圆锥曲线压轴题及详解

合集下载

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。

【高考数学经典习题】圆锥曲线压轴题(含答案)8

【高考数学经典习题】圆锥曲线压轴题(含答案)8

【高考数学经典习题】圆锥曲线压轴题(含答案)8未命名一、解答题1.(题文)已知离心率为的椭圆C:经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.2.(题文)已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.3.在直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,A是C上的动点,且满足AF的最小值为2.(1)求椭圆C的标准方程;(2)在椭圆C上任取一点B,使OA OB⊥,求证:点O到直线AB的距离为定值. 4.已知抛物线的顶点在原点,准线方程为,是焦点,过点的直线与抛物线交于两点,直线分别交抛物线于点.(1)求抛物线的方程及的值;(2)记直线的斜率分别为,证明:为定值.5.(题文)(题文)已知椭圆:,斜率为的动直线与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值. 6.动点在抛物线上,过点作垂直于轴,垂足为,设.(I )求点的轨迹的方程;(II )设点,过点的直线交轨迹于两点,设直线的斜率分别为,求的最小值.7.给定椭圆2222:1(0)x y C a b a b+=>>.称圆心在原点O圆C 的“准圆”.若椭圆C 的一个焦点为F ,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,试判断12,l l 是否垂直?并说明理由. 8.已知椭圆的离心率为,以原点为圆心,以椭圆的半长轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上运动,与关于原点对称,且,当的面积最小时,求直线的方程.9.(题文)已知点是圆上的任意一点,点为圆的圆心,点与点关于原点对称,线段的垂直平分线与线段交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设点,若直线轴,且与曲线交于另一点,直线与直线交于点.(1)证明:点恒在曲线上;(2)求面积的最大值. 10.双曲线的一条渐近线方程是:,且曲线过点.(1)求双曲线的方程; (2)设曲线的左、右顶点分别是、,为曲线上任意一点,、分别与直线交于、,求的最小值.11.(题文)已知双曲线的一条渐近线方程为 ,焦距为 .(1)求双曲线 的方程;(2)若直线 与双曲线 交于 两点,且点 在第一象限,过点 作 轴的垂线,交 轴于点 ,交双曲线 于另一点 ,连结 交双曲线 于点 ,求证: .12.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为())12,F F ,直线0x =与椭圆C 的—个交点为(),点A 是椭圆C 上的任意—点,延长1AF 交椭圆C 于点B ,连接22,BF AF . (1)求椭圆C 的方程;(2)求2ABF ∆的内切圆的最大周长.13.已知椭圆( )经过点 ,且其离心率为, 、分别为椭圆 的左、右焦点.设直线 与椭圆 相交于 , 两点, 为坐标原点.(I )求椭圆 的标准方程;(II )当 时,求 的面积的最大值;(III )以线段 , 为邻边作平行四边形 ,若点 在椭圆 上,且满足 ,求实数 的取值范围. 14.已知椭圆的两个焦点为 ,其短轴长是 ,原点 到过点 和 两点的直线的距离为.(1)求椭圆 的方程;(2)若点 是定直线 上的两个动点,且 ,证明:以 为直径的圆过定点,并求 定点的坐标. 15.已知椭圆的左、右焦点分别为,为该椭圆上任意一点,且的最大值为.(I)求椭圆的离心率;(II)已知椭圆的上顶点为,动直线与椭圆交于不同的两点,且,证明:动直线过定点,并求出该定点坐标.16.椭圆M:的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.①求的取值范围;②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.17.如图所示,如图所示,已知椭圆,⊙,点是椭圆的左顶点直线与⊙相切于点.(1)求椭圆的方程;(2)若⊙的切线与椭圆相交于两点,求面积的取值范围. 18.已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点且斜率为的直线与椭圆相交于两点,直线分别交直线于两点,线段的中点为. 记直线的斜率为,求证:为定值.19.如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,,过,作圆心为的圆,使抛物线上其余点均在圆外,且.(1)求抛物线和圆的方程;(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.20.已知椭圆(),其离心率与双曲线的离心率互为倒数,而直线过椭圆的一个焦点.(I)求椭圆的方程;(II)如图,以椭圆的左顶点为圆心作圆,设圆与椭圆交于两点,,求的最小值,并求出此时圆的方程.21.已知椭圆的离心率,一个焦点为.(1)求椭圆的方程;(2)设是椭圆与轴负半轴的交点,过点作椭圆的两条弦和,且. (i)直线是否过定点,如果是求出该点坐标,如果不是请说明理由;(ii)若是等腰直角三角形,求直线的方程.22.已知抛物线的焦点为,直线与轴的交点为,与的交点为 ,且.(1)求 的方程;(2)设 ,动点 在曲线 上,曲线 在点 处的切线为 .问:是否存在定点 ,使得 与 都相交,交点分别为 ,且 与 的面积之比是常数?若存在,求 的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为,点(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .24.设顶点在原点,焦点在x 轴上的拋物线过点()2,4P ,过P 作抛物线的动弦PB PA ,,并设它们的斜率分别为DC . (1)求拋物线的方程;(2)若0=+PB PA k k ,求证:直线AB 的斜率为定值,并求出其值; (3)若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.25.如图,已知椭圆()222210x y a b a b+=>>的左、右焦点为()()121,0,1,0,F F P -为椭圆上一点,Q 为椭圆上顶点,M 在1PF 上,122,0F M MP PO F M =⋅=.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率的取值范围;(3)当椭圆离心率最小时,若过0,7⎛- ⎝⎭的直线l 与椭圆交于,A B (不同于点Q )两点,试问:AQB ∠是否为定值?并给出证明. 26.已知椭圆的方程为,它的一个顶点为 ,离心率为. (1)求椭圆的方程;(2)设直线 与椭圆交于 两点,坐标原点 到直线 的距离为,求 面积的最大值.27.在平面直角坐标系 中,已知椭圆的左顶点为 ,右焦点为 ,为椭圆 上两点,圆 .(1)若 轴,且满足直线 与圆 相切,求圆 的方程;(2)若圆 的半径为 ,点 满足,求直线 被圆 截得弦长的最大值.28.如图,在平面直角坐标系 中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点 作直线 ,分别交椭圆和圆 于相异两点 .(1)若直线 的斜率为 ,求的值; (2)若,求实数 的取值范围.29.在平面直角坐标系 中,已知抛物线 上一点到准线的距离与到原点 的距离相等,抛物线的焦点为 . (1)求抛物线的方程;(2)若 为抛物线上一点(异于原点 ),点 处的切线交 轴于点 ,过 作准线的垂线,垂足为点 .试判断四边形 的形状,并证明你的结论.30.在平面直角坐标系xOy 中,已知点3(1,)2P 在椭圆2222:1(0)x y C a b a b+=>>上,P到椭圆C 的两个焦点的距离之和为4. (1)求椭圆C 的方程;(2)若点,M N 是椭圆C 上的两点,且四边形POMN 是平行四边形,求点,M N 的坐标.31.已知两点 ,直线 、 相交于点 ,且这两条直线的斜率之积为.(1)求点 的轨迹方程;(2)记点 的轨迹为曲线 ,曲线 上在第一象限的点 的横坐标为1,直线 、 与圆相切于点 、 ,又 、 与曲线 的另一交点分别为 , ,求 的面积的最大值(其中点 为坐标原点).32.如图,设抛物线 的准线与 轴交于 ,焦点为 ;以 为焦点,离心率的椭圆 与抛物线 在 轴上方的交点为 ,延长 交抛物线于点 是抛物线 上一动点,且 在 与 之间运动.(1)当 时,求椭圆 的方程;(2)当 的边长恰好是三个连续的自然数时,求 面积的最大值. 33.已知A 为椭圆上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有.(Ⅰ)求椭圆离心率;(Ⅱ)设,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.34.设抛物线的准线与轴交于点,焦点;椭圆以和为焦点,离心率.设是与的一个交点.(1)椭圆的方程;(2)直线过的右焦点,交于两点,且等于的周长,求的方程.35.已知椭圆的离心率为,其短轴的下端点在抛物线的准线上.(1)求椭圆的方程;(2)设为坐标原点,是直线上的动点,为椭圆的右焦点,过点作的垂线与以为直径的圆相交于两点,与椭圆相交于两点,如图所示.①若,求圆的方程;②设与四边形的面积分别为,若,求的取值范围.36.已知抛物线 上一点 到焦点F 距离是.(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A 、B 两点,是否存在一个定圆恒以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由. 37.