齿轮模态分析步骤

合集下载

ANSYS循环对称结构的模态分析

ANSYS循环对称结构的模态分析

循环对称结构的模态分析主要用在如齿轮,涡轮,叶轮等的具有循环对称结构物体的模态分析。

它通过模拟结构的一个扇区,通过分析这个扇区,从而扩展到整个模型。

它的步骤主要有6个。

1,建立基本扇区模型,也就是只建1/n的模型,一个齿活一个叶片的模型。

2,确定循环对称面(可以自动确定,也可以手动选择)。

3,施加边界条件。

4,制定分析类型和分析选项。

5,通过cycop命令指定循环求解选项,并用solve求解。

6,通过/cyexpand将振型扩展到全部360度范围,观察整个结果。

由于选择的谐波指数的关系,固有频率在排列上会有一些凌乱。

以前的ansys版本把谐波指数这个概念叫做节径,现在的都叫做谐波指数了。

按照整体结构分析,系统会把频率按照从小到大排列。

而用谐波指数这样计算出来的频率,他在排列的时候是按照谐波指数的增加而排列的,因此,相对应的固有频率有大有小,不规则(但是数值一样,就是排列不同)。

解决的办法是,你把这个结果提取出来,自己把它按照从小到大排列一下就可以了。

另外求解这个过程有一些注意的地方。

a在建立基本扇区的时候要在柱坐标系,你把csys置1就可以,b另外,扇区角选择能被360整除的。

c选择循环对称面时选择节点,好像其他特征不行(原因别人和我讲了,忘了)。

ac比较重要,b稍微注意一下就好。

然后就是求解方面了。

循环对称模态分析结果提取一般的结构模态分析完成后,要提取相应阶次结果,就用下面命令*GET,PARA,MODE,i,FREQ对于循环对称结构,取单个扇区进行分析,指定谐波指数The harmonic index,数值上谐波指数可以通过下面计算得到,The harmonic index= N/2 (N为偶数)The harmonic index=(N-1)/2 (N为奇数)上式中,N为总体模型分成的扇区总数。

然后对每次谐波设定提取模态阶次,分析的时候,ansys在原来扇区有限元模型的基础上,叠加一个完全相同的模型,通过谐波指数控制不同的傅里叶级数展开,从而扩展得到全模型的结果,对于这样计算的模态结果,ansys计算的时候,默认从0谐波开始计算,每次谐波按照一个载荷步(LSstep)进行,对应每次谐波下提取的固有频率按照子步substep给出,要提取所有谐波指数下的模态解,可采用下面命令/POST1*dim,frq_0,,7,10*do,i,1,7*do,j,1,10SET,i,j*GET,frq_0(i,j),ACTIVE,,SET,FREQ*enddo*enddo解释:按照谐波指数提取结构固有频率到数组frq_0中,i代表计算的LSstep,循环对称结构模态分析中,其最大值在数值上等于谐波指数+1,比如说,提取6次谐波,就需要7步计算;j代表每次谐波提取的固有频率个数。

