△AOB有最小值,所求的直线方程为y-1=-12(x-2),即x+2y-4=0.【点拨】求直线方程,若已知直线过定点,一般考虑点斜式;若已知直线过两点,一般考虑两点式;若已知直线与两坐标轴相交,一般考虑截距式;若已知一条非具体的直线,一般考虑一般式.【变式训练4】已知直线l:mx-(m2+1)y=4m(m&isin;R).求直线l的斜率的取值范围.【解析】由直线l的方程得其斜率k=mm2+1.若m=0,则k=0;若m&gt;0,则k=1m+1m&le;12m&bull;1m=12,所以0若m&lt;0,则k=1m+1m=-1-m-1m&ge;-12(-m)(-1m)=-12,所以-12&le;k&lt;0.综上,-12&le;k&le;12.总结提高1.求斜率一般有两种类型:其一,已知直线上两点,根据k=y2-y1x2-x1求斜率;其二,已知倾斜角&alpha;或&alpha;的三角函数值,根据k=tan &alpha;求斜率,但要注意斜率不存在时的情形.2.求倾斜角时,要注意直线倾斜角的范围是[0,&pi;).3.求直线方程时,应根据题目条件,选择合适的直线方程形式,从而使求解过程简单明确.设直线方程的截距式,应注意是否漏掉过原点的直线;设直线方程的点斜式时,应注意是否漏掉斜率不存在的直线.8.2 两条直线的位置关系典例精析题型一两直线的交点【例1】若三条直线l1:2x+y-3=0,l2:3x-y+2=0和l3:ax+y=0 不能构成三角形,求a的值.【解析】①l3∥l1时,-a=-2&rArr;a=2;②l3∥l2时,-a=3&rArr;a=-3;③由 &rArr; 将(-1,-1)代入ax+y=0&rArr;a=-1.综上,a=-1或a=2或a=-3时,l1、l2、l3不能构成三角形.【点拨】三条直线至少有两条平行时或三条直线相交于一点时不能构成三角形.【变式训练1】已知两条直线l1:a1x+b1y+1=0和l2:a2x+b2y+1=0的交点为P(2,3),则过A(a1,b1),B(a2,b2)的直线方程是.【解析】由P(2,3)为l1和l2的交点得故A(a1,b1),B(a2,b2)的坐标满足方程2x+3y+1=0,即直线2x+3y+1=0必过A(a1,b1),B(a2,b2)两点.题型二两直线位置关系的判断【例2】已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.(1)l1&perp;l2,且l1过点(-3,-1);(2)l1∥l2,且坐标原点到两条直线的距离相等.【解析】(1)由已知可得l2的斜率存在,所以k2=1-a,若k2=0,则1-a=0,即a=1.因为l1&perp;l2,直线l1的斜率k1必不存在,即b=0,又l1过点(-3,-1),所以-3a+b+4=0,而a=1,b=0代入上式不成立,所以k2&ne;0.因为k2&ne;0,即k1,k2都存在,因为k2=1-a,k1=ab,l1&perp;l2,所以k1k2=-1,即ab(1-a)=-1,又l1过点(-3,-1),所以-3a+b+4=0,联立上述两个方程可解得a=2,b=2.(2)因为l2的斜率存在,又l1∥l2,所以k 1=k2,即ab=(1-a),因为坐标原点到这两条直线的距离相等,且l1∥l2,所以 l1,l2在y轴的截距互为相反数,即4b=b,联立上述方程解得a=2,b=-2或a=23,b=2,所以a,b的值分别为2和-2或23和2.【点拨】运用直线的斜截式y=kx+b时,要特别注意直线斜率不存在时的特殊情况.求解两条直线平行或垂直有关问题时,主要是利用直线平行和垂直的充要条件,即“斜率相等”或“斜率互为负倒数”.【变式训练2】如图,在平面直角坐标系xOy中,设三角形ABC的顶点分别为A(0,a),B(b,0),C(c,0).点P(0,p)是线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线OE的方程为(1b-1c)x+(1p-1a)y=0,则直线OF的方程为.【解析】由截距式可得直线AB:xb+ya=1,直线CP:xc+yp=1,两式相减得(1c-1b)x+(1p-1a)y=0,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故所求直线OF的方程为(1c-1b)x+(1p-1a)y=0.题型三点到直线的距离【例3】已知△ABC中,A(1,1),B(4,2),C(m,m)(1【解析】因为A(1,1),B(4,2),所以|AB|=(4-1)2+(2-1)2=10,又因为直线AB的方程为x-3y+2=0,则点C(m,m)到直线AB的距离即为△ABC的高,设高为h,则h=|m-3m+2|12+(-3)2,S=12|AB|&bull;h=12|m-3m+2|,令m=t,则1由图象可知,当t =32时,S有最大值18,此时m=32,所以m=94.【点拨】运用点到直线的距离时,直线方程要化为一般形式.求最值可转化为代数问题,用处理代数问题的方法解决.【变式训练3】若动点P1(x1,y1)与P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,求P1P2的中点P到原点的距离的最小值.【解析】方法一:因为P1、P2分别在直线l1和l2上,所以(①+②)&divide;2,得x1+x22-y1+y22-10=0,所以P1P2的中点P(x1+x22,y1+y22)在直线x-y-10=0上,点P到原点的最小距离就是原点到直线x-y-10=0的距离d=102=52.所以,点P到原点的最小距离为52.方法二:设l为夹在直线l1和l2之间且和l1与l2的距离相等的直线.令l:x-y-c=0,则5解得c=10.所以l的方程为x-y-10=0.由题意知,P1P2的中点P在直线l上,点P到原点的最小距离就是原点到直线l的距离d=102=52,所以点P到原点的最小距离为52.总结提高1.求解与两直线平行或垂直有关的问题时,主要是利用两直线平行或垂直的条件,即“斜率相等”或“互为负倒数”.若出现斜率不存在的情况,可考虑用数形结合的方法去研究.2.学会用分类讨论、数形结合、特殊值检验等基本的数学方法和思想.特别是注意数形结合思想方法,根据题意画出图形不仅易于找到解题思路,还可以避免漏解和增解,同时还可以充分利用图形的性质,挖掘出某些隐含条件,找到简捷解法.3.运用公式d=|C1-C2|A2+B2求两平行直线之间的距离时,要注意把两直线方程中x、y的系数化成分别对应相等.8.3 圆的方程典例精析题型一求圆的方程【例1】求经过两点A(-1,4),B(3,2)且圆心在y轴上的圆的方程.【解析】方法一:设圆的方程为x2+y2+Dx+Ey+F=0,则圆心为(-D2,-E2),由已知得即解得 D=0,E=-2,F=-9,所求圆的方程为x2+y2-2y-9=0.方法二:经过A(-1,4),B(3,2)的圆,其圆心在线段AB的垂直平分线上,AB的垂直平分线方程为y-3=2(x-1),即y=2x+1.令x=0,y=1,圆心为(0,1),r=(3-0)2+(2-1)2=10 ,圆的方程为x2+(y-1)2=10.【点拨】圆的标准方程或一般方程都有三个参数,只要求出a、b、r或D、E、F,则圆的方程确定,所以确定圆的方程需要三个独立条件.【变式训练1】已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为43,求圆的方程.【解析】设圆的方程为x2+y2+Dx+Ey+F=0,①将P、Q两点的坐标分别代入①得令x=0,由①得y2+Ey+F=0,④由已知|y1-y2|=43,其中y1、y2是方程④的两根.