已知椭圆C:的离心率为,直线 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设 是椭圆的上顶点,过点 分别作直线 交椭圆于 , 两点,设两直线的斜率分别为,,且 , 证明:直线 过定点(,-l).38.已知椭圆C :2222by a x +=1(a>0,b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线一1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值: (ii)求OB 2+ OC 2的值. 39.设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆的方程和“相关圆”的方程; (2)过“相关圆”上任意一点作相关圆”的切线与椭圆交于两点,为坐标原点.若,证明原点到直线的距离是定值,并求的取值范围.40.已知抛物线方程为22(0)x py p =>,其焦点为F ,点O 为坐标原点,过焦点F 作斜率为(0)k k ≠的直线与抛物线交于,A B 两点,过,A B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA OB ⋅;(2)设直线MF 与抛物线交于,C D 两点,且四边形ACBD 的面积为2323p ,求直线AB 的斜率k .41.已知椭圆 : 的焦距为4,设右焦点为 ,过原点 的直线 与椭圆 交于 , 两点,线段 的中点为 ,线段 的中点为 ,且. (1)求弦 的长;(2)若直线 的斜率为 ,且,求椭圆 的长轴长的取值范围. 42.已知过抛物线的焦点,斜率为的直线交抛物线于()11,,A x y ()22,B x y (12x x <)两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值43.已知椭圆的离心率为,点在椭圆上.(I )求椭圆C 的方程; (II )设椭圆的左右顶点分别是A 、B ,过点的动直线与椭圆交于M ,N 两点,连接AN 、BM 相交于G 点,试求点G 的横坐标的值.44.如图椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆的另一个交点为,与圆的另一个交点为.(i)当时,求直线的斜率;(ii)是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.45.已知椭圆:的焦距为4,设右焦点为,过原点的直线与椭圆交于,两点,线段的中点为,线段的中点为,且.(1)若离心率,求椭圆的方程;(2)求椭圆的长轴长的取值范围.46.已知为圆上的动点,点,线段的垂直平分线与半径相交于点,记点的轨迹为.(1)求曲线的方程;(2)当点在第一象限,且时,求点的坐标.47.已知焦点在轴上的椭圆的中心是原点,离心率等于,以椭圆的长轴和短轴为对角线的四边形的周长为,直线与轴交于点,与椭圆交于、两个相异点,且.(Ⅰ) 求椭圆的方程;(Ⅱ)若,求的取值范围.48.已知椭圆的离心率为,右顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线交椭圆于两点,设直线的斜率为,直线斜率为.求证:为定值,并求此定值.49.已知椭圆C:的离心率为,且点在C上.(1)求椭圆C的方程;(2)直线l经过点,且与椭圆C有两个交点A、B,是否存在直线l0:x = x0(其中x0> 2),使得A、B到l0的距离d A、d B满足恒成立?若存在,求x0的值;若不存在,请说明理由.50.已知椭圆的右焦点为,短轴长为2,点为椭圆上一个动点,且的最大值为.(1)求椭圆的方程;(2)设不在坐标轴上的点的坐标为,点为椭圆上异于点的不同两点,且直线平分,试用表示直线的斜率.参考答案1.(Ⅰ);(Ⅱ),直线过定点.【解析】试题分析:(Ⅰ)根据条件,和椭圆的性质,得到椭圆的标准方程;(Ⅱ)设直线的方程:,和椭圆方程联立,得到根与系数的关系,并且,用坐标表示,结合根与系数的关系,得到,最后代入得到的取值范围;根据以上所求关系得到线段的中点,并且设出直线AB 的方程,经过整理得到,得到定点.试题解析:(Ⅰ)由条件知(),且b=1,解得a2=2,椭圆C的方程为.(Ⅱ)令直线l的方程为,代入椭圆方程得:.由得,解之得.令A(x1,y1),B(x2,y2),则.由条件得,即.因为,,即.将代入中,得..由上知,,于是得AB中点坐标为,中垂线方程为:.将代入得:,整理得:.故AB的中垂线过定点.考点:1.椭圆方程;2.直线与椭圆的位置关系.【思路点睛】本题第二问考察是否过定点问题,一般考察直线过定点问题,首先是设直线,斜率存在时设,然后通过方程发现的等量关系,代入后即得到直线所过定点,或是通过特殊情况先发现定点,然后通过条件证明点和定点,三点共线;而本题所采用就是第一种方法,根据直线方程与椭圆方程联立,得到根与系数的关系,和将本题所给的三个斜率成等差数列的等式转化为坐标的关系,就会得到的等量关系和中点坐标,最后代入中垂线方程,问题就迎刃而解了.2.(1);(2)或.【解析】试题分析:(1)由椭圆:的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为,求出,由此能求出椭圆方程;(2)依题意知,设,,,则,由此能求出存在满足条件的值.试题解析:(1)设焦点,则,从而,由题意有,即,解得,又由,于是,解得,椭圆的方程为.(2)依题意可知,且,于是直线的斜率为,直线的斜率为,则,,,,相加得.联立消去,整理得,,.把两边同时平方,可得,代入可得,化简可得,或,解得,或,即存在满足条件的值,,或.考点:椭圆的简单性质.【方法点晴】本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,在第一问中利用离心率以及过焦点且与轴垂直的弦长求出椭圆的方程,也是在高考中常见的表达形式;在第二问中利用设而不求的思想设出三点的坐标,先利用内切圆的圆心在轴上,即等价于直角的角平分线轴上,得,转化为斜率,联立直线的方程与椭圆的方程结合维达定理,代入求解.3.(1)2214xy+=;(2)证明见解析.【解析】试题分析: (1)由AF 的最小值为23-可得23a c -=-,由离心率为3可知,再由的关系最后可求得的值,得到椭圆的标准方程;(2)当AB 的斜率不存在时很容易求得O 到AB 的距离,当AB 的斜率存在时可设直线方程的斜截式y kx m =+,联立椭圆方程,由根与系数的关系得122841km x x k +=-+,21224441m x x k -=+,再由OA OB ⊥可建立等式,求得224(1)5m k =+,代入点到直线的距离公式可得距离为定值. 试题解析:(1)解:根据题意有2{a c c a -==, 解方程组得:2,a c ==∴21b =,∴椭圆C 的标准方程为2214x y +=. (2)证明:当AB 的斜率不存在时,AB 的方程为x =±O 到AB 的距离为d =; 当AB 的斜率存在时,可设AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,由22{14y kx mx y =++=,得222(41)8440k x kmx m +++-=, ∵22222(8)4(41)(44)16(14)0km k m k m ∆=-+-=-->,∴122841km x x k +=-+,21224441m x x k -=+, ∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,222222224484414141m km m k k km m k k k --=⋅-⋅+=+++, ∵OA OB ⊥,∴22112212122544(,)(,)041m k OA OB x y x y x x y y k --⋅==+==+, ∴224(1)5m k =+, ∴点O 到直线AB :0kx y m -+=的距离5d ===, 故O 到AB 的距离为定值.考点:椭圆的性质、直线与椭圆的位置关系.4.(1) ;(2)证明见解析.【解析】试题分析:(1)根据抛物线的定义即可得出抛物线方程,再联立 的方程,消去 ,由韦达定理可得 的值;(2)设出 的坐标,由斜率公式表示出 ,消去变量即可得出的定值.试题解析:(1)依题意,设抛物线方程为y 2=-2px(p>0),由准线x = =1,得p =2, 所以抛物线方程为y 2=-4x ,设直线PQ 的方程为x =my -2,代入y 2=-4x ,消去x ,整理得y 2+4my -8=0, 从而y 1y 2=-8.(2)证明 设M(x 3,y 3),N(x 4,y 4),则. 设直线PM 的方程为x =ny -1,代入y 2=-4x ,消去x ,整理得y 2+4ny -4=0,所以y 1y 3=-4,同理y 2y 4=-4.故,为定值. 考点:1、抛物线的标准方程;2、抛物的几何性质;3、斜率公式;4、直线方程. 5.(1)();(2).【解析】试题分析:(1)设,,,两式相减结合,可求得;(2)由求出点坐标,设直线的方程为,面积用表示,最后用基本不等式求最值.试题解析:(1)设,①②①-②得:,,即,又由中点在椭圆内部得,所以点的轨迹方程为,(2)由,得点坐标为,设直线的方程为,代入椭圆方程中整理得:,由得,则,,,所以,当时,.考点:1、点差法求轨迹方程;2、利用基本不等式求解析几何中的最值.【方法点睛】本题主要考查“点差法”求轨迹方程以及利用基本不等式求解析几何中的最值,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.本题(1)就是利用“点差法”求解的.6.(I);(II).【解析】试题分析:(I)设点,,则由,得,因为点在抛物线上,∴;(II)联立,利用根与系数关系得到,下面分情况讨论.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,,直线不经过点即且时,,化简得故.试题解析:(I)设点,,则由,得,因为点在抛物线上,∴.(II)方法一:由已知,直线的斜率一定存在,设点,,则联立,得,,由韦达定理,得.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,直线不经过点即且时,∵,,故,所以的最小值为1.