系统辨识与自适应控制读书报告

系统辨识与自适应控制读书报告
系统辨识与自适应控制读书报告

系统辨识与自适应控制读书报告

1、概述

20世纪60年代,自动控制理论发展到了很高的水平。与此同时,工业大生产的发展,也要求将控制技术提高到更高的水平。现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。现代控制理论的应用遇到了确定受控对象合适的数学模型的各种困难。因此,建立系统数学模型的方法——系统辨识,就成为应用现代控制理论的重要前提。在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。在这样的背景下,系统辨识问题便愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。

“系统辨识”是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。

自适应系统利用可调系统的输入量、状态向量及输出量来测量某种性能指标,根据测得的性能指标与给定的性能指标的比较,自适应机构修改可调系统的参数或者产生辅助输入量,以保持测得的性能指标接近于给定的性能指标,或者说测得的性能指标处于可接受性能指标的集合内。自适应系统的基本结构如图1所示。图中所示的可调系统可以理解为这样一个系统,它能够用调整它的参数或者输入信号的方法来调整系统特性。

未知扰动已知扰动

图1 自适应系统的基本结构

2、系统辨识的方法

2.1 经典的系统辨识办法

在经典控制理论中,所分析研究的是单输入单输出系统,经常用到的系统模型是频率响应、权函数和传递函数。所以早期系统辨识工作的主要内容也就是寻求描述单变量系统的频率特性、权函数和系统的传递函数。有阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GLS)、辅助变量法 (IV)、增广最小二乘法(ELS)和广义最小二乘法(GLS),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR-LS)和随机逼近算法等。随着人类社会的发展进步,越来越多的实际系统很多都是具有不确定性的复杂系统。而对于这类系统,经典的辨识建模方法难以得到令人满意的结果,即就是说,经典的系统辨识方法还存在着一定的不足:

(1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;

(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;

(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。

2.2 现代的系统辨识方法

为了满足复杂系统的需求,人们不断地在探索更有效的方法来辨识系统,其中最小二乘法、随即逼近法、极大似然法和预报误差法是比较典型的现代系统辨识方法。

在这几种辨识方法中,最小二乘法(Ls)是一种经典的数据处理方法,它的特点是计算原理简单,不需要随机变量的任何统计特性,目前,它已成为动态系统辨识的主要手段。从计算讲,它既可以离线计算,又可在线递推计算,并可在非线性系统中扩展为迭代计算。从计算的数学模型看,它既可用于参数型模型估计,也可用于非参数型模型估计。但由于最小二乘估计是非一致的、有偏差的,因而为了克服它的不足,形成了一些以最小二乘法为基础的辨识方法:广义最小二乘法 (GLS)、辅助变量法(IVA)和增广矩阵法(EM),以及将一般的最小二乘法与其它方法相结合的方法,有相关分析——最小二乘两步法(COR—US)和随机逼近算法极大似然法(ML)对特殊的噪声模型有很好的性能,具有很好的理论保证;但计算耗费大,可能得到的是损失函数的局部极小值。

3、系统辨识方法研究现状

我们可以把经典的系统辨识方法和现代的系统辨识方法统称为传统的系统辨识方法,传统的系统辨识方法虽然已经发展的比较成熟和完善,但也还存在着一定的不足和局限:

(1)基于最小二乘法的系统辨识一般要求输人信号已知且必须具有较丰富的变化,这一条件在许多普通闭环控制系统是可以满足的,而在某动态预测系统和过程控制系统中,系统的输入往往无法精确获得或不允许随意改变,因此这些传统的方法不便直接应用;

(2)传统的系统辨识方法对于线性系统的辨识具有很好的辨识效果,但对于非线性系统往往不能得到满意的辨识结果

(3)传统的辨识方法普遍存在着不能同时确定系统的结构与参数以及往往得不到全局最优解的缺点。

随着智能控制理论研究的不断深入及其在控制领域的广泛应用,从逼近理论和模型研究的发展来看,非线性系统建模已从用线性模型逼近发展到用非线性模型逼近的阶段。由于非线性系统本身所包含的现象非常复杂,很难推导出能适应各种非线性系统的辨识方法,因此非线性系统的辨识还没有构成一个完整的科学体系。现在研究的比较典型的方法是:集员系统辨识法、多层递阶系统辨识法、神经网络系统辨识法、遗传算法系统辨识法、模糊逻辑系统辨识法、小波网络系统辨识法。

在这几种研究的方法中,模糊逻辑系统辨识法已经相当成熟了,并在很多领域得到了应用,它的基本原理如下:

模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。因而,模糊逻辑辨识法深受研究者的青睐。模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。

T—S模糊模型是一种经典的模糊模型,该模糊模型是以局部线性化为基础,通过模糊推理的方法实现了全局的非线性。该模型具有结构上简单、逼近能力强等特点,已经成为模糊逻辑辨识中常用的模型。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。其中模糊聚类法是目前最常用的模糊系统结构辨识方法,其中心问题是设定合理的聚类指标,根据该指标所确定的聚类中心可以使模糊输入空间划分最优。另外,还有一些把模糊理论与神经网络、遗传算法等相结合而形成的辨识方法。

近二十年来,系统辨识获得了长足的发展,已经成为控制理论的一个十分活跃而又重要的分支。从线性现象和线性系统的研究过渡到非线性现象和非线性系统的研究是科学发展的必然结果,这不仅是对科学家们一种新的挑战,而且也是人类社会向更高级形式演化的一种必然。随着智能控制理论、遗传算法理论等的不断成熟,逐渐形成了形式多样的现代的系统辨识方法,并且已在实际问题应用中取得了较好的使用效果。我们可以预见对不确定性的复杂系统的辨识研究很难或根本不可能找到一种统一的辨识方法来处理,这就需要人们分门别类地去研究,去解决所遇到的各种具体问题。系统辨识未来的发展趋势将是经典系统辨识方法理论的逐步完善,同时随着一些新型学科的产生,有可能形成与之相关的系统辨识方法,使系统辨识成为综合性多学科理论的科学。

