2019九上代数综合题

合集下载

2019届中考数学专题提升(二)代数式的化简与求值

2019届中考数学专题提升(二)代数式的化简与求值

专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y)2呢?解:x 2+y 2=(x +y)2-2xy =32-2×1=7;(x -y)2=(x +y)2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b)2+(a -b)2=2(a 2+b 2),(a +b)2-(a -b)2=4ab ,a 2+b 2=(a +b)2-2ab =(a -b)2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n)2=8,(m +n)2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__. 【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11. 3.[2019·重庆B 卷]计算:(x +y)2-x(2y -x).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2019·漳州]先化简(a +1)(a -1)+a(1-a)-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b)2+a(2b -a),其中a =-12, b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9. 类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a; (2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】 1.[2019·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2019·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a=3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b)2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .5 2.[2019·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1. 解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b, 当a =2+1,b =2-1时,原式=-122=-24. 3.[2019·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -yx 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab, ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.2019-2020学年数学中考模拟试卷一、选择题1.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩2.某公司2018年获利润1000万元,计划到2020年年利润达到1210万元设该公司的年利润平均增长率为x ,下列方程正确的是( )A .1000(1+x )2=1210B .1210(1+x )2=1000C .1000(1+2x )=1210D .1000+10001+x )+1000(1+x )2=12103.某游客为爬上3千米高的山顶看日出,先用1小时爬了1千米,休息0.5小时后,再用1.5小时爬上山顶.游客爬山所用时间l 与山高h 间的函数关系用图形表示是( )A. B.C. D.4.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点F ;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若3BF =, 2.5AB =,则AE 的长为( )A.2B.4C.8D.552的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 6.如图,已知抛物线y =x 2﹣2x ﹣3与x 轴相交于点A ,B ,若在抛物线上有且只有三个不同的点C 1,C 2,C 3,使得△ABC 1,△ABC 2,△ABC 3的面积都等于a ,则a 的值是( )A .6B .8C .12D .167.如图,△ABC 中,AD ⊥BC 于点D ,AD=ABC S ∆=tanC 的值为( )A .13B .12C .3D .2 8.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,则CD 的长为( )A .B .4C .D .89.水是地球上极宝贵的资源.某城市为了节约用水,实行了价格调控,限定每月每户用水量不超过6吨时,每吨价格为 2.25元;当用水量超过6吨时,超过部分每吨价格为3.25元.则按此调控价格的每户每月水费y (元)与用水量x (吨)的函数图像大致为( )A .B .C .D .10.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小11.如图,在△ABC 中,AC =BC =25,AB =30,D 是AB 上的一点(不与A 、B 重合),DE ⊥BC ,垂足是点E ,设BD =x ,四边形ACED 的周长为y ,则下列图象能大致反映y 与x 之间的函数关系的是( )A. B.C. D.12.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( )A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩ C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩ 二、填空题13.已知13a c b d ==,则a c b d++的值是_____.14.计算:13--=_____.15.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠ACE 的度数为_____.16.若a﹣2b=﹣3,则代数式1﹣a+2b的值为为_____.17.计算:(2﹣sin45°)0=_____.18.分式方程的解是_____.三、解答题19.如图,在△ACD中,DA=DC,点B是AC边上一点,以AB为直径的⊙O经过点D,点F是直径AB上一点(不与A、B重合),延长DF交圆于点E,连结EB.(1)求证:∠C=∠E;(2)若弧AE=弧BE,∠C=30°,DF,求AD的长.20.2018年,广州国际龙舟邀请赛于6月23日在中山大学北门广场至广州大桥之间的珠江河段举行.上午8时,参赛龙舟同时出发,甲、乙两队在比赛中,路程y(千米)与时间x(小时)的函数关系如图所示,甲队在上午11时30分到达终点.(1)在比赛过程中,乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远?21.五星红旗作为中华民族五千年历史上第一面代表全体人民意志的民族之旗、团结之旗、胜利之旗、希望之旗、吉祥之旗,是中华人民共和国的标志和象征,某校九年级综合实践小组开展了测量学校五星红旗旗杆AB高度的活动.如图,他们在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E使得B,E,D在同一水平线上.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处分别测得旗杆顶点A的仰角为40°、平面镜E的俯角为45°,FD=1.5米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan40°≈0.84,tan50°≈1.19,tan85°≈11.4)22.如图,直线l 1 在平面直角坐标系中,直线l 1与y 轴交于点A,点B(-3,3)也在直线1上,将点B 先向右平移1个单位长度、再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上。

2019年中考数学专题整式与代数式(有答案)

2019年中考数学专题整式与代数式(有答案)

2019年中考数学专题整式与代数式(有答案)一、选择题(共13题;共26分)1. ( 2分) 若代数式2x2+3y+7的值为8,那么代数式4x2+6y-2的值是()A. 0B. 2C. 1D. 122. ( 2分) 下列运算正确的是()A.3 2-2=3B.3a2+2a3=5a5C.3+=3D.-0.25ab+0.25ab=03. ( 2分) 下列各组中的两个项,不属于同类项的是().A. 与B. 与n2mC. 与D. 1与4. ( 2分) 如图,是一组技照某种程度摆放成的图案,则图6中三角形的个数是()A. 18B. 19C. 20D. 215. ( 2分) 若单项式2x2m-3y与x3y3n-2是同类项,则符合条件的m,n的值为( )A. m=2,n=3B. m=3,n=1C. m=-3,n=1D. m=3,n=-26. ( 2分) 下列运算正确的是()A.B.C.D.7. ( 2分) 若m-n=,那么-3(n-m)的值是( )A. -B.C.D.8. ( 2分) 如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 20089. ( 2分) 不论x取何值,x﹣x2﹣1的值都()A. 大于等于﹣B. 小于等于﹣C. 有最小值﹣D. 恒大于零10. ( 2分) 下列因式分解结果正确的是().A.B.C.D.11. ( 2分) 观察下列单项式的排列规律:3x,,照这样排列第10个单项式应是()A.39x10B.-39 x10C.-43 x1 0D.43 x1012. ( 2分) 下列代数式中,整式的个数是()A. 2B. 3C. 4D. 513. ( 2分) 某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题(共7题;共9分)14. ( 1分) 若x=3﹣,则代数式x2﹣6x+9的值为________.15. ( 1分) 计算:20182-2017×2019=________.16. ( 3分) 计算:-x2·x3=________;=________;×22016=________.17. ( 1分) 已知2a﹣3b=7,则8+6b﹣4a=________.18. ( 1分) 若4x2+kx+25是一个完全平方式,则k的值是________.19. ( 1分) 把多项式x3﹣9x分解因式的结果是________.20. ( 1分) 已知a+b=ab,则(a﹣1)(b﹣1)=________三、计算题(共3题;共30分)21. ( 10分) 计算:(1)(3a﹣2)- 3(a﹣5)(2)(4a2b﹣5ab2)-(3a2b﹣4ab2)22. ( 15分) 把下列各式因式分解(1)(2)(3)23. ( 5分) 先化简,在求值: ,其中四、解答题(共7题;共54分)24. ( 5分) a与b互为相反数,c与d互为倒数,x的倒数是它本身,求的值.25. ( 5分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.26. ( 5分) 甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果。

2019-2020人教版九年级数学上册第21章一元二次方程单元训练题含解析

2019-2020人教版九年级数学上册第21章一元二次方程单元训练题含解析

第21章一元二次方程一.选择题(共10小题)1.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1 C.m≠﹣1 D.m>12.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.23.方程4x2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是()A.4,0,81 B.﹣4,0,81 C.4,0,﹣81 D.﹣4,0,﹣81 4.已知x=a是方程x2﹣3x+1=0的根,则2a2﹣5a﹣2+的值是()A.﹣1 B.1 C.3 D.﹣35.用配方法解方程时,应将其变形为()A.B.C.D.6.下列一元二次方程中两根之和为﹣4的是()A.x2﹣4x+4=0 B.x2+2x﹣4=0 C.x2+4x﹣5=0 D.x2+4x+10=0 7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=828.如果长方形的宽增加1cm,长减少1cm,那么其面积增加3cm2.已知原长方形的面积为12cm2,则原长方形的长和宽分别为()A.7cm,3cm B.6cm,2cm C.4cm,3cm D.5cm,2.4cm9.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A.100(1+x)2=364B.100+100(1+x)+100(1+x)2=364C.100(1+2x)=364D.100+100(1+x)+100(1+2x)=36410.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k =0的两个根,则k的值是()A.27 B.36 C.27或36 D.18二.填空题(共10小题)11.已知x=3是方程x2﹣2x+m=0的一个根,那么m=.12.已知x=m是方程x2﹣2x﹣3=0的根,则代数式2m2﹣4m﹣3的值为.13.如果a,b满足a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,则+的值为.14.已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是.15.若x2﹣6x+7=(x﹣3)2+n,则n=.16.当m满足时,1除以x2+x+m有意义.17.在中秋晚会上,同学们互送礼物,共送出的礼物有110件,则参加晚会的同学共有人.18.关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为.19.阅读材料:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程化为y2﹣5y+4=0.解得y1=1,y2=4当y=1时,x2﹣1=1.∴x2=2.∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=﹣,x3=,x4=﹣请利用以上知识解决下列问题:如果(m2+n2﹣1)(m2+n2+2)=4,则m2+n2=.20.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是.三.解答题(共7小题)21.配方法解方程(1)x2+4x﹣6=0.(2)x2﹣2x=822.解方程(1)x2﹣6x=﹣2(2)(2x﹣1)2﹣9x2=023.关于x的一元二次方程x2﹣(k+3)x+2k+2=0有一个根小于1,求k的取值范围.24.已知关于x的一元二次方程x2﹣4mx+2m2=0(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式2(m﹣1)2﹣3的值.25.已知关于x的方程x2+2(m﹣2)x+m2=0有两个实数根x1,x2,(1)求m的取值范围;(2)若x12+x22=56,求m的值.26.如图,等腰直角三角形ABC中,∠B=90°,AB=BC=8cm,动点P从A出发沿AB向B 移动,通过点P引PQ∥AC,PR∥BC,问当AP等于多少时,平行四边形PQCR的面积等于16cm2?设AP的长为xcm,列出关于x的方程.27.一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若每件商品降价2元,则平均每天可售出件;(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?参考答案与试题解析一.选择题(共10小题)1.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1 C.m≠﹣1 D.m>1【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m+1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m+1≠0,即m≠﹣1,故选:C.2.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.2【分析】根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.【解答】解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴﹣m2+2m=﹣1,∴1+2m﹣m2=1﹣1=0.故选:A.3.方程4x2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是()A.4,0,81 B.﹣4,0,81 C.4,0,﹣81 D.﹣4,0,﹣81 【分析】方程整理后为一般形式,找出二次项系数、一次项系数和常数项即可.【解答】解:方程整理得:4x2﹣81=0,二次项系数为4;一次项系数为0,常数项为﹣81,故选:C.4.已知x=a是方程x2﹣3x+1=0的根,则2a2﹣5a﹣2+的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据一元二次方程的解的定义得到a2﹣3a+1=0,即a2=3a﹣1,把a2=3a﹣1代入原式,化简得a+﹣4,再通分得到原式=﹣4,然后再把a2=3a﹣1代入化简即可.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,∴a2=3a﹣1,∴2a2﹣5a﹣2+=2(3a﹣1)﹣5a﹣2+=6a﹣2﹣5a﹣2+=a+﹣4=﹣4=﹣4=3﹣4=﹣1.故选:A.5.用配方法解方程时,应将其变形为()A.B.C.D.【分析】先移项,再配方,即可得出选项.【解答】解:,x2﹣x=,x2﹣x+()2=+()2,(x﹣)2=,故选:C.6.下列一元二次方程中两根之和为﹣4的是()A.x2﹣4x+4=0 B.x2+2x﹣4=0 C.x2+4x﹣5=0 D.x2+4x+10=0 【分析】利用一元二次方程的根与系数的关系x1+x2=﹣对以下选项进行一一验证并作出正确的选择.【解答】解:A、∵x1+x2=4;故本选项错误;B、∵x1+x2=1;故本选项错误;C、∵△=16+20=36>0,x1+x2=﹣4;故本选项正确;D、∵△=16﹣40=﹣24<0,所以本方程无根;故本选项错误.故选:C.7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=82【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故选:C.8.如果长方形的宽增加1cm,长减少1cm,那么其面积增加3cm2.已知原长方形的面积为12cm2,则原长方形的长和宽分别为()A.7cm,3cm B.6cm,2cm C.4cm,3cm D.5cm,2.4cm【分析】设长方形的长为xcm,则长方形的宽为cm,根据长方形的面积公式结合“长方形的宽增加1cm,长减少1cm,那么其面积增加3cm2”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设长方形的长为xcm,则长方形的宽为cm,依题意,得:(x﹣1)(+1)=12+3,整理,得:x2﹣4x﹣12=0,解得:x1=6,x2=﹣2(不合题意,舍去),∴=2.故选:B.9.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A.100(1+x)2=364B.100+100(1+x)+100(1+x)2=364C.100(1+2x)=364D.100+100(1+x)+100(1+2x)=364【分析】设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,根据该超市第一季度的总营业额是364万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得:100+100(1+x)+100(1+x)2=364.故选:B.10.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k =0的两个根,则k的值是()A.27 B.36 C.27或36 D.18【分析】分3为腰长及3为底边长两种情况考虑:当3为腰长时,将x=3代入原方程可求出k的值,将k的值代入原方程可求出x的值,由三角形的三边关系可得出k=27舍去;当3为底边长时,由根的判别式△=0,可求出k值.综上即可得出结论.【解答】解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.二.填空题(共10小题)11.已知x=3是方程x2﹣2x+m=0的一个根,那么m=﹣3 .【分析】将x=3代入原方程即可求出m的值.【解答】解:将x=3代入x2﹣2x+m=0,∴9﹣6+m=0,∴m=﹣3,故答案为:﹣3.12.已知x=m是方程x2﹣2x﹣3=0的根,则代数式2m2﹣4m﹣3的值为 3 .【分析】把x=m代入已知方程,可以求得m2﹣2m=3,然后整体代入所求的代数式求值即可.【解答】解:∵实数m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m﹣3=2(m2﹣2m)﹣3=2×3﹣3=3.故答案为:3.13.如果a,b满足a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,则+的值为﹣4 .【分析】根据题意可知a、b是一元二次方程x2+2x﹣2=0的两个不相等的实数根,再由根与系数的关系可得a+b=﹣2,ab=﹣2,再将+进行变形,然后代入计算即可.【解答】解:∵a2+2a=2,b2+2b=2,且a≠b,∴a、b是一元二次方程x2+2x﹣2=0的两个不相等的实数根,∴a+b=﹣2,ab=﹣2,∴+====﹣4.故答案为﹣4.14.已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是2或6.【分析】分类讨论:当a=b时,易得原式=2;当a≠b时,可把a、b看作方程x2+3x ﹣2=0的两根,根据根与系数的关系得a+b=﹣3,ab=﹣2,再把原式变形得到,然后利用整体代入的方法计算.【解答】解:当a=b时,原式=1+1=2;当a≠b时,可把a、b看作方程x2+3x﹣2=0的两根,则a+b=﹣3,ab=﹣2,所以原式====6.故答案为:2或6.15.若x2﹣6x+7=(x﹣3)2+n,则n=﹣2 .【分析】已知等式左边配方后,利用多项式相等的条件求出n的值即可.【解答】解:已知等式整理得:x2﹣6x+7=(x﹣3)2﹣2=(x﹣3)2+n,则n=﹣2,故答案为:﹣216.当m满足m>时,1除以x2+x+m有意义.【分析】根据题意得到分式,再根据分式有意义的条件得到x2+x+m≠0,然后利用根的判别式求解.【解答】解:要使有意义,则x2+x+m≠0,所以△=1﹣4m<0,解得m>.故答案为m>.17.在中秋晚会上,同学们互送礼物,共送出的礼物有110件,则参加晚会的同学共有11 人.【分析】设参加晚会的同学共有x人,则每个同学需送出(x﹣1)件礼品,根据晚会上共送出礼物110件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加晚会的同学共有x人,则每个同学需送出(x﹣1)件礼品,依题意,得:x(x﹣1)=110,解得:x1=11,x2=﹣10(不合题意,舍去).故答案为:11.18.关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为 4 .【分析】要使方程有两个相等的实数根,即△=b2﹣4ac=0,则利用根的判别式即可求得一次项的系数.【解答】解:由题意,△=b2﹣4ac=()2﹣4=0得m=4故答案为419.阅读材料:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程化为y2﹣5y+4=0.解得y1=1,y2=4当y=1时,x2﹣1=1.∴x2=2.∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=﹣,x3=,x4=﹣请利用以上知识解决下列问题:如果(m2+n2﹣1)(m2+n2+2)=4,则m2+n2= 2 .【分析】将m2+n2视为一个整体,然后设m2+n2=y,则原方程化为y2+y﹣6=0.求得方程的解,进一步分析探讨得出答案即可.【解答】解:(m2+n2﹣1)(m2+n2+2)=4设m2+n2=y,则原方程化为(y﹣1)(y+2)=4即y2+y﹣6=0,(y+3)(y﹣2)=0,解得y1=﹣3,y2=2,∵m2+n2不能是负数,∴m2+n2=2故答案为2.20.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是k≤且k≠﹣2 .【分析】因为一元二次方程有实数根,所以△≥0,得关于k的不等式,求解即可.【解答】解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴△≥0且k+2≠0即(﹣3)2﹣4(k+2)×1≥0且k+2≠0整理,得﹣4k≥﹣1且k+2≠0∴k≤且k≠﹣2.故答案为:k≤且k≠﹣2.三.解答题(共7小题)21.配方法解方程(1)x2+4x﹣6=0.(2)x2﹣2x=8【分析】(1)根据配方法即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵x2+4x﹣6=0,∴x2+4x+4=10,∴(x+2)2=10,∴x=﹣2±;(2)∵x2﹣2x=8,∴x2﹣2x+1=9,∴(x﹣1)2=9,∴x=4或﹣2;22.解方程(1)x2﹣6x=﹣2(2)(2x﹣1)2﹣9x2=0【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣6x=﹣2,∴x2﹣6x+9=﹣2+9,即(x﹣3)2=7,则x﹣3=±,∴x1=3+,x2=3﹣;(2)∵(2x﹣1)2﹣9x2=0,∴(2x﹣1+3x)(2x﹣1﹣3x)=0,即(5x﹣1)(﹣x﹣1)=0,则5x﹣1=0或﹣x﹣1=0,解得x1=0.2,x2=﹣1.23.关于x的一元二次方程x2﹣(k+3)x+2k+2=0有一个根小于1,求k的取值范围.【分析】根据一元二次方程根的判别式公式,求出判别式,得到该方程有实数根,把原方程等号左边因式分解后,根据有一个根小于1,得到关于k的一元一次不等式,解之即可.【解答】解:△=[﹣(k+3)]2﹣4(2k+2)=k2﹣2k+1=(k﹣1)2≥0,即该方程有实数根,∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1,∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.24.已知关于x的一元二次方程x2﹣4mx+2m2=0(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式2(m﹣1)2﹣3的值.【分析】(1)进行判别式的值得到△=8m2,从而可判断△≥0,于是得到结论;(2)利用一元二次方程根的定义得到2m2﹣4m=1,再利用完全平方公式得到2(m﹣1)2﹣3=2m2﹣4m+2﹣3,然后利用整体代入的方法计算.【解答】(1)证明:△=(4m)2﹣4•2m2=8m2≥0,所以不论m为何值,该方程总有两个实数根;(2)解:把x=1代入方程得1﹣4m+2m2=0,则2m2﹣4m=﹣1,所以2(m﹣1)2﹣3=2m2﹣4m+2﹣3=﹣1+2﹣3=﹣2.25.已知关于x的方程x2+2(m﹣2)x+m2=0有两个实数根x1,x2,(1)求m的取值范围;(2)若x12+x22=56,求m的值.【分析】(1)由方程有实根,根据根的判别式可得到关于m的不等式,则可求得m的取值范围;(2)利用根与系数的关系可分别表示出x1+x2与x1x2的值,利用条件可得到关于m的方程,可求得m的值.【解答】解:(1)∵关于x的一元二次方程x2+2(m﹣2)x+m2=0有两个实数根,∴△≥0,即[2(m﹣2)]2﹣4m2≥0,解得m≤1;(2)∵方程的两个实数根为x1,x2,∴x1+x2=﹣2(m﹣2),x1x2=m2,∴x12+x22=(x1+x2)2﹣2x1x2=4(m﹣2)2﹣2m2=2m2﹣16m+16,∵x12+x22=56,∴2m2﹣16m+16=56,解得m=﹣2或m=10,∵m≤1,∴m=﹣2.26.如图,等腰直角三角形ABC中,∠B=90°,AB=BC=8cm,动点P从A出发沿AB向B 移动,通过点P引PQ∥AC,PR∥BC,问当AP等于多少时,平行四边形PQCR的面积等于16cm2?设AP的长为xcm,列出关于x的方程.【分析】设AP的长为xcm,▱PQCR的面积等于16cm2,根据等腰三角形的性质和平行四边形的面积公式可列方程求解.【解答】解:设AP的长为xcm时,▱PQCR的面积等于16cm2,依题意有x(8﹣x)=16.27.一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若每件商品降价2元,则平均每天可售出24 件;(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件);(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件).故答案为:24.(2)设每件商品降价x元时,该商品每天的销售利润为1600元,由题意得:(50﹣x)(20+2x)=1600整理得:x2﹣40x+300=0∴(x﹣10)(x﹣30)=0∴x1=10,x2=30∵每件盈利不少于25元∴x2=30应舍去.答:每件商品降价10元时,该商品每天的销售利润为1600元.。