所以(y1-y2)2=(y1+y2)2-4y1y2=E2-4F=48,⑤解②、③、⑤组成的方程组,得D=-2,E=0,F=-12或D=-10,E=-8,F=4,故所求圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0.题型二与圆有关的最值问题【例2】若实数x,y满足(x-2)2+y2=3.求:(1)yx的最大值和最小值;(2)y-x的最小值;(3)(x-4)2+(y-3)2的最大值和最小值.【解析】(1)yx=y-0x-0,即连接圆上一点与坐标原点的直线的斜率,因此 yx的最值为过原点的直线与圆相切时该直线的斜率,设yx=k,y=kx,kx-y=0.由|2k|k2+1=3,得k=&plusmn;3,所以yx的最大值为3,yx的最小值为-3.(2)令x-2=3cos &alpha;,y=3sin &alpha;,&alpha;&isin;[0,2&pi;).所以y-x=3sin &alpha;-3cos&alpha;-2=6sin(&alpha;-&pi;4)-2,当sin(&alpha;-&pi;4)=-1时,y-x的最小值为-6-2.(3)(x-4)2+(y-3)2是圆上点与点(4,3)的距离的平方,因为圆心为A(2,0),B(4,3),连接AB交圆于C,延长BA交圆于D.|AB|=(4-2)2+(3-0)2=13,则|BC|=13-3,|BD|=13+3,所以(x-4)2+(y-3)2的最大值为(13+3)2,最小值为(13-3)2.【点拨】涉及与圆有关的最值问题,可借助图形性质,利用数形结合求解,一般地:①形如U=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题;②形如(x-a)2+(y-b)2形式的最值问题,可转化为圆心已定的动圆半径的最值问题.【变式训练2】已知实数x,y满足x2+y2=3(y&ge;0).试求m=y+1x+3及b=2x+y的取值范围.【解析】如图,m可看作半圆x2+y2=3(y&ge;0)上的点与定点A(-3,-1)连线的斜率,b可以看作过半圆x2+y2=3(y&ge;0)上的点且斜率为-2的直线的纵截距.由图易得3-36&le;m&le;3+216,-23&le;b&le;15.题型三圆的方程的应用【例3】在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x&isin;R)与两坐标轴有三个交点,经过三个交点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过定点(其坐标与b无关)?请证明你的结论.【解析】(1)令x=0,得抛物线与y轴交点是(0,b),由题意b&ne;0,且&Delta;&gt;0,解得b&lt;1且b&ne;0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x+b=0是同一个方程,故D=2,F=b.令x=0,得y2+Ey+F=0,此方程有一个根为b,代入得出E=-b-1.所以圆C的方程为x2+y2+2x-(b+1)y+b=0.(3)圆C必过定点,证明如下:假设圆C过定点(x0,y0)(x0,y0不依赖于b),将该点的坐标代入圆C的方程,并变形为x20+y20+2x0-y0+b(1-y0)=0,(*)为使(*)式对所有满足b&lt;1(b&ne;0)的b都成立,必须有1-y0=0,结合(*)式得x20+y20+2x0-y0=0,解得或经检验知,点(0,1),(-2,1)均在圆C上,因此圆C 过定点.【点拨】本题(2)的解答用到了代数法求过三点的圆的方程,体现了设而不求的思想.(3)的解答同样运用了代数的恒等思想,同时问题体现了较强的探究性.【变式训练3】(2019安徽)动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(12,32),则当0&le;t&le;12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是( )A.[0,1]B.[1,7]C.[7,12]D.[ 0,1]和[7,12]【解析】选D.由题意知角速度为2&pi;12=&pi;6,故可得y=sin(&pi;6t+&pi;3),0&le;t&le;12,&pi;3&le;&pi;6t+&pi;3&le;&pi;2或32&pi;&le;&pi;6t+&pi;3&le;52&pi;,所以0&le;t&le;1或7&le;t&le;12.所以单调递增区间为[0,1]和[7,12].总结提高1.确定圆的方程需要三个独立条件,“选标准,定参数”是解题的基本方法.一般来讲,条件涉及圆上的多个点,可选择一般方程;条件涉及圆心和半径,可选圆的标准方程.2.解决与圆有关的问题,应充分运用圆的几何性质帮助解题.解决与圆有关的最值问题时,可根据代数式子的几何意义,借助于平面几何知识,数形结合解决.也可以利用圆的参数方程解决最值问题.8.4 直线与圆、圆与圆的位置关系典例精析题型一直线与圆的位置关系的判断【例1】已知圆的方程x2+y2=2,直线y=x+b,当b为何值时,(1)直线与圆有两个公共点;(2)直线与圆只有一个公共点.【解析】方法一:(几何法)设圆心O(0,0)到直线y=x+b的距离为d,d=|b|12+12=|b|2,半径r=2.当d所以当-2当d=r时,直线与圆相切, |b|2=2,b=&plusmn;2,所以当b=&plusmn;2时,直线与圆只有一个公共点.方法二:(代数法)联立两个方程得方程组消去y得2x2+2bx+b2-2=0,&Delta;=16-4b2.当&Delta;&gt;0,即-2当&Delta;=0,即b=&plusmn;2时,有一个公共点.【点拨】解决直线与圆的位置关系的问题时,要注意运用数形结合思想,既要运用平面几何中有关圆的性质,又要结合待定系数法运用直线方程中的基本关系,养成勤画图的良好习惯.【变式训练1】圆2x2+2y2=1与直线xsin&theta;+y-1=0(&theta;&isin;R,&theta;&ne;k&pi;+&pi;2,k&isin;Z)的位置关系是( )A.相离B.相切C.相交D.不能确定【解析】选A.易知圆的半径r=22,设圆心到直线的距离为d,则d=1sin2&theta;+1.因为&theta;&ne;&pi;2+k&pi;,k&isin;Z.所以0&le;sin2&theta;&lt;1,所以22r,所以直线与圆相离.题型二圆与圆的位置关系的应用【例2】如果圆C:(x-a)2+(y-a)2=4上总存在两个点到原点的距离为1,求实数a的取值范围.【解析】到原点的距离等于1的点在单位圆O:x2+y2=1上.当圆C与圆O有两个公共点时,符合题意,故应满足2-1&lt;|OC|&lt;2+1,所以1所以-322【变式训练2】两圆(x+1)2+(y-1)2=r2和(x-2)2+(y+2)2=R2相交于P,Q两点,若点P的坐标为(1,2),则点Q的坐标为.【解析】由两圆的方程可知它们的圆心坐标分别为(-1,1),(2,-2),则过它们圆心的直线方程为x-(-1)2-(-1)=y-1-2-1,即y=-x.根据圆的几何性质可知两圆的交点应关于过它们圆心的直线对称.故由P(1,2)可得它关于直线y=-x的对称点,即点Q的坐标为(-2,-1).题型三圆的弦长、中点弦的问题【例3】已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;(2)求圆C内过点P的弦的中点的轨迹方程.【解析】(1)如图,AB=43,D是AB的中点,则AD=23,AC=4,在Rt△ADC中,可得CD=2.