方法二:同上,,所以的最小值为1.方法三:设点,,由直线过交轨迹于两点得:,化简整理得:令则,.而.考点:1.直线与圆锥曲线的位置关系;2.根与系数关系.【方法点晴】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟与系数的关系是解这类题目的必备工具,另外题目运算量较大,需要一定的运算能力.7.(Ⅰ)2213xy+=,224x y+=;(Ⅱ)垂直.【解析】试题分析:(1)由“椭圆C的一个焦点为F,其短轴上的一个端点到F”知:12c a b====⇒=从而可得椭圆的标准方程和“准圆”的方程;(2)分两种情况讨论:①12,l l当中有一条直线斜率不存在;②直线12,l l斜率都存在.对于①可直接求出直线12,l l的方程并判断其是不互相垂直;对于②设经过准圆上点()00,,P x y与椭圆只有一个公共点的直线为()00y t x x y=-+与椭圆方程联立组成方程组()0022{13y tx y txxy=+-+=消去y得到关于x的方程:()()()2220000136330t x t y tx x y tx++-+--=由0∆=化简整理得:()22200003210x t x y t y-++-=22004x y+=→()()22300003230x t x y t x-+--=而直线12,l l的斜率正是方程的两个根12,t t,从而121t t⋅=-12l l⇒⊥(1)2,1c a b==∴=∴椭圆方程为2213xy+=准圆方程为224x y+=(2)①12,l l当中有一条无斜率时,不妨设1l无斜率,因为1l与椭圆只有一个共公点,则其方程为x=当1l方程为x1l与准圆交于点)),1-此时经过点)(或)1-)且与椭圆只有一个公共眯的直线是1y=(或1y=-)即2l为1y=(或1y=-),显然直线12,l l垂直;同理可证1l方程为x =12,l l 也垂直.②当12,l l 都有斜率时,设点()00,,P x y 其中22004x y +=设经过点()00,,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+则由()0022{13y tx y tx x y =+-+=消去y ,得()()()2220000136330t x t y tx x y tx ++-+--=由0∆=化简整理得:()22200003210x t x y t y -++-=因为22004x y +=,所以有()()22300003230x t x y t x -+--=设12,l l 的斜率分别为12,t t ,因为12,l l 与椭圆只有一个公共点 所以12,t t 满足上述方程()()22300003230x t x y t x -+--= 所以121t t ⋅=-,即12,l l 垂直, 综合①②知,12,l l 垂直.考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题. 8.(Ⅰ);(Ⅱ),或.【解析】试题分析:(Ⅰ)根据离心率可以得到 的一个关系,再由椭圆与直线相切可以得到 的一个关系,再联立 即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时地特殊情况,并求出其面积;其次当直线的斜率 存在并且不为零时,用 表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.试题解析:(Ⅰ)以原点为圆心,以椭圆的半长轴长为半径的圆的方程为,因为该圆与直线相切,所以有,解得.又,所以,故.所以椭圆的方程为.(Ⅱ)当为长轴(或短轴)时,依题意知,点是椭圆的上顶点或下顶点(左顶点或右顶点),此时.当直线的斜率存在且不为时,设直线的斜率为,,,则直线的方程为,由,解得所以由知,为等腰三角形,为线段的中点,,所以直线的方程为,由,解得.当且仅当,即时,上式中的等号成立,此时的面积的最小值为,因为,所以的面积的最小值为,此时直线的方程为,或.考点:1、椭圆;2、基本不等式;3、三角形的面积.【思路点晴】本题是一个关于圆锥曲线方面的综合性问题,属于难题.解决本题的基本思路是:(Ⅰ)根据离心率可以得到的一个关系,再由椭圆与直线相切可以得到的一个关系,再联立即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时的特殊情况,并求出其面积;其次当直线的斜率存在并且不为零时,用表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.9.(Ⅰ);(Ⅱ)(1)证明见解析;(2).【解析】试题分析:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.试题解析:(Ⅰ)由题设得圆的圆心为,半径为,,又,所以,由椭圆的定义知,动点的轨迹是以为焦点,以为长轴长的椭圆.设此椭圆方程为,且焦距为,则即所以动点的轨迹的方程为.(Ⅱ)(1)设,则,且,所以直线,即①.直线,即.②联立①②,解得,所以点的坐标是.则所以点恒在椭圆上.(2)设直线,,则由消去,并整理得,.因为恒成立,所以.所以.令,设,因为,所以函数在上单调递增,故.所以,即当时,的面积取得最大值,且最大值为. 考点:1、椭圆;2、导数在函数(三角形的面积)研究中的应用.【方法点晴】本题是一个关于椭圆的概念以及直线与其位置关系方面的综合性问题,属于难题.解决本题的基本思路及切入点是:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.10.(1);(2).【解析】试题分析:(1)由渐近线方程可先设出双曲线的方程,再把点的坐标代入即可求得双曲线的方程;(2)可设出、的斜率,并表示出点、的坐标,进而表示出的长,再结合基本不等式即可求得的最小值.试题解析:(1)由渐近线方程可知,双曲线的方程为,把代入可得,所以双曲线方程为.(2)由双曲线的对称性可知,在右支上时,取最小值.由上可得,,根据双曲线方程可得,所以设直线、的斜率分别为,则.的方程为,令,解得,的方程为,令,解得,所以.当且仅当,即时等号成立.考点:1、双曲线;2、基本不等式.11.(1);(2)证明见解析.。

圆锥曲线压轴小题(含答案)

圆锥曲线压轴小题(含答案)

圆锥曲线压轴小题(含答案)1. 已知点 O 为双曲线 C 的对称中心,过点 O 的两条直线 l 1 与 l 2 的夹角为 60∘,直线 l 1 与双曲线 C 相交于点 A 1,B 1,直线 l 2 与双曲线 C 相交于点 A 2,B 2,若使 ∣A 1B 1∣=∣A 2B 2∣ 成立的直线 l 1 与 l 2 有且只有一对,则双曲线 C 离心率的取值范围是 ( ) A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)2. 已知椭圆 E:x 25+y 24=1 的一个顶点为 C (0,−2),直线 l 与椭圆 E 交于 A ,B 两点,若 E 的左焦点为 △ABC 的重心,则直线 l 的方程为 ( ) A. 6x −5y −14=0 B. 6x −5y +14=0 C. 6x +5y +14=0 D. 6x +5y −14=03. 设双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的右焦点为 F ,过点 F 作与 x 轴垂直的直线 l 交两渐近线于 A ,B 两点,且与双曲线在第一象限的交点为 P ,设 O 为坐标原点,若 OP ⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ (λ,μ∈R ),λ⋅μ=316,则双曲线的离心率为 ( )A.2√33B.3√55C.3√22D. 984. 双曲线x 2a 2−y 2b 2=1 的左,右焦点分别为 F 1,F 2,过 F 1 作圆 x 2+y 2=a 2 的切线交双曲线的左,右支分别于点 B ,C ,且 ∣BC ∣=∣CF 2∣,则双曲线的渐近线方程为 ( ) A. y =±3x B. y =±2√2x C. y =±(√3+1)xD. y =±(√3−1)x5. 已知“若点 P (x 0,y 0) 在双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 上,则 C 在点 P 处的切线方程为 C:xx 0a 2−yy 0b 2=1”,现已知双曲线 C:x 24−y 212=1 和点Q(1,t)(t≠±√3),过点Q作双曲线C的两条切线,切点分别为M,N,则直线MN过定点( )A. (0,2√3)B. (0,−2√3)C. (4,0)D. (−4,0)6. 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,∣MF∣=5,若以MF为直径的圆过点(0,2),则C的方程为( )A. y2=4x或y2=8xB. y2=2x或y2=8xC. y2=4x或y2=16xD. y2=2x或y2=16x7. 设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60∘的直线A1B1和A2B2,使∣A1B1∣=∣A2B2∣,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)8. 如图,双曲线x2a2−y2b2=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点P是双曲线右支上一点,PF1交左支于点Q,交渐近线y= bax于点R.M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是( )A. √2B. √3C. 2D. √59. 已知m,n,s,t∈R∗,m+n=3,ms +nt=1,其中m,n是常数且m<n,若s+t的最小值是3+2√2,满足条件的点(m,n)是椭圆x24+y216=1一弦的中点,则此弦所在的直线方程为( )A. x−2y+3=0B. 4x−2y−3=0C. x+y−3=0D. 2x+y−4=010. 