初等几何研究试题答案(1)
2018-2019-初等数学研究李长明-推荐word版 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初等数学研究李长明篇一:初等数学研究(李长明周焕山编) p494第7题,p497第3题,p498第9题答案初等数学研究(李长明周焕山编) p494第7题,p497第3题,p498第9题答案7.在直角梯形ABCD中,AB是垂直二底的腰,另一腰切以AB为直径之圆于E,过E作底的平行线交AB于F,求证:AC平分EF.证明: ∠DAB=∠ABC=90°, 圆O以AB为直径, ∴AD,BC均与圆O相切; 又圆O与CD相切于E, ∴AD=ED;EC=BC;又AD∥EF∥BC,∴FG/BC=AF/AB=DE/DC=AD/DC=EG/EC=EG/BC.∴EG=FG .即AC平分EF.3.凸四边形ABCD的每条对角线皆平分它的面积.求证:ABCD是平行四边形证明:作AE⊥BD于E,CF⊥BD于F,BM⊥AC于M,DN⊥AC于N.BD平分凸四边形ABCD的面积,∴12BD?AE=12BD?CF?AE=CF.又∠AEO=∠CFO=90?,∠AOE=COF(对顶角相等).??AEO??CFO∴AO=CO,同理易证得:BO=DO.?凸四边形ABCD是平行四边形.(对角线互相平分)9.在?ABC中,∠B≠90,BC边的垂直平分线交求证:DE//BC.?AB于D,?ABC的外接圆在A,C两点之切线交于E.证明:连结OA,OC,CD. AE,CE是圆O的切线,∴∠OAE=∠OCE=90?.∴BD=CD.∴∠DBC=∠DCB.2倍),∠BDC=180?-∠DCB-∠DBC.=∠ACE.(同弧弦切角等于圆周角∴∠AOC+∠AEC=180?. DM是BC的垂直平分线又∠AOC=2∠ABC.(同弧圆心角是圆周角的∴∠ACE=∠ADE.(同弧圆周角相等∴∠ADE=∠ABC.∴DE//BC∴∠BDC=180?-2∠DBC=180?-∠AOC=∠AEC.∴A,D,C,E四点共圆.),∠ABC)篇二:初等几何研究试题答案(1)(李长明版)初等几何研究试题答案(I)一、线段与角的相等1. ⊙O1、⊙O2相交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F, 求证: (1)若∠DBA=∠CBA,则DF=CE; (2) 若DF=CE,则∠DBA=∠CBA.证明:(1)连接AC、AE、AF、AD在⊙O1中,由∠CBA=∠DBA得AC=AF在⊙O2中,由∠CBA=∠DBA得AE=AD由A、C、B、E四点共圆得∠1=∠2由A、D、B、E四点共圆得∠3=∠4所以△ACE≌△AFD∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4∵DF=CE∴△ACE≌△AFD∴AD=AE在⊙O2中,由AD=AE可得∠DBA=∠CBA2. 在△ABC中,AC=BC,∠ACB=90O ,D是AC上的一点,AE⊥BD的延长线于E,又AE=BD, 求证:BD平分∠ABC.12证明:延长AE,BC交于点F∠AED=∠BCA=90? ∠ADE=∠BDC∴∠CBD=∠CAF又∠ACF=∠BCA=90? AC=BC∴?ACF??BCD∴AF=BD11BD∴AE=AF22又ABEE⊥BE又AE=∴BE平分∠ABF即BD平分∠ABC3. 已知在凸五边形ABCDE中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180o-2α,求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD是等腰三角形且底角是∠CDB=[180o-(180o-2α)]÷2=α. ∴∠BDE=(180°-2α)-α=180o -3α ∴A、B、D、E共圆同理A、C、D、E共圆∴∠BAC=∠CAD=∠DAE4. 设H为锐角△ABC的垂心,若AH等于外接圆的半径. 求证:∠BAC=60o证明:过点B作BD⊥BC,交圆周于点D,连结CD、ADC ∵∠DBC=90o, ∴CD是直径,则∠CAD=90o由题,可得AH⊥BC, BH⊥AC∴BD∥AH, AD∥BH∴四边形ADBH是□ ∴AH=BD又∵AH等于外接圆的半径(R) ∴BD=R,而CD=2R ∴在Rt△BCD中,CD=2BD,即∠BCD=30o ∴∠BDC=60o又∵∠BAC=∠BDC∴∠BAC=∠BDC=60o5. 在△ABC中,∠C=90o,BE是∠B的平分线,CD是斜边上的高,过BE、CD之交点O且平行于AB的直线分别交AC、BC于F、G,求证AF=CE.证明:如图∵∠1=∠3,∠1=∠2.∴∠2=∠3,∴GB = GO, ∵ ∠5=∠4=∠6,∴CO =CE,∵ FG∥AB,∴AF/CF=BG/CG=GO/CG, 又∵△FCO∽△COG,∴CO/CF=GO/CG=AF /CF, ∴CO=AF,∵CO=CE,∴AF=CE.6. 在△ABC中,先作角A、B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点D、E,若DE∥BA,求证:△ABC等腰.证:如图所示设AC、ED的交点为F。
初等几何研究试题答案(李长明版)
初等几何研究试题答案(I)、线段与角的相等1. O O、O Q相交于A B, O O的弦BC交O Q于E, O 02的弦BD交O0于F,求证:(1)若2 DBA2 CBA贝卩若DF二CE则 / DBA M CBA.证明:⑴连接AC AE AF、AD在O 0 中,由/ CBA W DBA得AC=AF在O O 中,由/ CBA W DBA得AE=AD由A C、B、E四点共圆得/仁/2由A D B、E四点共圆得/ 3二/4所以△ ACE^A AFD••• DF=CE(2) 由(1)得/ 仁/ 2, / 3=2 4v DF=CE• △ACE^A AFD••• AD=AE在O Q 中,由AD=AE^得/ DBA M CBA2. 在厶ABC中,AC=BC,Z ACB=90,D是AC上的一点,AE丄BD的延长线于E,又AE=1BD,2求证:BD平分/ ABC.证明:延长AE,BC交于点F7 AED "BCA =90 ADE "BDC•CBD =/CAF又7 ACF BCA = 90 AC 二BC•ACF 三BCD . AF = BD1 1又、:AE BD . AE AF2 2又ABEE _ BE■ BE平分ABF即BD平分.ABC3. 已知在凸五边形ABCDE中, / BAE=3 ,BC=CD=DE M/ BCD玄CDE=180-求证:/ BAC 2 CAD h DAE.证明:过点B 作BDL BC,交圆周于点D,连结CD ©D•••/ DBC=90, • CD 是直径,则/CAD=90证明:连接BD,得△ CBD 是等腰三角形且底角是/ CDB=[18(0-(180o — 2 - )] -2=.:丄 BDE=(180° — 2G )-O (=180O — 3«••• A B 、D E 共圆同理A C D E 共圆• h BAC h CAD h DAE4. 设H 为锐角△ ABC 的垂心,若AH 等于外接圆的半径由题,可得AH L BC, BH丄AC••• BD// AH, AD// BH二四边形ADBH是□••• AH=BD又;AH等于外接圆的半径(R)• BD=R M CD=2R•••在Rt △ BCD中,CD=2BD即/ BCD=30• / BDC=60又;/ BAC K BDC BAC M BDC=605. 在厶ABC中, / C=90,BE是/B的平分线,CD是斜边上的高,过BE CD之交点0且平行于AB的直线分别交AC BC于F、G,求证AF=CE.证明:如图;/ 1 = 2 3, / 仁/2. 2二/ 3, • GB = GO,;2 5=2 4=2 6, • CO =CE,;FG// AB,「. AF/CF二B$CG二G0CG,又;△ FCO^COG/. CO7CF=G/CG=A/CF,• CO=AF;CO=CE,\ AF=CE.6. 在厶ABC中,先作角A B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点 D E,若DE// BA,求证:△ ABC等腰.