基于Romax的变速箱建模及模态分析

基于Romax的变速箱建模及模态分析

基于Romax的变速箱建模及模态分析Romax是著名的机械设计软件,该软件可以用来进行机械系统的建模、仿真和分析,其中包括变速箱的建模及模态分析。

本文将详细介绍Romax的变速箱建模及模态分析流程。

一、变速箱建模在Romax中,变速箱的建模分为三个步骤:建立齿轮、建立轴承和连接齿轮。

1.建立齿轮首先,需要选择相应的齿轮进行建模,可以根据实际情况选择不同类型的齿轮。

进入Romax Gear模块,选择“New Gear”,然后从“Model Library”中选择相应的齿轮。

通常情况下需要填写参数,例如模数、齿轮宽度等,以确保齿轮的正确性。

2.建立轴承建立完齿轮之后,需要对其进行支撑。

在Romax Bearing模块中选择“New Bearing”,然后选择合适的轴承类型,如球轴承、滚子轴承等。

填写相应的参数后,可以将轴承放置在相应的位置上。

3.连接齿轮在将齿轮连接起来之前,需要在Romax Gears模块中选择“New Shaft Assembly”,然后选择正确的轴承类型。

然后在“New Gear”中选择齿轮并放置到相应的位置上,最后将齿轮进行连接。

二、模态分析在建立完变速箱的三维模型之后,就可以进入模态分析。

Romax使用有限元方法来预测变速箱的固有频率和固有振型,以便确定变速箱的可靠性和稳定性。

1.建立模态分析模型模态分析模型需要包括整个变速箱的结构,包括轴、齿轮、轴承、支撑等所有部分。

在Romax中,可以使用“Create New Model”来建立模态分析模型。

在建立模型时需要将齿轮和轴承等等加入到模型中。

2.设置分析参数确定好模态分析模型之后,需要设置一些分析参数,如边界条件、网格密度、模型尺寸和接触范围等等。

设置完这些参数后,可以使用FEA技术进行模态分析。

3.模态分析结果模态分析结果可以得到变速箱的固有频率和固有振型,这些结果可以用来判断变速箱的稳定性和可靠性。

同时,也可以进一步优化设计,以提高变速箱的实际性能。

基于abaqus的齿轮模态分析

基于abaqus的齿轮模态分析

基于ABAQUS 的直齿圆柱齿轮模态分析余西伟(上海大学 机电工程与自动化学院,上海 200072)摘要:齿轮是最常用的零部件之一,起到了传递扭矩的作用。

为了研究齿轮固有频率和振型的影响因素,改善齿轮的动态特性,本文运用SolidWorks 三维建模软件建立齿轮建模,并运用ABAQUS 和振动分析理论对模型进行模态分析,用Lanczos 算法提取固有频率,得到齿轮的模态和振型,为优化齿轮的结构设计提供支持。

关键词:模态分析;ABAQUS;固有频率;振型Modal Analysis of Spur Gear Based on ABAQUS(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: T he gear is one of the most common parts, transferring the torque effect. In order to research the factors affecting the gear’s natural frequency and vibration mode and improving the dynamic characteristics.The gear model established by 3D model software SolidWorks was carried on modal analysis by the software ABAQUS and the vibration analysis theory. The modal andvibration model was extracted by using Lanczos algorithm ,providing support for the optimization design of gear.Key words: modal analysis; ABAQUS; natural frequency; vibration mode0引言齿轮是依靠齿的啮合传递扭矩的轮状机械零件。

ANSYS循环对称结构模态分析实例-简化齿轮的模态分析

ANSYS循环对称结构模态分析实例-简化齿轮的模态分析

循环对称结构模态分析实例-简化齿轮的模态分析一、问题描述该实例是对一个简化的齿轮模型的模态分析。

齿轮在几何形状上具有循环对称的特征,因此在对其做模态分析时可以采用循环对称结构模态分析的方法。

要求确定齿轮的低阶固有频率。

已知的几何数据参见分析过程中的定义,材料特性数据如下:杨氏模量=2×108N/m2泊松比=0.3密度=7.8×10-6N/m3二、GUI方式分析过程第1 步:指定分析标题1.选取菜单途径Utility Menu>File>Change Title2.输入文字“Modal analysis of a Gear”,然后单击OK。

第2 步:定义单元类型1.选取菜单途径Main Menu>Preprocessor>Element Type>Add/Edit/Delete。

Element Types对话框将出现。

2.单击Add。

Library of Element Types对话框将出现。

3.在左边的滚动框中单击“Structural Shell”。

4.在右边的滚动框中单击“Elastic4node63”。

5.单击Apply。

6.在左边的滚动框中单击“Structural Solid”。

7.在右边的滚动框中单击“Brick8node45”。

8.单击OK。

9.单击Element Types对话框中的Close按钮。

第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>Material Props>-Constant-Isotropic。