设双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2=( )A. 1+2√2B. 4−2√2C. 5−2√2D. 3+2√211. 已知抛物线y2=2px(p>0)的焦点F恰为双曲线x2a2−y2b2=1(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为( )A. √2B. √2+1C. 2D. 2+√212. 如图,斜线段AB与平面α所成的角为60∘,B为斜足,平面α上的动点P满足∠PAB=30∘,则点P的轨迹是( )A. 直线B. 抛物线C. 椭圆D. 双曲线的一支13. 已知定点M(1,54),N(−4,−54),给出下列曲线方程:① 4x+2y−1=0;② x2+y2=3;③ x22+y2=1;④ x22−y2=1.在曲线上存在点P满足∣MP∣=∣NP∣的所有曲线方程是( )A. ①③B. ②④C. ①②③D. ②③④14. 双曲线x2a2−y2b2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上一点,满足∣PF2∣=∣F1F2∣,直线PF1与圆x2+y2=a2相切,则双曲线的离心率为( )A. 54B. √3 C. 2√33D. 5315. 过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F1,作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,PF1的中点M在第一象限,则以下结论正确的是( )A. b−a=∣MO∣−∣MT∣B. b−a>∣MO∣−∣MT∣C. b−a<∣MO∣−∣MT∣D. b−a=∣MO∣+∣MT∣16. 在椭圆x216+y29=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为( )A. 9x−16y+7=0B. 16x+9y−25=0C. 9x+16y−25=0D. 16x−9y−7=017. 已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2−y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )A. m>n且e1e2>1B. m>n且e1e2<1C. m<n且e1e2>1D. m<n且e1e2<118. 已知点P为双曲线x2a2−y2b2=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左右焦点,且∣F1F2∣=b2a,I为三角形PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为( )A. 1+2√22B. 2√3−1C. √2+1D. √2−119. 已知F1,F2为双曲线C:x2−y2=1的左、右焦点,点P在C上,∠F1PF2=60∘,则点P到x轴的距离为( )A. √32B. √62C. √3D. √620. 直线4kx−4y−k=0与抛物线y2=x交于A,B两点,若∣AB∣=4,则弦AB的中点到直线x+12=0的距离等于( )A. 74B. 2 C. 94D. 421. 设A为双曲线x216−y29=1的右支上一动点,F为该双曲线的右焦点,连AF交双曲线于点B,过点B作直线BC垂直于双曲线的右准线,垂足为C,则直线AC必过定点( )A. (4110,0) B. (185,0) C. (4,0) D. (225,0)22. 已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为−1,则1y1+1y2+1y3的值为( )A. −12p B. −1pC. 1pD. 12p23. 设点P(x,y)是曲线a∣x∣+b∣y∣=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足√x2+y2+2x+1+√x2+y2−2x+1≤2√2,则√2a+b取值范围为( )A. (0,2]B. [1,2]C. [1,+∞)D. [2,+∞)24. 若直线mx+ny=4和⊙O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆x29+y24=1的交点个数为( )A. 至多1个B. 2个C. 1个D. 0个25. 平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是( )A. 一条直线B. 一个圆C. 一个椭圆D. 双曲线的一支26. 直线y=x+3与曲线y29−x∣x∣4=1( )A. 没有交点B. 只有一个交点C. 有两个交点D. 有三个交点27. 直线y=2k与曲线9k2x2+y2=18k2∣x∣(k∈R,且k≠0)的公共点的个数为( )A. 1B. 2C. 3D. 428. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作平行于C的渐近线的直线交C于点P.若PF1⊥PF2,则C的离心率为( )A. √2B. √3C. 2D. √529. 已知椭圆x24+y2b2=1(0<b<2),左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若∣BF2∣+∣AF2∣的最大值为5,则b的值是( )A. 1B. √2C. 32D. √330. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:① x2−y2=1,② y=x2−∣x∣,③ y=3sinx+4cosx,④ ∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④31. 设直线l与抛物线y2=4x相交于A,B两点,与圆(x−5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A. (1,3)B. (1,4)C. (2,3)D. (2,4)32. 椭圆a2x2+y2=a2(0<a<1)上离顶点A(0,a)距离最大的点恰好是另一个顶点Aʹ(0,−a),则a的取值范围是( )A. (√22,1) B. [√22,1) C. (0,√22) D. (0,√22]33. 已知集合M={(x,y)∣x2+y2≤1},若实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“和谐实数对”.则以下集合中,存在“和谐实数对”的是( )A. {(λ,μ)∣λ+μ=4}B. {(λ,μ)∣λ2+μ2=4}C. {(λ,μ)∣λ2−4μ=4}D. {(λ,μ)∣λ2−μ2=4}34. 已知两点M(1,54)、N(−4,−54),给出下列曲线方程:① 4x+2y−1=0;② x2+y2=3;③ x22+y2=1;④ x22−y2=1.曲线上存在点P满足∣MP∣=∣NP∣的所有曲线方程是( )A. ①②③B. ②④C. ①③D. ②③④35. 过点(√2,0)引直线l与曲线y=√1−x2相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于( )A. √33B. −√33C. ±√33D. −√336. 如图,一条直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB于D,若点D的坐标为(2,1),则抛物线方程为( )A. y 2=54xB. y 2=52xC. y 2=5xD. y 2=10x37. 已知 F 是抛物线 y 2=x 的焦点,点 A,B 在该抛物线上且位于 x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中 O 为坐标原点),则 △ABO 与 △AFO 面积之和的最小值是 ( )A. 2B. 3C.17√28D. √1038. 已知点 C 在以 O 为圆心的圆弧 AB 上运动(含端点).OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =0,OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +2yOB ⃗⃗⃗⃗⃗ (x,y ∈R ),则 x 2+y 的取值范围是 ( )A. [−√22,√22] B. [12,√22] C. [−12,12]D. [−√22,12]39. 已知抛物线 y 2=4x 的焦点为 F ,点 P (x,y ) 为该抛物线上的动点,若点 A (−1,0),则 |PF ||PA |的最小值为 ( )A. 12B. √22C. √32D.2√2340. P 是抛物线 y =x 2 上任意一点,则当 P 和直线 x +y +2=0 上的点距离最小时,P 与该抛物线的准线距离是 ( )A. 19B. 12C. 1D. 241. 已知直线 l:y =k (x −2)(k >0) 与抛物线 C:y 2=8x 交于 A ,B 两点,F 为抛物线 C 的焦点,若 ∣AF ∣=2∣BF ∣,则 k 的值是 ( )A. 13B.2√23C. 2√2D. √2442. 如图所示是一个正方体的表面展开图,A,B,C 均为棱的中点,D 是顶点,则在正方体中,异面直线 AB 和 CD 的夹角的余弦值为 ( )A. √25B. √35C.√105D. √5543. 如图,M ,N 是焦点为 F 的抛物线 y 2=4x 上的两个不同的点,且线段 MN 的中点 A 的横坐标为 3,直线 MN 与 x 轴交于 B 点,则点 B 的横坐标的取值范围是 ( )A. (−3,3]B. (−∞,3]C. (−6,−3)D. (−6,−3)∪(−3,3]44. 已知椭圆 M:x 24+y 2=1 的上、下顶点为 A ,B ,过点 P (0,2) 的直线 l与椭圆 M 相交于两个不同的点 C ,D (C 在线段 PD 之间),则 OC ⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ 的取值范围为 ( )A. (−1,16)B. [−1,16]C. (−1,134)D. [−1,134)45. 