2019九年级数学上册1.4用解决问题专项练习七增长率问题4新版苏科版040

2019九年级数学上册1.4用解决问题专项练习七增长率问题4新版苏科版040

第一章第4节用一元二次方程解决问题专项练习七七、增长率问题4:1.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: 1.21=1.1, 1.44=1.2, 1.69=1.3, 1.96=1.4)2.某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?3.随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.求咸宁市2015年到2017年烟花爆竹年销售量的平均下降率.4.一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?5.汽车产业的发展有效促进我国现代化建设,某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增产率相同.(1)该公司2016年盈利多少万元?(2)若该公司的盈利年增产率继续保持不变,预计2018年盈利多少万元?6.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.7.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?8.春暖花开,市民纷纷外出踏青,某种品牌鞋专卖店抓住机遇,利用10周年店庆对其中畅销的M 款运动鞋进行促销,M款运动鞋每双的成本价为800元,标价为1200元.(1)M款运动鞋每双最多降价多少元,才能使利润率不低于20%;(2)该店以前每周共售出M款运动鞋100双,2017年3月的一个周末,恰好是该店的10周年店庆,这个周末M款运动鞋每双在标价的基础上降价m%,结果这个周末卖出的M款运动鞋的数量比原来一周卖出的M款运动鞋的数量增加了m%,这周周末的利润达到了40000元,求m的值.9.某市一楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产新政策的出台,大多购房者持币观望.为了加快资金周转,该楼盘开发商将价格下调两次后,决定以每平方米3840元的均价开盘销售,求平均每次下调的百分率.10.尼泊尔地震牵动着全中国人民的心,中国红十字基金会开展了“一方有难,八方支援”的赈灾活动.5月15日,中国红十字基金会联手北京成龙慈善基金会等共同出资400万元人民币,采购5000只“赈济家庭箱”(“赈济家庭箱”包括当地受灾群众急需的毛毯、防潮垫、睡袋、雨衣、服装、餐具、个人护理用品等),作为首批物资援助尼泊尔地震灾区.该基金会计划到第三批援助物资为止共采购18200只“赈济家庭箱”.(图为中国红十字基金会工作人员介绍“赈济家庭箱”内的物品)(1)如果第二批、第三批援助物资的增长率相同,求采购“赈济家庭箱”的增长率.(2)按照(1)中采购“赈济家庭箱”的增长速度,该基金会采购第四批“赈济家庭箱”需要筹措资金多少万元?11.2017年,某市某中学为了响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)2017年在选购期间发现该品牌足球在两个文体用品商场有不同的促销方案,A商场的促销方案是:买十送一;B商场的促销方案是:全场九折,试问去哪个商场购买足球更优惠?12.2014年1月23日,安徽省省政府新闻办召开新闻发布会,通报了2013年全省经济运行情况。

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。

九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

代数推理题11.B(2019·温州改编)已知抛物线y=-x2+2x+6与x轴交于A,B两点(点A在点B的左侧).把点B向上2平移m(m>0)个单位得点B1,若点B1向左平移n(n>0)个单位,将与该抛物线上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数上的点B3重合.求m,n的值.2.B(2019·如皋)已知二次函数y=-x2+bx-c的图象与x轴的交点坐标为(m-2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y=1时,自变量x有唯一的值,求二次函数的解析式.3.B(2018·南通)在平面直角坐标系xOy中,将抛物线y=x2-2(k-1)x+k2-5k(k为常数)向右平移12个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值3,求k的值.2-3)和B(3,0).4.B(2019·海淀一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,(1)若抛物线在A,B两点间,从左到右上升,求a的取值范围;(2)结合函数图象判断:抛物线能否同时经过点M(-1+m,n),N(4-m,n)?若能,写出一个符合要求的抛物线的表达式和n的值;若不能,请说明理由.5.B(2019·南通)已知在同一直角坐标系中,若该二次函数=x2-4x+3a+2(a为常数)的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,求a的取值范围.6.B如图,平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═关于点O对称,一次函数y2=k(x>0)的图象上,点A′与点Ax1x+n的图象经过点A′.过点A作AD⊥x轴,与函数y2的图象相交于点D,2以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.7.B(2020·顺义区期末)在平面直角坐标系xOy中,抛物线y=1x2+nx-m与y轴交于点A,将点A向左m平移3个单位长度,得到点B,点B在抛物线上.(1)求抛物线的对称轴;(2)已知点P(-1,-m),Q(-3,1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.8.C(2019·通州区期中)已知二次函数y=ax2+bx+c(a<0)的图象经过(m+1,a),(m,b)两点.(1)求证:am+b=0;(2)若该二次函数的最大值为-1,当x=1时,y≥3a,求a的取值范围.4。

数学九年级上学期《一元二次方程》单元综合检测题(含答案)

数学九年级上学期《一元二次方程》单元综合检测题(含答案)

