1.2.1 诱导公式(一)及三角函数线 导学案
诱导公式(一)导学案

导学案年级:高一级科目:数学主备:审核:课题:诱导公式(一)课型:新授课课时:1课时【三维目标】●知识与技能: 1、理解正弦、余弦的诱导公式二、三、四的推导过程;2、掌握公式二、三、四,并会正确运用公式进行有关计算、化简;●过程与方法:让学生从已有的知识出发,引导学生通过观察,推导,学会利用数形结合解决问题;●情感态度与价值观:了解、领会把未知问题化归为已知问题的数学思想,提高分析问题、解决问题的能力,培养学生合作学习、合作探究的能力。
【学习重点】诱导公式二、三、四的推导【学习难点】诱导公式二、三、四的运用【教学资源】教师导学过程(导案) 学生学习活动(学案)【导学过程1:】复习旧知识回忆诱导公式(一)【学生学习活动1:】学生分组完成【导学过程2:】引入问题:如何求sin750°和sin930°的值?【学生学习活动2:】sin750°= sin(360 °×2+30 °) = sin 30 °=?sin930 °=sin(360 °×2+210 °)=sin210 °=?【导学过程3:】设问1、对于任意给定的一个角α,角π+α的终边与角α的终边有什么关系?2、设角α的终边与单位圆交于点P(x,y),则角π+α的终边与单位圆的交点坐标如何?结合三角函数线,分组讨论,得出结论:sin(π+α)= cos(π+α)= tan(π+α)= 【学生学习活动3:】sin225=_________=____;cos225=___________=____;tan225=____________=_ ____.【导学过程4:】设问1、对于任意给定的一个角α,-α的终边与α的终边有什么关系?2、设角α的终边与单位圆交于点P(x,y),则角-α的终边与单位圆的交点坐标如何?3、角α与角π-α终边具有什么关系?4、π-α的终边与单位圆的交点坐标如何?【学生学习活动4:】学生分组完成结合三角函数线,分组讨论,得出结论:公式三、四【导学过程5:】例题学习课本第24~25页例1、例2 【学生学习活动5:】巩固练习课本第27页1、2、3附件【小结】1、公式一~公式四小结:函数名不变,符号看象限2、利用公式一~四把任意角的三角函数转化为锐角三角函数的步骤。
1.3.1 三角函数的诱导公式(一)学案

1.3.1三角函数的诱导公式(一)课前预习学案预习目标:回顾记忆各特殊锐角三角函数值,在单位圆中正确识别三种三角函数线。
预习内容:1、背诵30度、45度、60度角的正弦、余弦、正切值;2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。
提出疑惑:我们知道,任一角α都可以转化为终边在)2,0[π内的角,如何进一步求出它的三角函数值?我们对)2,0[π范围内的角的三角函数值是熟悉的,那么若能把)2,2[ππ内的角β的三角函数值转化为求锐角α的三角函数值,则问题将得到解决。
那么如何实现这种转化呢?课内探究学案一、学习目标:(1).借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题(2).通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断; 三、学习过程:(一)研探新知1. 诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:)(tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπααπα (公式一) 诱导公式(一)的作用:把任意角的正弦、余弦、正切化为)2,0[π之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成︒=+︒80sin )280sin(πk ,3cos)3603cos(ππ=︒⋅+k 是不对的【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2,0[π角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
诱导公式第一课时学案

1.2.4诱导公式第1课时导学案姓名学习目标:理解记忆三角函数的诱导公式(一)和(二)并学会正确应用。
一、复习回顾: (结合之前学习的知识完成以下各表)2、正弦、余弦、正切函数在各个象限的正负是: 。
3、三角函数线4、特殊角的三角函数值正弦线: 余弦线: 正切线:二、探究新知: 探究一:思考下列问题:(1)60°与420°角的终边 ;60°与-300°角的终边 ;2π+α与角α终边 ;4π+α与角α终边 -2π+α与角α终边 2k π+α与角α终边诱导公式一: sin (2k π+α)=______ k ∈z cos (2k π+α)=______ k ∈z tan (2k π+α)=______ k ∈z作用: 例1:求下列三角函数的值(1)213sinπ=sin( + )=sin 2π= 。
(2)319cos π=cos( + )=3c πos = 。
(3)tan 405°=tan(45°+ )=tan45°= 。
练习1:(1)29sin π (2)313cos π(3)637tanπ22,y x r p y x P +=到原点距离),点(点的终边与单位圆相交于已知任意角α._____tan _____cos ____sin .1===ααα,,的定义根据任意角的三角函数.角函数的值相等终边相同的角的同名三探究二:思考下列问题:(1)30°与(-30°)角的终边 (2)设30°与(-30°)的终边分别交单位圆于点p 、p ′,设点p (x,y ),则点p ′的坐标 (3)sin (-30°)与sin30°的值关系如何?小组合作分析:在求sin (-30°)值的过程中,我们利用(-30°)与30°角的终边及其与单位圆交点p 与p ′关于原点对称的关系,借助三角函数定义求sin (-30°)的值。
诱导公式导学案