若抛物线y=4x2的焦点是F,准线是l,则过点F和点M(4,4)且与准线l相切的圆有( )A. 0个B. 1个C. 2个D. 4个46. 如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为x2a2+y2b2=1(a>b>0),若直线AC与BD的斜率之积为−14,则椭圆的离心率为( )A. 12B. √22C. √32D. 3447. 已知P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直线与直线l的位置关系是( )A. 平行B. 重合C. 垂直D. 斜交48. 已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为( )A. 4B. 3C. 2D. 149. 已知双曲线x2a2−y2b2=1(a>0,b>0)上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=−12,则m的值为( )A. 34B. 32C. 54D. 5250. 已知抛物线 M:y 2=4x ,圆 N:(x −1)2+y 2=r 2(r >0),过点 (1,0)的直线 l 与圆 N 交于 C ,D 两点,交抛物线 M 于 A ,B 两点,则满足 ∣AC ∣=∣BD ∣ 的直线 l 只有三条的必要条件是 ( ) A. r ∈(0,1]B. r ∈(1,2]C. r ∈(32,4)D. r ∈[32,+∞)51. 已知 P 为抛物线 y =12x 2 上的动点,点 P 在 x 轴上的射影为 Q ,点 A的坐标是 (6,172),则 ∣PA∣+∣P P ∣ 的最小值是 ( )A. 8B. 192C. 10D. 21252. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的左焦点为 F 1,左、右顶点分别为 A 1,A 2,P 为双曲线上任意一点,则分别以线段 PF 1,A 1A 2 为直径的两个圆的位置关系为 ( ) A. 相切 B. 相交C. 相离D. 以上情况都有可能53. 已知 F 1,F 2 分别是椭圆x 24+y 23=1 的左,右焦点,A 是椭圆上一动点,圆 C 与 F 1A 的延长线,F 1F 2 的延长线以及线段 AF 2 相切,若 M (t,0) 为其中一个切点,则 ( ) A. t =2 B. t >2C. t <2D. t 与 2 的大小关系不确定54. 已知点 A ,B 是双曲线 x 2−y 22=1 上的两点,O 为坐标原点,且满足OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =0,则点 O 到直线 AB 的距离等于 ( ) A. √2 B. √3 C. 2 D. 2√255. 已知椭圆x 24+y 2b 2=1(0<b <2),左右焦点分别为 F 1,F 2,过 F 1 的直线 l 交椭圆于 A ,B 两点,若 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,则 b 的值是 ( )A. 1B. √2C. 32D. √356. 抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F,A,B是抛物线的两点.已知A,B,C三点共线,且∣AF∣,∣AB∣,∣BF∣成等差数列,直线AB的斜率为k,则有( )A. k2=14B. k2=√34C. k2=12D. k2=√3257. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点.若AF⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,则k= ( )A. 1B. √2C. √3D. 258. 设直线l:2x+y+2=0关于原点对称的直线为l′,若lʹ与椭圆x2+y24=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为12的点P的个数为( )A. 1B. 2C. 3D. 459. 已知抛物线y2=−x与直线y=k(x+1)相交于A、B两点,则△AOB的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 钝角三角形60. 已知点F为抛物线y2=−8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且∣AF∣=4,则∣PA∣+∣PO∣的最小值为( )A. 6B. 2+4√2C. 2√13D. 4+2√561. 椭圆x225+y216=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则∣y2−y1∣的值是( )A. √53B. 103C. 203D. 5362. 点P在直线l:y=x−1上,若存在过P的直线交抛物线y=x2于A,B两点,且∣PA∣=∣AB∣,则称点P为“ A点”,那么下列结论中正确的是( )A. 直线l上的所有点都不是“ A点”B. 直线l上仅有有限个点是“ A点”C. 直线l上的所有点都是“ A点”D. 直线l上有无穷多个点(点不是所有的点)是“ A点”63. 过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1p +1q等于( )A. 2aB. 12a C. 4a D. 4a64. 已知椭圆C:x22+y2=1,点M1,M2,⋯,M5为其长轴AB的6等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2,⋯,P10,则10条直线AP1,AP2,⋯,AP10的斜率乘积为( )A. 14B. 116C. −18D. −13265. 椭圆4x2+9y2=144内有一点P(3,2),过点P的弦恰好以P为中点,那么这条弦所在直线的方程为( )A. 3x+2y−12=0B. 2x+3y−12=0C. 4x+9y−144=0D. 9x+4y−32=066. 如图,等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈(0,π2),以A、B为焦点,且过点D的双曲线的离心率为e1;以C、D为焦点,且过点A的椭圆的离心率为e2,则( )A. 当θ增大时,e1增大,e1e2为定值B. 当θ增大时,e1减小,e1e2为定值C. 当θ增大时,e1增大,e1e2增大D. 当θ增大时,e1减小,e1e2减小67. 已知a>0,过M(a,0)任作一条直线交抛物线y2=2px(p>0)于P,Q两点,若1∣MP∣2+1∣MQ∣2为定值,则a=( )A. √2pB. 2pC. p2D. p68. 在抛物线y=x2+ax−5(a≠0)上取横坐标为x1=−4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )A. (−2,−9)B. (0,−5)C. (2,−9)D. (1,−6)69. 椭圆C的两个焦点分别为F1(−1,0)和F2(1,0),若该椭圆C与直线x+y−3=0有公共点,则其离心率的最大值为( )A. √612B. √66C. √55D. √51070. 已知抛物线y=−x2+3上存在关于直线x+y=0对称的相异两点A、B,则∣AB∣等于( )A. 3B. 4C. 3√2D. 4√271. 记椭圆x24+ny24n+1=1围成的区域(含边界)为Ωn(n=1,2,⋯),当点(x,y)分别在Ω1,Ω2,⋯上时,x+y的最大值分别是M1,M2,⋯,则limn→∞M n=( )A. 0B. 14C. 2D. 2√272. 已知曲线f(x)=x3+x2+x+3在x=−1处的切线恰好与抛物线y=2px2相切,则过该抛物线焦点且垂直于对称轴的直线与抛物线相交所得的线段长为( )A. 18B. 14C. 8D. 473. 已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且∣AK∣=√2∣AF∣,则△AFK的面积为( )A. 4B. 8C. 16D. 3274. 已知直线x+2y−3=0与圆x2+y2+x−6y+m=0相交于P,Q两点,O为坐标原点,若OP⊥OQ,则m等于( )A. 3B. −3C. 1D. −175. 中心在原点,焦点坐标为(0,±5√2)的椭圆被直线3x−y−2=0截得的弦的中点的横坐标为12,则椭圆方程为( )A. 2x225+2y275=1 B. 2x275+2y225=1 C. x225+y275=1 D. x275+y225=176. 若方程√x2+1=a(x−1)恰有两个不同的实根,则实数a的取值范围是( )A. −1<a<−√22B. a<−√22或a>√22C. −1<a<−√22或√22<a<1 D. a<−1或−1<a<−√2277. 已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若∣FA∣=2∣FB∣,则k=( )A. 13B. √23C. 23D. 2√2378. 已知抛物线M:y2=4x,圆N:(x−1)2+y2=r2(其中r为常数,r>0),过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足∣AC∣=∣BD∣的直线l只有三条的必要条件是( )A. r ∈(0,1]B. r ∈(1,2]C. r ∈(32,4)D. r ∈[32,+∞)79. 已知 O 是平面上的一个定点,A,B,C 是平面上不共线的三个点,动点P 满足 OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗∣∣AB ⃗⃗⃗⃗⃗ ∣∣+AC⃗⃗⃗⃗⃗∣∣AC⃗⃗⃗⃗⃗ ∣∣),λ∈(0,+∞),则点 P 的轨迹一定通过 △ABC 的 ( )A. 外心B. 内心C. 重心D. 垂心80. 点 P 在直线 l:y =x −1 上,若存在过 P 的直线交抛物线 y =x 2 于 A ,B 两点,且 ∣PA∣=∣AB∣,则称点 P 为" A 点",那么下列结论中正确的是 ( )A. 直线 l 上的所有点都是" A 点"B. 