证:如图所示设AG ED的交点为Fv AD是/ A的平分线•••/仁/2T DE// AB 仁/ 3v CE// AD :丄 3二/ 5, / 4二/ 2•/仁/2二/3=Z 4=2 5则厶FAD ffi^ FCE是等腰三角形•A F=DF,EF=CF•A C=DE同理可证BC=DE•A C=BC• △ ABC是等腰三角形7. 三条中线把△ ABC分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ ABC是正三角形.AB D C证明:•/△ AOF △ AOE △ COD △ COE △ BOF △ BOD面积都相等--S A OFE=S A OEC即: 11111 1BF X 叶一FOX 叶BO X r= CEX 叶一OE< 叶一OC X r 2 2 2 2 2 21 12 (BF+FO+BO X r= - (CE+OE+OC X r••• BF+FO+BO二CCE+OE+OC••• CE+OE+OC-OG-OI二CE+OE+OC-OL-OJ• 2DH+2BH=2FK+2CK• 2BF=2CE又F、E分别为AB AC之中点••• AB=AC同理:AB=BC故厶ABC是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等证明:该四边形为菱形.C证明:又•••△ AOBA BOC、△ CODA DOA四个三角形的面积相等1 1OD DC OC r OB BC OC r2 2CD OC OD 二BC OB OCOD OC DC - OE - OG = OB OC BC - Ol - OG二2DF +2CF =2BH +2CH二2DC =2BC=DC =BC•四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形证明:连结O i 、O 2,分别作O i 、O 2到AC 的垂线,垂足分别为P 、M•••在厶ABC 中 ,BO 是。
精品《初等几何研究》练习题
《初等几何研究》作业一、填空题1、对直线a上任意两点A、B,把B以及a上与B在A同侧的点的集合称作,并记作。
2、在绝对几何中,外角定理的内容是:。
3、第四组公理由条公理组成,它们的名称分别是。
4、欧氏平行公理是:。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是,不同之处是。
6、几何证明的基本方法,从推理形式上分为法与归纳法;从思维方向上分为法与分析法;从命题结构上分为证法与间接证法,其中间接证法包括法与法。
7、过反演中心的圆,其反演图形是(过或不过)反演中心的。
8、锐角三角形的所有内接三角形中,周长最短的是三角形。
9、锡瓦定理:设⊿ABC的三边(所在直线)BC、CA、AB上分别有点X、Y、Z,则AX、BY、CZ三线共点(包括平行)的充要条件是。
10、解作图问题的常用方法有:、、、等。
11、数学公理系统的三个基本问题是性、性和性.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的,否则称A、B在a的 .13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是定理的推论.14、证明直线和圆的连续性时,主要依据了原理.15、罗氏平行公理是: .16、在罗氏几何中,共面的两条直线有种关系,它们分别是17、几何证明的通用方法一般有法、法、法、法、法、法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有的关系.19、尺规可作图的充要条件是 .20.由公理可以证明,线段的合同关系具有性、性、性和性.21.如果线段与角对应,那么线段的中点与角的对应.22.命题:“线段小于任意一条连接其两个端点的折线”是定理的推论.23.绝对几何包括有组公理,它们分别是 .24.写出一条与欧氏平行公理等价的命题: .25.在罗氏几何中,两条直线为分散线的充要条件是 .26、.常用的几何变换有等27.托勒密定理:四边形ABCD是圆内接四边形,则 .28.请写出两条作图公法: .29.在希尔伯特给出的欧几里得公理系统中,三角形的定义是:。
初等几何研究答案
《初等几何研究》作业一、填空题1、对直线a 上任意两点A 、B ,把B 以及a 上与B 在A 同侧的点的集合称作 射线(或半直线),; ,并记作 AB 。
2、在绝对几何中,外角定理的内容是: 三角形的外角大于任一不相邻的内角 。
3、第四组公理由 两 条公理组成,它们的名称分别是 度量公理(或阿基米德公理)和康托儿公理 。
4、欧氏平行公理是:对任意直线a 及其外一点A ,在a 和A 决定的平面上,至多有一条过A 与a 不相交的直线 。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是 前4组公理(或绝对几何) ,不同之处是 平行公理 。
6、几何证明的基本方法,从推理形式上分为 演绎 法与归纳法;从思维方向上分为 综合 法与分析法;从命题结构上分为 直接 证法与间接证法,其中间接证法包括 反证 法与 同一 法。
7、过反演中心的圆,其反演图形是 不过 (过或不过)反演中心的 直线 。
8、锐角三角形的所有内接三角形中,周长最短的是 垂足三角形。
9、锡瓦定理:设⊿ABC 的三边(所在直线)BC 、CA 、AB 上分别有点X 、Y 、Z ,则AX 、BY 、CZ 三线共点(包括平行)的充要条件是1=⋅⋅ZBAZYA CY XC BX 。
10、解作图问题的常用方法有: 交轨法 、三角奠基法、 代数法 、 变换法 等。
11、数学公理系统的三个基本问题是 相容性、 独立性和 完备 性.33.①答案不惟一.34.①(0,+∞),②,(0,π/2),③连续,④单调递减. 35.①平移,②旋转,③轴对称.36. ①1=⋅⋅ZB AZYA CY XC BX (或-1)37.①写出已知与求作,②分析,③作法,④证明,⑤讨论.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的异侧,否则称A、B在a的同侧.13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是外角定理的推论.14、证明直线和圆的连续性时,主要依据了戴德金分割原理.15、罗氏平行公理是:对任意直线a及其外一点A,在a和A决定的平面上,至多有一条过A与a不相交的直线.,16、在罗氏几何中,共面的两条直线有3种关系,它们分别是平行,相交,分散.17、几何证明的通用方法一般有化归法、类比法、构造法、数形结合法、变换法、模型法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有相等的关系.19、尺规可作图的充要条件是所求的量可用已知量的有理式或只含平方根的无理式表出.20.由公理可以证明,线段的合同关系具有反身性、对称性、传递性和可加性.21.如果线段与角对应,那么线段的中点与角的角平分线对应.22.命题:“线段小于任意一条连接其两个端点的折线”是外角定理的推论.23.绝对几何包括有四组公理,它们分别是结合公理、顺序公理、合同公理、连续公理. 24.写出一条与欧氏平行公理等价的命题:.25.在罗氏几何中,两条直线为分散线的充要条件是.26、.常用的几何变换有合同变换、相似变换、射影变换、反演变换等27.托勒密定理:四边形ABCD是圆内接四边形,则1=⋅⋅ZBAZYACYXCBX(或-1).28.请写出两条作图公法:过两点可作一条直线(或其部分)。
初等数学研究答案1
初等数学研究答案1习题一1答:原那么:〔1〕A ⊂B〔2〕A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且关于A 的元历来说,重新定义的运算和关系与A 中原来的意义完全分歧。
〔3〕在A 中不是总能实施的某种运算,在B 中总能实施。
(4) 在同构的意义下,B 应当是A 满足上述三原那么的最小扩展,而且由A 独一确定。