4、系统辨识方法的应用

随着科学技术的发展,系统辨识得到了广泛的应用。在化工过程中,要求确定化学动力学和有关参数,已决定工程的反应速度;在热工过程中,要求确定如热交换这样的分布参数的系统及其动态参数;在生物系统方面,通常希望获得其较精确的数学模型,以便描述在生物群体系统的动态参数;为了控制环境污染,希望得到大气污染模型和水质模型;为进行人口预报,做出相应的决策,要求建立人口增长的动态模型;对产品需求量、新型工业的增长规律这类经济系统,已

经建立并继续要求建立其定量的描述模型。其他如结构或机械的振动、地质分析、气象预报等等,都涉及系统辨识和系统参数估计,这类要求正在不断扩大。

具体的,有学者研究过极大似然法在水下机器人系统辨识中的应用,他主要探讨了极大似然参数估计法及其松弛算法,将它们应用于水下机器人运动模型的辨识中。利用水下机器人的海上类Z型试验数据,辨识得到某智能水下机器人水动力系数,并对比了两种算法的结果,可看出松弛算法有更好的收敛性然后用辨识得到的水动力系数建立了水下机器人的运动模型,用运动仿真进行了模型验证。仿真结果表明辨识得到的数学模型是可靠的。本方法对于水下机器人操纵与白适应控翩的研究有较大的实际意义。

5、自适应控制理论

在控制系统的运动过程中,系统本身不断地识被控系统的状态、性能或参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而做出决策,来改变控制器的结构、参数或根据适应性的规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态下。按这种方式建立的控制系统称为自适应系统。

具体的自适应控制系统可以各有不同,但是自适应控制器的功能却是相同的。根据所参考的对象的情况,自适应控制可分为模型参考自适应控制(MRAC)和无模型自适应控制(MFAC)两类。

将自适应控制理论和其他的一些理论结合,就产生了其他的自适应控制手段。由于模糊系统和神经网络系统均能以任意精度逼近非线性系统,因此它们在非线性自适应控制中的应用具有美好前景。许多学者在这方面展开积极的研究,文献中常见的有模糊自适应控制、神经网络自适应控制以及模糊神经网络自适应控制等等。

6、自适应控制系统

自适应控制系统目前在理论上尚有较多的不完善地方,且设计方法也不是尽善尽美的。由于设计思想和理论工具的局限,现有的自适应控制系统在设计时有两个主要原则,其一,一般只假定系统是线性定常的,阶次已知(这一点有时可以去掉);其二,设计是从系统的稳定性出发的。此外,保证系统的闭环稳定性无疑也是最重要的。但是,由于实际系统往往具有复杂性,例如最常见的非线性、分散性、快时变性等。对于具有这些特性的系统,用现有的设计方法就难以得到理想的控制效果。

迄今为止,自适应控制在许多方面得到了成功的应用,尤其在工业生产领域中,如对锅炉汽包水位可以采用模糊自适应控制策略,它的原理如下:针对汽包水位常规的PID控制方式,采用了一种模糊自适应PID控制器,使用常规模糊控制和带积分器的模糊控制两种控制策略作用于锅炉汽包水位控制系统。仿真结果表明,与传统PID控制器相比,模糊控制器取得了良好的动态性能和鲁棒性能,实现汽包水位的自适应调节,而两种控制策略中的带积分器的模糊控制其动态和静态性能都较好。

自适应控制系统主要由控制器、被控对象、自适应器及反馈控制回路和自适应回路组成。

与常规的反馈控制系统比较,自适应控制系统有三个显著特点:控制器可调,增加了自适应回路,适用对象。

因设计的原理和结构的不同,自适应控制系统大致可分为如下几种主要形式:变增益控制、模型参考自适应控制系统、自校正控制系统。

1)、变增益控制:结构和原理比较直观,调节器按被控系统的参数已知变化规律进行设计。当参数因工作情况和环境等变化而变化时,通过能测量到反映系统当前状态的系统变量,比照对系统的运行的要求(或性能指标),经过计算并按规定的程序来改变调节器的增益结构。这种系统虽然仅仅是对增益的变化进行自适应调节,难以完全克服系统模型未知或模型参数变化带来的影响以实现完善的自适应控制,但是由于系统结构简单,响应迅速,所以在许多实际系统中得到应用。

2)、模型参考自适应控制系统:模型参考自适应控制系统源于确定性伺服问题,它由两个环路所组成。内环由调节器与被控系统组成可调系统,外环由参考模型与自适应机构组成。

3)、自校正控制系统:自校正控制系统又称为参数自适应系统,它源于随机调节问题,该系统有两个环路,一个环路由参数可调的调节器和被控系统所组成,称为内环,它类似于通常的反馈控制系统;另一个环路由递推参数估计器与调节器参数计算环节所组成,称为外环。自校正控制系统与其它自适应控制系统的区别为其有一显性进行系统辨识和控制器参数计算(或设计)的环节这一显著特征。自校正控制的思想是将在线参数估计与调节器的设计有机的结合在一起。自适应控制常常兼有随机性、非线性和时变等特征,内部机理也相当复杂,所以分析这类系统十分困难。目前,已被广泛研究的理论课题有稳定性、收敛性和鲁棒性等,但取得的成果与人们所期望的还相差甚远。