1.2.4诱导公式 导学案(一)【学习目标】1. 知道诱导公式的推导过程;能概括诱导公式的特点。
2. 能灵活运用诱导公式熟练正确地进行求值、化简及变形。
: 【学习重难点】重点:对诱导公式的熟练应用 难点:对诱导公式的理解记忆。
【预习案:】1.求下列三角函数的值,你都能解决吗?是否有必要研究新的公式?7sin____,cos_____33ππ==第一组: sin1110°= 8105sin_____,cos _____,t n()_____.333a πππ===第二组: 2.回顾单位圆与三角函数线1234______.______.______.______.P P P P x P P y P P y x P =3.设点的坐标为(x,y),则点关于原点的对称点的坐标为点关于轴的对称点的坐标为点关于轴的对称点的坐标为点关于直线的对称点的坐标为【探究案】探究一:角α与)(2Z k k ∈+πα的三角函数间的关系sin(2)_____,cos(2)_____,tan(2)_____.k k k k z απαπαπ+=+=+=∈()小结:诱导公式(一)的作用:例1:求下列各三角函数的值: (1)313sinπ (2)4103cos π (3)417tan π (4)247cos π探究二:角α与α-的三角函数间的关系4.如图,设α为一任意角,α的终边与单位圆的交点为P (x,y), 角πα+的终边与单位圆的交点为P 0, 由于角πα+的终边与角α的终边关于原点成中心对称,所以点P 0与点P关于原点成中心对称,因此点P 0的坐标是(-x,-y),于是,我们有:诱导公式二: 用弧度制可表示如下:类比公式二的得来,得:探究三:角α与)()12(Z k k ∈++πα的三角函数间的关系α与απ+α与απ-小结:上述公式的作用:课堂训练:1、将下列三角函数转化为锐角三角函数,并求值(1)cos210º; (2))1665cos(︒- (3)11sin6π; (4)17sin()3π-. 2、化简:)4(tan )3sin()2(cos )2tan()5cos()(sin 333παπαπααπαπα-----++-3、化简 )180sin()180cos()1080cos()1440sin(︒--⋅-︒-︒-⋅+︒αααα能力训练:1、化简:(1)sin(α+180º)cos(—α)sin(—α—180º)(2)sin 3(—α)cos(2π+α)tan(—α—π)2、化简:790cos 250sin 430cos 290sin 21++3、已知cos(π+α)=-21,23π<α<2π,则sin(2π-α)的值是( ).(A )23 (B)21 (C)-23 (D)±23【课后案】 一、选择题1、4255sincos tan364πππ的值是 ( ) A .-43 B .43 C .-43D .43 2、若A 、B 、C 为△ABC 的三个内角,则下列等式成立的是( )A 、A CB sin )sin(=+ B 、AC B cos )cos(=+ C 、A C B tan )tan(=+D 、A C B cot )cot(=+3、在△ABC 中,若最大角的正弦值是22,则△ABC 必是( ) A 、等边三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 4、下列不等式中,不成立的是 ( )A 、︒︒>140sin 130sinB 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot 5、已知函数2cos)(xx f =,则下列等式成立的是 ( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+π C 、)()(x f x f -=- D 、)()(x f x f =-6、已知,,,a b αβ均为非零常数,函数4)cos()sin()(++++=βπαπx b x a x f ,若5)2001(=f ,则)2002(f 的值是 ( )A 、5B 、3C 、8D 、不能确定二、填空题7、若12sin(125)13α︒-=,则sin(55)α+︒= .8、23456coscoscos cos cos cos 777777ππππππ+++++= .9、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.三、解答题10、化简())cos(])1sin[(])1cos[(sin απαπαπαπ+⋅++--⋅-k k k k (Z k ∈)解:11、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值. 解:12、若关于x 的方程22cos ()sin 0x x a π+-+= 有实根,求实数a 的取值范围。
三角函数的诱导公式教学设计

三角函数的诱导公式学案【学习目标】(1)能够理解借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
【课前预习】1、 若角α的终边和单位圆交于点P ,则点P 的坐标可表示为2、 若角α和角β的终边相同,则β=3、 求0390的三角函数值 【课堂导学】问题1:若角α和角β的终边相同,则它们的同名三角函数值有何关系? 公式一:问题2:(1)设6πα=,如果β的终边与α的终边关于x 轴对称,你能用α表示β吗?这时sin β与sin α,cos β与cos α有什么关系?(2)请你自己举出类似的例子,看看有没有同样的结论?(3)一般地,设α为任意角,β的终边与α的终边关于x 轴对称,用α表示β,并求sin β与sin α,cos β与cos α的关系。
公式二: 问题3:(1)设6πα=,将α的终边逆时针旋转2π得β,你能用α表示β吗?这时sin β与cos α,cos β与sin α有什么关系?(2)一般地,设α为任意角,将α的终边逆时针旋转2π得β,用α表示β,并求sin β与cos α,cos β与sin α的关系。
公式六:归纳总结:从联系的观点看,上述问题可以归结为两类变换:(1)关于x 轴对称的轴对称变换1T :θθ→-,单位圆上的点(,)x y 经1T 变为 , 也就是cos()α-= ,sin()α-= 。
(2)将α的终边逆时针旋转2π的旋转变换2T :2πθθ→+,单位圆上的点(,)x y 经2T 变为 ,也就是cos()2πα+= ,sin()2πα+= 。
问题4:经过两次2T 变换,就有α→ ,探求这个角的三角函数值 公式四:问题5:经过一次1T 变换,再经过一次2T 变换,就有α→ → ,探求这个角的三角函数值。
公式五:问题6:利用已有的公式,你能推导出33,,22παπαπα--+的三角函数值与α的三角函数值的关系吗?公式三:问题7:怎样求这些角的正切值?归纳总结:公式一、二、三、四、五都叫做三角函数的诱导公式。
高中数学_1.2.4 诱导公式教学设计学情分析教材分析课后反思

1.3三角函数的诱导公式(1)一、教学内容分析本节教学内容在本章“任意角的三角函数”一节及全章中起着承上启下的作用。
求三角函数值是三角函数中的重要内容,诱导公式是求三角函数值的基本方法。
诱导公式的重要作用是把求任意角的三角函数值问题转化为求“00~900”角的三角函数值问题。
诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维方式。
这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
二.学生学习情况分析:本节是在学生基本掌握了三角函数线的基础上进行研究的。
由于学生素质参差不齐,又存在能力差异,不同学生对知识的领悟与掌握能力的差距很大。
因此进行本堂课的教学,我采用多媒体直观动态演示引导学生联想,进行问题类比,构建知识系统,从而激发学生学习数学的兴趣和欲望。
三、设计思想教育以人为本,学生是学习的主体,在课堂教学中应该让学生带着自己的问题去探究以体现学生的主体性。
四、教学目标1、知识技能借助三角函数线推导出正弦、余弦的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题。
3、情感态度与价值观通过诱导公式的学习,体会“探究学习”在学习过程中的作用,使学生体验成功,增强学习数学的自信心五、教学重点、难点重点:将任意角的三角函数化为锐角三角函数.难点:推导、记忆诱导公式.六、教学方法与教学手段教学方法:结合多媒体,创设问题情境,启发引导学生自主学习,自我构建,突出学生的主体地位.学习方法:类比发现,合作交流,自主构建、引申升华.教学手段:直尺,多媒体辅助教学.七、教学过程学情分析学情分析:学生在前面第一类诱导公式学习中感受了数形结合思想、对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯,对于两次对称变换思想的应用是上一节课的深化;学生对高中数学知识有了一定了解和掌握,也形成了自己的学习方法和习惯,对学习高中数学有了一定兴趣和信心,且具有了一定的分析、判断、理解能力和交流沟通能力。
三角函数诱导公式(1)学案