设所求直线的斜率为k,则直线的方程为 y-5=kx,即kx-y+5=0.由点C到直线的距离公式|-2k-6+5|k2+1=2,得k=34,此时直线l的方程为3x-4y+20=0.又直线l的斜率不存在时,也满足题意,此时的方程为x=0.所以所求直线为x=0或3x-4y+20=0. (也可以用弦长公式求解)(2)设圆C上过点P的弦的中点为D(x,y),因为CD&perp;PD,所以 =0,即(x+2,y-6)&bull;(x,y-5)=0,化简得轨迹方程x2+y2+2x-11y+30=0.【点拨】在研究与弦的中点有关问题时,注意运用“平方差法”,即设弦AB两端点的坐标分别为A(x1,y1),B(x2,y2),中点为(x0,y0),由得k=y1-y2x1-x2=-x1+x2y1+y2=-x0y0.该法常用来解决与弦的中点、直线的斜率有关的问题.【变式训练3】已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A.106B.206C.306D.406【解析】选B.圆的方程化成标准方程(x-3)2+(y-4)2=25,过点(3,5)的最长弦为AC=10,最短弦为BD=252-12=46,S=12AC&bull;BD=206.总结提高1.解决直线与圆、圆与圆的位置关系有代数法和几何法两种,用几何法解题时要注意抓住圆的几何特征,因此常常要比代数法简捷.例如,求圆的弦长公式比较复杂,利用l=2R2-d2(R表示圆的半径,d表示弦心距)求弦长比代数法要简便.2.处理直线与圆,圆与圆的位置关系,要全面地考查各种位置关系,防止漏解,如设切线为点斜式,要考虑斜率不存在的情况是否合题意,两圆相切应考虑外切和内切两种情况.3.处理直线与圆的位置关系时,特别是有关交点问题时,为避免计算量过大,常采用“设而不求”的方法.8.5 直线与圆的综合应用典例精析题型一直线和圆的位置关系的应用【例1】已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m&isin;R).(1)求证:不论m为何值,直线l恒过定点;(2)判断直线l与圆C的位置关系;(3)求直线l被圆截得的弦长最短时的弦长及此时直线的方程.【解析】(1)证明:直线方程可写作x+y-4+m(2x+y-7)=0,由方程组可得所以不论m取何值,直线l恒过定点(3,1).(2)由(3-1)2+(1-2)2=5&lt;5,故点(3,1)在圆内,即不论m取何值,直线l总与圆C相交.(3)由平面几何知识可知,当直线与过点M(3,1)的直径垂直时,弦|AB|最短.|AB|=2r2-|CM|2=225-[(3-1)2+(1-2)2]=45,此时 k=-1kCM,即-2m+1m+1=-1-12=2,解得m=-34,代入原直线方程,得l的方程为2x-y-5=0.【点拨】解决弦长问题时,可利用弦长的几何意义求解.【变式训练1】若函数f(x)=-1beax的图象在x=0处的切线l与圆C:x2+y2=1相离,则P(a,b)与圆C的位置关系是( )A.在圆外B.在圆内C.在圆上D.不能确定【解析】选B.f(x)=-1beax&rArr;f&prime;(x)=-abeax&rArr;f&prime;(0)=-ab.又f(0)=-1b,所以切线l的方程为y+1b=-ab(x-0),即ax+by+1=0,由l与圆C:x2+y2=1相离得1a2+b2&gt;1&rArr;a2+b2&lt;1,即点P(a,b)在圆内,故选B.题型二和圆有关的对称问题【例2】设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,又满足 &bull; =0.(1)求m的值;(2)求直线PQ的方程.【解析】(1)曲线方程可化为(x+1)2+(y-3)2=9,是圆心为(-1,3),半径为3的圆.因为点P,Q在圆上且关于直线x+my+4=0对称,所以圆心(-1,3)在直线x+my+4=0上,代入得m=-1.(2)因为直线PQ与直线y=x+4垂直,所以设 P(x1,y1),Q(x2,y2),则直线PQ的方程为y=-x+b.将直线y=-x+b代入圆的方程,得2x2+2(4-b)x+b2-6b+1=0,&Delta;=4(4-b)2-4&times;2(b2-6b+1)&gt;0,解得2-32 x1+x2=b-4,x1x2=b2-6b+12,y1y2=(-x1+b)(-x2+b)=b2-b(x1+x2)+x1x2=b2+2b+12,因为 &bull; =0,所以x1x2+y1y2=0,即b2-6b+12+b2+2b+12=0,得b=1.故所求的直线方程为y=-x+1.【点拨】平面向量与圆的交汇是平面解析几何的一个热点内容,解题时,一方面要能够正确地分析用向量表达式给出的题目的条件,将它们转化为图形中相应的位置关系,另一方面还要善于运用向量的运算解决问题.【变式训练2】若曲线x2+y2+x-6y+3=0上两点P、Q 满足①关于直线kx-y+4=0对称;②OP &perp;OQ,则直线PQ 的方程为.【解析】由①知直线kx-y+4=0过圆心(-12,3),所以k=2,故kPQ=-12.设直线PQ的方程为y=-12x+t,与圆的方程联立消去y,得54x2+(4-t)x+t2-6t+3=0.(*)设P(x1,y1),Q(x2,y2),由于OP&perp;OQ,所以x1x2+y1y2=0,即x1x2+(-12x1+t)(-12x2+t)=0,所以(x1+x2)(-12t)+54x1x2+t2=0.由(*)知,x1+x2=4(t-4)5,x1x2=4(t2-6t+3)5,代入上式,解得t=32或t=54.此时方程(*)的判别式&Delta;&gt;0. 从而直线的方程为y=-12x+32或y=-12x+54,即x+2y-3= 0或2x+4y-5=0为所求直线方程.题型三与圆有关的最值问题【例3】求与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程.【解析】曲线x2+y2-12x-12y+54=0可化为(x-6)2+(y-6)2=18,它表示圆心为(6,6),半径为32的圆.作出直线x+y-2=0与圆(x-6)2+(y-6)2=18,由图形可知,当所求圆的圆心在直线y=x上时,半径最小.设其半径为r,点(6,6)到直线x+y=2的距离为52,所以2r+32=52,即r=2,点(0,0)到直线x+y=2的距离为2,所求圆的圆心为(22cos 45&deg;,22sin 45&deg;),即(2,2),故所求圆的标准方程为(x-2)2+(y-2)2=2.【点拨】解决与圆有关的最值问题时,要借助图形的几何性质,利用数形结合求解.【变式训练3】由直线y=x+1上的点向圆C:(x-3)2+(y+2)2=1引切线,则切线长的最小值为( )A.17B.32C.19D.25【解析】选A.设M为直线y=x+1上任意一点,过点M 的切线长为l,则l=|MC|2-r2,当|MC|2最小时,l最小,此时MC与直线y=x+1垂直,即|MC|2min=(3+2+12)2=18,故l的最小值为17.总结提高1.解决直线与圆的综合问题时,一方面,我们要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,我们要勤动手,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决,即注意圆的几何性质的运用.2.解决直线与圆的综合问题时,经常要用到距离,因此两点间的距离公式、点到直线的距离公式要熟练掌握,灵活运用.3.综合运用直线的有关知识解决诸如中心对称、轴对称等一些常见的问题.。