自适应控制的发展与控制理论的进展密切相关,控制理论的许多成果逐步渗透到自适应控制技术中,自适应的基本思想与控制理论的结合产生了许多新型的自适应控制技术。这种自适应的思想不仅应用于工业控制中,且广泛的应用于社会、经济、管理等各个方面。

7、结语

系统辨识和自适应控制室两门联系紧密的学科。在自然和社会科学的许多领域中,系统的设计、系统的定量分析、系统综合及系统的控制,以及对其未来行为的预测,都需要知道系统的动态特性。将被研究的对象模型化,则是开展这些工作的前提、基础和手法之一,因此,建立描述系统动态特性的数学模型及论述建立模型的理论和方法,即是系统辨识研究的内容。而自适应控制研究的对象是具有不确定性的系统。我们知道要成功地设计一个性能良好的控制系统,需要掌握被控过程的动态特性,然而,实际上有一些被控对象或过程的动态特性是事先难以确知的,或者对它们的数学模型是经常变化的,对于这类对象,常规反馈控制方法的效果往往难以令人满意,而对这种系统特性经常发生波动,事先却无法完全确定的情况下,如何设计一个高性能的控制系统,是自适应控制所要研究的问题。

参考文献:

[1] 李言俊,张科.自适应控制理论与应用[M].西安:西北工业大学出版社,

2005.4

[2] 谢新民,丁峰.自适应控制系统[M].北京:清华大学出版社,2002

[3] 徐小平,王峰,胡钢.系统辨识研究的现状[J].自动化技

术.2007(15):112-116

[4] 王乐一,赵文虓.系统辨识: 新的模式、挑战及机遇[J].自动化学

报,2013.7,39(7):933-942

系统辨识大作业1201张青

《系统辨识》大作业 学号:12051124 班级:自动化1班 姓名:张青 信息与控制工程学院自动化系 2015-07-11

第一题 模仿index2,搭建对象,由相关分析法,获得脉冲响应序列?()g k ,由? ()g k ,参照讲义, 获得系统的脉冲传递函数()G z 和传递函数()G s ;应用最小二乘辨识,获得脉冲响应序列? ()g k ;同图显示两种方法的辨识效果图;应用相关最小二乘法,拟合对象的差分方程模型;构建时变对象,用最小二乘法和带遗忘因子的最小二乘法,(可以用辨识工具箱) 辨识模型的参数,比较两种方法的辨识效果差异; 答:根据index2搭建结构框图: 相关分析法:利用结构框图得到UY 和tout 其中的U 就是题目中要求得出的M 序列,根据结构框图可知序列的周期是 1512124=-=-=n p N 。 在command window 中输入下列指令,既可以得到脉冲相应序列()g k :

aa=5;NNPP=15;ts=2; RR=ones(15)+eye(15); for i=15:-1:1 UU(16-i,:)=UY(16+i:30+i,1)'; end YY=[UY(31:45,2)]; GG=RR*UU*YY/[aa*aa*(NNPP+1)*ts]; plot(0:2:29,GG) hold on stem(0:2:29,GG,'filled') Grid;title('脉冲序列g(τ)') 最小二乘法建模的响应序列 由于是二阶水箱系统,可以假设系统的传递函数为2 21101)(s a s a s b b s G +++= ,已知)(τg ,求2110,,,a a b b

系统辨识实验1实验报告

实验报告 --实验1.基于matlab的4阶系统辨识实验 课程:系统辨识 题目:基于matlab的4阶系统辨识实验 作者: 专业:自动化 学号:11351014 目录 实验报告 (1) 1.引言 (2) 2.实验方法和步骤 (2) 3.实验数据和结果 (2) 4.实验分析 (4)

1、 引言 系统辨识是研究如何确定系统的数学模型及其参数的理论。而模型化是进行系统分析、仿真、设计、预测、控制和决策的前提和基础。 本次实验利用matlab 工具对一个简单的4阶系统进行辨识,以此熟悉系统辨识的基本步骤,和matlab 里的一些系统辨识常用工具箱和函数。 这次实验所采取的基本方法是对系统输入两个特定的激励信号,分别反映系统的动态特性和稳态特性。通过对输入和输出两个系统信号的比较,来验证系统的正确性。 2、 实验方法和步骤 2.1 实验方法 利用matlab 对一个系统进行辨识,选取的输入信号必须能够反映系统的动态和稳态两个方面的特性,才能更好地确定系统的参数。本次实验采取了两种输入信号,为反映动态特性,第一个选的是正弦扫频信号,由下面公式产生: 选定频率范围 ,w(t)是时间t 的线性函数,具有扫频性质,可以反映系统的动态特性。 为反映稳态特性,选的输入信号是阶跃信号。以上的到两组数据,利用matlab 的merge()函数,对两组数据融合,然后用matlab 系统辨识工具箱中的基于子空间方法的状态空间模型辨识函数n4sid()来对系统进行辨识 2.2 实验步骤 (1)建立一个4阶的线性系统,作为被辨识的系统,传递函数为 3243211548765 ()125410865 s s s G s s s s s -+-+=++++ (2)产生扫频信号u1和阶跃信号u2 (3)u1、u2作为输入对系统进行激励,分别产生输出y1和y2 (4)画出稳态测试输入信号u1-t 的曲线,和y1-t 的曲线 画出动态测试输入信号u2-t 的曲线,和y2-t 的曲线 (5)使用merge()函数对u1-y1数据和u2-y2数据进行融合,并使用n4sid()函数对系统进行辨识。 (6)画出原系统和辨识出的系统的零极点图,画出原系统和辨识出的系统的阶跃响应特性曲线,通过对比,验证辨识出的系统的准确性。 3、 实验数据和结果 (1) 分别以扫频正弦函数、阶跃函数作为系统的激励,得到的输出:

现代控制理论课程报告

- 现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的 ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有: 1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 [ 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这

最优估计大作业1.