九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟 满分:120分]一.选择题1.(2020•顺平县一模)关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( )A .0a >B .1a >-C .1a <D .1a <且0a ≠2.(2020•安徽二模)某企业因生产转型,二月份产值比一月份下降了20%,转型成功后产值呈现良好上升势头,四月份比一月份增长15.2%,若三、四、五月份的增长率相同,则五月份与一月份相比增长的百分数约为( ) A .32%B .34%C .36%D .38%3.(2020•安徽一模)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( ) A .10%B .20%C .25%D .40%4.(2019春•鲤城区校级期末)已知一元二次方程2()0(0)a x m n a ++=≠的两根分别为3-,1,则方程2(2)0(0)a x m n a +-+=≠的两根分别为( ) A .1,5B .1-,3C .3-,1D .1-,55.(2018•鞍山)若关于x 的一元二次方程210kx x -+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k且0k ≠ D .14k <6.(2018秋•高阳县期末)我市某楼盘准备以每平方9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方7290元的均价开盘销售,则平均每次下调的百分率是( ) A .8%B .9%C .10%D .11%7.(2018秋•老河口市期末)关于x 的一元二次方程225320x x m m ++-+=有一根为0,则另一根等于() A .1B .2C .1或2D .5-8.(2019秋•丰南区期中)关于x 的一元二次方程2(1)410m x x ---=总有实数根,则m 的取值范围( ) A .5m 且1m ≠B .3m -且1m ≠C .3m -D .3m >-且1m ≠二.填空题9.(2020•成都)关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是 . 10.(2020•浙江自主招生)关于x 的方程22(31)220x k x k k -+++=,若等腰三角形ABC ∆一边长为6a =,另两边长b ,c 为方程两个根,则ABC ∆的周长为 . 11.(2019秋•皇姑区期末)设α、β是方程2202020x x +-=的两根,则22(20201)(20202)ααββ+-++= .12.(2020春•文登区期中)已知关于x 的一元二次方程22(21)20x k x k +++-=的两根1x 和2x ,且21121222x x x x x -+=,则k 的值是 .13.(2020春•雨花区校级月考)一个等腰三角形的底边长是6,腰长是一元二次方程27120x x -+=的一个根,则此三角形的周长是 .14.(2002•内江)如果m ,n 是两个不相等的实数,且满足221m m -=,221n n -=,那么代数式222441999m n n +-+= .15.(2013•锦江区模拟)已知a 是方程2201310x x -+=一个根,求22201320121a a a -++的值为 . 16.(2009春•丽水期末)已知a ,b 是方程2(2)10x m x +++=的两根,则22(1)(1)a ma b mb ++++的值为 . 三.解答题17.(2020•西城区校级三模)关于x 的一元二次方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)写出一个m 的值,使得该方程有两个不相等的实数根,并求此时方程的根. 18.(2020春•玄武区期末)解一元二次方程: (1)2210x x +-=; (2)2(3)26x x -=-.19.(2020春•高邮市期末)为了满足市场上的口罩需求,某厂购进A 、B 两种口罩生产设备若干台,已知购买A 种口罩生产设备共花费360万元,购买B 种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元. (1)求A 、B 两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?20.(2019秋•浉河区期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同 (1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?21.(2020春•潜山市期末)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤. (1)若将这种水果每斤的售价降低x 元,则每天的销售量是多少斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?22.(2020•师宗县一模)已知关于x 的一元二次方程:21(21)4()02x k x k -++-=. (1)求证:这个方程总有两个实数根;(2)若等腰ABC ∆的一边长4a =,另两边长b 、c 恰好是这个方程的两个实数根,求ABC ∆的周长. 23.(2020•郫都区模拟)某商店将进货价为8元/件的商品按10元/件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件. (1)请你帮店主设计一种方案,使每天的利润为700元. (2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?24.(2019秋•覃塘区期中)某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为x 元,则可卖出(35010)x -件,但物价局限定每件商品的售价不能超过进价的120%.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?25.(2019秋•慈利县期中)如图,在矩形ABCD 中,10AB cm =,8AD cm =,点P 从点A 出发沿AB 以2/cm s 的速度向点终点B 运动,同时点Q 从点B 出发沿BC 以1/cm s 的速度向点终点C 运动,它们到达终点后停止运动.(1)几秒后,点P 、D 的距离是点P 、Q 的距离的2倍; (2)几秒后,DPQ ∆的面积是224cm .26.(2019秋•青羊区校级期中)已知:如图所示,在ABC ∆中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P 、Q 分别从A 、B 同时出发,那么几秒后,PBQ ∆的面积等于24cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.答案与解析一.选择题1.(2020•顺平县一模)关于的一元二次方程有两个不相等的实数根,则的取值范围是A .B .C .D .且[解答]解:关于的一元二次方程有两个不相等的实数根, 且△,解得:且. 故选:.2.(2020•安徽二模)某企业因生产转型,二月份产值比一月份下降了,转型成功后产值呈现良好上升势头,四月份比一月份增长,若三、四、五月份的增长率相同,则五月份与一月份相比增长的百分数约为 A .B .C .D .[解答]解:设一月份产值为,从三月份开始,每月的增长率为, 由题意得,解得,(不合题意,舍去)所以.故选:.3.(2020•安徽一模)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为 A .B .C .D .[解答]解:设增长率为,根据题意得, 解得:,(舍去),答:这两年投入教育经费的年平均增长百分率是. 故选:.x 2104ax x -+=a ()0a >1a >-1a <1a <0a ≠x 2104ax x -+=0a ∴≠2214(1)4104b ac a a =-=--⨯⨯=->1a <0a ≠D 20%15.2%()32%34%36%38%a x 2(120%)(1)(115.2%)a x a-+=+10.220%x ==2 2.2x =-(115.2%) 1.2100%38%a aa +⨯-⨯≈D ()10%20%25%40%x 22500(1)3600x +=10.220%x ==2 2.2x =-20%B4.(2019春•鲤城区校级期末)已知一元二次方程的两根分别为,1,则方程的两根分别为 A .1,5B .,3C .,1D .,5[解答]解:一元二次方程的两根分别为,1,方程中或,解得:或3, 即方程的两根分别为和3,故选:.5.(2018•鞍山)若关于的一元二次方程有实数根,则的取值范围是 A .且 B .且 C .且 D . [解答]解:关于的一元二次方程有实数根,且△,解得:且.故选:.6.(2018秋•高阳县期末)我市某楼盘准备以每平方9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方7290元的均价开盘销售,则平均每次下调的百分率是 A .B .C .D .[解答]解:设平均每次下调的百分率为, 由题意,得,解得:,(舍去).答:平均每次下调的百分率为. 故选:.2()0(0)a x m n a ++=≠3-2(2)0(0)a x m n a +-+=≠()1-3-1-2()0(0)a x m n a ++=≠3-∴2(2)0(0)a x m n a +-+=≠23x -=-21x -=1x =-2(2)0(0)a x m n a +-+=≠1-B x 210kx x -+=k ()14k >0k ≠14k <0k ≠14k0k ≠14k <x 210kx x -+=0k ∴≠2(1)40k =--14k0k ≠C ()8%9%10%11%x 29000(1)7290x -=10.1x =2 1.9x =10%C7.(2018秋•老河口市期末)关于的一元二次方程有一根为0,则另一根等于A .1B .2C .1或2D .[解答]解:设方程的另一个根是, 则由根与系数的关系得:, 解得:, 故选:.8.(2019秋•丰南区期中)关于的一元二次方程总有实数根,则的取值范围A .且B .且C .D .且[解答]解:关于的一元二次方程总有实数根,且△,即,解得.的取值范围为且.故选:. 二.填空题9.(2020•成都)关于的一元二次方程有实数根,则实数的取值范围是 .[解答]解:关于的一元二次方程有实数根, △,解得:, 故答案为:.10.(2020•浙江自主招生)关于的方程,若等腰三角形一边长为,另两边长,为方程两个根,则的周长为 16或22 . [解答]解:根据题意得△,所以,则,,当时,解得,则、的长为2,而,不合题意舍去;x 225320x x m m ++-+=()5-a 05a +=-5a =-D x 2(1)410m x x ---=m ()5m 1m ≠3m -1m ≠3m -3m >-1m ≠x 2(1)410m x x ---=10m ∴-≠0164(1)(1)0m -+⨯-3m -m ∴3m -1m ≠B x 232402x x m -+-=m 72m x 232402x x m -+-=∴23(4)42()1681202m m =--⨯⨯-=-+72m72m x 22(31)220x k x k k -+++=ABC ∆6a =b c ABC ∆222(31)4(22)(1)0k k k k =+-+=-31(1)21k k x +±-=⨯11x k =+22x k =12k k +=1k =b c 226+<当时,解得,则,此时三角形的周长为; 当时,解得,则,此时三角形的周长为. 综上所述,的周长为16或22. 故答案为16或22.11.(2019秋•皇姑区期末)设、是方程的两根,则4 .[解答]解:、是方程的两根,,,.故答案为4.12.(2020春•文登区期中)已知关于的一元二次方程的两根和,且,则的值是 或 .[解答]解:,, ,,或.①如果,那么,将代入,16k +=5k =210k =661022++=26k =3k =14k +=66416++=ABC ∆αβ2202020x x +-=22(20201)(20202)ααββ+-++=αβ2202020x x +-=2202020αα∴+-=2202020ββ+-=220202αα∴+=220202ββ+=22(20201)(20202)ααββ∴+-++(21)(22)4=-+=x 22(21)20x k x k +++-=1x 2x 21121222x x x x x -+=k 2-94-21121222x x x x x -+=211212220x x x x x -+-=1121(2)(2)0x x x x ---=112(2)()0x x x --=120x ∴-=120x x -=120x -=12x =2x =22(21)20x k x k +++-=得,整理,得,解得; ②如果,则△.解得:.所以的值为或. 故答案为:或.13.(2020春•雨花区校级月考)一个等腰三角形的底边长是6,腰长是一元二次方程的一个根,则此三角形的周长是 14 .[解答]解:解方程得:或4,当腰为3时,三角形的三边为3,3,6,,此时不符合三角形三边关系定理,此时不行; 当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为, 故答案为:14.14.(2002•内江)如果,是两个不相等的实数,且满足,,那么代数式 2013 .[解答]解:由题意可知:,是两个不相等的实数,且满足,,所以,是两个不相等的实数根,则根据根与系数的关系可知:,又,,则242(21)20k k +++-=2440k k ++=2k =-120x x -=22(21)4(2)0k k =+--=94k =-k 2-94-2-94-27120x x -+=27120x x -+=3x =336+=44614++=m n 221m m -=221n n -=222441999m n n +-+=m n 221m m -=221n n -=m n 2210x x --=2m n +=221m m =+221n n =+222441999m n n +-+2(21)4(21)41999m n n =+++-+.故填空答案:2013.15.(2013•锦江区模拟)已知是方程一个根,求的值为 2012 . [解答]解:是方程的一个根,, ,原式.故答案为:2012.16.(2009春•丽水期末)已知,是方程的两根,则的值为 4 .[解答]解:,是方程的两根, ,,,,,,.三.解答题17.(2020•西城区校级三模)关于的一元二次方程有两个实数根.(1)求的取值范围;(2)写出一个的值,使得该方程有两个不相等的实数根,并求此时方程的根.4284419994()2005m n n m n =+++-+=++4220052013=⨯+=a 2201310x x -+=22201320121a a a -++a 2201310x x -+=2201310a a ∴-+=220131a a ∴=-∴201312013120121201311a a a a a =--+=+--+211a a +=-2013111a a -+=-20131=-2012=ab 2(2)10x m x +++=22(1)(1)a ma b mb ++++a b 2(2)10x m x +++=(2)a b m ∴+=-+1ab =2(2)10a m a +++=2(2)10b m b +++=21(2)a m a∴+=-+21(2)b m b+=-+22(1)(1)[(2)][(2)](2)(2)4414a ma b mb m a ma m b mb a b ab ∴++++=-++-++=--==⨯=x 22(21)10x m x m +++-=m m[解答]解:(1)关于的一元二次方程有两个实数根,,解得:, 即的取值范围是; (2)由(1)知:当时,方程有两个不相等的实数根, 取, 则方程为,解得:,,即当时,方程的解是,.18.(2020春•玄武区期末)解一元二次方程:(1);(2).[解答]解(1),,,,,(2),,,,,x 22(21)10x m x m +++-=2224(21)4(1)450b ac m m m ∴-=+--=+54m -m 54m -54m >-∴1m =230x x +=13x =-20x =1m =13x =-20x =2210x x +-=2(3)26x x -=-2210x x +-=221x x ∴+=22111x x ∴++=+2(1)2x ∴+=1x ∴+=11x ∴=-21x =-2(3)26x x -=-(3)2(3)0x x ∴---=(3)(32)0x x ∴---=30x ∴-=320x --=,.19.(2020春•高邮市期末)为了满足市场上的口罩需求,某厂购进、两种口罩生产设备若干台,已知购买种口罩生产设备共花费360万元,购买种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元.(1)求、两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?[解答]解:(1)设种口罩生产设备的单价为万元,则种口罩生产设备的单价为万元,依题意有, 解得,经检验,是原方程的解,且符合题意,则.答:种口罩生产设备的单价为60万元,则种口罩生产设备的单价为80万元;(2)设每盒口罩可涨价元,依题意有,解得,(舍去).故每盒口罩可涨价5元.20.(2019秋•浉河区期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?[解答]解:(1)设每次下降的百分率为,根据题意,得:,解得:(舍或,13x ∴=25x =A B A B A B A x B (140)x -360480140x x=-60x =60x =1401406080x -=-=A B m (5040)(50020)6000m m -+-=15m =210m =a 250(1)32a -=1.8a =)0.2a =答:每次下降的百分率为;(2)设每千克应涨价元,由题意,得,整理,得,解得:,,因为要尽快减少库存,所以符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.21.(2020春•潜山市期末)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低元,则每天的销售量是多少斤(用含的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?[解答]解:(1)将这种水果每斤的售价降低元,则每天的销售量是(斤;(2)根据题意得:, 解得:,,当时,销售量是;当时,销售量是(斤.每天至少售出260斤,.答:水果店需将每斤的售价降低1元.22.(2020•师宗县一模)已知关于的一元二次方程:.(1)求证:这个方程总有两个实数根;(2)若等腰的一边长,另两边长、恰好是这个方程的两个实数根,求的周长. 20%x (10)(50020)6000x x +-=215500x x -+=15x =210x =5x =x x x 100201002000.1x x +⨯=+)(42)(100200)300x x --+=112x =21x =12x =11002002002602+⨯=<1x =100200300+=)1x ∴=x 21(21)4()02x k x k -++-=ABC ∆4a =b c ABC ∆[解答](1)证明:△,无论取什么实数值,,△,无论取什么实数值,方程总有实数根;(2)解:,,, ,恰好是这个方程的两个实数根,设,,当、为腰,则,即,解得,此时三角形的周长; 当、为腰时,,此时,故此种情况不存在.综上所述,的周长为10.23.(2020•郫都区模拟)某商店将进货价为8元件的商品按10元件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件.(1)请你帮店主设计一种方案,使每天的利润为700元.(2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?[解答]解:(1)设涨价元,,解得,,此时的售价为或,答:售价为13元或15元时,每天的利润可得到700元;(2)利润为:,21(21)414()2k k =+-⨯⨯-24129k k =-+2(23)k =-k 2(23)0k -∴0∴k 21(23)2k k x +±-=121x k ∴=-22x =b c 21b k =-2c =a b 4a b ==214k -=52k =44210=++=b c 2b c ==b c a +=ABC ∆//x (108)(20020)700x x +-⨯-=13x =25x =∴10313+=10515+=22(108)(20020)2016040020(4)720x x x x x +-⨯-=-++=--+,当涨价4元时即售价为14元时,利润最大,为720元.24.(2019秋•覃塘区期中)某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为元,则可卖出件,但物价局限定每件商品的售价不能超过进价的.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?[解答]解:根据题意,得整理,得解得,因为,即售价不能超过25.2元,所以不合题意,应舍去.故,从而卖出件,答:需要卖出100件商品,每件售价是25元.25.(2019秋•慈利县期中)如图,在矩形中,,,点从点出发沿以的速度向点终点运动,同时点从点出发沿以的速度向点终点运动,它们到达终点后停止运动.(1)几秒后,点、的距离是点、的距离的2倍;(2)几秒后,的面积是.[解答]解:(1)设秒后点、的距离是点、距离的2倍,,四边形是矩形,,,,, 20a =-∴x (35010)x -120%(21)(350)400x x --=2567750x x -+=125x =231x =21120%25.2⨯=31x =25x =3501025100-⨯=ABCD 10AB cm =8AD cm =P A AB 2/cm s B Q B BC 1/cm s C P D P Q DPQ ∆224cm t P D P Q 2PD PQ ∴=ABCD 90A B ∴∠=∠=︒222PD AP AD ∴=+222PQ BP BQ =+24PD =2PQ, 解得:,;时,,答:3秒后,点、的距离是点、的距离的2倍;(2)设秒后的面积是, 则,整理得解得,答:4秒后,的面积是.26.(2019秋•青羊区校级期中)已知:如图所示,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果、分别从、同时出发,那么几秒后,的面积等于?(2)在(1)中,的面积能否等于?请说明理由.22228(2)4[(102)]t t t ∴+=-+13t =27t =7t =1020t -<3t ∴=P D P Q x DPQ ∆224cm 11182(102)(8)108024222x x x x ⨯⨯+-+-⨯=-28160x x -+=124x x ==DPQ ∆224cm ABC ∆90B ∠=︒5AB cm =7BC cm =P AAB B 1/cm s Q B BC C 2/cm s P Q A B PBQ ∆24cm PQB ∆27cm[解答]解:(1)设经过秒以后面积为,根据题意得,整理得:,解得:或(舍去).答:1秒后的面积等于;(2)仿(1)得.整理,得,因为,所以,此方程无解.所以的面积不可能等于. x PBQ ∆24cm 1(5)242x x -⨯=2540x x -+=1x =4x =PBQ ∆24cm 1(5)272x x -=2570x x -+=2425280b ac -=-<PBQ ∆27cm。

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

代数综合题一:对于实数a,b,我们用符号min{a,b}表示a,b两数中较小的数,如min{3,5}=3,因此,min{-1,-2}=________;若{}22min(1),4+=,则x=___________.x x题二:对于实数c,d,我们用符号max{c,d}表示c,d两数中较大的数,如max{3,5}=5,因此,题四:在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y A、B,交抛物线C2:y于点C、D.(1)如图①,原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC 和QD,求△AOB与△CQD面积比为_______.(2)如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F,在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为_______.题七: 设函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,,若互不相等的实数x 1,x 2,x 3,满足y 1=y 2=y 3, 求x 1+x 2+x 3的取值范围.题八: 在平面直角坐标系xOy 中,抛物线y =243x x ++与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C . (1)求直线AC 的表达式;(2)在x 轴下方且垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线AC 交于点N (x 3,y 3),若x 1>x 2>x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.参考答案题一:-2,-3或2.详解:∵-2<-1,∴min{-1,-2}=-2,∵{}22+=,x xmin(1),4当(x+1)2=x2时,解得:x=-0.5,(x+1)2=x2=0.25,这时不可能得出最小值为4,当x>-0.5,(x+1)2>x2,则x2=4,解得x1=2或x2=-2(舍去),当x<-0.5,(x+1)2<x2,则(x+1)2=4,解得x1=-3或x2=1(舍去),∴x=-3或x=2.题二:∵{}22++=,max22,2x x x当x2+2x+2=x2时,解得:x=-1,x2+2x+2=x2=1,这时不可能得出最大值为2,当x>-1,x2+2x+2>x2,则x2+2x+2=2,解得x1=0或x2=-2(舍去),∴x=0.题三:∴C (-3m ,m 2),D (3m ,m 2),∴CD =6m ,∵O 、Q 关于直线CD 对称, ∴PQ =OP ,∵CD ∥x 轴,∴∠DPQ =∠DPO =90°,∴△AOB 与△CQD 的高相等, PQ CD PO AB ⋅⋅2121=mm 64=32.AEM DFMS S=∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =2, 2详解:先作出函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,的图象,如图,不妨设x 1<x 2<x 3,∵y =242x x -+(x ≥0)的对称轴为x =2,y 1=y 2,∴x 2+x 3=4, ∵y =242x x -+(x ≥0)的顶点坐标为(2,-2),令y =-2,代入y =3x +1,解得:x =-1,∴-1<x 1<0,则x 1+x 2+x 3的取值范围是:-1+4<x 1+x 2+x 3<0+4,∴3<x 1+x 2+x 3<4.题八: (1)y =x +3;(2)-8<x 1+x 2+x 3<-7.详解:(1)由y =243x x ++得到:y =(x +3)(x +1),C,∴A (-3,0),B (-1,0),设直线AC 的表达式为:y =kx +b (k ≠0), ∴⎩⎨⎧==+303-b b k ,解得:⎩⎨⎧==31b k ,所以直线AC 的表达式为y =x +3,(2)由y =243x x ++得到:y =(x +2)2-1,∴抛物线y =243x x ++的对称轴是x =-2, 顶点坐标是(-2,-1),∵y 1=y 2,∴x 1+x 2=-4,令y =-1,代入y =x +3,解得:x =-4,∵x 1>x 2>x 3,∴-4<x 3<-3,∴-4-4<x 1+x 2+x 3<-3-4,∴-8<x 1+x 2+x 3<-7.代数几何综合题一:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得△P AC的周长最小,并求出点P 的坐标.题二:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0),B(1,0),与y轴交于点D(0,4),点C(-2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由.题三:在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=,d(B,⊙O)=.是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.参考答案题一: (1)y =214x --+(),M (1,4);(2)P (1,2). 详解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过A (-1,0)、B (3,0),C (0,3)三点,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得12c=3a b =-⎧⎪=⎨⎪⎩.故抛物线的解析式为222314y x x x =-++=--+(),故顶点M 为(1,4); (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,题二: (1)y =-x 2-3x +4,C (-2,6);(2)△ACE 为等腰直角三角形.详解:(1)∵抛物线经过A 、B 、D 三点,∴代入抛物线解析式可得164004a b c a b c c -+⎧⎪++⎨⎪⎩===,解得134a b c -⎧⎪-⎨⎪⎩===,∴抛物线的解析式为 y =-x 2-3x +4, ∵点C (-2,n )也在此抛物线上,∴n =-4+6+4=6,∴C 点坐标为(-2,6);∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形.。

苏科版中考数学复习基础必练习题:第三章-代数式(含解析)