人教版中职数学(基础模块)下册8

人教版中职数学(基础模块)下册8

第四节直线与圆、圆与圆的位置关系[备考方向要明了][归纳·知识整合]1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),设d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.[探究] 1.在求过一定点的圆的切线方程时,应注意什么?提示:应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,则切线不存在.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).[探究] 2.若两圆相交时,公共弦所在直线方程与两圆的方程有何关系?提示:两圆的方程作差,消去二次项得到关于x,y的二元一次方程,就是公共弦所在的直线方程.[自测·牛刀小试]1.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定解析:选A法一:圆心(0,1)到直线的距离d=|m|m2+1<1< 5.法二:直线mx-y+1-m=0过定点(1,1),又因为点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆C是相交的.2.(山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析:选B两圆的圆心距离为17,两圆的半径之差为1,之和为5,而1<17<5,所以两圆相交.3.已知p:“a=2”,q:“直线x+y=0与圆x2+(y-a)2=1相切”,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A a=2,则直线x+y=0与圆x2+(y-a)2=1相切,反之,则有a=± 2.因此p是q的充分不必要条件.4.已知圆x2+y2=4与圆x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是()A.x-2y+1=0 B.2x-y-1=0C.x-y+3=0 D.x-y-3=0解析:选D 法一:圆心O (0,0),C (3,-3)的中点P ⎝⎛⎭⎫32,-32在直线l 上,故可排除A 、B 、C.法二:两圆方程相减得,6x -6y -18=0,即x -y -3=0.5.(重庆高考)设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |=( ) A .1 B.2 C. 3D .2解析:选D 因为直线y =x 过圆x 2+y 2=1的圆心 (0,0),所以所得弦长|AB |=2.[例1] (1)(安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) (2)(江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.[自主解答] (1)因为直线x -y +1=0与圆(x -a )2+y 2=2有公共点,所以圆心到直线的距离d =|a -0+1|2≤r =2,可得|a +1|≤2,即a ∈[-3,1].(2)圆C 方程可化为(x -4)2+y 2=1,圆心坐标为(4,0),半径为1,由题意,直线y =kx -2上至少存在一点(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,因为两个圆有公共点,故(x -4)2+(kx -2)2≤2,整理得(k 2+1)x 2-(8+4k )x +16≤0,此不等式有解的条件是Δ=(8+4k )2-64(k 2+1)≥0,解之得0≤k ≤43,故最大值为43.[答案] (1)C (2)43——————————————————— 判断直线与圆、圆与圆的位置关系的常用方法(1)判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.(2)判断两圆的位置关系,可根据圆心距与两圆半径的和与差的绝对值之间的关系求解.1.直线l :y -1=k (x -1)和圆x 2+y 2-2y -3=0的位置关系是________. 解析:将x 2+y 2-2y -3=0化为x 2+(y -1)2=4.由于直线l 过定点(1,1),且由于12+(1-1)2=1<4,即直线过圆内一点,从而直线l 与圆相交.答案:相交2.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆D .圆解析:选A 设圆心C (x ,y ),则题意得(x -0)2+(y -3)2=y +1(y >0),化简得x 2=8y -8.[例2] (1)(北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________. (2)(济南模拟)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.[自主解答] (1)法一:几何法:圆心到直线的距离为d =|0-2|2=2,圆的半径r =2,所以弦长为l =2×r 2-d 2=24-2=2 2.法二:代数法:联立直线和圆的方程⎩⎪⎨⎪⎧y =x ,x 2+(y -2)2=4,消去y 可得x 2-2x =0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为2(2-0)2=2 2.(2)由题意,设所求的直线方程为x +y +m =0,设圆心坐标为(a,0),则由题意知⎝⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或a =-1,又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上,所以有3+0+m =0,即m =-3,故所求的直线方程为x +y -3=0.[答案] (1)22 (2)x +y -3=0 ———————————————————求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2;(2)代数方法:运用韦达定理及弦长公式:|AB |x 1-x 2|=3.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .-1或3 B .1或3 C .-2或6D .0或4解析:选D 圆心(a,0)到直线x -y =2的距离d =|a -2|2,则(2)2+⎝ ⎛⎭⎪⎫|a -2|22=22, 所以a =0或a =4.4.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=10[例3] 已知圆C :x 2+y 2+2x -4y +3=0.(1)若不过原点的直线l 与圆C 相切,且在x 轴,y 轴上的截距相等,求直线l 的方程; (2)从圆C 外一点P ( ,O 为坐标原点,且有|PM |=|PO |,求点P 的轨迹方程. [自主解答] (1)将圆C 配方得(x +1)2+(y -2)2=2. 由题意知直线在两坐标轴上的截距不为零, 设直线方程为x +y -a =0, 由|-1+2-a |2=2,得|a -1|=2,即a =-1或a =3. 故直线方程为|2=|PC |2-r 2.又∵|PM |=|PO |,∴|PC |2-r 2=|PO |2, ∴(x +1)2+(y -2)2-2=x 2+y 2. ∴2x -4y +3=0即为所求的方程.若将本例(1)中“不过原点”的条件去掉,求直线l 的方程.解:将圆C 配方得(x +1)2+(y -2)2=2.当直线在两坐标轴上的截距为零时,设直线方程为y =kx ,由直线与圆相切得y =(2±6)x ; 当直线在两坐标轴上的截距不为零时,设直线方程为x +y -a =0,由直线与圆相切得x +y +1=0或x +y -3=0.综上可知,直线l 的方程为 (2+6)x -y =0或 (2-6)x -y =0或x +y +1=0或x +y -3=0.——————————————————— 求过一点的圆的切线方程的方法(1)若该点在圆上,由切点和圆心连线的斜率可确定切线的斜率,进而写出切线方程;若切线的斜率不存在,则可直接写出切线方程x =x 0.(2)若该点在圆外,则过该点的切线将有两条.若用设斜率的方法求解时只求出一条,则还有一条过该点且斜率不存在的切线.5.已知点M (3,1),直线ax -y +4=0及圆(点的圆的切线方程; (2)若直线ax -y +4=0与圆相切,求a 的值.解:(1)圆心C (1,2),半径为r =2,当直线的斜率不存在时,方程为x =3. 由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切. 当直线的斜率存在时,设方程为y -1=k (x -3), 即kx -y +1-3k =0. 由题意知|k -2+1-3k |k 2+1=2,解得k =34.故方程为y -1=34(x -3),即3点的圆的切线方程为x =3或3x -4y -5=0. (2)由题意有|a -2+4|a 2+1=2,解得a =0或a =43.2种方法——解决直线与圆位置关系的两种方法直线和圆的位置关系体现了圆的几何性质和代数方法的结合.(1)从思路来看,代数法侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.(2)从适用类型来看,代数法可以求出具体的交点坐标,而几何法更适合定性比较和较为简单的运算.3个注意点——直线与圆相切、相交的三个注意点 (1)涉及圆的切线时,要考虑过切点的半径与切线垂直;(2)当直线与圆相交时,半弦、弦心距、半径所构成的直角三角形在解题中起到关键的作用,解题时要注意把它与点到直线的距离公式结合起来使用;(3)判断直线与圆相切,特别是过圆外一点求圆的切线时,应有两条.