最优估计大作业 姓名:李海宝 学号:S314040186 导师:刘胜 专业:控制科学与工程

模糊逻辑卡尔曼滤波器在智能AUV导航系统中的自适应调 整 摘要 本论文基于全球定位系统(GPS)和几个惯性导航系统(INS)传感器描述了对于自主水下航行器(AUV)应用的一种智能导航系统的执行过程。本论文建议将简单卡尔曼滤波器(SKF)和扩展卡尔曼滤波器(EKF)一前一后地用于融合INS 传感器的数据并将它们与GPS数据结合到一起。传感器噪声特性里潜在的变化会引起SKF和EKF的初始统计假定的调整,本论文针对这一问题着重突出了模糊逻辑方法的使用。当这种算法包含实际传感器噪特性的时候,SKF和EKF只能维持他们的稳定性和性能,因此我们认为这种自适应机制同SKF与EKF一样有必要。此外,在提高导航系统的可靠性融合过程期间,故障检测和信号恢复算法也需在此要讨论。本论文建议的这种算法用于使真实的实验数据生效,这些数据都是从Plymouth大学和Cranfield大学所做的一系列AUV实验(运行低成本的锤头式AUV)中获得的。 关键词:自主水下航行器;导航;传感器融合;卡尔曼滤波器;扩展卡尔曼滤波器;模糊逻辑 1.引言 对于以科学、军事、商业为目的应用,如海洋勘察、搜索未爆弹药和电缆跟踪检查,AUV的发展需要相应导航系统的发展。这样的系统提供航行器位置和姿态的数据是很有必要的。在这样的系统中对精度的要求是最重要的:错误的位置和姿态数据会导致收集数据的一个毫无意义的解释,或者甚至AUV的一个灾难性故障。 越来越多来自整个世界的研究团队正利用INS和GPS来研发组合导航系统。然而,他们的工作中几乎都没有明确几个INS传感器融合的本质要求,这些传感器用于确保用户保持精度或甚至用来防止在与GPS融合之前导航系统这部分的完全失败。例如,金赛和惠特科姆(2003)使用一个切换机制来防止INS的完全失败。虽然这个方法简单易行,但是可能不适合用于维持一个确定的精度等级。 出于多传感器数据融合和集成的目的,几种估计方法在过去就已经被使用过。为此,SKF/EKF和它们的变形在过去就已经是流行的方法,并且一直到现在都对开发算法感兴趣。然而,在设计SKF/EKF过程中,一个显著的困难经常会被

系统辨识实验报告30288

一、相关分析法 (1)实验原理 图1 实验原理图 本实验的原理图如图1。过程传递函数()G s 中12120,8.3, 6.2K T Sec T Sec ===;输入变量()u k ,输出变量()z k ,噪声服从2(0,)v N σ,0()g k 为过程的脉冲响应理论 值,?()g k 为过程脉冲响应估计值,()g k 为过程脉冲响应估计误差。 过程输入()u k 采用M 序列,其输出数据加白噪声()v k 得到输出数据()z k 。利 用相关分析法估计出过程的脉冲响应值?()g k ,并与过程脉冲响应理论值0()g k 比较,得到过程脉冲响应估计误差值()g k 。 M 序列阶次选择说明:首先粗略估计系统的过渡过程时间T S (通过简单阶跃响应)、截止频率f M (给系统施加不同周期的正弦信号或方波信号,观察输出)。本次为验证试验,已知系统模型,经计算Hz T T f M 14.01 2 1≈= ,s T S 30≈。根据式M f t 3 .0≤ ?及式S T t N ≥?-)1(,则t ?取值为1,此时31≥N ,由于t ?与N 选择时要求完全覆盖,则选择六阶M 移位寄存器,即N =63。

(2)编程说明 图2 程序流程图 (3)分步说明 ① 生成M 序列: M 序列的循环周期63126=-=N ,时钟节拍1t Sec ?=,幅度1a =,移位寄存器中第5、6位的内容按“模二相加”,反馈到第一位作为输入。其中初始数据设为{1,0,1,0,0,0}。程序如下:

② 生成白噪声序列: 程序如下: ③ 过程仿真得到输出数据: 如图2所示的过程传递函数串联,可以写成形如1212 11 ()1/1/K G s TT s T s T = ++, 其中112 K K TT = 。 图2 过程仿真方框图 程序如下: ④ 计算脉冲响应估计值:

系统辨识大作业论文Use

中南大学 系统辨识大作业 学院:信息科学与工程学院 专业:控制科学与工程 学生姓名:龚晓辉 学号:134611066 指导老师:韩华教授 完成时间:2014年6月