方式:〔1〕添加元素法;〔2〕结构法2证明:(1)设命题能成立的一切c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假定bc ac M c =∈,即,那么M c c b b bc a ac c a ∈'∴'=+=+=', 由归结公理知M=N ,所以命题对恣意自然数c 成立。
〔2〕假定a <b ,那么bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 那么ac<bc 。
〔3〕假定a>b ,那么ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得那么ac>bc 。
3证明:(1)用反证法:假定b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
那么a=b 。
〔2〕用反证法:假定b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
那么a <b 。
〔3〕用反证法:假定b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
那么a>b 。
初等几何研究复习题
习题1.设梯形两底之和等于一腰,则此腰两邻角的平分线必通过另一腰的中点。
已知:如图,梯形ABCD 中,AD ∥BC,AB=AD+BC,E 是DC 中点求证:∠DAB 与∠ABC 的平分线必经过E 点。
证明(同一法):设∠DAB 与∠ABC 的角平分线交于E ′点,只需证E ′点与E 点重合。
∵AD ∥BC∴∠DAB+∠ABC=180° ∵∠1=∠2, ∠3=∠4, ∴∠2+∠3=90° ∴∠A E ′B=90°作Rt △ABE ′的斜边AB 上的中线 FE ′,则 FE ′=21AB=AF=BF∴∠2=∠A E ′F, ∠3=∠B E ′F ∴∠1=∠2=∠A E ′F , ∴E ′F ∥AD ∥BC连结EF,则EF 为梯形 ABCD 的中位线, E F ∥AD ∥BC ∴E ′F 与EF 共线∵FE ′=21AB=21(AD+BC), FE =21(AD+BC)∴E ′F = E F∴E ′与E 重合,证毕.习题2.A 是等腰三角形ABC 的顶点,将其腰AB 延长至D ,使BD=AB 。
知CD=10厘米,求AB 边上中线的长。
解:过B 作BF ∥AC 交CD 于F , 则BF 是△DAC 的中位线。
∴BF 21AC∴∠FBC=∠ACB又∠ACB=∠ABC ,AB=AC ∴∠FBC=∠ABC ,BF=21AB=BE21∴△EBC ≌△FBC (SAS ) ∴CE=CF=21CD=21×10=5cm即△ABC 中边上的中线CE 的长为5厘米。
习题3.证明:等腰三角形底边延长线上任一点到两腰距离之差为常量。
已知:如图,等腰三角形ABC 中,AB=AC 。
D 为BC 延长线上一点,过D 作DE ⊥ AB 于E ,作DF ⊥ AC 延长线于F 。
求证:DE -DF 为常量。
证明:作△ABC 的边AB 上的高CH ,再作CG ⊥DE 于G ,则四边形CHEG 为矩形。
初等几何研究试题
初等几何研究试题一、选择题 (5分⨯4=20分)1. 如图,CD EF AB ||||,已知20=AB ,,80=CD 100=BC 那么,EF 的值是____. A. 10, B.12, C.16, D.20第1题图 第2题图 2. 如图,在ABC ∆中,P 是AC 上的点,取BP 的中点Q ,连结CQ 并延长与AB 交于D ,则ABP S ∆与ACD S ∆的关系是_____.A. ABP ACD S S ∆∆<B. ABP ACD S S ∆∆=C. ABP ACD S S ∆∆>D. 不能确定.3. 如图,在ABC ∆中,BE 、CF 分别是AC 、AB 边上的高,o A 45=∠,那么,FBCE AEF S S :=______.A 1:1B 2:1C 3:1D 4:1第3题图 第4题图4. 如图,ABCD 是面积为1的正方形,PCB ∆是正三角形,PBD ∆的面积为_____.A.213- B. 8132- C. 43D. 413-二、填空题 (5分⨯4=20分)1.如图,已知正方形ABCD 的边长为1,E 为AD 的中点,P 为CE 的中点,F 为BP 的中点,则BFD S =_____.第1题图 第2题图 2.如图,AB 是圆O 直径,4=AB ,弦3=BC ,ABC ∠的平分线交半圆于D ,BC AD ,的延长线交于E ,DCE ABCD S S :=______.3.已知圆O 是ABC ∆的外接圆,半径为r ,CO BO AO ,,分别交对边于F E D ,,, 则:CF BE AD 111++=______.(用r 表示)4.ABC ∆的三条高分别为c b a h h h ,,,又ABC ∆内任一点P 到三边距离分别为c b a p p p ,,,则=++c c b b a a h p h p h p ______.三、证明题(12分⨯5=60分)1. 在ABC ∆中,过点A 作直线BC l ||,B ∠的平分线交AC 于D ,交直线l 于E ,C ∠的平分线交AB 于F ,交直线l 于G ,且FG DE =,求证: ABC ∆是等腰三角形.2.M是以AB为直径的上不同于BA、的任一点,C是直径AB上的定点,过M作CM 垂直的直线交过处BD、,求证:A、的切线于E(1)ED,成等比数列;BM,EC(2)BEAD⋅是定值.3.三条中线把ABC∆分成6个三角形,若这6个三角开的内切圆中有4个相等,求ABC∆是正三角形.4.从等腰ABC ∆的底边AC 上的中点M 作BC 边的垂线MH ,点P 为线段MH 的中点,求证:BP AH ⊥.5.已知: ABC ∆内接于圆O ,N M L ,,分别是弧AB CA BC ,,的中点,连结LM NM ,分别交BC AB ,于E D ,;I 是ABC ∆的内心,求证: (1)BC DE ||;(2)IE DI DE +=.。
初等几何研究作业参考答案
《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。
2. ①两,②度量公理(或阿基米德公理)和康托儿公理。
3.①前4组公理(或绝对几何),②平行公理。
4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。
6.①交轨法,②三角奠基法,③代数法,④变换法。
7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。
14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。
24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC).3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。
4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。
初等几何研究期末试题及答案
初等几何研究期末试题及答案第一题:已知四边形ABCD中,AB = 6cm,BC = 8cm,∠ABC = 90°,角ADC的度数为60°。
求四边形ABCD的面积。
解析:由题意可知,四边形ABCD为一个平行四边形,且∠ABC = 90°,∠ADC = 60°。
首先,我们可以使用正弦定理求得∠BAC的度数。
根据正弦定理可以得到:sin∠BAC/AB = sin∠ABC/ACsin∠BAC/6 = sin90°/ACsin∠BAC/6 = 1/ACAC = 6/sin∠BAC接下来,我们可以使用余弦定理求得AC的长度。
根据余弦定理可以得到:AC² = AB² + BC² - 2AB·BC·cos∠ABCAC² = 6² + 8² - 2·6·8·cos90°AC² = 100AC = √100AC = 10再次,我们可以使用正弦定理求得AD的长度。