Isotropic Material Properties对话框将出现。

2.在OK上单击以指定材料号为1。

第二个对话框将出现。

3.输入EX为2E8。

4.输入DENS为7.8e-6。

5.输入NUXY为0.3。

6.单击OK。

第4 步:定义建模所需的参数1.选取菜单途径Utility Menu>Parameters>Scalar Parameters。

齿轮箱模态分析和结构优化方法研究

齿轮箱模态分析和结构优化方法研究

齿轮箱模态分析和结构优化方法研究齿轮箱模态分析和结构优化方法研究摘要:齿轮箱作为一种重要的传动装置,在机械工程中应用广泛。

为了提高齿轮箱的工作性能和可靠性,对其进行模态分析和结构优化是非常必要的。

本文主要探讨了齿轮箱的模态分析方法和结构优化方法,并通过数值模拟和实验验证了这些方法的有效性。

1. 引言齿轮箱作为传动装置的核心组成部分,承担着传递动力和扭矩的重要任务。

在工作过程中,齿轮箱会受到一系列的载荷作用并产生振动。

为了确保齿轮箱的正常运行和延长其使用寿命,需要对其模态进行分析,并通过结构优化提高其工作性能。

2. 齿轮箱模态分析方法齿轮箱的模态分析是通过求解其固有频率和振动模态来了解其振动性能的方法。

常用的模态分析方法包括有限元法、模态实验法和解析法等。

2.1 有限元法有限元法是目前使用最广泛的齿轮箱模态分析方法之一。

该方法将齿轮箱划分为有限个小单元,并在每个单元上建立数学模型,采用数值计算方法求解其固有频率。

通过有限元法,可以快速获得齿轮箱的振动模态,并了解其受力情况和固有频率。

2.2 模态实验法模态实验法是通过实际的振动测试来求解齿轮箱的振动模态。

该方法需要在实际装置上进行加速度传感器的布置和振动测试,通过测量、分析和处理振动信号,得到齿轮箱的固有频率。

模态实验法可以直接反映出齿轮箱在实际工作中的振动情况,具有较高的准确性。

2.3 解析法解析法是通过建立齿轮箱的数学模型,采用解析的方法求解其固有频率和模态。

该方法需要分析齿轮箱的几何形状、材料特性和载荷条件等,通过解析计算得到振动模态。

解析法可以提供精确的解析结果,但对模型的假设和简化要求较高。

3. 齿轮箱结构优化方法针对齿轮箱在模态分析过程中产生的问题,可以通过结构优化方法对其进行优化,提高其工作性能和可靠性。

3.1 结构材料优化结构材料的选择对齿轮箱的模态和振动特性有重要影响。

通过优化选择齿轮箱的结构材料,可以改善其载荷传递性能和抗振动能力。

基于UG的某行星齿轮流量计齿轮系统的模态分析

基于UG的某行星齿轮流量计齿轮系统的模态分析

基于UG的某行星齿轮流量计齿轮系统的模态分析UG软件作为广泛应用于机械设计和制造领域的软件平台,为工程师提供了全面的设计、分析和仿真功能。

本文将基于UG软件对某行星齿轮流量计齿轮系统进行模态分析,并深入探讨齿轮系统的性能。

行星齿轮流量计是一种常用于测量液体或气体体积流量的装置,而齿轮系统是其核心部件之一。

本设计采用了行星齿轮系统,由一组内啮合于齿轮挂架周边的小齿轮与一组密合外啮合的大齿轮构成,并通过转动传递动力。

齿轮系统的稳定性和运行效率对流量计的性能有着至关重要的影响。

在基于UG软件进行模态分析前,首先需要建立模型。

采用Solid Edge软件建立了整个行星齿轮流量计的三维模型,并将该模型导入到UG平台进行分析。

在建立模型时,需要注意每个齿轮之间的啮合配合尺寸与公差要求,以保证齿轮系统的运转稳定。

模态分析主要是对齿轮系统的振动响应情况进行分析。

在UG的求解过程中,将根据齿轮系统的自由度及其几何结构、材料属性、质量等因素,计算系统在某一特定条件下的固有频率和固有振型。

通常情况下,系统的前几个固有频率相对最低的自然频率决定了某些环节的构建机件的准则。

根据计算结果,可以对设计进行优化和改进,从而提高齿轮系统的稳定性和运行效率。

该行星齿轮流量计齿轮系统经模态分析计算,得到了其前三阶模态振型和频率。

在分析过程中,发现齿轮系统存在较为明显的固有频率,并且共振振动趋势明显,震荡范围也比较广泛。

在实际应用中,如果行星齿轮流量计的齿轮系统运转时发现存在这样的问题,就需要对设计加以优化,以避免共振引起的机械故障。

在行星齿轮流量计齿轮系统中,行星齿轮是一个重要的组件,其优化设计将对系统的动力学性能产生显著影响。

通过调整行星齿轮半径、齿轮数和轴向距等参数,可以改变系统的自振频率和响应性能,从而优化齿轮系统的作用性能。

总之,基于UG软件进行的行星齿轮流量计齿轮系统模态分析极大地提升了该系统的稳定性和运行效率,为其在实际工程应用中提供了强有力的保障。

汽车变速器齿轮轴的模态特性分析

汽车变速器齿轮轴的模态特性分析

10.16638/ki.1671-7988.2018.17.014汽车变速器齿轮轴的模态特性分析吴智慧,姜洪远(武昌首义学院机电与自动化学院,湖北武汉430064 )摘要:变速器是汽车传动系统的一个重要组成部分,它分为手动变速器和自动变速器,输入轴与发动机相连,输出轴与传动轴相连,承受车辆在各种复杂工况下的载荷和振动。