苏科版中考数学复习基础必练习题:第三章-代数式(含解析)

2019备战中考数学基础必练(苏科版)-第三章-代数式(含解析)一、单选题1.多项式﹣y2﹣y﹣1的一次项是()A. 1B. ﹣1C.D.2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A. 0B. 1C. 2D. 43.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A. m = 2,n = 2B. m =-2,n = 2C. m = -1,n = 2D. m = 2 ,n =-14.下列代数式书写规范的是()A. 8x2yB. 1 bC. ax3D. 2m÷n5.如图,它是一个程序计算器,如果输入m=6,那么输出的结果为()A. 3.8B. 2.4C. 36.2D. 37.26.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为( )A. 49B. 59C. 77D. 1397.下面的式子中正确的是()A. 3a2﹣2a2=1B. 5a+2b=7abC. 3a2﹣2a2=2aD. 5xy2﹣6xy2=﹣xy28.如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为()A. 3B. 8C. 64D. 639.下列合并同类项的结果正确的是( )A. a+3a=3a2B. 3a-a=2C. 3a+b=3abD. a2-3a2=-2a2二、填空题10.县化肥厂第一季度增产a吨化肥,以后每季度比上一季度增产x%,则第三季度化肥增产的吨数为________ 。

11.若单项式2x2y m与-的和仍为单项式,则m+n的值是________ .12.a与3的和的4倍,用代数式表示为________.13.若n表示整数,则奇数用n的代数式表示为________。

14.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=________;当m=2,n=﹣3时代数式的值是________.15.单项式﹣的系数是________,次数是________.16.多项式-x3y2+3x2y4-2xy2的次数是________.17.根据如图所示的程序计算,若输入x的值为1,则输出y的值为________.18.如果多项式x4-(a-1)x3+3x2-(b+1)x-1中不含x3和x项,则a=________,b=________.三、计算题19.化简:3a2+2a-4a2-7a20.已知2x a y b+1+(a-1)x2是关于x,y的四次单项式,求a,b的值.四、解答题21.若单项式5x2y和42x m y n是同类项,求m+n的值.22.先化简,再求值:,其中x=2.五、综合题23.综合题。

初中数学代数习题(含解答)

初中数学代数习题(含解答)

初中代数练习题(含解答)题目1.证明a ≤|a|2.证明a 2=|a|23.证明|−a|=|a|4.证明a 2=|a|5.若|a −b −c −d −4|+|b −c −d −3|+|c −d −2|+|d 2−1|=0,求a +b +c +d.6.证明||a|−|b||≤|a −b|7.证明(6,7学名:三角不等式)|a −b|≤|a|+|b|8.证明 |(x −1)2−|2x −x 2||≤19.求|x|+|x −1|+|x −2|+...+|x −2020| 的最小值即此时x 的值或范围10.求||x −1|−|x −2|+|x −3|−|x −4|+...−|x −2020||的最小值即此时x 取值范围.11.证明任何0.x 1x 2x 3...x k 即一个任意长度k 的以单循环结束的小数都可以写为一个分数p q12.证明任何即一个任意长度结束的小0.x 1x 2..(x m x m+1x m+2...x n )n 的以循环节x m x m+1x m+2...x n 数都可以写为一个分数. 综合11,12, 证明任何有理数都可以写为pq pq ,的形式(p,q 为整数且q ≠0)13.根据12的结论,可以证明为无理数:2.若分数如果2为有理数,那么2可以写作p q, p,q 为正整数且q ≠0,即2=p q2能写为那么一定能写成最简分数, 即互质。

两边同时平方得p,q 所以2=p 2q2→p 2=2q 2→p 2为偶数. 若p 为奇数,则p 2也是奇数。

所以p 只能是偶数.即同偶所以不是最简,矛p =2k →p 2=4k 2=2q 2→q 2=2k 2. 同理得q 为偶数.p,q pq 盾。

所以.2为无理数用类似的方法,试证明.3为无理数14.已知平方差公式可以通过如下方式推导:a 2−b 2=a 2−ab +ab −b 2=a(a −b)+b(a −b)=(a +b)(a −b)试用类似方法推导立方差公式:a 3−b 3=(a −b)(a 2+ab +b 2)15.证明立方差公式的右边的唯一解为.(a −b)(a 2+ab +b 2)=0a =b 16.11·2+12·3+...+12019·2020=?17.11+2+11+2+3+...+11+2+...+2020=?18.11·2·3+12·3·4+...+12018·2019·2020=?19.11·2·3+13·4·5+...+12017·2018·2019+12−13+14−...−12017+12018=?20.证明, 并说明等号成立条件. (学名:调和平均几何平均算21a+1b≤ab ≤a+b 2≤a 2+b 22≤≤术平均平方平均)≤21.若(3a −2b)x 2+(a +b−c)x +3=c +2, 求a +b +c.22.若,求证x >−1−3x−2x+1>−323.若, 求证(不要求二次函数)x <−12x 2−3x−2x+1<−724.是否存在一个函数:定义域为所有偶数,值域为所有奇数?并解释25.是否存在一个函数,定义域为所有整数,值域为所有正整数?并解释26.是否存在一个函数,定义域为所有正整数,值域为所有整数?并解释27.证明所有一次函数只有一个零点(和有且只有一个交点). (第一步:找出一个零点. 第x 轴二步: 如果为2个不同零点,证明)x 1, x 2x 1=x 228.求一次函数和两坐标轴构成的三角形面积(注意:为任意实数且)y =ax +b a,b a ≠029.求28中三角形的斜边长和斜边上的高长30.求和两坐标轴构成的图形面积y =2x −1, y =3x +1, y =−x +531.证明任何一次函数都可以写为的形式. (第一步: 把转化为ax +by +c =0y =kx +m 的形式. 第二步:把转化为的形式. 所以两ax +by +c =0ax +by +c =0y =kx +m 种表示法等价)32.由31,若和表示两个一次函数. 若两一次函数图a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0像平行或重合,求关系. 若两一次函数图像垂直,求关系.a 1,b 1,a 2,b 2a 1,b 1,a 2,b 233.若方程组,无解,求需满足的条a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0a 1,b 1,c 1,a 2,b 2,c 2件. 若,有无穷多个解,求需满足a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0a 1,b 1,c 1,a 2,b 2,c 2的条件.34.解三元一次方程组3x +2y +z =1, 2x −y −z =2, 5x +7y −3z =−335.定义一个函数为增函数如果在定义域上函数值一直增加, 即对于任意定义域里的,y x 1,x 2如果,那么(或).例:为增函数,因为任取,x 1<x 2y 1<y 2y 2−y 1>0y =2x x 1<x 2. 同理,定义一个函数为减函数如果在定义域上函y 2−y 1=2x 2−2x 1=2(x 2−x 1)>0y 数值一直减小, 即对于任意定义域里的,如果,那么(或).x 1,x 2x 1<x 2y 1>y 2y 1−y 2>0例:为减函数,因为任取,y =−2x x 1<x 2y 1−y 2=(−2x 1)−.(−2x 2)=2(x 2−x 1)>0试证明:当,一次函数为增函数. 当,一次函数为减函k >0时y =kx k <0时y =kx 数。

数学人教版九年级上册22.1.4 y=ax2+bx+c的图象和性质 同步训练(解析版)

数学人教版九年级上册22.1.4 y=ax2+bx+c的图象和性质 同步训练(解析版)

2019-2019学年数学人教版九年级上册22.1.4 y=ax2+bx+c的图象和性质同步训练一、选择题1. ( 2分) 抛物线y=x2﹣2x+1的顶点坐标是()A.(1,0)B.(﹣1,0)C.(﹣2,1)D.(2,﹣1)【答案】A【考点】二次函数y=ax^2+bx+c的性质【解析】【解答】由原方程,得y=(x﹣1)2,∴该抛物线的顶点坐标是:(1,0).故答案为:A.【分析】将二次函数的解析式转化为顶点式,就可求出顶点坐标。

或将a、b、c的值代入顶点式计算即可。

2. ( 2分) 用配方法将化成的形式为()A. B. C. D.【答案】B【考点】二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化【解析】【解答】故答案为::B【分析】在抛物线的解析式的右边加上一次项系数一半的平方,再减去一次项系数一半的平方,然后前三项利用完全平方公式分解因式,常数项合并在一起,即y = x2−8x+12=x2−8x+16−16+12= (x−4)2−4.3. ( 2分) 对二次函数y=3x2-6x的性质及其图象,下列说法不正确的是()A. 开口向上B. 对称轴为直线x=1C. 顶点坐标为(1,-3)D. 最小值为3【答案】D【考点】二次函数的最值,二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化【解析】【解答】A. 二次函数开口向上,不符合题意.B.对称轴不符合题意.C.当时,顶点坐标为:不符合题意.D.二次函数的最小值为:符合题意.故答案为::D【分析】首先将二次函数配成顶点式,根据顶点坐标式即可判断出其对称轴直线,顶点坐标,最值等问题,再根据二次项系数大于0,即可判断出抛物线的开口方向。

4. ( 2分) 二次函数y=ax2+bx-1(a≠0)的图象经过点(1,-3),则代数式1+a+b的值为( )A. -3B. -1C. 2D. 5 【答案】B【考点】代数式求值,二次函数图象上点的坐标特征【解析】【解答】二次函数的图象经过点把点代入二次函数的解析式,得:故答案为::B【分析】将点( 1 ,− 3 ) 得出代入二次函数的解析式+b=−2.,再整体代入代数式即可算出答案。