根据正弦定理可以得到:sin∠ADC/AC = sin∠CAD/ADsin60°/10 = sin∠CAD/AD√3/10 = sin∠CAD/ADAD = 10sin∠CAD/√3最后,我们可以计算四边形ABCD的面积。
四边形ABCD可以分成两个三角形,即△ABC和△ACD。
面积公式为:四边形ABCD的面积 = △ABC的面积 + △ACD的面积= (1/2)·AB·AC + (1/2)·AC·AD= (1/2)·6·10 + (1/2)·10·10sin∠CAD/√3= 30 + 50sin∠CAD/√3综上所述,四边形ABCD的面积为30 + 50sin∠CAD/√3。
第二题:已知直角三角形ABC,其中∠B = 90°,AB = 5cm,AC = 12cm。
初等几何研究模拟卷1答案
华东师大网络学院考卷《初等几何研究》模拟考卷1答案课程名称:__初等几何_研究_______ 学生姓名:___________________ 学号:___________________ 专业:___________________一二三四五六七八九总分阅卷人签名…………………………………………………………………………………………一、(10分)叙述非欧几何的Klein模型,并说明在Klein模型中欧氏几何的平行公理不成立。
解:见第一章第三节Klein模型的介绍。
解答:(1)对象及关系如下:点:取单位圆盘内部D中的点作为非欧几何中的“点”,直线;取D中的开弦作为非欧几何中的“直线”。
基本关系:点在直线上;顺序关系;合同关系。
(2)证明平行公理不成立:,l l,它们与直线l都如图所示,过直线l外一点A,存在着两条过点A的直线12不相交。
二、(10分)由四边形外接圆上任一点, 向一组对边所作两垂线之积等于向两对角线所作两垂线之积.B.(10)() ,,,,,,1()D E F ABC BC CA AB AD BE CF DB EC FADC EA FB=-三分赛瓦定理设是三边或其延长线上的点,则三线共点或相互平行的必要且充分条件为;式中表示有向线段(1),,,, 1, (1) AD BE CF O BOE ACD COF ABD BD CE AOBC EA OD = 证明 必要性.如上左图,设交于点因为是的截线是的截线,由梅涅劳斯定理,有:1, (2),,(1)(2)1////(),CB DOAFCD OAFBBC CB AO OA OD DO DB EC FADC EA FBAD BE CF ==-=-=-∴⨯=-得假设如上右图这, , 1.EC BC FA CDEA BD FB CBDB EC FA DB BC CD DC EA FB DC BD CB ==∴==-是显然有c -x xhDCBA(2) ,,,','1,'' ,''BE CF O AO BC D D B EC FAD C EA FB DBD BDCD CD =-∴=充分性.如果交于点过作直线与必有交点设交点为由必要性有即,,,.'//,'', 1,'','',//// D AD BE CF D B EC FABE CF AD BC D D C EA FBDB D BDC D CD D AD BE CF =-∴=与重合故交于一点 如果作与交于由必要性得即与重合故四.(10分)矩形的面积等于底与高的乘积。
初等几何研究试卷1
第 1 页 (共 2 页)1一、填空题(本大题共6题,每空3分,共24分)1、已知G 为ABC ∆的重心,并且,,AB c AC b BC a ===,则AG = .2、若xy 和xz 平行于同一直线,则x y z 、、三点的位置关系是 .3、若将ABC ∆绕点A 按逆时针旋转90︒,B 点变到E 点,C 点变到F 点,成为AEF ∆,则BC EF 、的大小关系为 ,BC 与EF 的夹角为 .4、已知AB 是O 的直径,AX 是切线,50AXB ∠=︒,BX 交O 于点C ,则B OC ∠= .5、在ABC ∆中,90,15,1ACB ABC BC ∠=︒∠=︒=,则AC 的长为 .6、设正方形ABCD 内接于O ,P 为AD 弧上一点,PA =,4PC =,则PB = ,PD = .二、计算题(本大题共2题,每小题8分,共16分)1、一点到平面上两点的连线长是51和30,这两线在平面上的射影比为5:2,求这点到平面的距离.2、如图,在ABC ∆中,M 是BC 边的中点,12,16,AB AC E F ==、分别在AC AB 、上,直线EF 和AM 相交于点G ,若2AE AF =,求:EG GF 的值.三、证明题(本大题共5题,第1、2小题每题8分,第3、4小题每题10分,第5小题12分,共48分)1、已知正方形ABCD 中,45,EBF E F ∠=︒、分别在AD 和CD 上,求证:EF AE FC =+.(8分)2、从平行四边形ABCD 的对角线BD 上一点P 作两组对边的垂线,交AB BC CD DA 、、、于E F G H 、、、,证明://EF GH .(8分)FD页 (共 2 页)3、证明:三角形中大边上的中线较小.(10分)4、已知ABC ∆内接于O D ,是BC 延长线上一点,DA 切O 于点A ADB ∠,的平分线分别交AB AC 、于E F 、,求证:(1)AE AF =;(2)2AE BE CF =⋅.(10分)5、在正ABC ∆的AB AC 、上各有一动点D E 、,且BD AE =,求证:BE CD 、的交点P 的轨迹是以BC 为弦,内接角为120︒的一段圆弧∑.(12分)四、作图题(本大题共1题,12分)1、已知ABC ∆,过BC 边上一定点P 作一直线,把三角形分成两个等积形.DB CP。
初等几何研究习题答案
初等几何研究习题答案初等几何研究习题答案几何学是数学的一个重要分支,它研究的是形状、大小、相对位置以及它们之间的关系。
初等几何是几何学的基础,是我们学习数学的第一步。
在初等几何的学习过程中,习题是不可或缺的一部分。
通过解答习题,我们可以巩固所学的知识,提高解决问题的能力。
在这篇文章中,我将为大家提供一些初等几何习题的答案,并探讨一些解题思路。
1. 题目:已知直角三角形ABC,其中∠C=90°,AC=5cm,BC=12cm。
求AB的长度。
解答:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
设AB=x cm,则根据勾股定理得到方程:5^2 + x^2 = 12^2。
解这个方程可以得到x的值,进而求得AB的长度。
2. 题目:已知平行四边形ABCD,其中AB=5cm,BC=8cm,∠A=60°。
求对角线AC的长度。
解答:平行四边形的对角线相等,所以AC=BD。
根据余弦定理,可以得到方程:AC^2 = AB^2 + BC^2 - 2 * AB * BC * cos∠A。
将已知的数值代入方程,解得AC的长度。
3. 题目:已知等腰梯形ABCD,其中AB∥CD,AB=7cm,CD=12cm,AD=BC=5cm。
求高的长度。
解答:等腰梯形的高是两个底边之间的垂直距离。
根据勾股定理,可以得到方程:AD^2 = AB^2 - h^2。
将已知的数值代入方程,解得高的长度。
4. 题目:已知正方形ABCD,其中AB=8cm。
点E是BC边上的一个点,且BE=3cm。
连接AE,求∠AEB的度数。
解答:正方形的对角线相等,所以AC=BD。
根据正方形的性质,可以得知∠AEB = ∠AED + ∠DEB。
由于AE=AD,所以∠AED=∠ADE。
根据三角形的内角和定理,可以得到∠AED+∠ADE+∠DEB=180°。
将已知的数值代入方程,解得∠AEB的度数。
通过以上几道习题的解答,我们可以看到初等几何的解题思路大致有两种:一种是利用几何定理和公式进行计算,另一种是利用图形的性质和特点进行推理。
初等数学研究答案