在解题中,若只求得一条,则说明另一条的斜率不存在,这一点经常忽视,应注意检验、防止出错.创新交汇——直线与圆的综合应用问题1.直线与圆的综合应用问题是高考中一类重要问题,常常以解答题的形式出现,并且常常是将直线与圆和函数、三角、向量、数列及圆锥曲线等相互交汇,求解参数、函数、最值、圆的方程等问题.2.对于这类问题的求解,首先要注意理解直线和圆等基础知识及它们之间的深入联系;其次要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘,再次要掌握解决问题常用的思想方法,如数形结合、化归与转化、待定系数及分类讨论等思想方法.[典例] (全国卷)在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值.[解] (1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3. 则圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:⎩⎪⎨⎪⎧x -y +a =0,(x -3)2+(y -1)2=9. 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0.从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0.②由①②得a =-1,满足Δ>0,故a =-1. [名师点评]1.本题有以下创新点(1)考查形式的创新,将轨迹问题、向量问题和圆的问题融为一体来考查.(2)考查内容的创新,本题摒弃以往考查直线和圆的位置关系的方式,而是借助于参数考查直线与圆的位置关系,同时也考查了转化与化归思想.2.解决直线和圆的综合问题要注意以下几点(1)求点的轨迹,先确定点的轨迹的曲线类型,再利用条件求得相关参数; (2)存在性问题的求解,即先假设存在,再由条件求解并检验. [变式训练]1.已知直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,O 是坐标原点,且△AOB 是直角三角形,则点P (a ,b )与点M (0,1)之间的距离的最大值为( )A.2+1 B .2 C. 2D.2-1解析:选A 直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,则依题意可知,△AOB 是等腰直角三角形,坐标原点O 到直线2ax +by =1的距离d =12a 2+b 2=22,即2a 2+b 2=2, ∴a 2=2-b 22(-2≤b ≤2),则|PM |=a 2+(b -1)2=b 22-2b +2=2|b -2|2,∴当b =-2时,|PM |max =2×|-2-2|2=2+1.2.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析:因为圆的半径为2,且圆上有且仅有四个点到直线12x -5y +c =0的距离为1,即要圆心到直线的距离小于1,即|c |122+(-5)2<1,解得-13<c <13.一、选择题(本大题共6小题,每小题5分,共30分) 1.圆(x -1)2+(y +3)2=1的切线方程中有一个是( ) A .x -y =0 B .x +y =0 C .x =0D .y =0解析:选C 圆心为(1,-3),半径为1,故x =0与圆相切.2.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为( ) A.π6 B.π2 C.2π3D.56π 解析:选D 由题意知,|k +3|k 2+1=1,得k =-33,故直线l 的倾斜角为56π.3.(陕西高考)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:选A 把点(3,0)代入圆的方程的左侧得32+0-4×3=-3<0,故点(3,0)在圆的内部,所以过点(3,0)的直线l 与圆C 相交.4.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为( ) A .2 3 B .4 C .2 5D .5解析:选B 由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小,此时|AB |=2r 2-d 2=29-5=4.5.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0解析:选A 两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.6.直线ax +by +c =0与圆,N ,若c 2=a 2+b 2,则OM ·ON (O 为坐标原点)等于( ) A .-7 B .-14 C .7D .14解析:选A 设OM ,ON 的夹角为2θ.依题意得,圆心(0,0)到直线ax +by +c =0的距离等于|c |a 2+b 2=1,cos θ=13,cos 2θ=2cos 2θ-1=2×⎝⎛⎭⎫132-1=-79,OM ·ON =3×3cos 2θ=-7.二、填空题(本大题共3小题,每小题5分,共15分)7.设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是(2,2).答案:(2,2)9.(天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本大题共3小题,每小题12分,共36分) 10.求过点P (4,-1)且与圆C :,n ),半径为r , 则A ,M ,C 三点共线,且有|MA |=|AP |=r ,因为圆C :x 2+y 2+2x -6y +5=0的圆心为C (-1,3),则 ⎩⎪⎨⎪⎧n -2m -1=2-31+1,(m -1)2+(n -2)2=(m -4)2+(n +1)2=r , 解得m =3,n =1,r =5,所以所求圆的方程为(x -3)2+(y -1)2=5.11.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A ,B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1),B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k . 12.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O ,C 两点的斜率k OC =b a=-1,故b =-a ,则|OC |=22,即a 2+b 2=22,可解得⎩⎪⎨⎪⎧ a =-2,b =2,或⎩⎪⎨⎪⎧ a =2,b =-2, 结合点C (a ,b )位于第二象限知⎩⎪⎨⎪⎧a =-2,b =2.故圆C 的方程为(,n )符合题意,则⎩⎪⎨⎪⎧ (m -4)2+n 2=42,m 2+n 2≠0,(m +2)2+(n -2)2=8,解得⎩⎨⎧ m =45,n =125.故圆C 上存在异于原点的点Q ⎝⎛⎭⎫45,125符合题意.1.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( )A .4B .42C .8D .82解析:选C 依题意,可设圆心坐标为(a ,a ),半径为r ,其中r =a >0,因此圆方程是(x -a )2+(y -a )2=a 2,由圆过点(4,1)得(4-a )2+(1-a )2=a 2,即a 2-10a +17=0,则该方程的两根分别是圆心C 1,C 2的横坐标,|C 1C 2|=2×102-4×17=8.2.(天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(+n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)解析:选D 由题意可得|m +n |(m +1)2+(n +1)2=1,化简得mn =m +n +1≤(m +n )24,解得m +n ≤2-22或m +n ≥2+2 2.3.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 与⊙O ′所引的切线长相等,则动点P 的轨迹方程是________.解析:⊙O 的圆心为(0,0),半径为2,⊙O ′的圆心为(4,0),半径为6,设点P 为(x ,y ),由已知条件和圆切线性质得x 2+y 2-2=(x -4)2+y 2-6,化简得x =32. 答案:x =324.已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点.若存在,写出直线l 的方程;若不存在,说明理由.解:依题意,设l 的方程为y =x +b ,①x 2+y 2-2x +4y -4=0,②联立①②消去y 得 2x 2+2(b +1)x +b 2+4b -4=0,设A (x 1,y 1),B (x 2,y 2),则有 ⎩⎪⎨⎪⎧ x 1+x 2=-(b +1),x 1x 2=b 2+4b -42,③ ∵以AB 为直径的圆过原点, ∴OA ⊥OB ,即x 1 x 2+y 1y 2=0, 而y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2, ∴2x 1x 2+b (x 1+x 2)+b 2=0,由③得b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,∴b =1或b =-4.∴满足条件的直线l 存在,其方程为 x -y +1=0或x -y -4=0.。