代数式综合训练题(难题)附答案

代数式综合训练题(难题)附答案

绝密★启用前代数式第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.已知a ﹣b =b ﹣c =2,a 2+b 2+c 2=11,则ab +bc +ac =( ) A .﹣22B .﹣1C .7D .112.根据图中数字的规律,则x+y 的值是( ).A .729B .550C .593D .7383.对于每个正整数n ,设()f n 表示()1n n +的末位数字.例如:()12f =(12⨯的末位数字),()26f =(23⨯的末位数字),()32f =(34⨯的末位数字),…则()()()()1232021f f f f +++⋅⋅⋅的值为( )A .4042B .4048C .4050D .104.在一列数123x x x ,,,……中,已知11x =,且当2k ≥时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭(符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2014x 等于( ) A .1B .2C .3D .45.如图.ABC ∆的面积为1.分别取,AC BC 两边的中点11A B 、,则四边形11A ABB 的面积为34,再分别取的11,AC B C 中点2222,,,A B A C B C 的中点33,A B ,依次取下去….利用这一图形.计算出233333···4444n ++++的值是( )A.11414nn---B.414nn-C.212nn-D.1212nn--6.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上;先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.若数轴绕过圆周99圈后,数轴上的一个整数点刚好落在圆周上数字1所对应的位置,则这个整数是()A.297B.298C.299D.3007.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的面积是()A.504B.10092C.10112D.10098.设a b则21b a-的值为()A1B1C1D1 9.根据图中数字的规律,若第n个图中出现数字396,则n=()A.17B.18C.19D.2010.观察下列算式:15a=,211 a=,319a==,…,它有一定的规律性,把第n个算式的结果记为n a,则123711111111a a a a++++----的值是()A.12B.121360C.5391080D.119240第II卷(非选择题)请点击修改第II卷的文字说明二、解答题11.已知2324A x x y xy=-+-,225B x x y xy=--+-.(1)求3A B-;(2)若24103x y xy⎛⎫+-++=⎪⎝⎭,求3A B-的值.(3)若3A B-的值与y的取值无关,求x的值.12.己知单项式134b ax y+与单项式625bx y--是同类项,c是多项式253mn m n---的次数.(1)a=___________,b=___________,c=___________;(2)若关于x的二次三项式2ax bx c++的值是3,求代数式2201926x x--的值.13.一般情况下,2323a b a b++=+不成立,但有些数是可以成立,例如a=b=0,我们称使得2323a b a b++=+成立的一对数a、b为“相对数对”,记为(a,b).(1)若(-1,b)是相对数对,求b的值;(2)若(m,n)是相对数对且m≠0,求nm的值;(3)若(m,n)是相对数对,求代数式[]2242(31)3m n m n----的值.14.已知一个三位自然数,若满足十位数字等于百位数字与个位数字之和,则称这个数为“银翔数”,并把其百位数字与个位数字乘积记为()F m .例如693,369+=,∴693是“银翔数”,(693)6318F ∴=⨯=规定:(,)()()G m n pF m qF n =+(,p q 均为非零常数,,m n 为三位自然数) 已知(253,121)11,(231,693)14G G ==-; (1)求,p q 的值及(473,275)G ;(2)已知两个十位数字相同的“银翔数”,,m abc n xby ==,19,19,19,19,19a b c x y ≤≤≤≤≤≤≤≤≤≤,且,,,,a b c x y 为整数,且m 加上各个数位上数字之和被16除余7,若()()2F m F n -=,求(,)G m n 的最小值.15.已知m,n 是两个连续的正整数,m n <,a mn =是定值且为奇数.16.数学老师在课堂上提出一个问题:“ 1.414≈...,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1a b ,求a b +的值;(2)已知8x y =+,其中x 是一个整数,01y <<,求(20203x y +.17.11111111111--++-1---+2018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=___18.好学小东同学,在学习多项式乘以多项式时发现:( 12x +4)(2x +5)(3x -6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:12×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x . 请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x +2)(3x +1)(5x -3)所得多项式的一次项系数为_____. (2)(12x +6)(2x +3)(5x -4)所得多项式的二次项系数为_______. (3)若计算(x 2+x +1)(x 2-3x +a )(2x -1)所得多项式不含一次项,求a 的值; (4)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+···+a 2020x +a 2021,则a 2020=_____. 19.有这样一道题:先化简,再求值:2222213823333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭,其中12x =-,2y =.小明同学在抄题时,把“12x =-”错抄成“12x =”,但他计算的结果却是正确的.这是怎么回事呢?请同学们先正确解答该题,然后说明理由.三、填空题20.阅读材料,我们知道,若点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点间的距离表示为AB ,则ABa b ,以式子3x -的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离,根据上述材料,探究下列问题: (1)式子12x x ++-的最小值是_____________; (2)式子12x x +--的最大值是____________;(3)式子21263x x x +-+--的最小值是____________.21.观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++,若502a =,则用含a 的代数式表示下列这组数50515299100222.....22++++的和_________.22.这是一根起点为0的数轴,现有同学将它弯折,如图所示,在如图的虚线上第一行0,第二行6,第三行21,那么第8行的数是__________.23.当x =1,y =﹣1时,关于x 、y 的二次三项式21+m ax +(m +1)by ﹣3值为0,那么当x =﹣12,y =12时,式子a m x +2mby +132的值为_____.24.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.25.若0,0a b c abc ++<>,则23a ab abca ab abc++的值为_________.26.已知两个正数a ,b ,可按规则c ab a b =++扩充为一个新数c 在a ,b ,c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若1,3a b ==,按上述规则操作三次,扩充所得的数是_________;(2)若0p q >>,经过6次操作后扩充所得的数为(1)(1)1m n q p ++-(m ,n 为正整数),则m n +的值为________.27.按照一定规律排列的一列数一次是9,13,17,21,25,...,按照此规律,这列数中的第100个数是__________.28.已知非零实数a b c 、、满足2221a b c ++=,且111111()()()3a b c b c c a a b+++++=-,则a b c ++=_______.29.已知有理数m ,n ,p 满足则35m n p m n p ++-=+-+,则()()14m n p ++-=_______.30.设12211112S =++,22211123S =++,32211134S =++,…,22111(1)n S n n =+++.设n S S =+,则S =_______(用含n 的代数式表示,其中n 为正整数).313=,则231x x x =++________.32.如果22320190x x --=.那么32220222020x x x ---=_________33.符号“f”表示一种运算,它对一些数的运算如下:()()()222211,21,31,(4)1...,1234f f f f =+=+=+=+ 利用以上运算的规律写出 f(n )=___________ (n 为正整数);f (1)•f (2)•f (3)…f (100)=___________ .34.已知a 、b 、c 、n 是互不相等的正整数,且1111a b c n+++也是整数,则n 的最大值为______.参考答案1.B 【分析】由a ﹣b =b ﹣c =2可得a ﹣c =4,然后通过配方求得a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值,最后整体求出ab +bc +ac 即可. 【详解】解:∵a ﹣b =b ﹣c =2, ∵a ﹣c =4,∵a 2+b 2+c 2﹣ab ﹣bc ﹣ac =12(2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ac )=12[(a ﹣b )2+(b ﹣c )2+(c ﹣a )2]=12,∵ab +bc +ac =a 2+b 2+c 2﹣12∵11-12=﹣1. 故答案为B . 【点睛】本题主要考查了完全平方式以及配方法的应用,灵活运用完全平方式进行配方成为解答本题的关键. 2.C 【分析】结合题意,根据数字规律,分别计算得x 和y 的值,从而得到x+y 的值. 【详解】根据题意,得:88165x =⨯+=888658528y x =⨯+=⨯+=∴65528593x y +=+= 故选:C . 【点睛】本题考查了数字规律、有理数运算、代数式的知识;解题的关键是熟练掌握数字规律、有理数加法和乘法、代数式计算的性质,从而完成求解. 3.A 【分析】试着往下求出几个式子的值,发现结果成一个循环的规律,以2、6、2、0、0为一个循环,用2021除以5得到一共有几组循环,余几,从而求出式子的和. 【详解】 解:根据题意,()40f =(45⨯的末位数字),()50f =(56⨯的末位数字), ()62f =(67⨯的末位数字), ()76f =(78⨯的末位数字), ()82f =(89⨯的末位数字), ()90f =(910⨯的末位数字),……这些数有一个循环的规律,以2、6、2、0、0为一个循环,每组循环的数加起来等于10, ∵202154041÷=,∴原式4041024042=⨯+=. 故选:A . 【点睛】本题考查数字找规律,解题的关键是掌握循环问题的求解方法. 4.B 【分析】根据题目给的公式,试着算出前面几个数,发现结果会是一个循环,以1,2,3,4为一个循环. 【详解】解:当2k =时,[]()2111401140024x x ⎛⎫⎡⎤=+--=+-⨯-= ⎪⎢⎥⎣⎦⎝⎭,当3k =时,()32211421400344x x ⎛⎫⎡⎤⎡⎤=+--=+-⨯-= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭, 当4k =时,()43321431400444x x ⎛⎫⎡⎤⎡⎤=+--=+-⨯-= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,当5k =时,()54431441410144x x ⎛⎫⎡⎤⎡⎤=+--=+-⨯-= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭, 当6k =时,()65541411411244x x ⎛⎫⎡⎤⎡⎤=+--=+-⨯-= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭, ……发现结果是一个循环,每4个数一个循环, 201445032÷=,∴201422x x ==.故选:B .【点睛】本题考查数字规律总结,解题的关键是尝试着去寻找规律,利用循环问题的解题方法去解决.5.B【分析】由△CA 1B 1∽△CAB 得出面积比等于相似比的平方,得出△CA 1B 1的面积为14,因此四边形A 1ABB 1的面积为1-14,以此类推.四边形的面积为21144-,231144-,,根据规律求出式子的值.【详解】∵A 1、B 1分别是AC 、BC 两边的中点,且△ABC 的面积为1,∴△A 1B 1C 的面积为114⨯, ∴四边形A 1ABB 1的面积=△ABC 的面积-△A 1B 1C 的面积=31144=-, ∴四边形A 2A 1B 1B 2的面积=△A 1B 1C 的面积-△A 2B 2C 的面积=22113444-=, …,∴第n 个四边形的面积1113444n n n--=, 故2321333311111···(1)()()444444444n n n -++++=-+-++-114n=- 414n n -=. 故选:B .【点睛】本题考查了规律型问题,三角形中位线定理和相似三角形的判定与性质,同时也考查了学生通过特例分析从而归纳总结出一般结论的能力.解题的关键是学会探究规律,利用规律解决问题.6.B【分析】根据题意先找出正半轴上的整数与圆周上的数字建立的对应关系,找出规律进行解答即可.【详解】解:∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合, ∵圆周上数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∵数轴上的一个整数点刚刚绕过圆周n 圈(n 为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.当n =99时,3×99+1=298.故选:B .【点睛】本题考查的是图形的变化规律,注意掌握数轴的特点并根据题意找出规律是解答此题的关键.7.B【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S 1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.8.B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.9.B【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n 为正整数即成立,否则舍去.【详解】根据图形规律可得:上三角形的数据的规律为:2(1)n n +,若2(1)396n n +=,解得n 不为正整数,舍去; 下左三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去; 下中三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下右三角形的数据的规律为:(4)n n +,若(4)396n n +=,解得18n =,或22n =-,舍去故选:B .【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键.10.C【分析】先通过观察找出第n 个算式的规律为n(n+3),写出所得代数式;再找出所求代数式的规律,按照裂项法展开计算即可.【详解】解:∵15a ===1×4+1,211a ==2×5+1,319a ===3×6+1,…,观察以上各式发现规律,由规律可知:a 4=4×7+1,a 5=5×8+1,a 6=6×9+1,a 7=7×10+1 a n =n ·(n+3)+1验证:a 42947+1==⨯故依次为:a 5=5×8+1,a 6=6×9+1,a 7=7×10+1∴a n =n ·(n+3)+1 ∴123711111111a a a a ++++---- =1111111++++++142536475869710⨯⨯⨯⨯⨯⨯⨯ =111111*********-+-+-+-+-+-+-342536475869710⎛⎫ ⎪⎝⎭=1111111++---3238910⎛⎫ ⎪⎝⎭ =5391080故选:C【点睛】本题考查了规律型的数字在二次根式中的应用,观察出数字规律或正确计算出相关项并采用裂项法是进行快速计算的关键.11.(1)55715x y xy +-+;(2)2283;(3)57x = 【分析】(1)列式计算即可得到答案;(2)依据平方的非负性及绝对值的非负性求出x 与y 的值,代入(1)的结果中计算即可;(3)将3A B -整理为5x+(5-7x )y+15,根据题意列得5-7x=0,解方程即可得到答案.【详解】(1)∵2324A x x y xy =-+-,225B x x y xy =--+-,∴3A B -=223243(25)x x y xy x x y xy -+----+-=55715x y xy +-+; (2)∵24103x y xy ⎛⎫+-++= ⎪⎝⎭,∴403x y +-=,xy+1=0, ∴43x y +=,xy=-1, ∴3A B -=55715x y xy +-+=5(x+y )-7xy+15 =457(1)153⨯-⨯-+ =2283; (3)∵3A B -的值与y 的取值无关,3A B -=55715x y xy +-+=5x+(5-7x )y+15,∴5-7x=0, 解得57x =. 【点睛】此题考查整式的混合运算,已知式子的值求代数式的值,整式无关型题的解法.12.(1)1;3;2 ;(2)2017【分析】(1)根据同类项的定义列得a+1=2,6-b=b ,分别求出a 及b 的值,再根据多项式的次数的定义求出c ;(2)由(1)求出232x x ++=3,得到23x x +=1,再代入计算即可.【详解】(1)∵单项式134b a x y +与单项式625b x y --是同类项, ∴a+1=2,6-b=b ,解得a=1,b=3,∵c 是多项式253mn m n ---的次数.∴c=2,故答案为:1,3,2;(2)由题意知2ax bx c ++=3,∵a=1,b=3,c=2,∴232x x ++=3,∴23x x +=1,∴2201926x x --=220192(3)x x -+=2019-2=2017.【点睛】此题考查同类项的定义,多项式的次数的定义,已知代数式的值求整式的值,正确计算是解题的关键.13.(1)94;(2)94-;(3)-2. 【分析】阅读理解题意,理解“相对数对”,在此基础上,对于(1)运用“相对数对”的定义列出方程求解;对于(2)运用“相对数对”的定义列出m 、n 的关系式化简即可;对于(3)用(2)的结论,用m 表示n ,代入到所求代数式中,化简即可.【详解】解:(1)由“相对数对”的定义得11235b b --++=,解得94b =; (2)∵(m ,n)是相对数对且m≠0 ∴把2323a b a b ++=+中的a 、b 分别用m 、n 代换得 2323m n m n ++=+ 化简得94n m =-; (3)由(2)得94n m =-,所以得9n 4m =-代入到[]2242(31)3m n m n ----得 原式=2299()423()1344m m m m ⎧⎫⎡⎤-⨯-----⎨⎬⎢⎥⎣⎦⎩⎭ =3327(42)22m m m m +-++ =33274222m m m m +--- =-2.【点睛】此题是新定义题型,综合考查解一元一次方程和代数式求值,关键是要理解“相对数对”含义和熟练整式加减运算.14.(1)2p =,1q =-;()473,27514G =;(2)8【分析】(1)应用(,)()()G m n pF m qF n =+与()F m 的定义表示出()253,121611G p q =+=,()231,69321814G p q =+=-,得到关于p 和q 的二元一次方程组,求解即可;(2)根据m 与各个数位上数字之和能被16除余7,且b a c =+,得到37716c a c ++-为正整数,即可得到c 的值,再根据()()2F m F n -=得到x 和b 的二元一次方程组,即可求解.【详解】解:(1)∵()253236F =⨯=,()121111F =⨯=,∵()253,121611G p q =+=①,∵()231212F =⨯=,()6936318F =⨯=,∵()231,69321814G p q =+=-②,联立①,②,解得2p =,1q =-;∵()4734312F =⨯=,()2752510F =⨯=,∵()473,2751221014G =⨯-=;(2)由题知,m 与各个数位上数字之和能被16除余7,且b a c =+, ∵10010716a b c a b c +++++- 101112716a b c ++-=()101112716a a c c +++-=11213716a c +-= 37716c a c +=+-,结果为整数, ∵103734c ≤+≤,∵3716c +=或32,当3732c +=时,c 不是整数,故舍去,∴3c =,∵()()2F m F n -=,∵32a xy -=,∵()()332b x b x ---=,即()()332x x b -+-=,∵3132x x b -=⎧⎨+-=⎩或3231x x b -=⎧⎨+-=⎩或3132x x b -=-⎧⎨+-=-⎩或3231x x b -=-⎧⎨+-=-⎩, ∵253451m n =⎧⎨=⎩或473572m n =⎧⎨=⎩或473275m n =⎧⎨=⎩或253154m n =⎧⎨=⎩, ()253,4518G =,()473,27514G =,()473,57214G =,()253,1548G =,∴(,)G m n 的最小值为8.【点睛】本题考查解二元一次方程组、新定义,理解题意是解题的关键.15.见解析【分析】设1m n =-,用n 将a 表示出来,代入原式化简即可证明.【详解】由题:1m n =-,()21a mn n n n n ==-=-原式===()11n n =--=1,是一个奇数.【点睛】本题考查了二次根式的化简,完全平方公式,和分解因式,题目较为新颖,难度较大,用n 将a 表示出来是本题的关键.16.(l )1;(2)28.【分析】(1a 、b 的值,然后代入计算即可;(2)先求得x 的值,然后再表示出【详解】解:(1)∵459,91316<<∵23<<,34<<∵2a =-,3b =∵231a b +=+=;(2)∵12<,∵9810<∵9x =∵8y x =∵81y x =-=-∵原式39128=⨯+=.【点睛】本题主要考查了无理数大小的估算,根据估算求得a 、b 的值是解答本题的关键. 17.12020. 【分析】 将111++201820192020与11+20182019分别看作一个整体,再进行化简计算即可. 【详解】 解:设111++201820192020m =,11+20182019n =, ∴原式()()11n m m n =---m m n n m n =--+m n =-11111++20182019202020182019⎛⎫=-+ ⎪⎝⎭ 12020=. 故答案为:12020. 【点睛】 本题考查了有理数的混合运算及整式的化简,掌握整体思想是解题的关键.18.(1)-11(2)63.5(3)a =-3(4)2021.【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.(2)求二次项系数,还有未知数的项有12x 、2x 、5x ,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a 的值.(4)根据前三问的规律即可计算出第四问的值.【详解】解:(1)由题意可得(x +2)(3x +1)(5x -3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.(2)由题意可得( 12x +6)(2x +3)(5x -4) 二次项系数是: 112(4)5325663.522⨯⨯-+⨯⨯+⨯⨯=. (3)由题意可得(x 2+x +1)(x 2-3x +a )(2x -1)一次项系数是:1×a ×(-1)+(-3)×1×(-1)+2×1×a = a +3=0∴a =-3.(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.所以(x +1)2021一次项系数是:a 2020=2021×1=2021.故答案为:(1)-11(2)63.5(3)a =-3(4)2021.【点睛】本题考查多项式乘多项式,观察题干,得出规律是关键.19.见解析【分析】先化简后消掉未知数x ,再求值时就与x 无关即可.【详解】 解:2222213823333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭ =2222213823333535x x xy y x xy y --++++ =()2218323333355x xy xy y ⎛⎫⎛⎫-+--++ ⎪ ⎪⎝⎭⎝⎭=2y 因为无论12x =-”还是“12x =,都x 无关,所以不影响结果. 【点睛】本题主要考查了整式的加减运算,去括号和合并同类项是解答本题的关键.20.3 3 7【分析】(1)求式子12x x ++-的最小值,由线段的性质:两点之间,线段最短,可知当-1≤x ≤2时,12x x ++-有最小值;(2)确定x 的取值范围进行分类讨论即可得到答案;(3)由线段的性质:两点之间,线段最短,去绝对值符号可得解.【详解】解:(1)当x <-1时,12x x ++-=1221x x x ---+=-+;当-1≤x ≤2时,12x x ++-=123x x +-+=;当x >2时,12x x ++-=2x-1 ∴12x x ++-的最小值为3,故答案为:3;(2)当x<-1时,12x x +--=1+21x x --+=;当-1≤x≤2时,12x x +--=1+-2-1x x +=;当x>2时,12x x +--=x+1-x+2=3 ∴12x x +--的最大值为3,故答案为:3;(3)当x <-13时,21263x x x +-+--=2263169x x x x -+-+-+=-+; 当-13≤x ≤2时,21263x x x +-+--=226317x x x -+-++-=; 当2<x ≤3时,21263x x x +-+--=2263123x x x x --++-=+;当x >3时,=2263169x x x x -+-+-=- 21263x x x +-+-- 所以,21263x x x +-+--的最小值是:7故答案为:7.【点睛】本题考查的是绝对值的定义,解答此类问题时要用分类讨论的思想.21.22a a -【分析】观察发现规律,并利用规律完成问题.【详解】观察232222+=-、23422222++=-发现23n 1222222n +++++=- ∴5051529910022222+++++ =()505024*********+++++ =50505122(22)+-=50505022(222)+⨯-(把502a =代入)=(22)a a a +-=22a a -.故答案为:22a a -.【点睛】此题考查乘方运算,其关键是要归纳出规律23n 1222222n +++++=-并运用之.22.231【分析】根据前四行的数归纳类推出一般规律,由此即可得.【详解】第1行的数是0,第2行的数是6066190=+=⨯+⨯, 第3行的数是()()2106150669162901=++=+++⨯=⨯+⨯+,第4行的数是()()450615246291692639012=+++=⨯+⨯++⨯=⨯+⨯++, 归纳类推得:第n 行的数是()()6190122n n -+++++-,其中2n ≥且为整数, 则第8行的数是()()681901282⨯-+⨯++++-,()679123456=⨯+⨯+++++,42921=+⨯,231=,故答案为:231.【点睛】本题考查了用代数式表示数的规律型问题,正确归纳类推出一般规律是解题关键. 23.5【分析】根据二次三项式的次数和项数的定义,确定m 值,再把m 代回二次三项式中得到等式,再把x 和y 值代入所求的式子中,然后把前面所得等式整体代入所求,即可得到结果.【详解】解:∵21a m x ++(m +1)by ﹣3是关于x 、y 的二次三项式,∴当x =1,y =﹣1时,有a ﹣(m +1)b ﹣3=0,m 2=1,∴m =±1,当m =﹣1时不合题意,∴m =1,∴a ﹣2b ﹣3=0,∴a ﹣2b =3, ∴1322a b -+=-, ∴当x =﹣12,y =12时,式子a m x +2mby +132=11322a b -++=5. 故答案为:5.【点睛】本题考查多项式的次数项数的定义、多项式的代入求值的相关计算,根据次数项数定义确定m 的取值要考虑全面,这是本题的易错点.24.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.25.0或2或4【分析】根据0,0a b c abc ++<>,推导出a 、b 、c 三个数中必定是一正两负,进而分三类讨论即可.【详解】∵0,0a b c abc ++<>,∴a 、b 、c 三个数中必定是一正两负,∴当0,0,0a b c <<>时,0ab >,此时231234||||||a ab abc a ab abc ++=-++= 当0,0,0a b c <><时,0ab <,此时231230||||||a ab abc a ab abc ++=--+= 当0,0,0a b c ><<时,0ab <,此时231232||||||a ab abc a ab abc ++=-+= 故答案为:0或2或4【点睛】本题考查与绝对值有关的代数式化简问题,熟练运用分类讨论思想求解是本题的关键. 26.255 21【分析】(1)a=1,b=3,按规则操作三次,第一次:c=7,第二次:c=31,第三次:c=255由此即可求解;(2)p>q>0,按规则重复两次,第一次得:()()1111c pq p q q p =++=++-,第二次得: ()()22111c p q =++-,所得新数大于任意旧数,故经过6次扩充,所得数为()()138111p q ++-,即可求解.【详解】 (1)第一次,13137c =⨯++=;第二次,373731c =⨯++=;第三次,317731255c =⨯++=;(2)第一次,1(1)(1)1c pq q p p q =++=++-;第二次,22[(1)(1)11](1)1(1)(1)1c p q p p q =++-++-=++-;第三次3[(1)(1)11]c p q =++-+232(1)(1)111(1)(1)1p q p q ⎡⎤++-+-=++-⎣⎦; 第四次,523243(1)(1)11(1)(1)111(1)(1)1c p q p q p q ⎡⎤⎡⎤=++-+++-+-=++-⎣⎦⎣⎦; 第五次,2538535(1)(1)11(1)(1)111(1)(1)1c p q p q p q ⎡⎤⎡⎤=++-+++-+-=++-⎣⎦⎣⎦;第六次,3618(1)(1)1c p q =++-,所以13821m n +=+=. 故答案为(1)255;(2)21.【点睛】本题考查了推理与论证,整式规律探究,新定义运算,主要考查学生分析解决问题的能力,求出经过6次操作后扩充所得的数是关键.27.405【分析】根据已知的一列数归纳类推出一般规律,由此即可得.【详解】这列数的第1个数是()99411=+⨯-,这列数的第2个数是()139421=+⨯-,这列数的第3个数是()179431=+⨯-,这列数的第4个数是()219441=+⨯-,这列数的第5个数是()259451=+⨯-,归纳类推得:这列数的第n 个数是()94145n n +-=+,其中n 为正整数,则这列数中的第100个数是41005405⨯+=,故答案为:405.【点睛】本题考查了数字类的规律型问题,依据题意,正确归纳出一般规律是解题关键. 28.1-或0或1【分析】对原式进行变形,写成()0bc ac ab a b c abc ++⎛⎫++= ⎪⎝⎭的形式,则要么0a b c ++=要么0bc ac ab ++=,再根据()2a b c ++的值求出a b c ++的值.【详解】 解:将原式变形成:111111()1()1()10a b c b c c aa b++++++++=, 111111111()()()0a b c a b c b c a c a b++++++++= ()111()0a b c a b c ++++= ()0bc ac ab a b c abc ++⎛⎫++= ⎪⎝⎭, ∴0a b c ++=或0bc ac ab ++=,若0bc ac ab ++=,则()()22222101a b c a b c bc ac ab ++=+++++=+=, ∴1a b c ++=±.故答案是:1-或0或1.【点睛】本题考查乘法公式的运用,解题的关键是熟练运用乘法公式进行计算.29.0【分析】根据绝对值的意义分30m n p ++-≥和30m n p ++-<两种情况讨论化简已知,可求出10++=m n 或40p -=,即可解题.【详解】解:当30m n p ++-≥时,去绝对值得:35m n p m n p ++-=+-+,∴40p -=;当30m n p ++-<时,去绝对值得:()35m n p m n p -++-=+-+,∴10++=m n ;∴()()140m n p ++-=.故答案为:0.【点睛】本题综合考查了绝对值的性质,能够根据已知条件进行讨论,化简得出10++=m n 或40p -=是解答此题的关键.30.221n n n ++ 【分析】试题分析:先求出S n 111n n +-+,再总结出S 的表达式,从而可以得出结论.【详解】 22111(1)n S n n =+++ 222222(1)(1)(1)n n n n n n ++++=+ 222[(1)]221[(1)]n n n n n n ++++=+ 22[(1)1][(1)]n n n n ++=+, (1)111111(1)(1)1n n n n n n n n ++==+=+-+++.n S S ∴=+1111111112231n n =+-++-+++-+ 111n n =+-+ 22(1)1211n n n n n +-+==++. 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 31.110【分析】3=两边平方,得到17x x +=,由题意得x ≠0,将231x x x ++分子分母同时除以x ,再将1x x +的值整体代入求值即可. 【详解】3=, ∴式子两边同时平方得:129x x ++=, ∴17x x+=, 由题意可得:0x ≠, ∴211313x x x x x=++++117310==+. 【点睛】本题主要考查完全平方公式、分式有意义的条件以及分式的性质,本题关键在于整体思想的运用.32.-1【分析】根据22320190x x --=得到22232019,232019x x x x =+-=,再把原式变形,然后把22232019,232019x x x x =+-=整体代入求值即可得解.【详解】解:22320190x x --=,22232019,232019x x x x ∴=+-=32220222020x x x ∴---()2220222020x x x =--- ()3201920222020x x x =+---()232020x x =--()2232020x x =-- 20192020=-1=-故答案为-1【点睛】本题考查了整式的化简求值,解题关键是把原条件变形后整体代入所求算式的变形式中计算.33.21n+ 5151 【分析】由已知的一系列等式,归纳总结表示出f (n );由得出的f (n ),分别令n =1,2,3,…,100,代入所求式子f (1)•f (2)•f (3)…f (100)中,约分后计算,即可得到结果.【详解】解:由题意总结得:()()221,n f n f n n n+=+= f (1)=31; f (2)=42; f (3)=25133+=; f (4)=26144+=; f (5)=27155+=; f (6)=28166+=, …,f (99)=210119999+= , f (100)=21021100100+=,则f(1)•f(2)•f(3)…f(100)= 3456102101102 (5151)123410012⨯⨯⨯⨯⨯⨯==⨯故答案为:21;5151n+【点睛】此题主要考查了定义新及找规律,根据题目已知条件找出规律是解题的关键.34.42【分析】根据a,b,c,n是互不相等的正整数,且1111a b c n+++也是整数,故要使得n尽量大,则a,b,c的值应尽量小,对a,b,c从小到大赋值计算,可得答案.【详解】a,b,c,n是互不相等的正整数,且1111a b c n+++也是整数,∴要使得n尽量大,则a,b,c的值应尽量小∴若a=2,b=3,c=4,则1111111323412 a b c++=++=故此种情况不符合题意;若a=2,b=3,c=5,则,则1111113123530 a b c++=++=故此种情况不符合题意;若a=1,b=2,c=3,则11111111236 a b c++=++=此时n=6,故此种情况不符合题意;若a=2,b=3,c=7,则1111114123742 a b c++=++=此时n=42,则1111a b c n+++也是整数,符合题意故n的最大值为:42.【点睛】本题考查代数式求值,明确分数的分母越小分数越大,从而最后剩下的凑整分数的分母越大,采用赋值与分类讨论是解答本题的关键.。