A 卷一1.在三线段a,b,c 中,欲证a=b+c ,可做线段p=b+c ,然后证 a=p2.反射轴相同的两个反射之积是 恒等变换3.轨迹的基本属性是指 纯粹性和完备性4.三大尺规作图的不可能问题是 化圆为方、倍立方、三等分角5.在ABC 与'''A B C 中,若'A A ∠=∠ ()'180A A ∠+∠=则'''''''ABC A B C S AB AC S A B A C = 二1. 三角形的三条中位线形成的三角形与原三角形关系是 相似2. 设E 、F 、G 、H 分别是ABCD 的AB 、BC 、CD 、AD 边上的中点,则四边形EFGH 是 平行四边形3. 下列变换中不是合同变换的是 位似比不等于±1的位似变换4.5三1. 设ABC 由一点M 与顶点A 、B 、C 的连线分别交BC 、CA 、AB 于点D 、E 、F ,求AM BM CM AD BE CF++2. 在ABC 的三边上分别取111,,222AE EC CD DB BF FA ===,求:DEF ABC S S1.在ABC中,M是BC的中点,求证:AB+AC>2AM2.证三角形三高线交于一点(西瓦准则)3.求作三角形,已知它的三条中线一1. 梅涅劳斯定理是证明 共线点 的有力工具2. 反射相同的两个反射的积是 恒等变换3. 在ABC 与'''A B C 中,若'A A ∠=∠ ()'180A A ∠+∠=则'''''''ABC A B C S AB AC S A B A C =4.轨迹的纯粹性是指 属于轨迹上的每一点都符合给定的条件 5.三大尺规作图的不可能问题是 化圆为方、倍立方、三等分角 二1.三角形的三条中位线形成的三角形与原三角形的面积之比是 1:4 2.在三角形的三高线、三中垂线和三中位线中,不共点的三线是 三中位线 3.正方形的一边与对角线之间 无公度 4.欧拉线上的三点是指 外心、垂心、重心 5.位似比为-1的位似变换是 中心对称 三1. 已知ABC 中,AB=8cm ,BC=6cm ,AC=10cm.求:(1)ABC S(2)AB 边上的高BD 的长2. 在ABC S 的三边上分别取111,,333AD AB BE BC CF CA ===,已知ABC S =3, 求:DEF S。
初等几何研究试题答案(1)(李长明版)
初等几何研究试题答案(I)一、线段与角的相等1. ⊙O1、⊙O2相交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F,求证: (1)若∠DBA=∠CBA,则DF=CE;(2) 若DF=CE,则∠DBA=∠CBA.证明:(1)连接AC、AE、AF、AD在⊙O1中,由∠CBA=∠DBA得AC=AF在⊙O2中,由∠CBA=∠DBA得AE=AD由A、C、B、E四点共圆得∠1=∠2由A、D、B、E四点共圆得∠3=∠4所以△ACE≌△AFD∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4∵DF=CE∴△ACE≌△AFD∴AD=AE在⊙O 2中,由AD=AE 可得∠DBA=∠CBA2. 在△ABC 中,AC=BC,∠ACB=90O ,D 是AC 上的一点,AE ⊥BD 的延长线于E,又AE=12BD, 求证:BD 平分∠ABC.证明:延长AE,BC 交于点FAED BCA 90 ADE BDC CBD CAFACF BCA 90 AC BC ACF BCD AF BD11AE BD AE AF22ABEE BE BE ABF BD ABC∠=∠=︒∠=∠∴∠=∠∠=∠=︒=∴∆≅∆∴==∴=⊥∴∠∠又又又平分即平分3. 已知在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180º-2α,求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD是等腰三角形且底角是∠CDB=[180º-(180º-2α)]÷2=α.∴∠BDE=(180°-2α)-α=180º-3α∴A、B、D、E共圆同理A、C、D、E共圆∴∠BAC=∠CAD=∠DAE4. 设H为锐角△ABC的垂心,若AH等于外接圆的半径. 求证:∠BAC=60º证明:过点B作BD⊥BC,交圆周于点D,连结CD、ADC∵∠DBC=90º, ∴CD是直径,则∠CAD=90º由题,可得AH⊥BC, BH⊥AC∴BD∥AH, AD∥BH ∴四边形ADBH是□∴AH=BD又∵AH等于外接圆的半径(R) ∴BD=R,而CD=2R∴在Rt△BCD中,CD=2BD,即∠BCD=30º∴∠BDC=60º又∵∠BAC=∠BDC ∴∠BAC=∠BDC=60º5. 在△ABC中,∠C=90o,BE是∠B的平分线,CD是斜边上的高,过BE、CD之交点O且平行于AB的直线分别交AC、BC于F、G,求证AF=CE.证明:如图∵∠1=∠3,∠1=∠2.∴∠2=∠3,∴GB = GO,∵∠5=∠4=∠6,∴CO =CE,∵ FG∥AB,∴AF/CF=BG/CG=GO/CG,又∵△FCO∽△COG,∴CO/CF=GO/CG=AF/CF,∴CO=AF,∵CO=CE,∴AF=CE.6. 在△ABC中,先作角A、B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点D、E,若DE∥BA,求证:△ABC等腰.证:如图所示设AC、ED的交点为F∵AD是∠A的平分线∴∠1=∠2∵DE∥AB ∴∠1=∠3∵CE∥AD ∴∠3=∠5, ∠4=∠2∴∠1=∠2=∠3=∠4=∠5则△FAD和△FCE是等腰三角形∴AF=DF,EF=CF∴AC=DE同理可证BC=DE∴AC=BC∴△ABC是等腰三角形7. 三条中线把△ABC 分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ABC 是正三角形.r rOF E DBCAHIG LK J证明:∵△AOF 、△AOE 、△COD 、△COE 、△BOF 、△BOD 面积都相等∴S △OFB =S △OEC即:21BF ×r+21FO ×r+21BO ×r=21CE ×r+21OE ×r+21OC ×r 21 (BF+FO+BO)×r=21(CE+OE+OC)×r ∴BF+FO+BO=CCE+OE+OC∴CE+OE+OC-OG-OI=CE+OE+OC-OL-OJ ∴2DH+2BH=2FK+2CK ∴2BF=2CE又F 、E 分别为AB 、AC 之中点 ∴AB=AC 同理:AB=BC故△ABC 是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等 证明:该四边形为菱形.ABDCEFIHGO证明:又∵△AO B 、△BOC 、△COD 、△DOA 四个三角形的面积相等()()1122OD DC OC r OB BC OC r ∴++⨯=++⨯ CD OC OD BC OB OC ∴++=++ OD OC DC OE OG OB OC BC OI OG ++--=++-- 2222DF CF BH CH ⇒+=+22DC BC DC BC ⇒=⇒=∴四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形 .证明:连结O 1 、O 2,分别作O 1 、O 2到AC 的垂线,垂足分别为P 、M ∵在△ABC 中,BO 是☉O 1 、☉O 2的公切线 ∴BO ⊥O 1 O 2又∵☉O 1 、☉O 2半径相同,且都与AC 相切 ∴O 1 O 2‖AC ∴BO ⊥AC BD ⊥AC∵两个相等的内切圆☉O 1 、☉O 3在对顶三角形 △AOB 与△COD 中 ∴周长C △AOB =C △COD∴AO+BO+AB=CO+DO+CD 又∵OP=OQ=OM=ON∴(AO+BO+AB)-(OP+OQ)=(CO+DO+CD)-(OM+ON) ∴2AB=2CD ∴AB=CD 同理AD=BC∴四边形ABCD 是平行四边形ABDCP N O 1O 2O O 3O 4 M Q又∵AC ⊥BD∴四边形ABCD 是菱形10. 在锐角△ABC 中,BD,CE 是两高,并自B 作BF ⊥DE 于F,自C 作CG ⊥DE 于G ,证明:EF=DG .