变速器内部零部件的振动会产生一定的噪声,通过介质传播出去,另外内部零件产生共振时会使零件产生疲劳破坏,因此研究变速器齿轮轴的模态显得尤为重要,是变速器零部件结构设计和噪声控制的依据。

关键词:变速器;模态;振动中图分类号:U467.3 文献标识码:B 文章编号:1671-7988(2018)17-39-02Modal analysis of gear shaft on automobile transmissionWu Zhihui, Jiang Hongyuan( Wuchang Shouyi College Institute of Electromechanical and Automation, Hubei Wuhan 430064 )Abstract:The transmission is an important part of the automobile transmission system, it can be divided into manual transmission and automatic transmission, the input shaft connected to the engine, output shaft connected to the drive shaft, withstand a load of vehicle under various complex conditions and vibration. Transmission of the internal parts will produce a certain amount of noise, vibration spread through the medium, the other internal components resonate worsened fatigue damage parts, so the mode of transmission gear shaft is particularly important,it is the basis of the transmission parts structure design and noise control.Keywords: transmission; modal; vibrationCLC NO.: U467.3 Document Code: B Article ID: 1671-7988(2018)17-39-02前言随着科学技术的发展,变速器的型号越来越多,可以适应不同车辆的行驶,变速器安全可靠的工作,是整个车辆正常行驶的基础。

齿轮系统的接触模态分析

齿轮系统的接触模态分析

轴向位移,保留圆周方向的自由度;输入轮
是驱动轮,施加绕中心轴线旋转的角速度
-338.98rad/s;太阳轮安装孔的节点上同样约 束径向和轴向位移,同时在节点上施加切线
方向的节点力 Fy:
Fy=-
输入转矩
=
内圈节点数 ×中心孔半径
-531.2N
(5)
Fy 为负值,即太阳轮的负载转矩是顺
时针方向,加载后的效果如图 1 所示
行星齿轮传动被广泛应用于装甲车 先是在考虑接触特性的情况下做静态非线
辆,一般在高速重载、频繁启动工况下工作, 性分析,获得在静态载荷作用下的应力,然
在此工作环境下,有必要分析齿轮系统的固 后把得到的应力以附加刚度的形式叠加到
有振动频率。在设计齿轮系统时不但要考虑 系统的刚度矩阵上,在不考虑接触的条件下
[2] 吴志强,陈予恕.非线性模态的 分类和新的求解方法.力学学 报.1996.28
[3] 陈予恕,吴志强.非线性模态理 论的研究进展.力学进 展.1997.27
[4] 李欣业,陈予恕,吴志强.非线 性模态理论及其研究进展.河北 工业大学学报.2004.33
[5] 白润波,曹平周,曹茂森,陈建锋. 基于优化—反分析法的接触刚 度因子的确定. 建筑科 学.2008.1
discussed. Considering the non-linear contact,the static stress analysis is done the stress above
is imposed on the system rigid matrix as additional stiffness.Finally,the gear system modal
3 行星齿轮系统有限元模型建立

齿轮传动轴的动态特性测试与模态分析

齿轮传动轴的动态特性测试与模态分析

齿轮传动轴的动态特性测试与模态分析引言齿轮传动系统在机械装置中扮演着关键的角色,它通过齿轮的相互啮合传递力与运动。

在实际应用中,齿轮传动轴的动态特性对于确保传动系统的稳定性、可靠性以及寿命都起着至关重要的作用。

本文将深入探讨齿轮传动轴的动态特性测试与模态分析,以提供对传动系统性能优化的基础理论和实践指导。

一、齿轮传动轴动态特性的测试方法1. 强制激励法强制激励法是一种常用的齿轮传动轴动态测试方法,它通过对传动轴施加特定的荷载或力矩,从而观察其自由振动状态下的响应特性。