预学案三角函数的周期性一.预习目标了解周期函数的概念,会用定义判断函数的周期 二.预习内容1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2.通过前面三角函数线的学习,我们知道每当角增加或减少2k π时,所得角的终边与原来角的终边相同,因而两角的正弦函数值也相同,正弦函数的这种性质叫周期性.不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,这就是今天研究的课题:函数的周期性.3.如何用数学语言刻画函数的周期性?4.(1)对于函数sin y x =,x R ∈有2sin()sin 636πππ+=,能否说23π是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)(3)若函数()f x 的周期为T ,则kT ,*k Z ∈也是()f x 的周期吗?为什么?5.一般地,函数)cos()sin(ϕωϕω+=+=x A y x A y 及(其中ϕω,,A 为常数,且A 0,0 ω≠)的周期T=三.预习检测1.已知函数f (x )是周期为6的奇函数,且f (-1)=1,则f (-5)=________.2.若函数f (x ),对任意x 都有f (x +2)=-)(1x f ,则函数y =f (x )的一个正周期为________.3.求下列函数的周期:(1)sin3y x =,x R ∈; (2)cos 3xy =,x R ∈;(3)3sin 4x y =,x R ∈; (4)sin()10y x π=+,x R ∈;(5)cos(2)3y x π=+,x R ∈; (6)1sin()24y x π=-,x R ∈4.已知函数f (x )=5cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为2π3,则ω=________.5.若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为6.一机械振动中,某质点离开平衡位置的位移x (cm)与时间t (s)之间的函数关系,如图所示:(1)求该函数的周期;(2)求t =25.5 s 时,该质点离开平衡位置的位移.四.预习质疑导、固学案性三角函数的周期一.学习目标1.了解周期函数的概念,会判断一些简单的、常见的函数的周期性,并会求一些简单三角函数的周期。
高中数学 第一章 三角函数 1.2.1 第一课时 三角函数的定义与公式一学案 新人教A版必修4-新人

第一课时三角函数的定义与公式一预习课本P11~15,思考并完成以下问题(1)任意角的三角函数的定义是什么?(2)三角函数值的大小与其终边上的点P的位置是否有关?(3)如何求三角函数的定义域?(4)如何判断三角函数值在各象限内的符号?(5)诱导公式一是什么?[新知初探]1.任意角的三角函数的定义前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y 余弦x叫做α的余弦,记作cos α,即cos α=x正切yx叫做α的正切,记作tan α,即tan α=yx(x≠0)三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数[点睛] 三角函数也是函数,都是以角为自变量,以单位圆上点的坐标(坐标的比值)为函数值的函数;三角函数值只与角α的大小有关,即由角α的终边位置决定.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.诱导公式一即终边相同的角的同一三角函数值相等.[点睛] 诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值相等.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cos α=cos β.( )(2)若sin α=sin β,则α=β.( )(3)已知α是三角形的内角,则必有sin α>0.( )答案:(1)√(2)×(3)√2.若sin α<0,tan α>0,则α在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C3.已知角α的终边与单位圆的交点P ⎝⎛⎭⎪⎫55,-255,则sin α+cos α=( )A .55B .-55C .255D .-255答案:B4.sin π3=________,cos 3π4=________.答案:32 -22三角函数的定义及应用[典例] 设a <0,角α的终边与单位圆的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A .25 B .-25C .15D .-15[解析] ∵点P 在单位圆上,则|OP |=1. 即-3a2+4a2=1,解得a =±15.∵a <0,∴a =-15.∴P 点的坐标为⎝ ⎛⎭⎪⎫35,-45.∴sin α=-45,cos α=35.∴sin α+2cos α=-45+2×35=25.[答案] A利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr,cosα=xr.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]1.如果α的终边过点P (2sin 30°,-2cos 30°),那么sin α的值等于( ) A .12 B .-12C .-32D .-33解析:选C 由题意知P (1,-3), 所以r = 12+-32=2,所以sin α=-32. 2.已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.解:根据三角函数的定义,tan α=a 12=512,∴a =5,∴P (12,5).这时r =13,∴sin α=513,cos α=1213,从而sin α+cos α=1713.三角函数值符号的运用[典例] (1)( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)设α是第三象限角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.(2)∵α是第三象限角,∴2k π+π<α<2k π+3π2,k ∈Z.∴k π+π2<α2<k π+3π4.∴α2在第二、四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2在第二象限.[答案] (1)D (2)B对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.[活学活用]1.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin C解析:选D ∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.2.若角α是第二象限角,则点P (sin α,cos α)在第________象限. 解析:∵α为第二象限角, ∴sin α>0,cos α<0.∴P (sin α,cos α)位于第四象限. 答案:四诱导公式一的应用[典例] 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12 =64+14 =1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式求解任意角的三角函数的步骤[活学活用] 求下列各式的值:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+cos 360°-tan 1 125°. 解:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4=sin ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=sin π3+tan π4=32+1. (2)sin 810°+cos 360°-tan 1 125°=sin(2×360°+90°)+cos(360°+0°)-tan(3×360°+45°) =sin 90°+cos 0°-tan 45° =1+1-1 =1.层级一 学业水平达标1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A .⎝ ⎛⎭⎪⎫12,32 B .⎝ ⎛⎭⎪⎫-12,32 C .⎝ ⎛⎭⎪⎫-32,12 D .⎝ ⎛⎭⎪⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限,∴x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32, ∴P ⎝ ⎛⎭⎪⎫-12,32.2.若角α的终边上一点的坐标为(1,-1),则cos α为( ) A .1 B .-1 C .22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+-12=2,∴cos α=xr=12=22. 3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角.4.代数式sin 120°cos 210°的值为( ) A .-34B .34C .-32D .14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴s in 120°cos 210°=32×⎝ ⎛⎭⎪⎫-32=-34,故选A. 5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=yr=25=25 5.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-25 5. 6.tan ⎝⎛⎭⎪⎫-17π3=________. 解析:tan ⎝ ⎛⎭⎪⎫-17π3=tan ⎝ ⎛⎭⎪⎫-6π+π3=tan π3= 3. 答案: 37.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________.解析:∵tan α=a 5=-125,∴a =-12.∴r = 25+a 2=13.∴sin α=-1213,cos α=513.∴sin α+cos α=-713.答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0.答案:09.求下列三角函数值:(1)cos(-1 050°);(2)tan 19π3;(3)sin ⎝ ⎛⎭⎪⎫-31π4.解:(1)∵-1 050°=-3×360°+30°,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan ⎝ ⎛⎭⎪⎫3×2π+π3=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin ⎝ ⎛⎭⎪⎫-31π4=sin ⎝⎛⎭⎪⎫-4×2π+π4=sin π4=22. 10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上, ∴x 21+y 21=1,即x 21+⎝ ⎛⎭⎪⎫-222=1, 解得x 1=22或x 2=-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.给出下列函数值:①sin(-1 000°);②cos ⎝ ⎛⎭⎪⎫-π4;③tan 2,其中符号为负的个数为( )A .0B .1C .2D .3解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0; ∵-π4是第四象限角,∴cos ⎝ ⎛⎭⎪⎫-π4>0; ∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.故选B. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( ) A .8B .-8C .4D .-4 解析:选B 由题意r =|OP |=m 2+-62=m 2+36,故cos α=mm 2+36=-45,解得m =-8. 5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 解析:|OP |=42+y 2.根据任意角三角函数的定义得,y42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8. 答案:-86.tan 405°-sin 450°+cos 750°=________.解析:原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 答案:327.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎪⎫-23π4. 解:(1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0,∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角, ∵-23π4=-6π+π4,∴-23π4是第一象限角. ∴sin 4<0,tan ⎝⎛⎭⎪⎫-23π4>0, ∴sin 4tan ⎝⎛⎭⎪⎫-23π4<0.8.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限. (2)若角α的终边上一点是M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1, 得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.。
1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)