基于随机逼近算法的系统辨识设计 龚晓辉1, 2 1. 中南大学信息科学与工程学院,长沙410083 2. 轨道交通安全运行控制与通信研究所, 长沙410083 E-mail: csugxh@https://www.360docs.net/doc/2614853852.html, 摘要:本文对系统辨识的基本原理和要素进行了详细阐述,介绍和分析了系统辨识中常用的最小二乘算法,极大似然法,神经网络算法和随机逼近算法。随机逼近算法只需利用输入输出的观测来辨识系统参数,在实际中有重要运用。本文对随机逼近算法进行了详细说明。同时,针对一个三阶系统设计了KW随机逼近算法进行了参数辨识,并且和递推最小二乘法进行了对比。实验证明在实际辨识过程中两种算法各有优缺点。 关键词: 系统辨识, 随机逼近法, 递推最小二乘法 1.引言 在我们所学的线性系统理论中,都是在系统模型已知的情况来设计控制率,使系统达到稳定性,准确性和快速性的要求。然而,在实际系统中,对象的模型往往是未知的。而且,非线性是普遍存在的,线性系统只是对非线性系统的一种近似。因此,了解对象准确的模型,对设计控制器及其重要。在一些实际对象中,如导弹,化学过程,生物规律,药物反应,以及社会经济等,这些对象使用机理分析法比较困难,但是通过使用辨识技术可以建立系统精确的模型,确定最优控制率[1]。如今,系统辨识技术已经在航空航天,海洋工程,生物学等各个领域获得了广泛运用。 2.系统辨识的基本思想与常用方法 辨识的目的是为了获得对象模型。对象的模型有多种表现形式,它包括直觉模型,图表模型,数学模型,解析模型,程序模型和语言模型。这些模型之间可以相互转换。我们在建立系统模型时,需要遵循目的性,实在性,可辨识性,悭吝性的基本原则。目的性指的是建模的目的要明确,实在性指的是模型的物理概念要明确。可辨识性指的是模型结构合理,输入信号持续激励,数据量充足。悭吝性指的是被辨识参数的个数要尽量少。 辨识对象模型要遵循上面的基本原则。它是将对象看成一个黑箱。从含有噪声的输入输出数据中,按照一个准则,运用辨识理论,从一组给定的模型中,确定一个与所测系统等价的模型,是现代控制理论的一个分支。系统辨识由数据、模型类和准则三要素组成。数据是由观测实体而得,它不是唯一的,受观测时间、观测目的、观测手段等影响。模型类就是模型结构,它也不是唯一的,受辨识目的、辨识方法等影响。而准则是辨识的优化目标,用来衡量模型接近实际系统的标准。它也不是唯一的,受辨识目的、辨识方法的影响。由于存在多种数据拟合

系统辨识实验报告

南京理工大学 电加热炉动态特性辨识实验报告 作者: 张志鹏(94)学号:813001010014 实验时间2013年11月24日 组员: 刘心刚(63)李昊(88)倪镭(90) 任课老师:郭毓教授 2013 年 11 月

1.熟悉对实际控制系统的辨识与参数估计,并利用所得模型进行控制仿真,进而控制实际系统。 2.掌握实际工程中常用的辨识方法,如LS,RLS,RLES等。 二、实验平台: 嵌入式温度控制系统主要由嵌入式温度控制器、立式RGL-9076A 型温箱、NETGEAR 无线路由器和24V 开关电源等组成。系统电气连接如图1 所示。系 统采用CS(客户端—服务器)模式实现了一对一的服务器、客户端的数据通信。 嵌入式控制系统软软硬件运行平台. 硬件:PC 机、嵌入式温度控制器、NETGEAR 无线路由器等。 软件:Windows XP、Microsoft Visual C++ 6.0、Matlab 2007a 等。 图1 实验硬件平台

1.设置硬件。根据实验手册上的连接方式,确认硬件连接是否正确。根据使用手册进行IP设置、系统参数设置,直至软件可以实时显示温度曲线。 2.达到稳态。我们首先采用81V的加热电压加热使系统尽快到达某一较稳定温度。使用3S的采样周期进行采样温度信号。当温箱实际温度达到135度左右时,温度变化曲线几乎持平,我们认定此时温箱系统处于稳态。 3.加入辨识信号。这里选选取M序列进行辨识,在试验阶段我们组做了一组数据:选取M序列幅值为+20,-20,,辨识信号的采样周期为40s。加入辨识信号后继续进行数据采集。 4.数据处理、辨识系统模型。 5.分析辨识结果得出结论。 四、辨识算法及过程 经过分析研究,确定使用计算残差平方和的RELS方法验证模型的阶次及延时并辨识系统模型参数。 1、确定系统的延迟d

系统辨识内容与要求

系统辨识实验内容与要求 实验题目:三温区空间晶体生长炉温度系统建模 实验对象:三温区空间晶体生长炉 单晶体是现代电子设备制造技术的一个必不可少的部分,它应用广泛,如二极管、三极管等半导体器件都需要用到单晶体。组分均匀(compositional uniformity)、结晶完整(crystallographic perfection)的高质量晶体材料是保证电子设备性能重要因素。 目前,单晶体制备主要靠晶体生长技术完成。其主要过程是:首先在坩埚等加热器皿中对籽晶进行加热,使其由固相转变为液相或气相,再降低器皿中温度,使液相或气相的籽晶材料冷却结晶,就可得到最终的单晶体。这个过程中,为保证晶体的组分均匀和结晶完整,必须使晶体内部各晶格的受力均匀。因此,为减小重力对晶体生长的影响,研究者提出在空间微重力环境下进行晶体生长的方案。我们研究的空间晶体生长炉就是该方案中的晶体加热设备。 我们研究的空间晶体生长炉采用熔体Bridgman生长方式,其结构如图1所示。炉身由三部分构成:外筒、炉管以及炉管外部的隔热层。炉管由多个加热单元组成,每个加热单元组成一个温区。加热单元由导热性能良好的陶瓷材料制成,两个加热单元之间有隔热单元隔开。加热单元的外测均匀缠绕加热电阻丝,内侧中间部位安装有测温热电偶。炉管外部的隔热层由防辐射绝热材料制成。 微重力环境下,晶体内部各晶格之间的热应力是影响晶体生长质量的关键因素,而热应力是由炉内温场决定的。因此,必须对晶体炉内各温区的温度进行控制,以构造一个具有一定的梯度的、满足晶体生长需要的温场。工作时,将装有籽晶的安瓿管按一定的速度插入晶体炉炉膛内,通过控制流过各温区加热电阻丝的电流控制炉内温场,通过热电偶在线获取各温区的实时温度值,进行闭环控制,。其中,流过电阻丝的电流通过PWM(脉宽调制)方式进行控制。另外,由于晶体炉工作温度的变化范围比较大,传感器热电偶难以在全量程范围内保持很高的线性度,因此,使用的热电偶的电压读数与实际温度值间需要进行查表变换。 本实验内容是运用系统辨识的方法建立晶体炉中某个温区的动力学模型,辨识数据已给出,见SI_Data.xls文件。