一般情况下,引入外加力或力矩后,通过合适的传感器采集传动轴的振动响应信号,并将其转化为频谱图分析,可以获得传动轴在不同激励条件下的振动模态。

2. 自由振动法自由振动法是另一种常用的齿轮传动轴动态测试方法,它在没有外界强制激励的情况下,通过对传动轴施加初速度或初位移,观察其自由振动过程中的响应特性。

测试时应尽量降低传动轴的阻尼,以减小振动信号的衰减,并采集振动响应信号进行频谱分析,进而得到传动轴的振动模态。

二、齿轮传动轴的模态分析1. 模态分析的基本原理模态分析是一种通过对某个结构或系统施加激励并测量其振动响应,来研究其特定振动模态的方法。

在齿轮传动轴的模态分析中,通过将传动轴固定在一端,施加激励并测量振动响应,可以得到传动轴的自由振动模态频率、振型和阻尼比等信息。

这些信息对于齿轮传动轴的动态特性和谐波分析等方面具有重要的意义。

2. 模态分析的步骤a. 激励源与传感器的安装:在模态分析实验中,需要选择合适的激励源,如锤击法、电磁激振器等,并通过传感器采集传动轴的振动信号。

传感器通常安装在传动轴的不同位置,以获取全面的振动模态信息。

b. 数据采集与处理:采集传感器测得的振动信号,并对其进行滤波和放大等处理。

通常使用频谱分析方法将时域信号转换为频域信号,得到传动轴不同频率上的振动响应特性。

c. 振型识别与模态提取:通过对频谱图的分析,可以识别出传动轴的振动模态,并提取出相应的模态参数,如频率、振型和阻尼比。

变速器齿轮系统建模及轴的模态分析

变速器齿轮系统建模及轴的模态分析

课程设计任务书目录第一章课程设计的内容简要说明---------------------------------------3第二章实体建模步骤-------------------------------------------------42.1打开CATIA,打开机械零部件设计界面---------------------------42.2使用宏创建齿轮举例------------------------------------------42.3具体绘制每个轴上的齿轮--------------------------------------42.4绘制轴及轴承------------------------------------------------82.5 组装零件----------------------------------------------------9第三章模型倒入导出过程--------------------------------------------10第四章对模型模态分析的过程----------------------------------------114.1定义单元类型------------------------------------------------114.2定义材料属性------------------------------------------------114.3 划分网格----------------------------------------------------114.4加载求解----------------------------------------------------134.5定义求解类型和选项------------------------------------------13第五章结果分析及问题讨论------------------------------------------145.1列出固有频率------------------------------------------------145.2查看特征振型------------------------------------------------145.3结论--------------------------------------------------------17第六章参考文献----------------------------------------------------181.课程设计的内容简要说明1.1使用CATIA建立变速器齿轮系统主要零部件的三维实体模型并装配。

齿轮系统有限元模态分析

齿轮系统有限元模态分析

齿轮系统有限元模态分析3重庆大学(重庆·400044) 陶泽光 李润方 林腾蛟 摘要 将齿轮系统划分为传统系统和结构系统两部分,通过轴承把两者耦合起来。

采用有限元方法,建立了实际单级齿轮减速器的有限元动力学模型,在工作站上用I-D EA S软件研究了该齿轮系统的固有特性,所得结果既后映了系统的动力学性能,又为齿轮系统的动态响应计算和分析奠定了基础。

关键词中国图书资料分类法分类号 TH132.41齿轮系统是由齿轮、轴、轴承和箱体等组成的机械结构,在内部和外部激励下将发生机械振动。

振动系统的固有特性,一般包括固有频率和振型,它是系统的动态特性之一,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等具有重要的影响。

此外,固有特性还是用振型叠加法求解系统响应的基础。

然而,在齿轮系统的设计阶段,不能得到系统固有特性的实验数据,只能通过理论计算得到进行动力学分析的参数,目前最好的方法是有限元动力分析方法。

由于计算机软、硬件技术的发展,在设计阶段计算结构的固有特性已成为可能。

市面上有许多大型的商业化集成软件可供选择,如M SC NA STRAN,M A RC,AN SYS,I-D EA S等。

李连进、张维屏用NA STRAN软件计算了二级圆柱齿轮减速器的固有频率[1]。

N obuo T akatsu等通过子结构综合法研究了单级齿轮箱的传递函数[2],得到了齿轮箱的动态特性,但研究对象是一个简化了的齿轮箱。

他们所作的研究只是针对齿轮系统的一个部件,尚未见到对整个齿轮系统固有特性研究的报道。

本文分别建立了实际减速器的传动系统、结构系统和整个齿轮系统的有限元动力学模型,在工作站上用I-D EA S M aster Series T M6.0集成化软件求解了齿轮系统的固有频率和振型,较好地研究了齿轮箱的动态特性,并为箱体表面振动响应的预估作了必要的准备。