证明:设O,M 分别是BC,FG 的中点, 所以OM ∥BF,因为BF ⊥FG , 所以OM ⊥FG , 又因为∠BEC=∠BDC= 90 所以BCDE 四点在以BC 为 直径的圆上, 因为OM ⊥DE, 所以OM 平分ED, 所以FM-EM=MG-MD 即EF=DG.11. △ABC 中,M 是BC 的中点,I 是内心,BC 与内切圆相切与K.MGOFEDCB A求证:直线IM 平分线段AK.I OML KHG FEDCB A证明:作出∠A 的旁切圆O,设它与BC 边和AB,BC 的延长线分别切于D,E,F,(如图)连接AD 交内接圆于L,则因内接圆和旁切圆以A 为中点成位似,则:IL ⊥BC,即K,I,L 共线于是原题借中位线可如下转化MI 平分AK, ∴M 平分DK ∴BD=KC后者利用圆I 与圆O 两条外公切线相等 ∴EG=FH∴BD+BK=CD+CK则反推过去,得到IM 平分线段AK.12.在△ABC 中,M 是BC 的中点,I 是内心,A H ⊥BC 于H,AH 交MI于E,求证:AE 与内切圆半径相等.E LK M HG FIBCA证明:如图所示作△ABC 的内切圆,∴切点分别交于BC 于点K 、AB 于点F 、AC 于点G ,连接KL 与AC∴ KL 是直径,又∵M 为BC 的中点,I 为内心,则A L ∥MI 又∵A H ⊥BC ∴A H ∥LK又∵点E 点I 分别都在AH 、LK 上 ∴A E ∥LI∴四边形AEIL 为平行四边形 ∴A E =LI 命题得证.13. 在矩形ABCD中,M是AD的中点,N是BC的中点,在CD的延长线取P点,记Q为PM与AC的交点,求证:∠QNM=∠MNP证明:利用矩形的中心设O是矩形ABCD的中心,则O也是MN的中点,延长QN交OC的延长线于R,如图,则O 又是PR的中点,故NC平分∠PNR.,而NM⊥NG.∴NM平分∠PNQ14. 给定以O为顶点的角,以及与此角两边相切于A、B的圆周,过A 作OB的平行线交圆于C,连结OC交圆于E,直线AE交OB于K,求证:OK=KB.证明:如图所示,过C 作圆的切线交OB 延长线于D. ∵OD,OA,CD 都是圆的切线,且A C ∥CD ∴四边形ACDO 是等腰梯形,∠DOA=∠D ∵∠BOC=∠ACO,∠ACO=∠OAK ∴∠BOC=∠OAK ∵∠DOA=∠D ∴△AOK ~△ODC ∵21=OD CD ∴21=AO KO ∵OA=OB ∴OB=OA=2KO,即OK=KB15. 在等腰直角∆ABC 的两直角边CA,CB 上取点D 、E 使CD=CE,从C 、D 引AE 得垂线,并延长它们分别交AB 于K 、L,求证:KL=KB.ALKE HEDC B证明:延长AC至E'使CE'=CE,再连BE'交AE的延长线于H.∵∆ABC是等腰直角三角形∴AC=BC ,∠ACB=∠BCE'=90°又∵CE=CE' ∴∆BCE'≌∆ACE∴∠CAE=∠CBE'∵∠AEC=∠BEH ∴∆BHE∽∆ACE∴∠BHE=∠ACB=90°∵DL∥CK∥E'B及DC=CE'∴KL=LB.16. 点M在四边形ABCD内,使得ABMD为平行四边形,试证:若∠CBM=∠CDM,则∠ACD=∠BCM.证:作AN∥BC且AN=BC,连接DN、NC∵ABMD为平行四边形,AN∥BC且AN=BC∴ABCN、DMCN为平行四边形,AD=BM∴DN=CM、AN=BC∴△ADN≌△BMC∴∠1=∠3,∠2=∠4,∠6=∠7∵∠1=∠2∴∠3=∠4∴A、C、N、D共圆(视角相等)∴∠5=∠7(同弧AD)∴∠5=∠6即∠ACD=∠BCM1∠BDC,求证:△ABC是等17.已知∠ABC=∠ACD=60°,且∠ADB=90°-2腰的.证明:延长CD使得BD=DE,并连结AE1∠BDC∵∠ADB=90°-2∴2∠ADB+∠BDC=180°又∠BDC+∠ADB+∠ADE=180°∴∠ADB=∠ADE又∵BD=DE,AD=AD∴△ADB≌△ADE∴∠ABD=∠AED=60°,AB=AE又∵∠ACD =60° ∴△ACE 为正三角形 ∴AC =AE ∴AB =AC∴△ABC 为等腰三角形18.⊙O 1、⊙O 2半径皆为r,⊙O 1平行四边形`过的二顶A 、B,⊙O 2过顶点B 、C,M 是⊙O 1、⊙O 2的另一交点,求证△AMD 的外接圆半径也是r.21OEMDBOOCA证明: 设O 为MB 的终点 连接CO 并延长⊙O 1于E 则由对称知O 为CE 的中点 ∵O 平分MBO 平分CE∴MEBC 是平行四边形∴ ∴ME ∥BC ∥AD∴MEAD 亦是平行四边形 ∴△MAE ≌△AMD∴△AMD 的外接圆半径也为r19. 在凸五边形ABCDE 中,有∠ABC =∠ADE ,∠AEC =∠ADB, 求证:∠BAC =∠DAE.证明:连接BD,CE,设它们相交于F,如图,∵∠AEC=∠ADB. ∴A,E,D,F 四点共圆. ∴∠DAE=∠DFE. 又∠ABC=∠ADE=∠AFE. ∴A,B,C,F 四点共圆. ∴∠BAC=∠BFC. 又∠DFE=∠BFC. ∴∠BAC=∠DAE.20. 在锐角△ABC 中,过各顶点作其外接圆的切线,A 、C 处的两切线分DCBEAF别交B处的切线于M、N,设BD是△ABC的高(D为垂足),求证:BD 平分∠MDN.证明:如上图,m、n分别表示过M、N的切线长,再自M作MM’⊥AC 于M’, 作NN’⊥AC于N’,则有∵∠N=∠B=∠NCN’∴△MAM’∽△NCN’∴AM’/’CN’=AM/CN=m/n又∵MM’∥BD∥NN’∴M’D/DN’=MB/BN=m/n由等比性质知m/n=(M’D-AM’)/(DN’-CN’)=AD/DC∴△ADM∽△CDN∴DM/DN=m/n即DM/m=DN/n∴BD平分∠MDN21.已知:AD、BE、CF是△ABC的三条高.求证:DA、EB、FC是△DEF 的三条角平分线.证明:连结DF、FE、DE∵C F⊥AB AD⊥BC∴B、D、H、F共圆∴∠1=∠3∵AD⊥BC BE⊥AC∴B、D、E、A共圆∴∠2=∠3∴∠2=∠1∴AD平分∠EDF同理,CF平分∠EFDBE平分∠FED即证:DA、EB、FC是△DEF的三条角平分线22.已知AD是△ABC的高,P是AD上任意一点,连结BP-CP,延长交AC 、AB 于E 、F,证DA 平分∠EDF.证:过E 、F 两点分别作EH 、FG ,使EH ⊥BC,FG ⊥BC,且交CF 、BE 于I 、J∵EH ⊥BC,AD ⊥BC,FG ⊥BC ∴EH ∥AD ∥FG∴EI EH =AP AD =FJ FG ∴FJ EIFG EH =又∵GDHDPJ EP = ∴△EIP ∽△JFP ∴PJEP FJ EI = ∴△EHD ∽FGD∴∠DFJ =∠DEI ∴∠FDB=∠EDC 即∠ADF=∠ADE 即DA 平分∠EDF23.圆内三条弦PP 1、QQ 1、RR 1、两两相交,PP 1与QQ 1交于B,QQ 1与RR 1交于C,RR 1与PP 1交于A,已知:AP=BQ=CR,AR 1=BP 1=CQ 1,求BCADEFIJP证:ABC是正三角形.解:设AP=BQ=CR=m,AR1=BP1=CQ1,则由相交弦定理得{m(c+n)=n(b+m)m(a+n)=n(c+m)m(b+n)=n(a+m)即ma=ncmb=namc=nb三式相加得m=n所以a=b=c即△ABC是正三角形24.H为 ABC的垂心,D、E、F分别为BC、CA、AB的中点,一个以H为心的圆交DE于P、Q,交EF于R、S,交FD于T、V.求证:CP=CQ=AR=AS=BT=BU证明:连结AS 、AR 、RH由相交弦定理知:AH ·HA`=BH ·HB`=CH ·HC` AS 2=AR 2=AK 2+KR 2设O H 的半径为r, 在∆KRH 中,KR 2=r 2-HK 2∴AS 2=r 2+(AK+KH )·(AK-HK )=r 2+AH ·(AK-HK)在∆ABC 中,F 、E 为AB 、AC 的中点,且AA ⊥`BC ∴AK=KA`∴AS 2=AR 2=r 2+AH ·HA`同理:BT 2=BU 2=r 2+BH ·HB` CP 2=CQ 2=r 2+CH ·HC`BCHDE FRS T QK C`A `B ` A25、在锐角三角形ABC 中,AD 、BE 、CF 是各边上的高,P 、Q 分别在线段DF 、EF 上,且∠PAQ 与∠DAC 同向相等. 