1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
三角函数线导学案

1.2.2三角函数线课前预习学案一、预习目标:了解三角函数线的基本做法.二、预习内容:1、 叫做有向线段。
2、当角的终边上一点(,)P x y 的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
设任意角α的顶点在原点O , 重合,终边与 相交与点P (,)x y 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的 交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====,_______ cos 1x xx OMr α====,________ tan y MP ATATx OM OAα====._________ 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
课内探究学案一、学习目标(1)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(2)掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
二、学习重难点重点: 三角函数线的正确应用 难点:三角函数线的正确理解.(Ⅳ)(Ⅲ)三、学习过程 (一)复习: 1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值_______叫做α的正弦,记作_______,即________ (2)比值_______叫做α的余弦,记作_______,即_________ (3)比值_______叫做α的正切,记作_______,即_________; 2.三角函数的定义域、值域3.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ①正弦值yr对于第一、二象限为_____(0,0y r >>),对于第三、四象限为____(0,0y r <>);②余弦值xr对于第一、四象限为_____(0,0x r >>),对于第二、三象限为____(0,0x r <>);③正切值yx对于第一、三象限为_______(,x y 同号),对于第二、四象限为______(,x y 异号).4.诱导公式由三角函数的定义,就可知道:__________________________即有:_________________________ _________________________ _________________________(二)例题例1、若π4 <θ < π2 ,则下列不等式中成立的是 ( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC . tan θ>sin θ>cos θD .sin θ>tan θ>cos θ例2..利用三角函数线比较下列各组数的大小:1. 32sin π与54sin π2. tan 32π与tan 54π当堂检测1.当2kπ-π4≤α≤2kπ+π4(k ∈Z )时,化简1-2sin αcos α+1+2sin αcos α的结果是________.2.已知sin αcos α=18且π4<α<π2,则cos α-sin α=______.3、若-2π3≤θ≤π6 ,利用三角函数线,可得sin θ的取值范围是 .4、若∣cos α∣<∣sin α∣,则∈α .5、试作出角α= 7π6正弦线、余弦线、正切线.课后练习与提高一、选择题1、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( )A .π4B .3π4C .7π4D .3π4 或 7π42、若0<α<2π,且sin α<23 , cos α> 12 .利用三角函数线,得到α的取值范围是( )A .(-π3 ,π3 )B .(0,π3 )C .(5π3 ,2π)D .(0,π3 )∪(5π3 ,2π)3、依据三角函数线,作出如下四个判断: ①sinπ6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π5 >sin 4π5. 其中判断正确的有 ( )A .1个B .2个C .3个D .4个4、如果,42ππ<θ<那么下列各式中正确的是( ) A. cos tan sin θ<θ<θ B. sin cos tan θ<θ<θ C. tan sin cos θ<θ<θ D. cos sin tan θ<θ<θ5. 已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则α的取值范围是 。
同角三角函数的基本关系与诱导公式导学案1

同角三角函数的基本关系与诱导公式导学案学习目标:1.能利用单位圆中的三角函数线推导出a π+或2πα-的正弦、余弦、正切的诱导公式2.理解并能熟练应用同角函数的基本关系式(备注:带※号为提高数学兴趣的学生而作) 一、课前准备: 【自主梳理】1.回想记忆四个象限角的正负口诀:2.记忆特殊角的三角函数值:α 300 450 600sin α cos α tan α3.同角三角函数的基本关系式:平方关系:商数关系:4.诱导公式: 组数一二三四五六角2()k k Z πα+∈a π+α-πα-2πα-2πα+sin α cos α tan α口诀教师赠语:种子的努力,岁月知道,自己知道……【自我检测】1.cos 210︒= . 2.α为第二象限角,43tan -=α,则sin α= . 3.2sin ()cos()cos()1παπαα+-+⋅-+= . 二、合作交流展示学习类型一:同角三角函数基本关系的应用:【例1】 已知53cos =α , 且α为第四象限角,则tan α=________.变式训练1已知53cos =α , 则tan α=________.※2.已知1co s (75),3α︒+=且18090,α-︒<<-︒则=-)15(s 0αin .总结1:通过例1的学习,你找到解决此类习题的方法了吗?类型二:诱导公式的应用 【例2】 已知sin()cos(2)tan()()tan()sin()f παπααπααππα---+=-----,则化简()f α= .变式训练:=-+--)3c o s ()s i n ()t a n ()2s i n (αππαπααπ总结2:通过例2的学习,你认为解决此类习题时应遵循什么原则?类型三:三角函数的综合应用【例3】已知tan α=2, 则ααααcos sin cos sin +-的值为变式训练:若tan 3,α=则221sin sin cos 2cos αααα=-- ,※ 则 sin cos αα=______________.总结:3:通过例3的学习,你觉得解决此类习题时应注意什么?课堂小结:聪明的你,是否还有什么不明白的地方,说说看,你认为应如何解决此类问题?三、课后检测1.已知3(,),tan 2,2αππα∈=则cos α= .2.若 cos800=k, 则tan100︒= (※若cos(-800)=k,则tan100︒= ) 3.已知1tan ,2α=则sin 3cos sin cos αααα-=+ .※4.3cos(),63πα-=则5cos()6πα+= .※能力提高设()sin()cos()f x a x b x παπα=+++,其中,,a b R α∈,且0,()a b k k Z απ≠≠∈若f(2013)=5, 求f(2014)的值.。
任意三角函数(顺序号3)