中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案

中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案

中职数学第八章《直线和圆的方程》单元检测(满分100分,时间:100分钟)一.选择题(3分*10=30分)1.已知A(2,-3),B(0,5),则直线AB 的斜率是( )A.4B.-4C.3D.-3 2、设A(-1,3),B(1,5),则直线AB 的倾斜角为( )A.30︒B.45︒C.60︒D.90︒ 3. 下列哪对直线互相垂直A. 52:;12:21-=+=x y l x y lB. 5:;2:21=-=y l y lC. 5:;1:21--=+=x y l x y lD. 53:;13:21--=+=x y l x y l 4.以A(1,2),B(1,6)为直径两端点的圆的方程是( ) A.(x+1 )2 +(y-4)2 =8 B.(x-1 )2 +(y-4)2 =4C.(x-1 )2 +(y-2)2 =4D.(x+1 )2 +(y-4)2 =16 5.若P(-2,3),Q(1,x)两点间的距离为5,则x 的值可以是( ) A. 5 B. 6 C. 7 D. 8 6.方程为x 2+y 2-2x+6y-6=0的圆的圆心坐标是( ) A.(1,3) B.(-1,3) C.(1,-3) D.(2,1)7.过点A(-1,2),且,倾斜角是60︒的直线方程为 ( )20y +-=20y -++= C. 30x y -+= D. 30x y ++= 8.下列哪对直线互相平行( )A.5:,22:1=-=x l y lB.52:,122:1-=+=x y l x y lC.5:,12:1--=+=x y l x y lD.53:,132:1--=+=x y l x y l9.下列直线与直线123=-y x 垂直的是( )A.0364=--y xB.0364=++y xC.0346=++y xD.0346=--y x 10.过点)3,2(A ,且与y 轴平行的直线方程为( ) A.2=x B.2=y C.3=x D.3=y二.填空题(4分*8=32分)11.直线0623=--y x 的斜率为 ,在y 轴上的截距为 12.方程062622=-+-+y x y x 化为圆的标准方程为 13.两直线230,210x y x y ++= -+=的位置关系是________ 14.点(1,3)到直线y=2x+3的距离为____________15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为 16.直线2x+3y+1=0与圆x 2+y 2=1的位置关系是_____17.若方程x 2+y 2-3x+4y+k=0 表示一个圆,则k 的取值范围是 ________ 18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为 ___________三. 解答题(共6题,共计38分)19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB 的中点,求m+n 。

《数学 基础模块》下册 8.6.2圆的标准方程

《数学 基础模块》下册 8.6.2圆的标准方程
第 八 章 直线与圆的方程
8.6.2 圆的标准方程
圆的标准方程
情境 进入
复习 回顾
新知 探究
归纳 小结
布置 作业
情境进入
生 活 中 的 圆
复习回顾
▶ 初中时我们是如何定义圆的? 平面内到一个定点距离等于定长的
点的轨迹. ▶平面直角坐标系中,如何确定一个圆?
圆心:确定圆的位置 半径:确定圆的大小
你的学习效果如何?
布置作业
阅读 教材章节8.习题六及学生学习指导用书8.6
中圆的标准方程相关习题.
Thanks
巩固练习
3.判断下列各点与圆(x+2)2+ (y-3)2=9 的位置关系: (1)A (-5,3); (2)B (3,-5); (3)C (-1,2); (4)D (0,0).
答案:(1)在圆上; (3)在圆内;
(2)在圆外; (4)在圆外.
归纳小结
你学习了哪些内容
重点
难点
你获得了什么学习方法?
(x-2)2+(y+1)2=10 这就是所求圆C的标准方程.
例题解析
例4 已知点 P1(4,-9), P2(6,3), 求以线段P1P2为直径的圆的标准方程, 并判断点D(-1,-2),E(2,2),F(-3,1)是在圆上、圆外,还是在圆内.
解:设所求圆的标准方程为(x-a)2+( y-b )2= r2
例题解析
例3 已知圆心在点 C ( 2,-1 ),并且这个圆过点 A ( -1,0 ),求圆 C 的
标准方程.
解:设所求圆的方程为(x-a)2+(y-b)2= r2 其中,a=2,b=-1. 根据两点间距离公式得
r=|CA|= (1 2)2 (0 1)2 = 10 将a=2,b=-1,r= 10 代入方程,得