中考数学专项练习 代数式(含解析)-人教版初中九年级全册数学试题

中考数学专项练习 代数式(含解析)-人教版初中九年级全册数学试题

代数式一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.20162.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是,第n个式子是(n为正整数).5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要根钢管.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.8.一盒铅笔12支,n盒铅笔共有支.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为,第n个等式为.(n是正整数)10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.代数式参考答案与试题解析一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.2016【考点】平面镶嵌(密铺).【专题】压轴题;规律型.【分析】根据图象显示的规律找到,1个三角形,2个三角形,3个三角形组成的周长,得到规律为第n个三角形的周长为3+(n﹣1),所以可求得2016个这样的三角形镶嵌而成的四边形的周长.【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2016个这样的三角形镶嵌而成的四边形的周长是3+2015=2018.故选A.【点评】本题需注意要以第一图为基数来找规律.2.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)【考点】平行四边形的性质.【专题】压轴题;规律型.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.【点评】本题为找规律题,从前三个图形各自找出有多少个平行四边形,从中观察出规律,然后写出与n有关的代数式来表示第n个中的平行四边形的数目.3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题;压轴题.【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则x+y=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则x﹣y=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4xy=144﹣4=140,xy=35,故C选项正确;D、(x+y)2=x2+y2+2xy=144,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是﹣,第n个式子是(﹣1)n(n为正整数).【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察给出的一列数,发现这一列数的分母a的指数分别是1、2、3、4…,与这列数的项数相同,故第7个式子的分母是a7,第n个式子的分母是a n;这一列数的分子b的指数分别是2、5、8、11,…即第一个数是3×1﹣1=2,第二个数是3×2﹣1=5,第三个数是3×3﹣1=8,第四个数是3×4﹣1=11,…每个数都比项数的3倍少1,故第7个式子的分子是b3×7﹣1=b20,第n个式子的分子是b3n﹣1;特别要注意的是这列数字每一项的符号,它们的规律是奇数项为负,偶数项为正,故第7个式子的符号为负,第n个式子的符号为(﹣1)n.【解答】解:第7个式子是﹣,第n个式子是(﹣1)n.故答案为:﹣,(﹣1)n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对于本题而言难点就是变化的部分太多,有三处发生变化:分子、分母、分式的符号.学生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点中的难点.5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要83 根钢管.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】根据题意分析可得:搭建如图①的单顶帐篷需要17根钢管,从串第2顶帐篷开始,每多串一顶帐篷需多用11根钢管.【解答】解:第一顶帐篷用钢管数为17根;串二顶帐篷用钢管数为17+11×1=28根;串三顶帐篷用钢管数为17+11×2=39根;以此类推,串七顶帐篷用钢管数为17+11×6=83根.故答案为:83.【点评】本题考查图形中的计数规律,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.【考点】规律型:数字的变化类;倒数.【专题】压轴题;规律型.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解答】解:根据差倒数定义可得: ==, =4,.显然每三个循环一次,又2009÷3=669余2,故a2009和a2的值相等.【点评】此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有15 个边长是1的正六边形.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分割含有边长是1的正六边形,其实你可以看个底部,要数六边形,可以看出三角形的三个顶点小三角形是不包含在内的,一开始你可以忽略它们,而底部每个小三角形都由一个正六边形所独有的底三角形,当大的正三角形边长为N时,所以底部有六边形有N﹣2个,上一层的两个顶点小三角形又可以忽略,而第二层有小三角形N﹣1个,所以第二层有六边形有N﹣1﹣2个,即N﹣3个,如此类推,再上几层就是N﹣4,N﹣5,N﹣6个,一直到从上数下第三层,再上一层的三角形已经不能再当六边形的底了,所以到此为止,所以共有的六边形是N﹣2+N﹣3+N﹣4+…+2+1=[(1+N﹣2)(N﹣2)]÷2=.【解答】解:故当N=7时, =15个.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.8.一盒铅笔12支,n盒铅笔共有12n 支.【考点】列代数式.【专题】应用题.【分析】本题考查列代数式,要注意文字中的数学关系,一盒12支,n盒则共有12n支.【解答】解:12•n=12n.【点评】本题考查列代数式,要明确一盒12支与n盒的关系.解决问题的关键是读懂题意,找到所求的量的等量关系.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为62﹣42=4×5 ,第n个等式为(n+2)2﹣n2=4×(n+1).(n是正整数)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察几个式子可得①32﹣12=4×2可化为:(1+2)2﹣12=4×(1+1);②42﹣22=4×3可化为(2+2)2﹣22=4×(2+1);故第4个等式为62﹣42=4×5;第n个等式为(n+2)2﹣n2=4×(n+1).【解答】解:62﹣42=4×5,(n+2)2﹣n2=4×(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为37 .表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b【考点】规律型:图形的变化类.【专题】压轴题;图表型.【分析】每一竖行相隔的数是相同的,每相邻两个横行之间相隔的数也相隔1.【解答】解:表二从竖行看,下边的数应比上面的数大3,∴a=14+3=17.表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.∴b=13+7=20∴a+b的值为37.【点评】关键是通过归纳与总结,得到其中的规律.11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是(6,5).【考点】坐标确定位置.【专题】压轴题;规律型.【分析】寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为:(6,5).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是 6 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】由题中可以看出,以2为底的幂的末位数字是2,4,8,6顺次循环.那么2008÷4=502,则22008的末位数是应是循环的最后一个6.【解答】解:∵以2为底的幂的末位数字是2,4,8,6顺次循环,且2008÷4=502,∴22008的末位数是应是循环的最后一个6.【点评】解决本题的关键是得到以2为底的幂的末位数字的循环规律.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子3n+1 枚.(用含n的代数式表示)【考点】规律型:图形的变化类.【专题】规律型.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子4;第二个图需棋子4+3=7;第三个图需棋子4+3+3=10;…第n个图需棋子4+3(n﹣1)=3n+1枚.故答案为:3n+1.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有60个★.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是37 .【考点】规律型:数字的变化类.【专题】规律型.【分析】第一个数是12+1=2;第二个数是22+1=2;缺少的是第6个数应为62+1=37.【解答】解:缺少的是第6个数应为62+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到数列中的数和相应的数的平方之间的关系.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.【考点】坐标确定位置.【专题】压轴题;规律型.【分析】观察图表寻找规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.据此规律解答.【解答】解:观察图表可知以下规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.故(9,2)表示第9行,从左到右第2个数,即=.故答案填:.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有8 次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析可得:第一行分别为1的1,2,3,…的倍数;第二行分别为2的1,2,3,…的倍数;第三行分别为3的1,2,3,…的倍数;…;2008=1×2×2×2×251;故2008在表格中出现的次数共有8次.【解答】解:2008=1×2×2×2×251,故2008在表格中出现的次数共有8次.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察数据找到规律,并以规律解题即可.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.。

数学九年级上册《一元二次方程》单元综合测试题(附答案)

数学九年级上册《一元二次方程》单元综合测试题(附答案)

人教版数学九年级上学期 《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)已知关于x 的方程:(1)20ax bx c ++=;(2)240x x -=;(3)1+(x-1)(x+1)=0;(4)23(2)(3)x x x -=-+;(5)210x x-=其中是一元二次方程有( )个. A.1个B.2个C.3个D.4个2.(2019·南山第二外国语学校集团海德学校初三期中)关于x 的一元二次方程的两根分别为13x =-,22x =,则这个方程可以为( ) A.(2)(3)0x x --= B.(2)(3)0x x ++= C.(2)(3)0x x +-=D.(2)(3)0x x -+=3.(2019·厦门市第五中学初三期中)方程226x =的根是( )和 B.0和3C.3和3-4.(2019·湖北初三期中)向阳村2016年的人均收入为12000元,2018年的人均收入为14520元,则人均收入的年平均增长为( ) A.10%或-210%B.12.1%C.11%D.10%5.(2019·湖北初三期中)一元二次方程x 2-1=1的常数项是( ) A.-1B.1C.0D.-26.方程2(2)3(2)x x -=-的解为( ) A.2x =B.5x =C.12x =,25x =D.12x =,23x =7.(2019·山东初三期中)已知关于x 的一元二次方程x 2-2x =m 有两个不相等的实数根,则m 的取值范围是( ) A.m <1B.m <-2C.m =0D.m >-18.(2019·广东初三期中)已知一元二次方程260x x c -+=有一根为2,另一根为( ) A.5B.4C.3D.29.(2019·青浦区华新中学初二月考)已知三角形的两条边分别是2和4,第三边是方程29180x x -+=的根,则这个三角形的周长为( ) A.9或12B.9C.12D.不能确定10.(2019·江苏东绛实验学校初三期中)某校初三篮球联赛中采用了单循环赛制(即参赛的每两个队之间都要比赛一场),根据场地和时间等条件,赛程计划为7天,每天安排4场比赛.设有x 个队参加比赛,根据题意可列出方程( ) A.x (x +1)=2B.x (x -1)=28C.12x (x +1)=28 D.12x (x -1)=28 二、填空题(每小题4分,共24分) 11.关于x 的方程()221150aa a x --++=是一元二次方程,则a =_________.12.(2019·湖北初三期中)关于x 的方程(x+n)2=p 有两个相等的实数根,则p 的取值是__________. 13.(2019·湖北初三期中)实数x ,y 满足(x+y)2+x+y -2=0, 则2x+2y 值为_________.14.(2019·江苏初三期中)某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为x ,则可列出的方程是__________________________________.15.(2019·江西省宜春实验中学初三期中)一元二次方程2410x x --=的两个根为12,,x x ,且2212x x +=____。

(上)微专题十一概率与代数几何知识的综合(最新)人教版九年级数学全一册课件(28张)-公开课

(上)微专题十一概率与代数几何知识的综合(最新)人教版九年级数学全一册课件(28张)-公开课
(1)请用画树状图或列表的方法,写出代数式AB所有可能的结果; (2)求代数式AB恰好是分式的概率.
解:(1)列表:
第一次 A B 第二次
x2+1
x2+1 -x2-2
3
x2+1 -x2-2 x2+1
3
-x2-2
-x2-2 x2+1
-x2-2 3
3
3 x2+1
3 -x2-2
(2)代数式BA所有可能的结果共有 6 种,每种结果出现的可能性相等,其中代数式 AB是分式的结果有 4 种,
[2018·呼和浩特]已知函数 y=(2k-1)x+4(k 为常数),若从-3≤k≤3 中任取 k 值,则得到的函数是具有性质“y 随 x 增加而增加”的一次函数的概率为
5 ___1_2___.
【解析】 当 2k-1>0 时,y 随 x 的增加而增加,∴k>12,从-3≤k≤3 中任取 k 的值,能满足“y 随 x 的增加而增加”的是12<k≤3,因此从-3≤k≤3 中任取 k 的 值,满足一次函数具有性质 y 随 x 的增加而增加的概率是3-3(--123)=152.
[2019·常州]将图 1 中的 A 型(正方形)、B 型(菱形)、C 型(等腰直角三角 形)纸片分别放在 3 个盒子中,盒子的形状、大小、质地都相同,再将这 3 个盒子装 入一只不透明的袋子中.根据以上信息,解决下列问题:
图1 (1)搅匀后从中摸出 1 个盒子,盒中的纸片既是轴对称图形又是中心对称图形的
[2018·株洲]从-5,-130,- 6,-1,0,2,π 这七个数中随机抽取一
个数,恰好为负整数的概率为( A )
A.27

B.37
C.47
D.57
【解析】 ∵负整数有-5 和-1,∴恰好为负整数的概率为27.故选 A.