直线 l 上仅有有限个点是" A 点"C. 直线 l 上的所有点都不是" A 点"D. 直线 l 上有无穷多个点(但不是所有的点)是" A 点"答案第一部分1. A2. B 【解析】设 A (x 1,y 1),B (x 2,y 2),椭圆x 25+x 24=1 的左焦点为(−1,0),因为点 C (0,−2),且椭圆左焦点 F 1 恰为 △ABC 的重心,所以x 1+x 2+03=−1,y 1+y 2−23=0,所以 x 1+x 2=−3,y 1+y 2=2, ⋯⋯① 因为x 125+y 124=1,x 225+y 224=1,所以两式相减得:(x 1+x 2)(x 1−x 2)5+(y 1+y 2)(y 1−y 2)4=0,将 ① 代入得:y 1−y 2x 1−x 2=65,即直线 l 的斜率为 k =y 1−y 2x 1−x 2=65,因为直线 l 过AB 中点 (−32,1),所以直线 l 的方程为 y −1=65(x +32),故答案为 6x −5y +14=0.3. A 【解析】双曲线的渐近线为:y =±ba x ,设焦点 F (c,0),则A (c,bc a ),B (c,−bca ),P (c,b 2a ), 因为 OP⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ , 所以 (c,b 2a )=((λ+μ)c,(λ−μ)bca ), 所以 λ+μ=1,λ−μ=bc ,解得:λ=c+b 2c ,P =c−b 2c, 又由 λμ=316,得:c 2−b 24c 2=316,解得:a 2c 2=34,所以,e =c a=2√33.4. C5. C【解析】设 M (x 1,y 1),N (x 2,y 2),则切点分别为 M ,N 的切线方程为x 1x 4−y 1y 12=1,x 2x 4−y 2y 12=1.因为点 Q (1,t ) 在两条切线上,所以x14−y1t12=1,x24−y2t12=1.所以M,N两点均在直线x4−ty12=1上,即直线MN的方程为x4−ty12=1,显然直线过点(4,0).6. C7. A 【解析】先考虑焦点在x轴上的双曲线,由双曲线的对称性知,满足题意的这一对直线也关于x轴(或y轴)对称,又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30∘且小于等于60∘,即tan30∘<ba ≤tan60∘,所以13<b2a2≤3.又e2=(ca)2=c2a2=1+b2a2,所以43<e2≤4,解得2√33<e≤2.焦点在y轴上的双曲线与焦点在x轴上的双曲线的开口宽窄要求完全相同,所以离心率的范围一致.8. C 【解析】设PF1的方程为y=k(x+c),k>0,与渐近线方程y=ba x联立,可得R(ackb−ka,bckb−ka),把直线y=k(x+c)代入双曲线x2a2−y2b2=1,可得(b2−a2k2)x2−2ca2k2x−a2c2k2−a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=2ca2k2b2−a2k2,即有中点M(ca2k2b2−a2k2,cb2kb2−a2k2),由A(a,0),F2(c,0),RF2⊥PF1,可得k RF2=bck2ack−bc=−1k,即有bk2+2ak−b=0,解得k=c−ab(负的舍去),由AM⊥PF1,可得k AM=cb2kca2k2−ab2+a3k2=−1k,即为(c3+a3)k2=a(c2−a2),即有(c3+a3)(c−a)2=ab2(c2−a2)=a(c2−a2)2,化为 c =2a ,即 e =c a=2.9. D 【解析】因为 m ,n ,s ,t 为正数,m +n =3,m s+n t=1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s=ns t时取最小值,此时最小值为 m +P +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2. 设以 (1,2) 为中点的弦交椭圆x 24+y 216=1 于 A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2) 分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0. 10. C【解析】如图,设 ∣AF 1∣=m ,则 ∣BF 1∣=√2m ,∣AF 2∣=m −2a ,∣BF 2∣=√2m −2a ,所以 ∣AB ∣=∣AF 2∣+∣BF 2∣=m −2a +√2m −2a =m ,得 m =2√2a ,又由 ∣AF 1∣2+∣AF 2∣2=∣F 1F 2∣2,可得 m 2+(m −2a )2=4c 2,即得 (20−8√2)a 2=4c 2,所以 e 2=c 2a 2=5−2√2.11. B 【解析】根据题意 p2=c ,设抛物线与双曲线的一个交点为 A ,则有A (c,2c ),因为点 A 在双曲线上,所以有 c 2a2−4c 2b 2=1,整理得 e 2−2e −1=0,所以双曲线的离心率 e =1+√2. 12. C13. D 【解析】提示:对于①,可得 MN 的中点为O (−32,0) 不在直线 l:4x +2y −1=0 上,k MN =12,又直线 4x +2y −1=0 的斜率为 k l =−2,即 k l k MN =−1,所以线段 MN 的中垂线 y =−2x −3 不与 4x +2y −1=0 相交,所以①不成立;对于②,因为 (−32)2+02<3,所以 MN 的中点为 O (−32,0) 在圆 x 2+y 2=3 的内部,所以线段 MN 的中垂线与圆相交,所以②正确;对于③和④,只需联立线段 MN 的中垂线 y =−2x −3 与曲线方程,判断判别式即可,可得③和④都成立. 14. D【解析】设 PF 1 与圆相切于点 M ,因为 ∣PF 2∣=∣F 1F 2∣,所以 △PF 1F 2 为等腰三角形,设 N 为 PF 1 中点,则 F 2N ⊥PF 1,又 OM ⊥PF 1,O 为 F 1F 2 中点,所以 ∣F 1M ∣=12∣F 1N ∣=14∣PF 1∣,又因为在直角三角形 F 1MO 中,∣F 1M ∣2=∣F 1O ∣2−a 2=c 2−a 2=b 2,所以 ∣F 1M ∣=b =14∣PF 1∣ ⋯⋯①,又 ∣PF 1∣=∣PF 2∣+2a =2c +2a ⋯⋯②,c 2=a 2+b 2 ⋯⋯③,由①②③解得 e =c a=53.15. A【解析】连OT,则OT⊥F1T,在直角三角形OTF1中,∣F1T∣=√∣OF1∣2−∣OT∣2= b.连PF2,M为线段F1P的中点,O为坐标原点,所以∣OM∣=12∣PF2∣,所以∣MO∣−∣MT∣=12∣PF2∣−(12∣PF1∣−∣F1T∣)=12(∣PF2∣−∣PF1∣)+b=12×(−2a)+b=b−a.16. C 【解析】设以点M(1,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),则x1+x2=2,y1+y2=2.又x1216+y129=1, ⋯⋯①x22 16+y229=1, ⋯⋯②①−②整理得:y1−y2x1−x2=−916,所以以点M(1,1)为中点的弦所在直线的斜率k=−916.所以中点弦所在直线方程为y−1=−916(x−1),即9x+16y−25=0.17. A 【解析】由题意知m2−1=n2+1,即m2=n2+2,(e1e2)2=m2−1m2⋅n2+1n2=(1−1m2)(1+1n2),代入m2=n2+2,得m>n,(e1e2)2>1.18. D 19. B 20. C【解析】直线4kx−4y−k=0,即y=k(x−14),即直线4kx−4y−k=0过抛物线y2=x的焦点(14,0),设A(x1,y1),B(x2,y2),则∣AB∣=x1+x2+12=4,故x1+x2=72,则弦AB的中点的横坐标是74,弦AB的中点到直线x+12=0的距离是74+12=94.21. A 【解析】设 AB:x =my +5,与双曲线方程联立得 (9m 2−16)y 2+90my +81=0,设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=−90m 9m 2−16,y 1y 2=819m 2−16.右准线方程为 x =165,所以 C (165,y 2),则 AC:y −y 2=y 2−y 1165−x 1(x −165),令y =0,化简可得 x =4110.特殊法:设 A (5,94),则 B (5,−94),C (165,−94).故 k AC =94−(−94)5−165=52,直线AC 为 y −94= 52(x −5),即:10x −4y −41=0,与 x 轴交点为 (4110,0),可得答案. 22. B 23. D【解析】因为 √x 2+y 2+2x +1+√x 2+y 2−2x +1=√(x +1)2+y 2+√(x −1)2+y 2≤2√2,所以一动点 P (x,y ) 的轨迹是以点 (−1,0) 和点 (1,0) 为焦点椭圆及其内部,椭圆的方程为x 22+y 2=1,又曲线a ∣x ∣+b ∣y ∣=1 表示的区域为一平行四边形,因为曲线 a∣x∣+b ∣y ∣=1(a ≥0,b ≥0) 上任意一点,其坐标 (x,y ) 均满足 √x 2+y 2+2x +1+√x 2+y 2−2x +1≤2√2,即平行四边形在椭圆的内部,所以有 {1b ≤1,1a≤√2解得 {b ≥1,√2a ≥1, 所以 √2a +b ≥2.24. B 【解析】由直线与圆没有交点可得 ∣−4∣√m 2−n 2>2,即 m 2+n 2<4,n 2<4−m 2, 所以n 29+m 29+4−m 24=1−5m 236<1,所以点 (m,n ) 在椭圆x 29+y 24=1 的内部,故经过点 (m,n ) 的直线与椭圆由 2 个交点. 25. A26. D 【解析】当x>0时,曲线为P29−x24=1,将直线y=x+3代入曲线方程得x=0(舍)或x=245,故此时有一个交点;当x≤0时,曲线为y29+x24=1,将直线y=x+3代入曲线方程得x=0或x=−2413,故此时有两个交点.