1齿轮系统分为传动系统(齿轮、传动轴)和结构系统(主要是箱体)两部分,通过轴承把两者耦合起来。

基于ANSYS的齿轮静力学分析及模态分析

基于ANSYS的齿轮静力学分析及模态分析

基于ANSYS的齿轮静力学分析及模态分析齿轮是常用的动力传动装置,广泛应用于机械设备中。

在设计齿轮传动系统时,静力学分析和模态分析是非常重要的步骤。

本文将重点介绍基于ANSYS软件进行齿轮静力学分析和模态分析的方法和步骤。

1.齿轮静力学分析齿轮静力学分析旨在分析齿轮传动系统在静态负载下的应力和变形情况。

以下是基于ANSYS进行齿轮静力学分析的步骤:步骤1:几何建模使用ANSYS中的几何建模工具创建齿轮的三维模型。

确保模型准确地包含所有齿轮的几何特征。

步骤2:材料定义使用ANSYS的材料库定义齿轮材料的力学性质,例如弹性模量、泊松比和密度等。

步骤3:加载条件定义定义加载条件,包括对齿轮的力或力矩、支撑条件等。

加载条件应符合实际使用情况。

步骤4:网格划分使用ANSYS的网格划分工具对齿轮模型进行网格划分。

确保网格划分足够细致以捕捉齿轮的几何特征。

步骤5:模型求解使用ANSYS中的有限元分析功能对齿轮模型进行求解,得到齿轮在加载条件下的应力和变形分布情况。

步骤6:结果分析分析模型求解结果,评估齿轮的强度和刚度。

如果发现应力或变形过大的区域,需要进行相应的结构优化。

2.齿轮模态分析齿轮模态分析用于确定齿轮传动系统的固有频率和模态形态。

以下是基于ANSYS进行齿轮模态分析的步骤:步骤1:几何建模同齿轮静力学分析中的步骤1步骤2:材料定义同齿轮静力学分析中的步骤2步骤3:加载条件定义齿轮模态分析中,加载条件通常为空载条件。

即不施加任何外力或力矩。

步骤4:网格划分同齿轮静力学分析中的步骤4步骤5:模型求解使用ANSYS中的模态分析功能对齿轮模型进行求解,得到其固有频率和模态形态。

步骤6:结果分析分析模型求解结果,确定齿轮传动系统的固有频率和模态形态。

根据结果可以评估齿轮传动系统的动力特性和工作稳定性。

综上所述,基于ANSYS进行齿轮静力学分析和模态分析可以有效地评估齿轮传动系统的强度、刚度和动力特性。

这些分析结果对于优化齿轮设计和确保齿轮传动系统的正常工作非常重要。

ansys-齿轮模态分析

ansys-齿轮模态分析

基于ANSYS 的齿轮模态分析齿轮传动是机械传动中最重要的传动部件,被广泛的应用在各个生产领域中,经常用在重要的场合;传动齿轮在工作过程中受到周期性载荷力的作用,有可能在标定转速发生强烈的共振,动应力急剧增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。

静力学计算不能完全满足设计要求,因此有必要对齿轮进行模态分析,研究其振动特性,得到固有频率和主振型(自由振动特性)。

同时,模态分析也是其它动力学分析如谐响应分析、瞬态动力学分析和谱分析的基础。

本文运用UG 对齿轮建模并用有限元软件ANSYS 对齿轮进行模态分析,为齿轮动态设计提供了有效的方法。

1.模态分析简介由弹性力学有限元法,可得齿轮系统的运动微分方程为:[]{}[]{}[]{}{()}M X C X K X F t ++= (1)式中,[]M ,[]C ,[]K 分别为齿轮质量矩阵、阻尼矩阵和刚度矩阵;分别为齿轮振动加速度向量、速度向量和位移向量,{}X 、{}X 、{}X 分别为齿轮振动加速度向量、速度向量和位移向量,12{}{,,,}T n X x x x =;{()}F t 为齿轮所受外界激振力向量,{}12{()},,T n F t f f f =。