2019年湖南郴州中考数学试题(解析版)

2019年湖南郴州中考数学试题(解析版)

{来源}2019 年郴州市初中学业水平考试数学试卷{适用范围:3.九年级}{标题}2019年湖南省郴州市中考数学试卷考试时间:120分钟满分:130分{题型:1-选择题}一、选择题:本大题共8小题,每小题8分,合计24分.{题目}1.(2019年郴州T1)如右图,数轴上表示-2 的相反数的点是A.MB.NC.PD.Q{答案}A{解析}本题考查了有理数与数轴间的关系,由于点M对应的有理数是-2,因此本题选A.{分值}3{章节:[1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年郴州T2)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是A.B.C.D.{答案}C{解析}本题考查了轴对称图形;中心对称图形,根据轴对称图形与中心对称图形的概念进行判断即可解答本题.中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;因此本题选C.{分值}3{章节:[1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年郴州T3)邓小平曾说:“中东有石油,中国有稀土”.稀土是加工制造国防、军工等工业品不可或缺的原料.据有关统计数据表明:至2017 年止,我国已探明稀土储量约4400 万吨,居世界第一位,请用科学记数法表示44 000 000 为A.44×106B.4.4×107C.4.4×108D.0.44×109{答案}B{解析}本题考查了科学计数法表示较大的数,将44 000 000用科学记数法表示为:4.4×107.因此本题选B.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年郴州T)下列运算正确的是A.(x2)3=x5B C.x·x2·x4=x6D{答案}D{解析}本题考查了同底数幂的乘法以及二次根式的运算,利用相关运算法则进行计算,然后判断即可.(x2)3=x6,所以A=B错误;.x·x2·x4=x7,所以C,所以D正确,因此本题选D.{分值}3{章节:[1-16-3]二次根式的加减}{考点:同底数幂的乘法}{考点:幂的乘方}{考点:二次根式的除法法则}{考点:二次根式的加减法}{类别:常考题}{难度:2-简单}{题目}5.(2019年郴州T5)一元二次方程2 x2+3x−5 =0 的根的情况为A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根{答案}B{解析}本题考查了一元二次方程根的判别式,因为a=2,b=3,c=-5,所以Δ=b2-4ac=32-4×2×(-5)=49>0,所以方程2 x2+3x−5 =0有两个不相等的实数根,因此本题选B.{分值}3{章节:[1-21-2-2]公式法}{考点:根的判别式}{类别:常考题}{难度:2-简单}{题目}6.(2019年郴州T6)下列采用的调查方式中,合适的是A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式{答案}A{解析}本题考查了调查方法的选择,调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.了解东江湖的水质情况时,若进行一次全面的调查,费大量的人力物力是得不尝失,因此宜采用抽样调查的方式,故A选项是合适的;企业为了解所生产的产品的合格率,所采取的实验多带有破坏性,因此采取抽样调查即可,故B选项不合适;小型企业员工数量有限,因此给在职员工做工作服前对每个人进行尺寸大小进行测量即可,所以C选项不合适;在了解某市中小学生的视力情况时,若进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可,故D选项不合适.因此本题选A.{分值}3{章节:[1-19-4]课题学习选择方案}{考点:全面调查}{考点:抽样调查}{类别:思想方法}{难度:2-简单}{题目}7.(2019年郴州T7)如图,分别以线段A B 的两端点A,B 为圆心,大于12AB 长为半径画弧,在线段A B的两侧分别交于点E,F,作直线E F 交A B 于点O.在直线E F 上任取一点P(不与 O 重合),连接 P A ,PB ,则下列结论不一定成立的是A .P A =PB B .OA =OBC .OP =OFD .PO ⊥AB{答案}C{解析}本题考查了线段垂直平分线的性质;作图—复杂作图,由作图过程可知EF 是AB 的垂直平分线,所以PA =PB ,OA =OB ,PO ⊥AB ,一定成立,因此本题选C . {分值}3{章节:[1-13-1-2]垂直平分线} {考点:垂直平分线的性质}{考点:与垂直平分线有关的作图} {考点:垂直平分线的判定} {类别:北京作图} {难度:2-简单}{题目}8.(2019年郴州T 8)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对 全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,则正方形 ADOF 的边长是A .2B .2C .3D .4{答案}B{解析}本题考查了勾股定理和解一元二次方程,设正方形ADOF 的边长为x ,则AB =4+x ,AC =6+x ,BC =10,由于∠A =90°,所以BC 2=AB 2+AC 2,即100=16+8x +x 2+36+12x +x 2,解得x =2或x =-12(不合题意,舍去),因此本题选B . {分值}3{章节:[1-17-1]勾股定理} {考点:勾股定理}{考点:角平分线的性质} {类别:常考题} {难度:2-简单}(第7题图)OFE ABP(第8题图){题型:2-填空题}二、填空题:本大题共8小题,每小题3分,合计24分.{题目}9.(2019年郴州T9)二次根式2x-中,x 的取值范围是.{答案}x≥2{解析}本题考查了二次根式有意义的条件.直接利用二次根式有意义的条件分析得出答案.若2x-在实数范围内有意义,则x-2≥0,解得:x≥2.因此本题应填x≥2.{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件}{类别:常考题}{难度:2-简单}{题目}10.(2019年郴州T10)若32x yx+=,则yx=.{答案}1 2{解析}本题考查了比例的性质,直接运用比例的性质化简计算即可,因为x yx+=1+yx=32,所以y x =31122-=,因此本题应填12.{分值}3{章节:[1-27-3]图形的相似}{考点:比例的性质}{类别:常考题}{难度:2-简单}{题目}11.(2019年郴州T11)如图,直线a,b被直线c,d所截.若a//b,∠1=130°,∠2=30°,则∠3 的度数为度.{答案}100{解析}本题考查了平行线的性质以及三角形外角的性质,∵a∥b,∴∠1=∠2+∠3,又∵∠2=30°,∴∠3=∠1-∠2=130°-30°=100°,因此本题应填100.{分值}3{章节:[1-11-2]与三角形有关的角}{考点:三角形的外角}{考点:两直线平行同位角相等}{类别:常考题}{难度:2-简单}{题目}12.(2019年郴州T12)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.{答案}8{解析}本题考查了中位数的概念,将一组数据从小到大(或从大到小)重新排列后,最中间的数(或最中间的两个数的平均数),叫做这组数据的中位数.将数据9,8,7,6,9,9,7,从小到大排列为:6,7,7,8,9,9,9,中间的数是8,即这组数据的中位数是8,因此本题应填8.(第11题图){分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:2-简单}{题目}13.(2019年郴州T 13)某商店今年 6 月初销售纯净水的数量如下表所示:日期 1 2 3 4数量(瓶) 120 125 130 135 观察此表,利用所学函数知识预测今年 6 月 7 日该商店销售纯净水的数量约为 瓶. {答案}150{解析}本题考查了函数的应用,由表格可知销售数量y 与日期x 之间的函数关系式为y =120+5(x -1)=5x +115,当x =7时,y =5×7+115=150,因此本题应填150. {分值}3{章节:[1-19-1-1]变量与函数} {考点:函数关系式} {考点:函数值} {类别:思想方法} {难度:2-简单}{题目}14.(2019年郴州T 14)如图是甲、乙两人 6 次投篮测试(每次投篮 10 个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2甲S 、2乙S ,则 2甲S 2乙S (填“>”“=”或“<”){答案}<{解析}本题考查了方差的计算,因为甲x =16(8+7+8+6+9+8)=233,2甲S =16〔(8-233)2+(7-233)2+(8-233)2+(6-233)2+(9-233)2+(8-233)2〕=89,乙x =16(7+4+7+9+5+7)=132,2乙S =16〔(7-132)2+(4-132)2+(7-132)2+(9-132)2+(5-132)2+(7-132)2〕=3112,因为3112>89,所以2乙S >2甲S ,因此本题应填“<”.{分值}3{章节:[1-20-2-1]方差} {考点:算术平均数} {考点:方差} {类别:常考题} {难度:2-简单}测试次数测试成绩/个甲 乙(第14题图){题目}15.(2019年郴州T 15)已知某几何体的三视图如图,其中主视图和左视图都是腰长为 5,底边长为 4 的等腰三角形,则该几何体的侧面展开图的面积是 .(结果保留 π ){答案}10π{解析}本题考查了由三视图判断几何体,圆锥的计算.依题意,圆锥的地面周长为4π,圆锥的母线长为5,所以其侧面展开图为扇形,面积为12×4π×5=10π,因此本题应填10π. {分值}3{章节:[1-29-2]三视图} {考点:简单几何体的三视图}{考点:扇形的面积}{类别:常考题} {难度:2-简单}题目}16.(2019年郴州T 16)如图,点 A ,C 分别是正比例函数 y =x 的图象与反比例函数 y =4x的图象的交点,过 A 点作 AD ⊥ x 轴于点 D ,过 C 点作 CB ⊥ x 轴于点 B ,则四边形 ABCD 的面积为 .{答案}8{解析}本题考查了反比例函数与一次函数的交点问题,解方程组4y xy x =⎧⎪⎨=⎪⎩得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩,所以A 的坐标为(2,2),C 的坐标为(-2,-2),又过 A 点作 AD ⊥ x 轴于点 D ,过 C 点作 CB ⊥ x 轴于点 B ,所以B (-2,0),D (2,0),所以BD =4,AD =2,所以ABCD 的面积=AD ·BD =0,因此本题应填8. {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {考点:一次函数与几何图形综合} {考点:代数填空压轴} {考点:几何填空压轴} {类别:易错题}(第15题图)55 44(第16题图){难度:3-中等难度}{题型:4-解答题}三、解答题:本大题共10小题,合计82分.{题目}17.(2019年郴州T 17)计算:0011(3)2cos3013()2π---++{解析}本题考查了实数的运算,零指数幂,负整数指数幂,绝对值,特殊角的三角函数值.直接利用特殊角的三角函数值以及零指数幂的性质、绝对值的性质分别化简得出答案. {答案}解:原式=1-2331+2 =1331+2 =2{分值}6{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题} {考点:简单的实数运算} {考点:二次根式的混合运算} {考点:特殊角的三角函数值}{题目}18.(2019年郴州T 18)先化简,再求值:2211211a a a a a ----+-,其中a 3. {解析}本题考查了分式的化简求值,原式中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求值.{答案}解: 原式=21(1)a a ---1(1)(1)a a a -+-=22(1)(1)(1)(1)(1)a a a a a -+---+=1(1)(1)(1)a a a a +---+=221aa -. 当a 3223(3)1-233 {分值}6{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算} {考点:简单的实数运算} {题目}19.(2019年郴州T 19)如图,□ABCD 中,点 E 是边 AD 的中点,连接 CE 并延长交 BA 的延长线于点 F ,连接 AC ,DF .求证:四边形 A CDF 是平行四边形.{解析}本题考查了平行四边形、平行线的判定,全等三角形的性质,解题的关键是得到AF ∥CD ,且AF =C D . {答案}证明:∵ABCD 是平行四边形,∴AB ∥CD ,即AF ∥CD , ∴∠AFE =∠DCE∵点 E 是边 AD 的中点, ∴EF =EC ,又∵∠AEF=∠DEC,∴△AEF≌△DEC,∴AF=DC∴四边形A CDF 是平行四边形.{分值}6{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:平行四边形边的性质}{考点:两直线平行内错角相等}{考点:全等三角形的判定ASA,AAS}{考点:全等三角形的性质}{考点:一组对边平行且相等的四边形是平行四边形}{题目}20.(2019年郴州T20)我市去年成功举办2018 郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是人,m=,并补全条形统计图;(2)若该小区有居民1200 人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率){解析}本题考查了扇形统计图;条形统计图;列表法与树状图法.(1)由D组人数及其所占百分比求得被调查人数,再用B组人数除以被调查人数所得的百分比求m,继而根据各组人数之和等于总人数求出C组的人数,从而补全条形统计图;(2)用样本估计总体,从而估计去B地旅游的居民人数;(3)依据树状图,可得共有12种等可能的情况,其中选中A、C的情况有2种,即可得选到A,C两个景区的概率.{答案}解:(1)有统计图可知:D组人数有20人,占调查人数的10%,所以被调查到的人数为20÷10%=200(人)又B组人数为70,所以占被调查人数的70÷200×100%=35%,所以m=35,C组人数为:200-20-70-20-50=40(人)补全的条形统计图为:(2)若该小区有居民1200 人,则去B地旅游的居民约有1200×70200=420(人);(3)画树状图如下:A B CA B DA C DB C DA B C D可见,共有12种等可能的情况,其中选中A、C的情况有2种,所以选到A,C两个景区的概率为21 126=.{分值}8{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:两步事件不放回}{考点:扇形统计图}{考点:条形统计图}{题目}21.(2019年郴州T21)如图所示,巡逻船在A处测得灯塔C在北偏东45°方向上,距离 A 处30 km.在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救.已知B处在A处的北偏东60°方向上,这时巡逻船与渔船的距离是多少?(精确到0.01 km.参考数据:2≈1.414,3≈1.732,6≈2.449 ){解析}本题考查了解直角三角形的应用-方向角问题.延长CB交东西方向线于点D,则AD=AC·sin45°,AD=AB·sin60°,从而得到AC·sin45°=AB·sin60°,由于AC=30km,sin45°=22,sin60°=32,因此可求得AB,此即巡逻船与渔船的距离.{答案}解:延长CB交东西方向线于点D,则AD=AC·sin45°,AD=AB·sin60°,∴AC·sin45°=AB·sin60°,由于AC=30km,sin45°=22,sin60°=32,∴AB=sin45sin60AC︒︒=230232⨯=106≈24.49(km)答:巡逻船与渔船的距离是24.49km.{分值}8{章节:[1-28-1-2]解直角三角形}{难度:3-中等难度}{类别:常考题}{考点:解直角三角形-方位角}{考点:解直角三角形}{题目}22.(2019年郴州T22)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?{解析}本题考查了分式方程的应用;一元一次不等式组的应用.(1)设一台A型号机器每小时加工x(第21题图)个零件,则一台B型机器每小时加工(x-2)个零件,根据一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用两种机器每小时加工的零件不少于72件,不能超过76件,列方程组可得出结论.{答案}解:(1)设一台A型号机器每小时加工x个零件,则一台B型机器每小时加工(x-2)个零件,根据80602x x=-,解得x=8经检验x=8是原方程的解,所以A型机器每小时加工零件8个,B型机器每小时加工零件6个;(2)设A型号机器安排y台,则B型号机器安排(10-y)台,依题意,可得72≤8y+6(10-y)≤76解得6≤y≤8即y的可取值为:6,7,8所以A,B两种型号的机器可以作如下安排:①A型号机器6台,B型号机器4台;②A型号机器7台,B型号机器3台;③A型号机器8台,B型号机器2台.{分值}8{章节:[1-15-3]分式方程}{难度:3-中等难度}{类别:常考题}{考点:其他分式方程的应用}{考点:一元一次不等式的整数解}{考点:一元一次不等式的应用}{题目}23.(2019年郴州T23)如图,已知A B 是⊙O 的直径,CD 与⊙O 相切于点D,且A D//O C.(1)求证:BC 是⊙O 的切线;(2)延长C O 交⊙O 于点E.若∠CEB=30°,⊙O 的半径为2,求BD的长.(结果保留π ){解析}本题考查了切线的判定与性质、全等三角形的判定与性质以及平行线的性质和弧长的计算.注意掌握辅助线的作法,注意掌握数形结合思想的应用是解决问题的关键.{答案}解:(1)证明:连接OD,如答图所示.∵AD//OC,∴∠COD=∠ADO,∠COB=∠DAO,又∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB,在△COD和△COB中OD OBCOD COB OC OC=⎧⎪∠=∠⎨⎪=⎩,(23题答图)(第23题图)∴△COD ≌COB , ∴∠CDO =∠CBO , 又CD 与⊙O 相切于点 D , ∴∠CDO =90°, ∴∠CBO =90°, ∴BC 是⊙O 的切线;(2)∵∠CEB =30°,∴∠COB =60°,由(1)知,∠COD =∠COB , ∴∠COD =60°,∴∠DOB =∠COD +∠COB =120° ∵⊙O 的半径为 2,∴BD 的长=1202180π⨯⨯=43π.{分值}8{章节:[1-24-2-2]直线和圆的位置关系} {难度:3-中等难度} {类别:常考题}{考点:两直线平行同位角相等} {考点:两直线平行内错角相等} {考点:全等三角形的判定SAS } {考点:全等三角形的性质} {考点:切线的性质} {考点:切线的判定} {考点:弧长的计算}{题目}24.(2019年郴州T 24)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数 2111x y xx x ⎧-≤-⎪=⎨⎪->-⎩的图象与性质. x…-3 -52 -2 -32 -1 -12 0 12 1 32 2 523 … y … 23 45 1 43 2 32 1 12 0 12 1 322 … 图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象; (2)研究函数并结合图象与表格,回答下列问题:①点A (-5,y 1),B (-72,y 2),C (x 1,52),D (x 2,6)在函数图象上,则 y 1 y 2 , x 1 x 2 ;(填“>”、“=”或“<”)②当函数值y =2 时,求自变量 x 的值;③在直线x =-1的右侧的函数图象上有两个不同的点 P ( x 3,y 3 ),Q ( x 4,y 4 ) ,且y 3=y 4 ,求x 3+x 4的值; ④ 若直线 y =a 与函数图象有三个不同的交点,求 a 的取值范围.{解析}本题考查了函数图象的一般画法,分段函数的增减性,绝对值的性质等内容.{答案}解:(1)根据列表、描点,可以做出函数图像,如下图:(2)①由图象可知,当x ≤-1时,函数值随x 的增大而减小,因为A 、B 在函数图象上,且-5<-72<-1, 所以y 1<y 2.又因为52>2,6>2,C 、D 在函数图象上, 所以C 、D 在函数图象y =x -1(x >1)上,且函数值随x 的增大而增大, ∵52<6,∴x 1<x 2. 即这里的两空应填:<;<.②当y =2时,若x ≤-1,则有-2x=2,解得x =-1;若x >-1时,则有|x -1|=2,即x -1=±2,解得x =3或x =-1(不合题意,舍去)综上所述,y =2时,自变量x 的值为-1或3.③若点 P ( x 3,y 3 ),Q ( x 4,y 4 ) 是直线x =-1的右侧的函数图象上的两个不同的点,且y 3=y 4 ,则|x 3-1|=|x 4-1|,所以x 3-1=-(x 4-1),所以x 3+x 4=2. ④若直线 y =a 与函数图象有三个不同的交点, 通过观察函数图象可知:0<a <2.{分值}10{章节:[1-26-1]反比例函数的图像和性质} {难度:3-中等难度} {类别:高度原创} {考点:分段函数}{考点:函数图象上的点} {考点:一次函数的性质} {考点:反比例函数的性质}{题目}25.(2019年郴州T 25)如图1,矩形ABCD 中,点E 为AB 边上的动点(不与A ,B 重合),把△ADE 沿DE 翻折,点A 的对应点为A 1 ,延长EA 1交直线DC 于点F ,再把∠BEF 折叠,使点B 的对应点B 1落在EF 上,折痕EH 交直线BC 于点H . (1)求证:△A 1DE ∽△B 1EH ;(2)如图2,直线MN 是矩形ABCD 的对称轴,若点A 1恰好落在直线MN 上,试判断△DEF 的形状,并说明理由;(3)如图3,在(2)的条件下,点G 为△DEF 内一点,且∠DGF =150°,试探究DG ,EG ,FG 的数量关系.{解析}本题考查了相似三角形的判定,轴对称图形的性质,勾股定理等内容.{答案}解:(1)证明:由于△ADE 沿DE 翻折,点A 的对应点为A 1 , ∴∠AED =∠A 1ED再把∠BEF 折叠,使点B 的对应点B 1落在EF 上,折痕EH 交直线BC 于点H . ∴∠BEH =∠FEH ,又∠AED +∠A 1ED +∠BEH +∠FEH =180° ∴∠A 1ED +∠FEH =90°∵ABCD 是矩形,∴∠EDA 1+∠A 1ED =180°-90°=90° ∴∠∠EDA 1=∠FEH ,又∠DAE =∠DA 1E =∠HBE =∠HB 1E =90°, ∴△A 1DE ∽△B 1EH ;(2)△DEF 是等边三角形,理由如下:∵MN 是矩形的对称轴,点A 1恰好落在直线MN 上, ∴111EAA F,即EA 1=A 1F , 又∠DA 1E =90°∴DA 1是EF 的垂直平分线,∴DE =DF ,∠EDA 1=∠FDA 1,即△DEF 是等腰三角形. ∵△A 1DE 是△ADE 沿DE 翻折得到的,∴∠ADE =∠A 1DE =∠A 1DF =13∠ADC =30°,∴∠EDF =60°,即△DEF 是等边三角形.(3)DG ,EG ,FG 所满足的数量关系为:DG 2+FG 2=EG 2. 理由如下:将△EDG 绕点E 逆时针旋转60°,从而旋转后的ED 将会和EF 重合,同时G 点落在了 G 1的位置(如答图).由于△EFG 1是由△EDG 旋转过去得到的, 因此FG 1=DG ,EG =EG 1,∠GEG 1=60°. ∴GG 1=EG ,所以△GFG 1的三边长事实上分别等于GF 、GD 、GE 。