求证:AP 平分∠FPQRFDEABCPQ证明:作出△APQ 的外接圆,延长PF 交圆于R,分别连结 RA 、RQ 由图可知,AQPR 内接于圆 ∴∠PRQ=∠PAQ=∠DAC=21∠DFE 由外角定理得,∠PRQ+∠FQR=∠DFE ∴FC ∥RQ ∴AF ⊥RQ FR=FQ ∴AF 垂直平分RQ ∴∠ARQ=∠AQR 又AQPR 内接于圆∴∠APQ=∠ARQ ∠APR=∠AQR ∴∠APQ=∠APR ∴AP 平分∠FPQ00090)2()1(,45,30,15.26=∠==∠=∠=∠=∠=∠=∠∆∆BAC ABAC CQP BRP CPQ BPR ARQ AQR PQR C B A PQR 求证:之外,且在、、是任意三角形,PCBQRAS0 0901530~~ )2(~~45~~~30604515601..=∠∴∠+∠+∠+∠=∠=∠=∠=∠=∠∴∆∆∆∆=∴===⇒∆∆=∴∆∆∴∠=∠∠+∠=∠+∠⇒=∠=∠=⇒∆∆∆∆∆≅∆∴=∠=∠∴=∠∠=∠∴∆≅∆∴=-=∠=∠=∴∠=∠∆BACARQBARAQRCAQBACARQAQRBARCAQABRSPRCQAPQSACABSRSQARAQARABSRPSABRSPRAQACQSPSCQAPQSCQAPQSCQPAQPAQSAQPCQPAQSQPCQQSAQCQPAQSCQPBRPARSAQSASRASQQSRASRASQARSAQSARSARQARAQARQAQRPSASQRSPQR又同理,即又)(如图所示,连结,的另一侧作正为一边在证明:以27.已知:凹四边形ABCD中,︒=∠=∠=∠45DBA.求证:AC=BD.证明: 如图,延长DC 交AB 于点E,延长BC 交AD 于点F. ∵︒=∠=∠45D A,DE AE =∴且︒=∠90AED又︒=∠45B︒=∠∴45ECB DBAC DEB S AEC S EB EC =∴∆≅∆∴=∴。
初等数学研究答案第一到第六章
习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能实施的某种运算,在B 中总能施行。
(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。
数系扩展的方式有两种:(1)添加元素法。
(2)构造法。
2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。
a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc b b Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈= (规定)假设即ac ,ac a c .bc a ba bcbc bc M ==∴+=+∴=''∴∈'又 由归纳公理知,,N M =所以命题对任意自然数成立。
(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。
初等几何研究综合测试题(一)
《初等几何研究》综合测试题(一)适用专业:数学教育专业 考试时间:120分钟一、 选择题(本题共8小题,每小题3分,共24分)1.在 ABC 中,AB=AC ,高BF 、CE 交于高AD 上一点O ,图中全等三角形的对数是_____。
A.4;B.5;C.6;D.7.2.已知:如图, ABC 中,∠BAC=90°,AD ⊥BC 于D, 若AB=2,BC=3,则DC 的长度是________。
A.83; B.23; C.43; D.53。
3.下面4个图形中,不是轴对称图形的是_________。
A.有两个内角相等的三角形;B.有一个内角是45°的直角三角形;C.有一个内角是30°的直角三角形;D.有一个内角是30°,一个内角是120°的三角形。
4.下列条件中,不能判别四边形是平行四边形的是_________。
A.一组对边平行,另一组对边相等;B.两组对边分别平行;C.对角线互相平分;D.一组对边平行且相等。
5.若一个四边形既是轴对称图形,又是中心对称图形,则这个四边形是_________。
A.直角梯形;B.等腰梯形;C.平行四边形;D.矩形。
6.下列语句正确的是________。
A.圆可以看作是到圆心的距离等于半径的点的集合。
B.圆的内部可以看作是到定点的距离小于定长的点的集合。
C.圆的一部分叫做弧。
D.能够互相重合的弧叫做等弧。
7.在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C.互相平行(或在同一条直线上)且相等;D.以上都不对。
8.下列关于平移的说法中正确的是___________。
A.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.原图形中两个顶点连成的线段长是平移的距离;D.以对应点中的一点为端点的射线是平移的方向。
二、 判断题:(本题共5小题,每小题2分,共10分)1.如图1,直线a ,b ,c 在同一平面内,a//b ,a 与c 相交于P ,则b 与c 也一定相交。
初等数学研究答案1
初等数学研究答案1大学数学之初等数学研究,李长明,周焕山版,高等教育出版社习题一1答:原则:(1)A ?B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
Θa=b ,M 11b 1a ∈∴?=?∴,假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a,由,使得则ac<="">(3)若a>b ,则ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈?即,,由,使得则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc.当a(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc.当a=b 时,由乘法单调性知ac=bc.这与ac(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当abc 矛盾。
则a>b 。
4. 解:(1)4313='=+541323='='+=+652333='='+=+ (2)313=?631323=+?=?93232333=+?='?=? 5证明:当n=1时,的倍数。
是9181n 154n=-+ 假设当n=k 时的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⇒ 2DC = 2BC
⇒ DC = BC
∴四边形为菱形
9. 凸四边形被对角线分成 4 个三角形,皆有相等的内切圆,求证:该四 边形是菱形 .
A
O1
P O4
B
Q
ON
D
O2
M O3
C
证明:连结 O1 、O2,分别作 O1 、O2 到 AC 的垂线,垂足分别为 P 、M ∵在△ABC 中,BO 是☉O1 、☉O2 的公切线
11
★撼海一舟★作品
12.在△ABC 中,M 是 BC 的中点,I 是内心,AH⊥BC 于 H,AH 交 MI 于 E,求证:AE 与内切圆半径相等.
A
LE F
G I
B
MKH C
证明:如图所示 作△ABC 的内切圆, ∴切点分别交于 BC 于点 K、AB 于点 F、AC 于点 G,连接
KL 与 AC ∴ KL 是直径,
2
2
2
2
2
2
1 (BF+FO+BO)×r= 1 (CE+OE+OC)×r
2
2
∴BF+FO+BO=CCE+OE+OC
∴CE+OE+OC-OG-OI=CE+OE+OC-OL-OJ
∴2DH+2BH=2FK+2CK
∴2BF=2CE
又 F、E 分别为 AB、AC 之中点
∴AB=AC
同理:AB=BC
故△ABC 是正三角形.
1
(2)由(1)得∠1=∠2,∠3=∠4 ∵DF=CE ∴△ACE≌△AFD
★撼海一舟★作品
∴AD=AE 在⊙O2 中,由 AD=AE 可得∠DBA=∠CBA
2. 在△ABC 中,AC=BC,∠ACB=90O ,D 是 AC 上的一点,AE⊥BD 的延长线 于 E,又 AE= 1 BD,
2
求证:BD 平分∠ABC.
17
∴MEAD 亦是平行四边形 ∴△MAE≌△AMD ∴△AMD 的外接圆半径也为 r
★撼海一舟★作品
19. 在凸五边形 ABCDE 中,有∠ABC=∠ADE,∠AEC=∠ADB, 求证:∠BAC=∠DAE.