若无外力作用,即{}{()}0F t =,则得到系统的自由振动方程。

在求齿轮自由振动的频率和振型即求齿轮的固有频率和固有振型时,阻尼对它们影响不大,因此,可以作为无阻尼自由振动问题来处理[2]。

无阻尼项自由振动的运动方程为:[]{}[]{}0M X K X += (2) 如果令 {}{}sin()X t φωφ=+则有 2{}{}sin()X t ωφωφ=+代入运动方程,可得 2([][]){}0i i K M ωφ-= (3) 式中i ω为第I 阶模态的固有频率,i φ为第I 阶振型,1,2,,i n =。

2.齿轮建模 在ANSYS 中直接建模有一定的难度,考虑到其与多数绘图软件具有良好的数据接口,可以方便的转化,而UG 软件以其参数化、全相关的特点在零件造型方面表现突出,可以通过参数控制模型尺寸的变化,因此本文采用通过UG 软件对齿轮进行参数化建模,保存为IGES 格式,然后将模型导入到ANSYS 软件中的方法。

圆柱齿轮模态分析

圆柱齿轮模态分析

P234
2、计算操作题
(1)圆柱齿轮模态分析
操作步骤:
1、定义工作文件名和工作标题
2、生成齿面
(1)生成关键点:(0,0)、(1.78460,0.23494)、(1.79315,0.15688)、(2.09853,0.07852)
(2)将上面后三个关键点对XZ平面镜像
(3)生成弧线:关键点2、3,5、6,4、7依次以1关键点为原点生成弧线;
生成直线:关键点3、4,6、7
(4)生成弧线8~9,连线后生成齿面
(5)改变当前坐标系为柱坐标系,复制生成整个齿圈
3、生成齿圈体:
(1)布尔加运算,显示线,将内圈和每个齿的齿底圆弧线相连
(2)改变坐标系,沿面的法向拖动生成体
4、定义单元类型和材料属性
5、定义网格密度并进行网格划分
6、指定分析类型和分析选项
7、施加约束条件
8、将模态扩展并求解
9、进行结果后处理
(1)一阶:
(2)二阶:
(3)三阶。

基于ANSYS的齿轮静力学分析与模态分析

基于ANSYS的齿轮静力学分析与模态分析

学号:08507019 2011届本科生毕业论文(设计)题目:基于ANSYS的齿轮模态分析学院(系):机械与电子工程学院专业年级:机制072班学生姓名:何旭栋指导教师:杨创创合作指导教师:完成日期:2011-06-IWORD格式目录第一章绪论 (1)1.1课题的研究背景和意义 (1)1.2齿轮弯曲应力研究现状 (1)1.3齿面接触应力研究现状 (2)1.4齿轮固有特性研究现状 (2)1.5论文主要研究内容 (3)第二章齿轮三维实体建模 (3)2.1三维建模软件的选择 (3)2.2齿轮参数化建模的基本过程 (4)2.3利用pro/e对齿轮进行装配 (5)第三章齿轮弯曲应力有限元分析 (6)3.1齿轮弯曲强度理论及其计算 (6)3.1.1齿轮弯曲强度理论 (6)3.1.2齿形系数的计算方法 (7)3.2齿轮弯曲应力的有限元分析 (8)3.2.1选择材料及网格单元划分 (8)3.2.2约束条件和施加载荷 (8)3.2.3计算求解及后处理 (9)3.3齿轮弯曲应力的结果对比 (12)第四章齿轮接触应力有限元分析 (13)4.1经典接触力学方法 (13)4.2接触分析有限元法思想 (14)4.3ANSYS有限元软件的接触分析 (16)4.3.1ANSYS的接触类型与接触方式 (16)4.3.2ANSYS的接触算法 (16)4.4齿轮有限元接触分析 (17)4.4.1将Pro/E模型导入ANSYS软件中 (17)4.4.2定义单元属性和网格划分 (17)4.4.3定义接触对 (18)4.4.4约束条件和施加载荷 (18)4.4.5定义求解和载荷步选项 (19)4.4.6计算求解及后处理 (19)4.5有限元分析结果与赫兹公式计算结果比较 (21)第五章齿轮模态的有限元分析 (22)5.1模态分析的必要性 (22)5.2齿轮的固有振动分析 (22)5.3模态分析理论基础 (22)5.4模态分析简介 (24)5.4.1模态提取方法 (24)5.4.2模态分析的步骤 (25)I1.6齿轮的模态分析 (25)2.4将Pro/E模型导入ANSYS软件中 (25)2.5定义单元属性和网格划分 (25)2.6加载及求解 (26)2.7扩展模态和模态扩展求解 (26)2.8查看结果和后处理 (27)1.7ANSYS模态结果分析 (28)第六章全文总结与展望 (31)3.4全文总结 (31)3.5本文分析方法的优点 (31)3.6本文缺陷及今后改进的方向 (32)参考文献 (33)附录1外文翻译 (34)附录2GUI操作步骤 (41)致谢 (45)II第一章绪论1.8课题的研究背景和意义本文研究的对象是履带式拖拉机变速箱齿轮。