2019年中考数学专题:整式与代数式及答案

2019年中考数学专题:整式与代数式及答案

2019中考数学专题:整式与代数式一、选择题1.如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为()A. 3B. 8C. 64D. 632.下列各组单项式中,为同类项的是()A. a3与a2B. a2与2a2C. 2xy与2xD. ﹣3与a3.下列所给出的四组式子中,有一组的关系与其它各组不同,则该组是()A. 与B. 与C. 与D. 与4.(2016•重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 64B. 77C. 80D. 855.下列各式计算正确的是A. B. C. D.6.一块边长为a米的正方形广场,扩建后的正方形边长比原来长2米,则扩建后广场面积增大了()A. (4a+4)米²B. (a2+4)米²C. (2a+4)米²D. 4米27.若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为()A. 3x2yB. ﹣3x2y+xy2C. ﹣3x2y+3xy2D. 3x2y﹣xy28.下列式子中一定成立的是()A. (a﹣b)2=a2﹣b2B. (a+b)2=a2+b2C. (a﹣b)2=a2﹣2ab+b2D. (﹣a﹣b)2=a2﹣2ab+b29.下列计算正确的是A. B. C. D.10.下列各式能用完全平方公式进行分解因式的是()A. x2+1B. x2+2x-1C. x2 +x+1D. x2+4x+411.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是123,则m的值是()A. 9B. 10C. 11D. 1212.下列式子:x2+2,+4,,,-5x,0中,整式的个数有()个。

第02讲 代数式及整式的运算 2019届中考数学专项精题训练

第02讲 代数式及整式的运算 2019届中考数学专项精题训练

第02讲代数式及整式的运算一、代数式及整式的运算基本思路代数式的入门是基础,单项式的次数和多项式的次数是难点,整式的运算是训练重点。

例1、下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b2【答案】D.【解析】根据合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方分别求出每个式子的值,再进行判断即可.【详解】解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.例2、已知4x2﹣3x+1=a(x﹣1)2+b(x﹣1)+c对任意数x成立,则4a+2b+c=.【答案】28.【解析】将a(x﹣1)2+b(x﹣1)+c展开后合并同类项与4x2﹣3x+1各项的系数相同,进而求得a、b、c 的值,代入4a+2b+c求出即可.【详解】解:∵a(x﹣1)2+b(x﹣1)+c=a(x2﹣2x+1)+bx﹣b+c=ax2﹣2ax+a+bx﹣b+c=ax2﹣(2a﹣b)x+a﹣b+c=4x2﹣3x+1∴a=4、﹣(2a﹣b)=﹣3、a﹣b+c=1,解得:a=4、b=5、c=2,∴4a+2b+c=4×4+2×5+2=16+10+2=28故答案为:28.例3、已知:A=2a2+ab﹣2a+1,B=﹣a2+ab﹣2a(1)求4(A﹣B)﹣[A+2(A﹣2B)];(2)若(1)中的代数式的值与a的取值无关,求b的值;(3)比较A、B的大小.【解析】(1)先化简,然后把A和B代入求解;(2)根据题意可得原式=(3b﹣6)a+1与a的取值无关,即化简之后a的系数为0,据此求b值即可.(3)利用作差法得出A﹣B=3a2+1>0,据此可得.【详解】解:(1)4(A﹣B)﹣[A+2(A﹣2B)]=4A﹣2B﹣A﹣2(A﹣2B)=3A﹣2B﹣2A+4B=A+2B,当A=2a2+ab﹣2a+1,B=﹣a2+ab﹣2a时,原式=A+2B=2a2+ab﹣2a+1+2(﹣a2+ab﹣2a)=2a2+ab﹣2a+1﹣2a2+2ab﹣4a=3ab﹣6a+1;(2)原式=(3b﹣6)a+1,∵(1)中的代数式的值与a的取值无关,∴3b﹣6=0,解得:b=2;(3)∵A﹣B=(2a2+ab﹣2a+1)﹣(﹣a2+ab﹣2a)=2a2+ab﹣2a+1+a2﹣ab+2a=3a2+1>0,∴A>B.二、整式的运算的常见类型按照整式的基本运算可分为:一般加减运算、化简求值问题、题目中部分内容遮挡或错误、设定一个新的运算程序、整式运算+几何图形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019九上代数综合题
2019昌平
26.在平面直角坐标系xOy 中,抛物线 y =mx 2-4mx +4m -2 的顶点为M . (1)顶点M 的坐标为_______ __.
(2)横、纵坐标都是整数的点叫做整点. 若MN ∥y 轴且MN = 2.
①点N 的坐标为_____________;
②过点N 作y 轴的垂线l ,若直线l 与抛物线交于P 、Q 两点,该抛物线在P 、Q 之间的部分与线段PQ 所围成的区域(包括边界)恰有七个整点,结合函数图象,求m 的取值范围.
2019朝阳
27.在平面直角坐标系xOy 中,抛物线2(12)2y ax a x =+--(0)a ≠与y 轴交于点C .当
1a =时,抛物线与x 轴交于点A ,B (点A 在点B 左侧).
(1)求点A ,B ,C 的坐标;
(2)若该抛物线与线段AB 总有两个公共点,结合函数的图象,求a 的取值范围.
2019大兴
26.已知抛物线256y x m x m =--+-+(). (1)求证:该抛物线与x 轴总有交点;
(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;
(3)设抛物线256y x m x m =--+-+()与y 轴交于点M ,若抛物线与x 轴的一个交点关 于直线y x =-的对称点恰好是点M ,求m 的值.
2019东城
26 . 在平面直角坐标系xOy 中,抛物线的表达式为2
2
2422y x mx m m =-+-+,线段AB 的两个端点分别为A (1,2),B (3,2) (1) 若抛物线经过原点,求出m 的值;
(2)求抛物线顶点C 的坐标(用含有m 的代数式表示);
(3)若抛物线与线段AB 恰有一个公共点,结合函数图象,求出m 的取值范围.
2019房山
26. 在平面直角坐标系xOy 中,点()4,2A --,将点A 向右平移6个单位长度,得到点B . (1)直接写出点B 的坐标;
(2)若抛物线2y x bx c =-++经过点A ,B ,求抛物线的表达式;
(3)若抛物线2y x bx c =-++的顶点在直线2y x =+上移动,当抛物线与线段AB 有且只有一个公共点时,求抛物线顶点横坐标t 的取值范围.
2019海淀
26.在平面直角坐标系xOy 中,已知抛物线G :224844y x ax a =-+-,(1,0),(,0)A N n -. (1)当1a =时,
①求抛物线G 与x 轴的交点坐标;
②若抛物线G 与线段AN 只有一个交点,求n 的取值范围;
(2)若存在实数a ,使得抛物线G 与线段AN 有两个交点,结合图象,直接写出n 的取
值范围.
2019怀柔
26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;
(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P 的坐标.
2019门头沟
26.在平面直角坐标系xOy 中,抛物线22y x mx n =-++经过点A (0,2),B (3,4-). (1)求该抛物线的函数表达式及对称轴;
(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.
2019平谷
26.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3(a ≠0)经过(1,0),且与y 轴交于点C .
(1)直接写出点C 的坐标 ; (2)求a ,b 的数量关系;
(3)点D (t ,3)是抛物线y =ax 2+bx +3上一点(点D 不与点C 重合).
①当t =3时,求抛物线的表达式; ②当3<CD <4时,求a 的取值范围.
2019石景山
26.在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与抛物线243y ax ax a =-+的对
称轴交于点(1)A m -,
,点A 关于x 轴的对称点恰为抛物线的顶点. (1)求抛物线的对称轴及a 的值;
(2)横、纵坐标都是整数的点叫做整点.记直线(0)y kx b k =+≠与抛物线围成的封
闭区域(不含边界)为W .
①当=1k 时,直接写出区域W 内的整点个数;
x
y
O
②若区域W 内恰有3个整点,结合函数图象,求b 的取值范围.
2019通州
25. 在平面直角坐标系xOy 中,抛物线()2
40y ax ax m a =-+≠与x 轴的交点为A 、B ,(点
A 在点
B 的左侧),且AB =2.
(1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);
(2)若抛物线()2
40y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a
的取值范围;
(3)横、纵坐标都是整数的点叫做整点.
若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接写出a 的取值范围.
2019西城
26.在平面直角坐标系xOy 中,已知抛物线. (1)求抛物线的对称轴;
(2)当a >0时,设抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点为C ,若△ABC
为等边三角形,求a 的值;
(3)过点T (0,t )(其中≤t ≤2)且垂直y 轴的直线l 与抛物线交于M ,N 两点,若
对于满足条件的任意t 值,线段MN 的长都不小于1,结合函数图象,直接写出a 的取值范围.
2019丰台
26.在平面直角坐标系xOy 中,抛物线过点A (-1,0).
243y ax ax a =-+1
-2
+3y ax bx a =+
(1)求抛物线的对称轴;
(2)直线与y 轴交于点B ,与该抛物线对称轴交于点C ,如果该抛物线与线
段BC 有交点,结合函数的图象,求的取值范围.
2019密云
26.已知抛物线244+10)y ax ax a a =-+≠(与y 轴交于点A ,点A 与点B 关于抛物线的对称轴对称.直线l 经过点B 且与x 轴垂直.
(1)求抛物线的顶点C 的坐标和直线l 的表达式.
(2)抛物线与直线l 交于点P ,当OP ≤5时,求a 的取值范围.
4y x =+a。

相关文档
最新文档