因此共有3个交点.27. D 【解析】将y=2k代入9k2x2+y2=18k2∣x∣得:9k2x2+4k2=18k2∣x∣⇒9∣x∣2−18∣x∣+4=0,显然该关于∣x∣的方程有两正解,即x有四解,所以交点有4个.28. D 【解析】设点P坐标为(x P,y P),由已知,直线PF2的方程为y=ba (x−c),代入双曲线方程得x P=a2+c22c,y P=−b32ac,因为PF1⊥PF2,所以k PF1⋅k PF2=−1,即−b32aca2+c22c+c⋅ba=−1,化简得b4=a4+3a2c2,即(c2−a2)2=a4+3a2c2,即c2=5a2,所以e2=5,e=√5.29. D 【解析】由椭圆的方程可知a=2,由椭圆的定义可知,∣AF2∣+∣BF2∣+∣AB∣=4a=8,所以∣AB∣=8−(∣AF2∣+∣BF2∣)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b2a=3.所以b2=3,即b=√3.30. C【解析】①中x2−y2=1是一个等轴双曲线,它不存在"自公切线";②如图所示,曲线在点(−12,−14)和点(12,−14)处的切线重合;③ y =3sinx +4cosx =5sin (x +φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线"; ④中曲线如图所示,不存在"自公切线".31. D【解析】设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则 {y 12=4x 1,y 22=4x 2,所以(y 1+y 2)(y 1−y 2)=4(x 1−x 2)⋯∗.①当 x 1=x 2,即直线 l 斜率不存在时,此时一定存在 2 条满足题意的直线,如图:②当 x 1≠x 2 时,设直线 l 的斜率为 k ,∗ 式化为 2y 0⋅y 1−y 2x 1−x 2=4,即 ky 0=2.由直线与圆相切得y 0−0x 0−5⋅k =−1,即 ky 0=5−x 0=2,所以 x 0=3,即点M 在直线 x =3 上.而 x =3 与抛物线交点为 N(3,±2√3),与 x 轴的交点为 P (3,0),圆心到N、P的距离分别为4、2.当r=4时,点N在圆上,没有对应的直线满足要求;当r=2时,点M在x轴上,没有对应的直线满足要求;当2<r<4时,过点M作圆的切线即可满足要求,如图所示:这样的切线恰有两条,从而直线l恰有4条,则2<r<4.32. B 【解析】提示:由对称性,可设椭圆上任意一点P的坐标为(x0,y0),所以x02=1−y02a2,∣AP∣2=1−y02a2+(y0−a)2=(a2−1a2)y02−2ay0+a2+1.因为0<a<1,所以a2−1a2<0,关于y0的二次函数图象开口向下,所以对称轴y0=a3a2−1≥−a.解得√22≤a<1.33. C 【解析】由实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,即λ2x2+μ2y2≤1,所以∣λ∣≤1,∣μ∣≤1 .而{∣λ∣≤1,∣μ∣≤1.构成的区域如图:A、B、D选项的集合所表示的曲线均与(λ,μ)所表示的区域无交点,C选项所表示的抛物线与区域有交点,符合题意.34. D 【解析】由题意,知P点必在线段MN的垂直平分线上.∵MN的中点为(−32,0),直线MN斜率为12,∴ MN 的垂直平分线方程是 y =−2x −3,它显然与①中的直线平行,∴ 排除A 、C ;注意到选项B 、D 的区别,联立垂直平分线方程与椭圆方程,解得③中曲线上存在符合题设条件下的 P 点. 35. B【解析】如图,设直线 AB 的方程为 x =my +√2 (显然 m <0 ),A (x 1,y 1),B (x 2,y 2),P(√2,0),联立 {x =my +√2,y =√1−x 2. 消去 x 得 (1+m 2)y 2+2√2my +1=0,由题意得 Δ=8m 2−4(1+m 2)>0,所以 m 2>1,由根与系数的关系得 y 1+y 2=−2√2m1+m 2,y 1⋅y 2=11+m 2,所以 S △AOB =S △POB −S △POA =12⋅∣OP ∣⋅∣y 2−y 1∣=√22⋅√8m 2(1+m2)2−41+m 2=√22⋅√4(m 2−1)(1+m 2)2令 t =1+m 2(t >2), 所以 S △AOB =√2⋅√t−2t 2=√2⋅√−2(1t −14)2+18, 所以当 1t=14,即 t =4,m =−√3 时,△AOB 的面积取得最大值,此时,直线l 的斜率为 −√33.36. B 【解析】设 A (x 1,y 1),B (x 2,y 2),依题意,k OD =12,k AB =−2,所以直线 AB 方程为 y −1=−2(x −2),即 y =−2x +5, 代入抛物线方程得 4x 2−(20+2p )x +25=0, 所以 {x 1+x 2=10+p 2,x 1x 2=254. ⋯⋯①又因为 OA ⊥OB ,所以 x 1x 2+y 1y 2=5x 1x 2−10(x 1+x 2)+25=0, ⋯⋯②, 将 ① 代入 ② 得 5×254−10×10+p 2+25=0,解得 p =54,所以抛物线方程为 y 2=52x .来自QQ 群33944496337. B 【解析】我们设 A (x 1,y 1),B (x 2,y 2),直线 AB 方程为 x =my +t .直线 AB 交 x 轴于点 M (t,0). 联立直线和抛物线的方程消去 x 得y 2−my −t =0,因为 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =2,所以 x 1x 2+y 1y 2=y 12y 22+y 1y 2=2,解得 y 1y 2=−2,即 t =2,所以 AB 过 x 轴上定点 M (2,0).S △ABO =12∣OM ∣∣y 1−y 2∣=∣y 1−y 2∣,S △AFO =12∣OF ∣∣y 1∣=18∣y 1∣,所以S △ABO +S △AFO=∣y 1−y 2∣+18∣y 1∣=98∣y 1∣+2∣y 1∣≥3,当且仅当 98∣y 1∣=2∣y 1∣,即 ∣y 1∣=43时,等号成立.38. B 【解析】建立如图所示的坐标系,可设 A (1,0),B (0,1),设 ∠AOC =α(0≤α≤π2),则 OC⃗⃗⃗⃗⃗ (cosα,sinα), 所以 OC ⃗⃗⃗⃗⃗ =(x,2y )=(cosα,sinα), 所以 x2+y =12(cosα+sinα)=√22sin (α+π4)(0≤α≤π2). 由 π4≤α+π4≤3π4,可得 sin (α+π4)∈[√22,1],即 x2+y ∈[12,√22].来自QQ 群33944496339. B 【解析】抛物线 y 2=4x 的准线方程为 l:x =−1. 过点 P 作 PFʹ⊥l ,垂足为 Fʹ,由抛物线的定义,得 |PF |=|PFʹ|, 故 |PF ||PA|=|PFʹ||PA |=cos∠PAF ,即求 cos∠PAF 的最小值,又 0≤∠PAF <π2,故需使 ∠PAF 最大. 当直线 PA 与抛物 y 2=4x 相切时,∠PAF 最大,|PF ||PA |取得最小值,这时,设直线 PA 的方程为 y =k (x +1), 联立 {y =k (x +1),y 2=4x,消去 y 得,k 2x 2+(2k 2−4)x +k 2=0, 则 Δ=(2k 2−4)2−4k 4=0, 所以 k 2=1, 解得 k =±1.故此时 tan∠PAF =1,∠PAF =π4,所以 cos∠PAF =√22. 40. B 41. C【解析】法一 据题意画图,作 AA 1⊥lʹ,BB 1⊥lʹ,BD ⊥AA 1 .设直线 l 的倾斜角为 θ,∣AF ∣=2∣BF ∣=2r , 则 ∣AA 1∣=2∣BB 1∣=2∣AD ∣=2r , 所以有 ∣AB ∣=3r ,∣AD ∣=r ,则 ∣BD ∣=2√2r ,k =tanθ=tan∠BAD =∣BD∣∣AD∣=2√2 .法二 直线 y =k (x −2) 恰好经过抛物线 y 2=8x 的焦点 F (2,0),由 {y 2=8x,y =k (x −2).可得 ky 2−8y −16k =0,因为 ∣FA ∣=2∣FB ∣,所以 y A =−2y B .则 y A +y B =−2y B +y B =8k,所以 y B =−8k,y A ⋅y B =−16,所以−2y B 2=−16,即 y B =±2√2,又 k >0,故 k =2√2 .42. C【解析】如图,还原正方体,连接 A 1B 1,B 1D 1,A 1D 1 . ∠D 1B 1A 1 即为所求角.设正方形的边长为 2,则 A 1B 1=2√2,A 1D 1=B 1D 1=√5. 在 △D 1B 1A 1 中用余弦定理,得 AB 和 CD 的夹角的余弦值为 √105. 43. A【解析】(i )若直线 MN 的斜率不存在,则点 B 的坐标为 (3,0).(ii )若直线 MN 的斜率存在,设 A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2).则由 {y 12=4x 1,y 22=4x 2,得 y 12−y 22=4(x 1−x 2),所以y 1−y 2x 1−x 2(y 1+y 2)=4,即 k MN =2t ,所以直线 MN 的方程为 y −t =2t(x −3), 所以点 B 的横坐标 x B =3−t 22.由 {y −t =2t (x −3),y 2=4x, 消去 x 得 y 2−2ty +2t 2−12=0.由 Δ>0 得 t 2<12,又 t ≠0, 所以 x B =3−t 22∈(−3,3).