圆柱齿轮模态分析

圆柱齿轮模态分析

圆柱齿轮模态分析题目:对图1-1所示的一简化齿轮模型进行模态分析,要求确定齿轮的低阶固有频率。

然后扩展模态,求出各阶模态的相对应力值、相对应变值和相对位移值。

另外齿轮的齿根部分是该圆周的2/3,齿端部分是该圆周的2/7,齿数是24,齿顶与齿根看做圆弧,齿面看做直线,齿轮厚0.2m,弹性模量为2x1011Pa,泊松2比为0.3,密度为7.8x103Kg/m3。

其中内圆孔R=1.0,齿根圆R=1.8,齿顶圆R=2.1。

图1-1 齿轮简化模型1.定义工作文件名和工作标题(1) 定义工作文件名:执行Utility Menu>Change Jobname 命令,弹出【Change Jobnme】对话框。

输入“Cylinder gear”并选择【New log and error files】复选框,单击“OK”按钮。

(2)定义工作标题:执行Utility Menu>File>Change Title命令,弹出【Change Title】对话框。

输入“The model Analysis of Cylinder gear”,单击“OK”按钮。

2.定义单元类型和材料属性(1) 设置单元类型:执行Main Menu>Preprocessor>Element Type> Add/Edit/Delete 命令,弹出【Element Types】对话框。

单击“Apply”按钮,弹出如图1-2所示的【Library of Element Types】对话框。

选择“Solid”和“10node 92”选项。

图1-2【Library of Element Types】(2) 设置材料属性:执行Main Menu> Preprocessor>Material Props>Material Models,弹出如图1-3的【Define Material Models Behavior】对话框。

夏利变速器齿轮系统建模及输出轴模态分析

夏利变速器齿轮系统建模及输出轴模态分析

课程设计任务书目录1 输出轴三维实体建模 11.1 斜齿轮的三维实体模型 11.2 齿轮轴的三维实体模型 22 三维实体模型由CATIA导入ANSYS的过程 8 2.1 CATIA保存 82.2 利用SolidWorks软件进行文件格式的转换 82.3 利用ANSYS导入 103 实体模型模态分析过程 123.1 创建单元类型 123.2 定义材料特性 133.3 划分单元 143.4 指定分析类型 163.5 指定分析选项 163.6 施加约束 173.7 进行求解 193.8 进行模态扩展设置 203.9 进行扩展求解 213.10 列表显示固有频率 223.11 查看模态分析的总变形 224 ANSYS模态分析的结果 28参考文献 291 输出轴三维实体建模1.1 斜齿轮的三维实体模型1)使用宏命令设计齿轮,出现的宏命令定义对话框,如图1.1所示。

图1.1 宏命令定义对话框2)运行宏命令,出现渐开线圆柱齿轮设计定义对话框,如图1.2所示。

输入齿数Z=17,模数M=3,螺旋角β=15,齿厚B=26,压力角默认,选择右旋,点击创建。

图1.2 渐开线圆柱齿轮设计定义对话框3)形成的斜齿轮如图1.3所示。

图1.3 形成的斜齿轮1.2 输出轴的三维实体模型1)在生成的斜齿轮的一个面上建立直径为28mm的圆,退出工作台后建立凸台高度为2mm的轴段1,形成的轴1如图1.4所示。

图1.4 形成的轴12)在新生成的面上建立直径为30mm的圆,退出工作台后建立凸台高度为18mm的轴段2,形成的轴2如图1.5所示。

图1.5 形成的轴23)在生成的斜齿轮的另一个面上建立直径为30mm的圆,退出工作台后建立凸台高度为2mm的轴段3,形成的轴3如图1.6所示。

图1.6 形成的轴34)在新生成的面上建立直径为32mm的圆,退出工作台后建立凸台高度为25mm的轴段4,形成的轴4如图1.7所示。

图1.7 形成的轴45)在新生成的面上建立直径为26mm的圆,退出工作台后建立凸台高度为24mm的轴段5,形成的轴5如图1.8所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档