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

系统辨识经典辨识方法

经典辨识方法报告 1. 面积法 辨识原理 分子多项式为1的系统 1 1 )(11 1++++= --s a s a s a s G n n n n Λ……………………………………………() 由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。大多数自衡的工业过程对象的y(t)可以用下式描述来近似 1)() ()()(a 111=++++--t y dt t dy a dt t y d a dt t y d n n n n K ……………………………() 面积法原则上可以求出n 为任意阶的各系数。以n=3为例,注意到 1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dt t y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得 ?-=++t dt t y t y a dt t dy a dt t y d a 01223 )](1[)() ()(…………………………………() 定义 ?-=t dt t y t F 01)](1[)(……………………………………………………………() 则由式()给出的条件可知,在t →∞ ?∞ -=01)](1[a dt t y ……………………………………………………………() 将式a 1y(t)移到等式右边,定义 )()]()([)() (a 201123 t F dt t y a t F t y a dt t dy t =-=+?…………………………………() 利用初始条件()当t →∞时 )(a 22∞=F …………………………………………………………………… () 同理有a 3=F 3(∞) 以此类推,若n ≥2,有a n =F n (∞) 分子、分母分别为m 阶和n 阶多项式的系统

自适应控制大作业

自适应控制结课作业 班级: 组员: 2016年1月

目录 1 遗忘因子递推最小二乘法 (1) 1.1最小二乘理论 (1) 1.2带遗忘因子的递推最小二乘法 (1) 1.2.1白噪声与白噪声序列 (1) 1.2.2遗忘因子递推最小二乘法 (2) 2.2仿真实例 (3) 2 广义最小方差自校正控制 (5) 2.1广义最小方差自校正控制 (5) 2.2仿真实例 (6) 3 参考模型自适应控制 (9) 3.1参考模型自适应控制 (9) 3.2仿真实例 (12) 3.2.1数值积分 (12) 3.2.2仿真结果 (12) 参考文献 (16)

1 遗忘因子递推最小二乘法 1.1最小二乘理论 最小二乘最早的想法是高斯在1795年预测行星和彗星运动轨道时提出来的,“未知量的最大可能的值是这样一个数值,它使各次实际观测和计算值之间的差值的平方乘以度量其精确度的数值以后的和为最小”。这一估计方法原理简单,不需要随机变量的任何统计特性,目前已经成为动态系统辨识的主要手段。最小二乘辨识方法使其能得到一个在最小方差意义上与实验数据最好拟合的数学模型。由最小二乘法获得的估计在一定条件下有最佳的统计特性,即统计结果是无偏的、一致的和有效的。 1.2带遗忘因子的递推最小二乘法 1.2.1白噪声与白噪声序列 系统辨识中所用到的数据通常含有噪声。从工程实际出发,这种噪声往往可以视为具有理想谱密度的平稳随机过程。白噪声是一种最简单的随机过程,是由一系列不相关的随机变量组成的理想化随机过程。白噪声的数学描述如下:如果随机过程()t ξ均值为0,自相关函数为2()σδτ,即 2()()R ξτσδτ= 式中,()δτ为单位脉冲函数(亦称为Dirac 函数),即 ,0 ()0,0τδττ∞=?=? ≠?,且-()1d δττ∞ ∞ =? 则称该随机过程为白噪声,其离散形式是白噪声序列。 如果随机序列{}()V k 均值为零,且两两互不相关,即对应的相关函数为: 2,0 ()[()()]0,0v n R n E v k v k n n σ?==+=?=? 则这种随机序列称为白噪声序列。其谱密度函数为常数2(2)σπ。白噪声序列的功率在π-到π的全频段内均匀分布。 建立系统的数学模型时,如果模型结构正确,则模型参数辨识的精度将直接依赖于输入信号,因此合理选用辨识输入信号是保证能否获得理想的辨识结果的

系统辨识报告

系统辨识实验报告

实验一 最小二乘法 1 最小二乘算法 1.1 基本原理 系统模型 )()()()()(11k n k u z B k z z A +=-- a a n n z a z a z a z A ----++++= 221111)( b b n n z b z b z b z B ----+++= 22111)( 最小二乘格式 )()()(k n k h k z T +=θ [][] ?????=------=T n n T b a b a b b a a n k u k u n k z k z k h 11)()1()()1()(θ 对于L k ,,2,1 =,构成线性方程组 L L L n H z +=θ 式中, []T L L z z z z )()2()1( = []T L L n n n n )()2()1( = ? ????? ???? ??--------------= ??????????????=)()1()()1()2()1()2()1()1() 0() 1()0()()2()1(b a b a b a T T T L n L u L u n L z L z n u u n z z n u u n z z L h h h H 参数估计值为 ()L T L L T L LS z H H H 1 ?-=θ 1.2 Matlab 编程 % 基本最小二乘法LS clear;clc A=ones(5,1);B=ones(4,1);%A 为首1多项式,B 中体现时滞(d=1) na=length(A)-1;nb=length(B); load dryer2