高教版中职数学(基础模块)下册8.4《直线与圆的位置关系》

高教版中职数学(基础模块)下册8.4《直线与圆的位置关系》
故这艘轮船不需改变航线,不会受到台风的影响。
280 65
典型例题:
例3 过点 P(1, 1) 作圆 的切线,试求切线方程. x2 y 2 2 x 2 y 1 0 解 设所求切线的斜率为k ,则切线方程为
y 1 k ( x 1),

kx y (1 k ) 0.
运 已知直线x +5y +c = 0和圆x2 + y2 =25相切,求c的值? 用 知 识 强 注意点: 化 含有绝对值的方程,去绝对值时,应 练 注意有两解 习
请同学们谈一谈: 本节课你有哪些收获?
直线与圆的位置关系
位置关 系 相交 相切
d
示意图像
y
r 0
x
相离
因为d<r 所以直线x+y-1=0与圆x2+y2=4相交。
已知直线l:x-y+5=0与圆C: (X+1)2+y2=m的相切,求m的值?
思考:
挑战 自我
1、由题意直线与圆相切,可以得到d与r存在怎样的大小关 系? 2、圆方程中的m与圆半径r是什么关系? 3、求圆的半径根据什么求解? 4、你能说出该圆的圆心坐标吗?怎样表示圆心到直线l的距离?
圆 x2 y2 2x 2 y 1 0 的标准方程为
( x 1)2 ( y 1)2 1
所以圆心C(1,1) ,半径r=1. 圆心到切线的距离为
d k 1 (1 k ) k (1)
2 2

2 k 1
2

由于圆心到切线的距离与半径相等,
所以
2 k 1
2
1,
解得
k 3.
y 1 3( x 1),

中职数学基础模块下册第八章直线与圆的方程单元练习卷含参考答案

中职数学基础模块下册第八章直线与圆的方程单元练习卷含参考答案

中职数学基础模块下册第八章直线与圆的方程单元练习卷含参考答案(时间:90分钟,满分:100分)一、选择题(每题3分,共60分)1.已知A(2,0),B(2,4),则线段AB 的中点坐标为( ).A .(1,2)B .(0,-2)C .(0,2)D .(2,2)2.若直线l 的倾斜角是45º,则该直线的斜率为( )A .0B .21C .23D .13.过点M(-1,m),N(l ,4)的直线的斜率等于1,则m 的值为() A. 1 B. -1 C .2 D .-24.己知直线过点(0,2),斜率为-4,则其直线方程是( )A.4x -y -2=0 B .4x+y -2=0 C .4x +y +2=0 D.4x -y +2=05.直线3x+2y-6=0在y 轴上的截距为( ).A .2B . 3C .-2 D. -36.直线3x+4y-7=0的斜率为( )A .43B .43-C .34D .34-7.直线x+y -1=0与直线x -y+l=0的交点是( )A. (0,1)B.(1,0)C.(0,-1)D. (-1,0)8.直线2x -y -3=0与y=2x+2的位置关系是( ).A.平行B.相交 C .垂直 D.重合9.若直线l 过点(-1,2),且与直线y=x 垂直,则直线l 的方程是().A. x -y+1=0 B .x+y+l=0 C .x -y -1=0 D.x+y -1=010.下面两条直线互相平行的是( ).A.x -y+1=0与x+y+l=0 B .x -y+l=0 与-x -y+1=0C .x -y +1=0 与y=x D.x -y+1=0与y=-x+111.经过点(2,-3)且垂直于y 轴的直线的方程是( )A. x=2B. y=2C. x=-3D. y=-312.圆25)2(322=++-y x )(的圆心坐标和半径分别为( ) A . (-3,2),5 B .(3,-2),5C . (-3,2), 25 D. (3,-2), 2513.已知直线l 与直线y=x -2平行,则直线l 的倾斜角为( ).A .6πB . 4πC .3π D. 2π14.以点(-1,2)为圆心,3为半径的圆的标准方程为( )A .3)2(122=-+-y x )( B . 3)2(122=++-y x )( C .9)2(122=-++y x )( D. 9)2(122=+++y x )( 15.已知直线:1l 052=--y x ,直线:2l 0724=+-y x ,则1l 与2l 的位置关系是( )A.重合 B .平行 C .相交且垂直 D.相交不垂直16.直线053=+-y x 的倾斜角为( )A .6πB . 3πC .32π D. 65π 17.圆044222=-+-+y x y x 的圆心坐标和半径分别为( )A . (1,-2), 3B .(1,-2), 9C . (-1,2), 3 D. (-1,2),918.点(5,7)到直线4x -3y -1=0的距离等于( )A.252 B .58 C .8 D .52 19.直线03=+-y x 与圆9)1(122=-+-y x )(的位置关系是( ) A.相离 B .相切 C .相交且过圆心 D .相交但不过圆心20.直线01543=+-y x 与圆4)2(122=-+-y x )(的位置关系是( ) A.相切 B .相离 C .相交且过圆心 D .相交但不过圆心二、填空题(每题4分,共40分)21. 已知点A 的坐标为(1,2),点B 的坐标为(0,2),则A 与B 两点间的距离|AB |=22. 若点(2,-3)在直线mx -y+1=0上,则m=23.斜率为1,且过点(0,-2)的直线方程为24.把直线的一般式方程2x -3y -9=0化成斜截式为25.过点A (-1,1),且平行于4x+2y -9=0直线方程为26.斜率为31,且在y 轴上的截距为4的直线方程为27.己知直线kx -2y -2=0与直线x -2y=0平行,则k=28.若直线8x+ay -1=0与x -2y=0垂直,则实数a=29.由点A (-6,3),B(8,7)为端点的线段的垂直平分线方程为30.已知点A(-1,0),B(1,0),则以线段AB 为直径的圆的方程为第八章直线与圆的方程单元练习卷参考答案一、选择题1—5 DDCBB 6—10 BAADC 11—15 DBBCB 16—20 BADDA二、填空题21. 122.-223.x-y-2=02x-324.y=325. 2x+y+1=01x+426.y=327. 128. 429.7x+2y-11=030.12=2x+y。

中职数学基础模块下册第八单元《直线与圆的方程》ppt课件

中职数学基础模块下册第八单元《直线与圆的方程》ppt课件

两点间距离公式及中点坐标公式都是用向 量知识推导的。 倾斜角的概念是由“坡度”等实际问题引 入的 距离、圆、直线与圆的位置关系等都与实 际生活有紧密的联系,要注方法
数形结合思想
由特殊到一般
点到直线的距离公式的处理。 (两条平行线间的距离,安排在思考交流 处,没有给出公式。)
(3) 倾斜角在实际中测量不方便或者很困难,因 此我们想到了边角关系——三角函数,其中正 切与直线上的点的坐标密切相关,因此用一个 倾斜角的正切值来测量倾斜角的大小——引入 斜率的概念。---分析
(4) 求斜率即求倾斜角的正切
①特殊直线的斜率:平行线、垂线、过原点 的直线; ②一般直线的斜率,已知两点的坐标,则他 们的坐标差的比值,确定了一个角的正切,所以 我们可以用两点的坐标差的比来求直线的斜率; ③给出斜率公式,教会学生正确记忆公式的 方法(对结构的认识),分子:纵坐标的差;分 母:横坐标的差;由直线上的两点任意确定------综 合分析 为了降低难度,抓住重点,推导过程略讲,只讲 清思路即可。
8.1两点间距离公式及中点公式, 8.3 直线的方程 中的点斜式和斜截式方程, 8.4 两条直线的位置关系 中两条相交直线 的交点, 8.6圆的方程 认知要求为掌握。
要加强本章知识与工程问题的联系,使学 生体验解析几何的应用。 通过本章的教学,培养学生数学思维能力 和分析、解决问题能力。 重点是直线的点斜式方程和圆的标准方程, 用坐标法解决直线、圆的相关问题。
(1) 从滑梯(生活实际中的事例)等感受到倾斜, 从倾斜感受角度(直线与水平线的角度)。---观察
(2) ①从角度如何测定(两直线相交总有两个夹角, 只能选用一个来测定以防混乱),引入倾斜角的定 义。--------想 ②根据定义画直线的倾斜角,感受直线的倾斜角的 正确表示,关键把握倾斜角有锐角直角和钝角,各 种倾斜角的直线位置关系有明显的差别。------分析 ③设计各种有干扰的情境,测试学生对直线倾斜角 的认识是否准确。------能力评价