§1.2.1《任意角的三角函数》(三)导学案高一年级组设计人:麻敏英宋书强审核人:宋书强一、学习目标1、知识目标:了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.2、能力目标:借助有向线段进一步认识三角函数.会利用三角函数线比较两个同名三角函数值的大小.3、情感目标:单位圆中的三角函数线是数形结合的有效工具,为后续内容的学习带来方便,也使三角函数更加好用了.二、学习重点、难点:三角函数线的正确理解.三、学习过程(一)课前复习1、三角函数的定义;2、三角函数在各象限角的符号;3、诱导公式(一):终边相同的角的同一三角函数的值相等;4、三角函数的定义域.(二)合作探究1、(从图形角度认识三角函数)以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y,过点P作PM x⊥轴交x轴于点M,则请你观察:根据三角函数定义:|||||sin|MP yα==|||||cos|OM xα==随着α在第一象限内转动,MP、OM是否也跟着变化?【思考】为了去掉上述等式中的绝对值符号,能否给线段MP、OM规定一个适当的方向,使它们的取值与点P的坐标一致?2、我们知道,直角坐标系内点的坐标与坐标轴的方向有关. 由于坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向,我们规定:与坐标轴方向一致时为,与坐标方向相反时为 .那么,有向线段MP为正弦线,OM为余弦线.★画出各象限终边角的正弦线、余弦线,并分析符号.3、你能借助单位圆,找到一条如MP、OM一样的线段来表示角α的正切值吗?过点(1,0)A作单位圆的切线,与终边或延长线交于点T,根据正切函数的定义与相似三角形的知识,有tanyATxα==,则有向线段叫角α的正切线,我们把这三条与单位圆有关的有向线段MP、OM、AT,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.4、探究:当α的终边与x轴或y轴重合时,又是怎样的情形呢?知识拓展:①当02πα<<时,那么sin cos1αα+>;②当02πα<<时,那么sin tanααα<<.例1.作出下列各角的正弦线、余弦线、正切线:(1)3π(2)56π(3)23π-(4)136π-例2.已知42ππα<<,试比较tan ,sin ,cos ααα的大小.例3.利用三角函数线,求满足下列条件的角α的集合. (1)tan 1α=-; (2)1sin 2α<-; (3)cos 2α≥(三)学习小结四、布置作业1、(A 级)作出下列各角的正弦线、余弦线、正切线:(1)6π (2)56π- (3)23π (4)94π-2、(B 级)sin 0θ≥,则θ得取值范围是 .3、(B 级)sin1,cos1,tan1的大小关系是 .4、(B 级)在()0,2π内,使sin cos x x >成立的x 的取值范围是 .5、(B 级)利用三角函数线,求满足1sin 2x ≤的角x 的集合.五、课后反思。
三角函数的诱导公式(教学设计更正稿)

三角函数的诱导公式(一)教学设计教学过程教学环节教师活动学生活动设计意图活动一:课题引入问题1:任意角α的正弦、余弦、正切是怎样定义的?问题2:填表角α0°30°45°60°90°弧度sincostan问题3:求下列三角函数值sin613π= ;sin)611(π-= ;1.给学生1分钟左右的时间独立思考,教师请1名学生到黑板上展示其答题情况。
2.抓住学求613π的三角函数值时产生思维上理解的冲突,引出课题《三角函数的诱导公式》。
1.学生口述三角函数的单位圆定义:sin=y,cos=x,tan=(x≠0)2.学生填表3.学生独立思考,尝试用定义解答。
1名学生到黑板上板演。
4.根据教师的引导产生探索新知识的欲望。
1.三角函数的定义是学习诱导公式的基础。
2.设置问题情境,产生知识冲突,引发思考,既调动学生学习积极性,激发探究欲望,又顺利导入新课。
3.问题3不但能够引出诱导公式一,还能够引导学生学会观察角的终边的关系,为后面的公式推导作铺垫。
活动二:合作探究公式问题4:(1)除此以外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
那么它们的三角函数值有何关系呢?(2)设角α与角β的终边关于x轴对称,那么α与β的三角函数值之间有什么关系?(3)设角α与角β的终边分别交单位圆于点P1、P2,点P1的坐标为P1(x,y) ,则点 P2的坐标如何表示?1.学生观察图形,结合教师的问题发现:角α与角β的终边关于x轴对称时,三角函数值满足的关系。
2.观察教师给出的动画演示,体会角α的任意性,得出任意角α与角-α的终边关于x轴对称,其三角函数值之间满足公式二。
1.遵循着“特殊─一般──特殊”的理解规律去研究数学知识。
2.诱导公式的三个式子中,sin(-α)=-sinα是第一个解决的问题,因为方法及思路都是未知的,所以采取教师引导,师生合作共同完成的办其中的角α也能够为任意角,验证学生的结论。
三角函数的诱导公式教案