系统辨识与自适应控制读书报告

系统辨识与自适应控制读书报告 1、概述 20世纪60年代,自动控制理论发展到了很高的水平。与此同时,工业大生产的发展,也要求将控制技术提高到更高的水平。现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。现代控制理论的应用遇到了确定受控对象合适的数学模型的各种困难。因此,建立系统数学模型的方法——系统辨识,就成为应用现代控制理论的重要前提。在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。在这样的背景下,系统辨识问题便愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。 “系统辨识”是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 自适应系统利用可调系统的输入量、状态向量及输出量来测量某种性能指标,根据测得的性能指标与给定的性能指标的比较,自适应机构修改可调系统的参数或者产生辅助输入量,以保持测得的性能指标接近于给定的性能指标,或者说测得的性能指标处于可接受性能指标的集合内。自适应系统的基本结构如图1所示。图中所示的可调系统可以理解为这样一个系统,它能够用调整它的参数或者输入信号的方法来调整系统特性。 未知扰动已知扰动 图1 自适应系统的基本结构 2、系统辨识的方法

2003版系统辨识最小二乘法大作业

西北工业大学系统辩识大作业 题目:最小二乘法系统辨识

一、 问题重述: 用递推最小二乘法、加权最小二乘法、遗忘因子法、增广最小二乘法、广义最小二乘法、辅助变量法辨识如下模型的参数 离散化有 z^4 - 3.935 z^3 + 5.806 z^2 - 3.807 z + 0.9362 ---------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 噪声的成形滤波器 离散化有 4.004e-010 z^3 + 4.232e-009 z^2 + 4.066e-009 z + 3.551e-010 ----------------------------------------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 采样时间0.01s 要求:1.用Matlab 写出程序代码; 2.画出实际模型和辨识得到模型的误差曲线; 3.画出递推算法迭代时各辨识参数的变化曲线; 最小二乘法: 在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态 ,静态 , 线性 ,非线性系统。在使用最小二乘法进行参数估计时 ,为了实现实时控制 ,必须优化成参数递推算法 ,即最小二乘递推算法。这种辨识方法主要用于在线辨识。MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。对 4324326.51411.5320120232320 Y s s s s G U s s s s ++++== ++++432 120120232320 E N W s s s s == ++++

最优控制实验报告

实验报告 课程名称:现代控制工程与理论实验课题:最优控制 学号:12014001070 姓名:陈龙 授课老师:施心陵

最优控制 一、最优控制理论中心问题: 给定一个控制系统(已建立的被控对象的数学模型),选择一个容许的控制律,使被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值) 二、最优控制动态规划法 对离散型控制系统更为有效,而且得出的是综合控制函数。这种方法来源于多决策过程,并由贝尔曼首先提出,故称贝尔曼动态规划。 最优性原理:在一个多级决策问题中的最优决策具有这样的性质,不管初始级、初始状态和初始决策是什么,当把其中任何一级和状态做为初始级和初始状态时,余下的决策对此仍是最优决策 三、线性二次型性能指标的最优控制 用最大值原理求最优控制,求出的最优控制通常是时间的函数,这样的控制为开环控制当用开环控制时,在控制过程中不允许有任何干扰,这样才能使系统以最优状态运行。在实际问题中,干扰不可能没有,因此工程上总希望应用闭环控制,即控制函数表示成时间和状态的函数。 求解这样的问题一般来说是很困难的。但对一类线性的且指标是

二次型的动态系统,却得了完全的解决。不但理论比较完善,数学处理简单,而且在工际中又容易实现,因而在工程中有着广泛的应用。 一.实验目的 1.熟悉Matlab的仿真及运行环境; 2.掌握系统最优控制的设计方法; 3.验证最优控制的效果。 二.实验原理 对于一个给定的系统,实现系统的稳定有很多途径,所以我们需要一个评价的指标,使系统在该指标下达到最优。如果给定指标为线性二次型,那么我们就可以利用MATLAB快速的计算卡尔曼增益。 三.实验器材 PC机一台,Matlab仿真平台。 四.实验步骤 例题1 (P269)考虑液压激振系统简化后的传递函数方框图如下,其中K a为系统前馈增益,K f为系统反馈增益,w h为阻尼固有频率。(如图5-5所示) 将系统传递函数变为状态方程的形式如下: ,

《系统辨识》实验手册-16页文档资料

《系统辨识》 实验手册 哈尔滨工业大学控制与仿真中心 2012年8月 目录 实验1白噪声和M序列的产生---------------------------------------------------------- 2实验2脉冲响应法的实现----------------------------------------------------------------5实验3最小二乘法的实现--------------------------------------------------------------- 9 实验4递推最小二乘法的实现---------------------------------------------------------- 12附录实验报告模板----------------------------------------------------------------------16 实验1 白噪声和M序列的产生 一、实验目的 1、熟悉并掌握产生均匀分布随机序列方法以及进而产生高斯白噪声方法

2、熟悉并掌握M 序列生成原理及仿真生成方法 二、实验原理 1、混合同余法 混合同余法是加同余法和乘同余法的混合形式,其迭代式如下: 式中a 为乘子,0x 为种子,b 为常数,M 为模。混合同余法是一种递归算法,即先提供一个种子0x ,逐次递归即得到一个不超过模M 的整数数列。 2、正态分布随机数产生方法 由独立同分布中心极限定理有:设随机变量12,,....,,...n X X X 相互独立,服从同一分布,且具有数学期望和方差: 则随机变量之和1n k i X =∑的标准化变量: () n n n k k k X E X X n Y μ --= = ∑∑∑近似服从(0,1)N 分布。 如果n X 服从[0, 1]均匀分布,则上式中0.5μ=,2 1 12 σ= 。即 0.5n k X n Y -= ∑近似服从(0,1)N 分布。 3、M 序列生成原理 用移位寄存器产生M 序列的简化框图如下图所示。该图表示一个由4个双稳态触发器顺序连接而成的4级移位寄存器,它带有一个反馈通道。当移位脉冲来到时,每级触发器的状态移到下一级触发器中,而反馈通道按模2加法规则反馈到第一级的输入端。