直线与圆的方程复习重点

直线与圆的方程复习重点

直线与圆的方程 复习重点一、重点知识结构一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、两条直线平行和垂直的充要条件、直线直线l 1到l 2的角以及两直线的夹角、的角以及两直线的夹角、点点到直线的距离公式也是重点内容;到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系; 3、会用二元一次不等式表示平面区域;、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,掌握圆的标准方程和一般方程,了解参数方程的概念,了解参数方程的概念,理解圆的参数方程的概念。

程的概念。

三、热点分析三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

但难度不会大。

四、复习建议四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的C| = 292929292134-n n 666633 OCOD12甲乙丙维生素A(单位/千克)600 700 400 维生素B(单位/千克)800 400 500 成本(元/千克)千克) 11 9 4 yp 13131+-kk ,xy3x-y=1304x+6y=320Mïmkbm m k 1)1()12(2+++-+的坐标为(a ,yxMABCO23+-a b OMMA OM322222232131313或221313且与2PBA On n+1 2)322(1)2||(||2222--523||||2222--55或5555,即4)2(222=+×-+(161)4=-}{++=21,23p1=\2121)()(++=-+-\两边平方,化简得1214)(++=-, 即212214)(++=-. 01>>+, \112++=-, 1112()++Þ-=Î.∴ 数列þýüîíì1是等差数列.是等差数列. (2) 由题设,11=,∴1212)1(111-=Þ×-+=, 4422)12(-====pppp, +×××++=21úûùêëé-++++=222)12(151311p £úûùêëé-×-++×+×+)12()32(15313111p=þýüîíìúûùêëé---++-+-+)121321()5131()311(211p =úûùêëé--+)1211(211p23)12(223p pp <--=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 直线和圆的方程复习
知识点:
一、两点间的距离与线段中点的坐标
1、两点间的距离公式:设点111(,)P x y 、222(,)P x y ,则12||PP = , 当这两个点都在x 轴上时,120y y ==,所以12||PP = ;当这两个点都在y 轴上时120x x ==,所以12||PP = .
2、线段的中点坐标公式:设线段AB 的两个端点分别为111(,)A x y 、22(,)B x y ,线段的中点为 00(,)M x y ,则0x = ;0y = .
二、直线的方程
1、直线的倾斜角:设直线l 与x 轴相交于点P ,A 是x 轴上位于点P 右方的一点,B 是位于上半平面的l 上的一点,则 叫做直线l 对x 轴的倾斜角;若直线l 平行于x 轴,规定其倾斜角为 .即直线的倾斜角α的范围是 .
2、直线的斜率:(1)当直线的倾斜角90α≠︒时, 叫做直线的斜率,记作k ,即k = (α≠ ).(2)设点111(,)P x y 、222(,)P x y 为直线l 上的任意两点,则直线的斜率为k = ( ).即求直线的斜率有 种方法. 特别地,当直线的倾斜角为90︒即直线与x 轴 时,直线的斜率 .
3、直线的方程:(1)点斜式方程:设直线l 的斜率为k 且经过点000(,)P x y ,则直线的点斜式方程为 .
(2)斜截式方程:设直线l 的斜率为k 且经过(0,)B b ,则直线的点斜式方程为 . 其中b 叫做直线在y 轴上的截距(或纵截距)
(3)截距式方程:设a 是直线在x 轴的截距(或横截距),b 是直线在y 轴上的截距(或纵截距), 且0a ≠,且0b ≠,则直线的截距式方程为 .
(4)一般式方程:方程 (其中A 、B 不全为零)叫做直线的一般式方程.特别的,当0B ≠时,该直线的斜率是k = ,纵截距是 .
三、两条直线的位置关系
1、平面内两条直线的位置关系有 种,分别是 、 、 .
2、两直线的位置关系:当直线1l 、2l 的斜率都存在时,设111:l y k x b =+,222:l y k x b =+,则
特别的,判断两条直线的平行的步骤是:求出两条直线的斜率并判断.
(1)若斜率都不存在,则两条直线 ;若只有一个存在,则两直线 .
(2)若斜率都存在,需将直线的方程转化为斜截式:若斜率不相等,则两直线 ; 若斜率相等且截距不相等,则两直线 ;若斜率相等且截距相等,则两直线 . 3、求两条直线1111:0l A x B y C ++=、2222:0l A x B y C ++=的交点的坐标,就是求对应的 方程组 的解.
4、两条直线的夹角:把两条直线相交所成的 叫做两条直线的夹角,记作θ,取值范围是 .
5、两条直线垂直:(1)如果两直线1l 、2l 的斜率都存在且不等于零,那么12l l ⊥⇔ .
(2)斜率不存在的直线与 的直线垂直.
注意:两条直线垂直是两条直线相交的特殊情况,即夹角为90︒.
6、点到直线的距离公式:点000(,)P x y 到直线0Ax By C ++=的距离为 . 注意:使用点到直线的距离公式时,直线方程必须是一般式方程.
拓展:两条平行线11:0l Ax By C ++=、22:0l Ax By C ++=间的距离为 .
四、圆
1、圆的标准方程:以点(,)C a b 为圆心,以r 为半径的圆的标准方程是 . 特别的,以坐标原点为圆心,以r 为半径的圆的标准方程是 .
2、圆的一般方程:方程 (其中 0>)叫做圆的一般方程,其圆心坐标为 ,其半径为 .
3、直线和圆的位置关系:有 种,分别是 、 、 . 设圆的标准方程为222()()x a y b r -+-=,则圆心(,)C a b 到直线0Ax By C ++=的距离为
d = .比较d 与r 大小关系:
(1)当 时,直线与圆 ; (2)当 时,直线与圆 ;(3)当 时,直线与圆 .。

相关文档
最新文档