三角函数的诱导公式(第1课时)教学设计说明一、教学背景分析1.教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用。
承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简,以及三角函数的图象与性质(包括三角函数的周期性)等内容。
同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉。
这些构成了学生的知识基础。
诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想。
2.目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大。
我们认为,诱导公式的教学价值主要体现在以下几个方面:第一,感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示。
第二,学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解。
第三,领悟思想方法,在诱导公式的学习过程中领悟化归、数形结合等思想方法。
第四,积累数学经验,为学生认识任意角三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备。
为此,我们制定了本节的教学目标(详见教案),以及本节课的教学重、难点。
二、教学设计分析在进行本课教学设计时,有以下两条典型教学路线可供选择:(1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?我们最终选择了第一条路线,主要基于以下两点考虑。
1.尊重教材的编写方式。
从对教材的分析来看,苏教版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,从而统整各组诱导公式。
教材的编写处理体现了教材专家的集体智慧和版本教材的一贯特色,教师应该努力体会和把握,不宜轻率抛开教材另搞一套。
湖南省长沙市一中高中数学 《1.2.1任意角的三角函数(一)》教案 新人教A版必修4

4-1.2.1任意角的三角函数〔1〕教学目的:知识目标:1.掌握任意角的三角函数的定义;2.角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式〔一〕。
能力目标:〔1〕理解并掌握任意角的三角函数的定义;〔2〕树立映射观点,正确理解三角函数是以实数为自变量的函数;〔3〕通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标: 〔1〕使学生认识到事物之间是有联系的,三角函数就是角度〔自变量〕与比值〔函数值〕的一种联系方式;〔2〕学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕,以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P 〔除了原点〕的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么〔1〕比值y r叫做α的正弦,记作sin α,即sin y r α=; 〔2〕比值x r 叫做α的余弦,记作cos α,即cos x rα=; 〔3〕比值y x叫做α的正切,记作tan α,即tan y x α=; 〔4〕比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有说明α一定是正角或负角,以及α的大小,只说明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0, 所以tan y x α=无意义;同理当()k k Z απ=∈时,yx =αcot 无意义;④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、x y分别是一个确定的实数, 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
《诱导公式》教案1

《诱导公式》教案
一、教学目标:
知识与技能
1.借助单位圆的直观性探索正弦、余弦、正切的诱导公式,并掌握其应用
2.要求学生掌握诱导公式的简单综合运用
过程与方法
1.经历由几何特征发现数量关系的学习过程,培养数形结合的分析问题能力;通过独立探讨公式,培养抽象概括能力;了解对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯。
2.运用数形结合的思想探究问题、解决问题,理解对称变换思想在学生学习过程中的渗透情感态度与价值观
1.揭示事物间的普遍联系规律,培养辨证唯物主义思想
2.培养学生由特殊到一般的归纳问题意识,养成勤于联想、善于探索的习惯
二、教学重点、难点
教学重点:
1.诱导公式(一)、(二)的探究、推导及利用诱导公式进行简单的三角函数式的求值、化简和恒等式的证明
2.诱导公式以及这诱导公式的综合运用。
教学难点:
1.在单位圆中对所讨论角与a角终边位置关系特点发现对称性提出研究方法
2.公式4的推导和对称变换思想在学生学习过程中的渗透。
三、教学方法
这一部分知识的学习,建议主要以师生互动为主。
多给学生一些感性认识,通过讨论、辨析获得对知识更深层次的理解。
四、课时
3课时
五、教学过程
第1课时
三、教学过程
教学过程
目标小节
1、通过例题,你能说说诱导公式的作用以及化任意角的三角函数为锐角三角函数的一般思
路吗?
上述过程体现了由未知到已知的化归思想。
2.你能概括一下研究研究诱导公式的思想方法吗? “对称是美的基本形式”
任意负角的 三角函数
2~0三角函数
的 锐角的三角函数
用公式 二或四。
三角函数的诱导公式教案

三角函数的诱导公式(第1课时)一.教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。
3.情感、态度、价值观(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
二.教学重点与难点教学重点:探求π-α的诱导公式。
π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。
教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。
三.教学方法与教学手段问题教学法、合作学习法,结合多媒体课件四.教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。
(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。
【问题1】求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。
即有:sin(α+k·360°) = sinα,cos(α+k·360°) = cosα,(k∈Z)tan(α+k·360°) = tanα。
这组公式用弧度制可以表示成sin(α+2kπ) = sinα,cos(α+2kπ) = cosα,(k∈Z) (公式一)tan(α+2kπ) = tanα。
三角函数的诱导公式 教学设计 说课稿 教案