∴∠BAC=∠BDC=60º
5. 在△ABC 中,∠C=90o,BE 是∠B 的平分线,CD 是斜边上的高,过 BE、 CD 之交点 O 且平行于 AB 的直线分别交 AC、BC 于 F、G,求证 AF=CE.
4
★撼海一舟★作品
A
F
E
D
6
O
54
31
C
2
B
G
证明:如图∵∠1=∠3,∠1=∠2.∴∠2=∠3,∴GB = GO, ∵ ∠5=∠4=∠6,∴CO =CE, ∵ FG∥AB,∴AF/CF=BG/CG=GO/CG, 又∵△FCO∽△COG,∴CO/CF=GO/CG=AF/CF, ∴CO=AF,∵CO=CE,∴AF=CE. 6. 在△ABC 中,先作角 A、B 的平分线,再从点 C 作上二角的平分线值 平行线,并连结它们的交点 D、E,若 DE∥BA,求证:△ABC 等腰.
又∵M 为 BC 的中点,I 为内心,则 AL∥MI 又∵AH⊥BC
∴AH∥LK 又∵点 E 点 I 分别都在 AH、LK 上
∴AE∥LI ∴四边形 AEIL 为平行四边形 ∴AE=LI 命题得证.
13. 在矩形 ABCD 中,M 是 AD 的中点,N 是 BC 的中点,在 CD 的延长
12
★撼海一舟★作品
10. 在锐角△ABC 中,BD,CE 是两高,并自 B 作 BF⊥DE 于 F,自 C 作 CG⊥DE 于 G,证明:EF=DG.
9
A
G
D
EM
F
★撼海一舟★作品
B
O
C
证明:设 O,M 分别是 BC,FG 的中点, 所以 OM∥BF, 因为 BF⊥FG, 所以 OM⊥FG, 又因为∠BEC=∠BDC= 90° 所以 BCDE 四点在以 BC 为 直径的圆上, 因为 OM⊥DE, 所以 OM 平分 ED, 所以 FM-EM=MG-MD 即 EF=DG.
A
L B
K
C
E
D
H E
14
★撼海一舟★作品
证明:延长 AC 至 E'使 CE'=CE,再连 BE'交 AE 的延长线于 H.
∵∆ABC 是等腰直角三角形
∴AC=BC ,∠ACB=∠BCE'=90°
又∵CE=CE'
∴∆BCE'≌∆ACE
∴∠CAE=∠CBE'
∵∠AEC=∠BEH
∴∆BHE∽∆ACE
∴∠BHE=∠ACB=90°
(2) 若 DF=CE,则∠DBA=∠CBA.
C A
O1 E
F O2
B
证明:(1)连接 AC、AE、AF、AD 在⊙O1 中,由∠CBA=∠DBA 得 AC=AF 在⊙O2 中,由∠CBA=∠DBA 得 AE=AD 由 A、C、B、E 四点共圆得∠1=∠2 由 A、D、B、E 四点共圆得∠3=∠4 所以△ACE≌△AFD ∴DF=CE
∵∠DBC=90º, ∴CD 是直径,则∠CAD=90º
由题,可得 AH⊥BC, BH⊥AC
∴BD∥AH, AD∥BH
∴四边形 ADBH 是□
∴AH=BD
又∵AH 等于外接圆的半径(R)
∴BD=R,而 CD=2R
∴在 Rt△BCD 中,CD=2BD,即∠BCD=30º
∴∠BDC=60º
又∵∠BAC=∠BDC
★撼海一舟★作品
18.⊙O1、⊙O2 半径皆为 r,⊙O1 平行四边形`过的二顶 A、B,⊙O 2 过顶 点 B、C,M 是⊙O1、⊙O2 的另一交点,求证△AMD 的外接圆半径也是 r.
D
C
M O2
O
A
B
O1
E 证明: 设 O 为 MB 的终点
连接 CO 并延长⊙O1 于 E 则由对称知 O 为 CE 的中点 ∵O 平分 MB O 平分 CE ∴MEBC 是平行四边形∴ ∴ME∥BC∥AD
∴四边形 ACDO 是等腰梯形,∠DOA=∠D
∵∠BOC=∠ACO,∠ACO=∠OAK ∴∠BOC=∠OAK
∵∠DOA=∠D ∴△AOK~△ODC
∵ CD = 1 ∴ KO = 1
OD 2
AO 2
∵ OA=OB ∴OB=OA=2KO,即 OK=KB
15. 在等腰直角∆ABC 的两直角边 CA,CB 上取点 D、E 使 CD=CE, 从 C、D 引 AE 得垂线,并延长它们分别交 AB 于 K、L,求证:KL=KB.
F
C E
D
A
B
证明:延长 AE,BC 交于点 F
∵∠AED = ∠BCA = 90° ∠ADE = ∠BDC
∴∠CBD = ∠CAF
又∵∠ACF = ∠BCA = 90° AC = BC
∴∆ACF ≅ ∆BCD ∴ AF = BD
又∵AE = 1 BD ∴ AE = 1 AF
2
2
又∵ABEE ⊥ BE
★撼海一舟★作品
7. 三条中线把△ABC 分成 6 个三角形,若这六个三角形的内切圆中有 4 个相等. 求证:△ABC 是正三角形.
A
FG H
r
I
L
E K
O
r
J
B
D
C
证明:∵△AOF、△AOE、△COD、△COE、△BOF、△BOD 面积都相等
6
∴S =S △OFB △OEC
★撼海一舟★作品
即: 1 BF×r+ 1 FO×r+ 1 BO×r= 1 CE×r+ 1 OE×r+ 1 OC×r
∴ABCN、DMCN 为平行四边形,AD=BM
∴DN=CM、AN=BC
∴△ADN≌△BMC
15
∴∠1=∠3,∠2=∠4,∠6=∠7 ∵∠1=∠2 ∴∠3=∠4 ∴A、C、N、D 共圆(视角相等) ∴∠5=∠7(同弧 AD) ∴∠5=∠6 即∠ACD=∠BCM
★撼海一舟★作品
17.已知∠ABC=∠ACD=60°,且∠ADB=90°- 1 ∠BDC,求证:△ABC 是等
8
★撼海一舟★作品
∴BO⊥O1 O2 又∵☉O1 、☉O2 半径相同,且都与 AC 相切
∴O1 O2‖AC ∴BO⊥AC BD⊥AC ∵两个相等的内切圆☉O1 、☉O3 在对顶三角形
△AOB 与△COD 中 ∴周长 C =C △AOB △COD ∴AO+BO+AB=CO+DO+CD 又∵OP=OQ=OM=ON ∴(AO+BO+AB)-(OP+OQ)=(CO+DO+CD)-(OM+ON) ∴2AB=2CD ∴AB=CD 同理 AD=BC ∴四边形 ABCD 是平行四边形 又∵AC⊥BD ∴四边形 ABCD 是菱形
∴∠BDE=(180°-2α )-α =180º-3α
∴A、B、D、E 共圆
同理 A、C、D、E 共圆
∴∠BAC=∠CAD=∠DAE
4. 设 H 为锐角△ABC 的垂心,若 AH 等于外接圆的半径.
求证:∠BAC=60º
3
★撼海一舟★作品
A
D H
B
C
证明:过点 B 作 BD⊥BC,交圆周于点 D,连结 CD、AD C
★撼海一舟★作品
前言:此稿于本人在汕头职业技术学院从事师范类数学专业教学所完 成,在完稿过程中,我的学生(10 级数学教育专业的学生)也参与 进来,共同努力,教与学共同促进!
初等几何研究试题答案