系统辨识大作业加学习心得

论文 系统辨识 姿态角控制 1.系统辨识概述 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力去观察、研究有关的系统辨识问题。 系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示可观系统(或将要改造的系统)本质特征的一种演算,并用这个模型吧对客观系统的理解表示成有用的形式。当然可以刻有另外的描述,辨识有三个要素:

数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类{}M(即给定一类已知结构的模型),一类输入信号u和等价准则(,)JLyyM(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择是误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的 一、控制对象 本文采用了控制不同电机转速组合的方法,对四轴旋翼蝶形飞行器进行姿态控制,使四旋翼蝶形飞行器在不同姿态下飞行时具有较好的性能。为了实现四轴旋翼蝶形飞行器的飞行控制,对飞行的控制系统进行了初步的设计,并给出了设计流程。同时利用matlab对四轴旋翼

matlab实验报告

专业仿真课程设计题目: 学院: 专业班级: 学号: 学生姓名: 指导教师: 设计时间:

专业仿真课程设计题目 主要研究内容: 从所拍摄的多个目标物中检测三角形物,给出三角形物几何中心、三个边长以及边长的方向、面积。 设计要求: (1)提交能够实现题目要求、并通过演示验收的可执行文件。 (2)提交课程设计报告(包括程序清单)。 (3)通过答辩,答辩成绩满分20分,其中个人设计部分10分,非个人设计部分10分。 (4)软件设计要求:有一个人机交互界面,模块化设计,在模块之间通过BMP文件或者文本文件传送数据,可以查看中间结果。 (5)5个人一组,组长协调分工,每个组员一定要有具体任务,以便考核。预期达到的目标: 1、能够通过相关文献查阅、文献综述和总结,给出问题求解的多种可行方案。 2、能够综合运用测控技术与仪器专业理论和技术手段,设计实验方案、分析实验结果,得出有效的结论。 3、能够借助MATLAB仿真软件,进一步掌握高等数学、复变函数与积分变换等相关数学和自然科学知识以及测控技术与仪器专业的基本理论知识,能够结合本专业“自动控制原理”、“数字信号处理”、“误差理论”等相关课程,采用MATLAB软件对复杂工程问题建立模型并进行预测与模拟; 4、能够与团队中其他学科成员合作开展工作,能够与其他队员很好地沟通和交流意见,能够通过口头或书面方式表达自己的设计思路,具有一定的表达能力和人际交往能力。

目录 第一章课程设计相关知识综述 1.1 MATLAB相关知识叙述 1.1.1 MATLAB基本知识介绍 1.1.2 MATLAB的优势特点 1.1.3 MATLAB的发展历程 1.2 MATLAB工具箱与函数 1.2.1 MATLAB图像处理工具箱 1.2.2 课程设计所用图像处理函数介绍第二章课程设计内容和要求 2.1 课程设计主要研究内容 2.2 课程设计要求 2.3 课程设计预期目标 第三章设计过程 3.1 设计方案 3.2 设计步骤及流程图 3.3 程序清单及相关注释 3.4 实验结果分析 3.5 结论 第四章团队情况 第五章总结 第六章参考文献

闭环系统辨识 报告

闭环系统辨识 气动参数辨识在导弹研发中的作用 气动力参数辨识是飞行器系统辨识中发展最为成熟的一个领域。对于导弹而言,采用系统辨识技术从飞行试验数据获取导弹空气动力特性,已经成为导弹研制和评估程序的重要组成部分。导弹气动参数辨识的作用主要体现在以下几个方面: (1)验证气动力数值计算和风洞试验结果。如前所述,数值计算和风洞试验各有其优点,也各有其局限性,必须通过飞行试验进行验证。如果飞行试验气动参数辨识结果与数值计算和风洞试验结果一致,则说明数值计算和风洞试验结果是正确的;如果不一致,就要找出产生不一致的原因,通过相关性分析,将地面试验结果换算到真实飞行状态下。 (2)为导弹系统仿真提供准确的气动参数。在导弹打靶仿真中,控制系统的执行元件、旋转台、控制系统、目标源等都可以采用实物,但导弹所受外作用力,特别是空气动力是飞行状态参数的函数,无法用实物实现,应代之以数学模型。该数学模型是否正确决定了系统仿真的置信度,因此,采用系统辨识技术,辨识出导弹的外作用力数学模型,特别是气动力数学模型,是导弹系统仿真技术的关键环节之一。 (3)为导弹飞行控制系统设计提供准确的气动参数。控制律设计取决于导弹的气动特性。如果控制律设计所依赖的气动数据误差过大,可能会导致控制失效;如果气动数据误差带很大,为了满足控制系统鲁棒性要求,或者控制精度降低,或者对指令的响应时间加长。利用飞行试验气动参数辨识结果,经过相关性分析给出的导弹气动特性,其可信度可望显著提高,用于飞行控制律设计,可以大大提高控制系统的性能。 (4)自适应控制。自适应控制系统能根据系统的状态和环境参数变化,自动调节控制系统的相应系数,以达到最佳控制状态。系统实时辨识是自适应控制系统的重要组成部分。对于导弹,机动性与导弹的静稳定裕度和动压关系很大,实

相关文档
最新文档