三角函数的诱导公式●三维目标1.知识与技能(1)理解正弦、余弦的诱导公式.(2)培养学生化归、转化的能力.2.过程与方法(1)能运用公式一、二、三推导公式四、五.(2)掌握诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明.3.情感、态度与价值观培养学生思维的严密性与科学性等思维品质以及孜孜以求的探运用诱导公式进行简单三角函数式的求值、化简与恒等式的证)与三角函数性质的联系,特别是直角坐标系内的诱导公式的关系..三角函数的诱导公式是圆的对称性的“代数表示”,因此,用数形结合的思想,从原点等的对称性出发研究诱导公式,是一个自然的思路.利让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间得到紧密结合,成为一个整体,不仅大大简化了诱导公式的推导过程,缩减了认识、理解诱导公式的时间,而且还有利于学生对公式的记忆,减轻了学生的记忆负担.2.诱导公式应当在理解的基础上记忆,而且应当使学生学会利用单位圆帮助记忆.教科书对诱导公式的特点进行了概括,教学中要留有时间让学生思考、讨论、归纳,引导学生建立各组公式与相应图形的联系,并对各个公式的异同进行比较,以此加深公式的理解.●教学流程设任意角α的终边与单位圆交于点P 1(x ,y ),π+α的角的终边与单位圆交于点P 2. 1.点P 2的坐标是什么? 【提示】 P 2(-x ,-y )2.根据三角函数的定义,你能得出角π+α与角α的三角函数值间的关系吗? 【提示】 能.sin(π+α)=-sin_α,cos(π+α)=-cos_α;tan(π+α)=tan_α.α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.1.π2-α角的终边与角α的终边关于直线y =x 对称吗?它们的正弦、余弦值有何关系?试证明.【提示】 对称.设角α的终边与单位圆交于点P 1(x ,y ),则π2-α的终边与单位圆的交点为P 2(y ,x ),由三角函数的定义知:sin(π2-α)=x =cos α;cos(π2-α)=y =sin α. 2.能否利用已有的公式得出π2+α的正弦、余弦与角α的正弦、余弦之间的关系?【提示】 能.将π2+α变为π2-(-α),再利用公式五、三即可.1.公式五:sin(π2-α)=cos_α,cos(π2-α)=sin_α.2.公式六:sin(π2+α)=cos_α,cos(π2+α)=-sin_α.3.公式五和公式六可以概括为:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.(2)原式=7cos(180°+90°)+3sin(180°+90°)+tan(2×360°+45°)=-7cos 90°-3sin 90°+tan 45°=0-3+1=-2.(3)原式=cos 120°(-sin 150°)+tan 855°=-cos(180°-60°)sin(180°-30°)+tan(135°+2×360°)=-(-cos 60°)sin 30°+tan 135°=-(-cos 60°)sin 30°+tan(180°-45°)=-(-cos 60°)sin 30°-tan 45°=12×12-1=-34.规律方法1.对于负角的三角函数求值,可先利用诱导公式三化为正角的三角函数,若化了以后的正角大于360°,再利用诱导公式一,化为0°到360°间的角的三角函数.若这时角是90°到180°间的角,再利用180°-α的诱导公式化为0°~90°间的角的三角函数;若这时角是180°~270°间的角,则用180°+α的诱导公式化为0°~90°间的角的三角函数;若这时角是270°~360°间的角,则利用360°-α的诱导公式化为0°~90°间的角的三角函数.2.求已知角三角函数值时,一般先把负角化为正角.再化为0~2π范围内的三角函数,最后化成0~π2范围内的三角函数求值.变式训练计算sin 690°·sin 150°+cos 930°·cos(-870°)+tan 120°·tan 1 050°.【解】 原式=sin(2×360°-30°)·sin(180°-30°)+cos(2×360°+210°)·cos(2×360°+150°)+tan(180°-60°)·tan(3×360°-30°)=sin(-30°)sin 30°+cos 210°cos 150°+(-tan 60°)·tan(-30°) =-sin 230°+(-cos 30°)·(-cos 30°)+tan 60°·tan 30° =cos 230°-sin 230°+1 =2cos 230°=32.sin αcos α(2)原式=cos θ·(-cos θ)2·sin 2(θ+π)sin θ·sin (π+θ)cos 2(π-θ)=cos θ·cos 2 θ·(-sin θ)2sin θ·(-sin θ)·(-cos θ)2 =cos 3 θsin 2 θ-sin 2 θ·cos 2 θ=-cos θ. 规律方法1.进行三角函数式化简时:一是注意化异角为同角、化异名为同名、化异次为齐次即化异为同是关键;二是对“切弦混合”问题,一般作“切化弦”处理.2.化简结果要求是:角尽量少,函数名尽量少,函数次数尽量低,尽量不含分母,若必须有分母时分母中尽量不含根式等.变式训练化简:sin 2500°+sin 2770°-cos 2(1 620°-x )(180°<x <270°). 【解】 原式=sin 2(360°+140°)+sin 2(2×360°+50°)-cos 2(4×360°+180°-x ) =sin 2140°+sin 250°-cos 2(180°-x ) =sin 2(180°-40°)+sin 250°-cos 2x =sin 240°+cos 240°-cos 2x=1-cos 2x =-sin x .(180°<x <270°)规律方法1.本题是已知一个角的某一三角函数值,求这个角的相关角三角函数值,若给出具体数值,但未指定角的范围,需要分类讨论.2.此类问题还要注意分析“已知角”与“所求角”之间的关系;如本题中(105°+α)-(α-75°)=180°,从而选择恰当的诱导公式.互动探究本例条件不变,求cos(105°+α)+tan(75°-α)的值.【解】 cos(105°+α)=cos(180°+α-75°)=-cos(α-75°)=13.又由例题知sin(α-75°)=-232.所以tan(α-75°)=sin (α-75°)cos (α-75°)=2 2.因此tan(75°-α)=-tan(α-75°)=-2 2. 所以cos(105°+α)+tan(75°-α)=13-2 2.例4 求证:tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α)=-tan α.【思路探究】 观察被证式两端,左繁右简,可以从左端入手,利用诱导公式进行化简,逐步地推向右边.【自主解答】 原式左边= sin (2π-α)·sin (-α)·cos (-α)从一边开始,证得它等于另一边,一般由繁到简.左右归一法,即证明左右两边都等于同一个式子.无论用哪种方法都要针对题设与结论间的差异,有针对性地变形,以消除其差异.本例中将原等式改为(3π2-α)cos (6π-α)sin (α+3π2)cos (α+3π2)=-tan α.如何证明?【证明】 左边=tan (-α)(-sin α)cos (-α)-cos αsin α=(-tan α)(-sin α)cos α-cos αsin α=-tan α=右边,∴原等式成立.思想方法技巧转化与化归思想在求三角函数值中的应用典例 (12分)已知sin(π-α)-cos(π+α)=23(π2<α<π). 求:(1)sin α-cos α;(2)sin 3(2π-α)+cos 3(2π-α)的值.【思路点拨】 借助同角三角函数基本关系及立方差公式求解. 【规范解答】 (1)已知sin(π-α)-cos(π+α)=23, 得:sin α+cos α=23,............................2分 对上式平方得:2sin α·cos α=-79...........3分∵π2<α<π,∴sin α>0>cos α,...................4分2 α-sin3 α与cos α-sin α,sin α·cos α的关系来解.通过这种转化,使复杂的问题变得简单明了,符合处理数学问题时的简单化原则.2.诱导公式一~四的作用在于化任意角的三角函数为0~π2范围内的角的三角函数.其步骤可简记为“负化正,大化小”,充分体现了将未知化为已知的转化与化归思想.课堂小结1.诱导公式的作用是将任意角的三角函数值转化为锐角的三角函数值,使用过程中的关键:一是符号问题,二是函数名称问题.要熟记口诀“奇变偶不变,符号看象限”,并在解题过程中去理解和掌握.2.诱导公式是一个有机的整体,解题时要根据角的特征,选取适当的公式进行化简计算,对形如n π±α型的角,要注意对n 进行讨论.3.由诱导公式可以看出,在三角函数中,角和三角函数值之间是多值对应关系,一个角对应一个三角函数值,而一个三角函数值则对应多个角.当堂双基达标1.(2013·西安高一检测)sin 690°的值为( ) A.12 B.32 C .-12 D .-32 【解析】 sin 690°=sin(720°-30°)=-sin 30°=-12.【答案】 C2.下列各式不正确的是( ) A .sin(α+180°)=-sin α=【解】 ∵角α终边经过点P (-4,3),∴tan α=y x =-34,∴cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)=-sin α·sin α-sin α·cos α=tan α=-34.课后知能检测一、选择题1.sin(-1 560°)的值是( )A .-32 B .-12 C.12 D.32【解析】 sin(-1 560°)=-sin 1 560°=-sin(4×360°+120°)=-sin 120°=-32. 【答案】 A2.(2013·杭州高一检测)cos(-16π3)+sin(-16π3)的值为( ) A .-1+32 B.1-32 C.3-12 D.3+12【解析】 原式=cos 16π3-sin 16π3=cos 4π3-sin 4π3=-cos π3+sin π3=3-12.【答案】 C3.若sin α=12,则cos(π2+α)的值为(( )]【答案】 C5.(2013·吉安高一检测)若α∈(π2,32π),tan(α-7π)=-34,则sin α+cos α的值为( )A .±15B .-15 C.15 D .-75【解析】 tan(α-7π)=tan(α-π)=tan[-(π-α)]=tan α, ∴tan α=-34,∴sin αcos α=-34,∵cos 2α+sin 2α=1,α∈(π2,3π2)且tan α=-34,∴α为第二象限角.∴cos α=-45,sin α=35,∴sin α+cos α=-15.【答案】 B二、填空题6.已知tan(π+2α)=-43,则tan 2α=__________.【解析】 tan(π+2α)=tan 2α=-43.【答案】 -437.cos (-585°)sin 495°+sin (-570°)的值等于________.【解析】 原式=cos (360°+225°)sin (360°+135°)-sin (360°+210°)=cos 225°sin 135°-sin 210°β),其中a ,b ,α,β都是非零实数,且满足f (2 )+b cos(2 009π+β)=2 +β) +β)] )] 【答案】 -2 三、解答题9.求sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°的值.【解】 原式=-sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°)+tan(2×360°+225°)=-sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)+tan(180°+45°) =sin 60°cos 30°+cos 60°sin 30°+tan 45° =32×32+12×12+1=2. 10.已知角α的终边经过点P ⎝⎛⎭⎫45,-35.(1)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值; (2)求sin 3(π-α)+5cos 3 (α-3π)3sin 3⎝⎛⎭⎫32π-α+sin 2(π-α)cos (α-2π)的值. 【解】 (1)∵r =|OP |= (45)2+(-35)2=1, ∴sin α=y r =-35,cos α=x r =45, ∴sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)=cos α-sin α·tan α-cos α=1cos α=54. (2)∵tan α=-34,=-cos ⎝⎛⎭⎫α+π3=-m . 由于π6<α<2π3,所以0<2π3-α<π2. 于是sin ⎝⎛⎭⎫2π3-α=1-cos 2⎝⎛⎭⎫2π3-α =1-m 2.所以tan ⎝⎛⎭⎫2π3-α=sin ⎝⎛⎭⎫2π3-αcos ⎝⎛⎭⎫2π3-α=-1-m 2m . 【教师备课资源】1.形如k π±α(k ∈Z )形式三角函数式的化简.设k 为整数,化简 sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α). 【思考探究】 解答本题可结合公式(一)~(四),对角中的参数k 分k =2n 或k =2n +1两种情况进行讨论.【自主解答】 法一 当k 为偶数时,设k =2m (m ∈Z ),则原式=sin (2m π-α)cos[(2m -1)π-α]sin[(2m +1)π+α]cos (2m π+α)=sin (-α)cos (π+α)sin (π+α)cos α=(-sin α)(-cos α)-sin αcos α=-1; 当k 为奇数时,可设k =2m +1(m ∈Z ),仿上可得,原式=-1.法二 由(k π+α)+(k π-α)=2k π,[(k -1)π-α]+[(k +1)π+α]=2k π,得sin(k π-α)=-sin(kπ+α),…cos[(k -1)π-α]=cos[(k +1)π+α]=-cos(k π+α),sin[(k +1)π+α]=-sin(k π+α).故原式=-sin (k π+α)·[-cos (k π+α)]-sin (k π+α)·cos (k π+α)=-1.用诱导公式进行化简,碰到k π±α的形式时,常对k 进行分类讨论,其目的在于灵活运用诱导公式,进行化简.常见的一些关于参数k 的结论有:(1)sin(k π+α)=(-1)k sin α(k ∈Z )(2)cos(k π-α)=(-1)k cos α(k ∈Z )(3)sin(k π-α)=(-1)k +1sin α(k ∈Z )(4)cos(k π+α)=(-1)k cos α(k ∈Z )。
高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡西市第十九中学学案
问题1:角是一个图形概念,也是一个数量概念(弧度数)
是一个数量概念(比值)
表示三角函数呢?
【归纳】设角α的终边与单位圆交点P(x,y作x轴的垂线,垂足为段MP为正弦线,为余弦线.
试试2:画出各象限终边角的正弦线、余弦线,并分析符号.
思考: 若α为任意角,根据单位圆中正弦线和余弦线的变化规律可得:sin α的范围是 ;cos α的范围是 思考:当α终边在坐标轴上时,正弦线、余弦线、正切线又是怎样的情形呢?例2 在单位圆中画出满足sin α=1的角的终边,并求角α的取值集合.小结 作已知角的正弦线、余弦线、正切线时,要确定已知角的终边,再画线,同时要分清所画线的方向,对于以后研究三角函数很有用处.训练1 根据下列三角函数值,作角(1) cos α=1; 例3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角(1) sin α≥32;(2)cos α≤-12
.
例4 求下列函数的定义域.小结 求三角函数定义域时,数线是解三角不等式常用的方法.解多个三角不等式时,先在单位圆中作出使每个不等式成立的角的范围,再取公共部分.训练4 求函数f (【当堂训练】
1. 下列大小关系正确的是( A. sin cos 5π>
2. 利用余弦线,比较。