综上,点 B 的横坐标的取值范围为 (−3,3].44. D【解析】当直线斜率不存在时,直线方程为 x =0,C (0,1),D (0,−1),此时 OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =−1; 当直线斜率存在时,设斜率为 k ,C (x 1,y 1),D (x 2,y 2),则直线方程为 y =kx +2,与椭圆方程联立得 (1+4k 2)x 2+16kx +12=0,Δ=(16k )2−48(1+4k 2)=64k 2−48>0,得 k 2>34,x 1+x 2=−16k 1+4k2,x 1x 2=121+4k 2,所以OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+4=(1+k 2)⋅121+4k 2+2k ⋅−16k 1+4k2+4=−4k 2+161+4k 2=−1+171+4k2, 因为 k 2>34,所以 1+4k 2>4,0<171+4k2<174,所以 −1<OC ⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ <134. 综上,OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ 的取值范围是 [−1,134). 45. C【解析】由已知,过点 F 和点 M (4,4) 且与准线 l 相切的圆的圆心在抛物线 y =4x 2 上,又因为此圆过 F 和 M ,所以圆心在 MF 的垂直平分线上,抛物线 y =4x 2 与 MF 的垂直平分线的交点有两个,故过点 F 和点 M (4,4) 且与准线 l 相切的圆有 2 个. 46. C【解析】因为内外两个椭圆的离心率相同,不妨设 B 点坐标为(0,tb ),A 点坐标为 (ta,0),设直线 BD 斜率为 k 1,AC 斜率为 k 2,则 BD 的方程为 y =k 1x +tb ,AC 的方程为 y =k 2x −k 2ta .由 BD 、 AC 与椭圆相切易得k 12a 2+b 2=t 2b 2 ⋯⋯① k 22a 2+b 2=k 22t 2a 2 ⋯⋯② 由①得 k 12=(t 2−1)b 2a 2 ⋯⋯③ 由②得 k 22=b 2a 2(t 2−1) ⋯⋯④又因为 k 1k 2=−14,所以 a =2b ,从而椭圆的离心率为 √32. 47. A【解析】P 1(x 1,y 1) 是直线 l 上的一点,故有 f (x 1,y 1)=0,P 2(x 2,y 2) 是直线 l 外一点,故 f (x 2,y 2)≠0,是一个非零实数,从而 f (x,y )+f (x 1,y 1)+f (x 2,y 2)=0 表示的直线与直线 l 平行且不重合. 48. A【解析】根据题意,S △ABC =12×∣AB∣×ℎ=12×2√2×ℎ=2, 解得 ℎ=√2,即点 C 到直线 AB 的距离为 √2.问题转化为与直线 AB 距离为 √2 的直线与抛物线交点的个数. 由两平行线间的距离公式,得与直线 AB 距离为 √2 的直线方程为y =−x 或 y =−x +4,分别将直线与抛物线方程联立,解得这两直线与抛物线分别有 2 个交点,因此,共有 4 个不同的 C 点满足条件.49. B 【解析】∵ 双曲线上的一点到双曲线左、右焦点的距离之差为 4,∴a =2.∵ A (x 1,2x 12),B (x 2,2x 22) 关于直线 y =x +m 对称,∴{2x 12−2x 22x 1−x 2=−1,x 1+x 22+m =2x 12+2x 222,整理得 x 1+x 2=−12,m =32.50. D【解析】(i ) 当 l 与 x 轴垂直时,直线 l:x =1 与抛物线 M 交于点 (1,±2),与圆 N 交于点 (1,±r ),显然满足 ∣AC ∣=∣BD ∣.(ii ) 当 l 与 x 轴不垂直时,设直线 l 的方程为 x =my +1. 由 {x =my +1,y 2=4x,消去 x ,得 y 2−4my −4=0.设 A (x 1,y 1),B (x 2,y 2),且 y 1<y 2,则 y 1+y 2=4m,y 1y 2=−4, 所以 (y 1−y 2)2=(y 1+y 2)2−4y 1y 2=16(m 2+1). 由 {x =my +1,(x −1)2+y 2=r 2, 解得 y =±√r 2m 2+1. 设 C (x 3,y 3),D (x 4,y 4),且 y 3<y 4,则 (y 3−y 4)2=4r 2m 2+1.由 ∣AC ∣=∣BD ∣,得 ∣y 3−y 1∣=∣y 4−y 2∣,即 ∣y 1−y 2∣=∣y 3−y 4∣. 由此,16(m 2+1)=4r 2m 2+1,解得 r =2(m 2+1),来自QQ 群339444963显然,当 r >2 时,m 有两解,对应的直线 l 有两条.又当 r =2 时,m =0,此时直线 l 斜率不存在,即为第一种情况 综合(i )(ii ),当 r ≥2 时,对应的直线 l 有三条,故D 适合.51. B 【解析】抛物线的准线方程为 y =−12,设抛物线焦点为 F ,则点 F 坐标为 (0,12).根据抛物线的定义可得 ∣PQ ∣=∣PF ∣−12,所以 ∣PA∣+∣PQ ∣=∣PF ∣+∣PQ ∣−12.所以 ∣PA∣+∣PQ ∣ 的最小值为 ∣FQ ∣−12=192.52. A【解析】提示:如图,设 PF 1 的中点为 M ,因为 OM 为 △PF 1F 2 的中位线,所以 ∣OM ∣=12∣PF 2∣,设以线段 PF 1 、A 1A 2 为直径的两圆的半径分别是 r 、 a ,则两圆的圆心距为 ∣OM ∣=12∣PF 2∣=12(2a−∣PF 1∣)=12(2a −2r )=a −r ,所以两圆的位置关系是内切.53. A 【解析】由已知得圆 C 是 △AF 1F 2 的旁切圆, 点 M 是圆 C 与 x 轴的切点,设圆 C 与直线 F 1A 的延长线,AF 2 分别相切于点 P ,Q ,则由切线的性质可知:∣AP ∣=∣AQ ∣,∣F 2Q ∣=∣F 2M ∣,∣F 1M ∣=∣F 1P ∣, 所以∣MF 2∣=∣QF 2∣=(∣F 1A ∣+∣AF 2∣)−(∣AF 1∣+∣AQ ∣)=2a−∣AF 1∣−∣AP ∣=2a−∣F 1P ∣=2a−∣F 1M ∣,所以 ∣MF 1∣+∣MF 2∣=2a , 所以 t =a =2. 54. A【解析】由于双曲线为中心对称图形,为此可考察特殊情况,设A 为 y =x 与双曲线在第一象限的交点,则不妨设B 为直线 y =−x 与双曲线在第四象限的一个交点,因此直线 AB 与 x 轴垂直,点 O 到 AB 的距离即为点 A 或点 B 的横坐标的值,联立直线与双曲线的方程,求出 x 的值即可. 55. D【解析】由椭圆的定义得 ∣AF 1∣+∣AF 2∣=2a =4,∣BF 1∣+∣BF 2∣=2a =4,所以 ∣AF 1∣+∣BF 1∣=4a −(∣BF 2∣+∣BF 1∣),因为 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,所以 ∣AF 1∣+∣BF 1∣ 的最小值为 3,当直线 l 与 x 轴垂直的时候,∣AF 1∣+∣BF 1∣ 最小,所以此时 A (−c,32),代入椭圆方程解得 b =√3.56. D【解析】设直线 AB 的方程为 y =k (x +p2),A (x 1,P 1),B (x 2,y 2) ,联立直线与抛物线得 k 2x 2+(k 2p −2p )x +p 2k 24=0,所以 x 1+x 2=2p−k 2p k 2,x 1x 2=p 24,又 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,所以 2∣AB ∣=∣AF ∣+∣BF ∣,又 ∣AB ∣=√1+k 2∣x 1−x 2∣=√1+k 2⋅2p√1−k 2k 2,∣AF ∣+∣BF ∣=x 1+x 2+p ,所以 4(1−k 4)=1,解得 k 2=√32. 57. B 【解析】设 A (x 1,y 1),B (x 2,y 2),由于 AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则有 y 1=−3y 2.由 e =√32,可设 a =2t,c =√3t,b =t ,代入椭圆方程整理得x 2+4y 2−4t 2=0.而直线 AB 的方程为 x =sy +√3t (s =1k ),代入 x 2+4y 2−4t 2=0,消去 x 并整理得。

高考数学圆锥曲线压轴题精选精练4利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题(解析版)

高考数学圆锥曲线压轴题精选精练4利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题(解析版)

第4讲利用三角形的中位线、中线、角平分线、中垂线解决圆锥曲线问题参考答案与试题解析一.选择题(共10小题)1.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,||OF为半径的圆上,则直线PF的斜率是()A B C.D.2【解答】解:如图所示,设线段PF的中点为M,连接OM.设椭圆的右焦点为F',连接PF'.则//OM PF'.又||||2OM OF c===,11||||(22)122FM PF a c a c==-=-=.设MFOα∠=,在OMF∆中,2222121 cos2214α+-==⨯⨯,sinα∴tanα∴=.故选:A.2.如图,从双曲线22221(0,0)x ya ba b-=>>的左焦点F引圆222x y a+=的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则||||MO MT-与b a-的大小关系为()A .||||MO MT b a ->-B .||||MO MT b a -<-C .||||MO MT b a -=-D .以上三种可能都有【解答】解:将点P 置于第一象限. 设1F 是双曲线的右焦点,连接1PFM 、O 分别为FP 、1FF 的中点,11||||2MO PF ∴=. 又由双曲线定义得, 1||||2PF PF a -=,||FT b ==.故||||MO MT - 11||||||2PF MF FT =-+ 11(||||)||2PF PF FT =-+ b a =-.故选:C .3.从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -等于( )A .c a -B .b a -C .a b -D .c b -【解答】解:如图所示,设F '是双曲线的右焦点,连接PF '. 点M ,O 分别为线段PF ,FF '的中点, 由三角形中位线定理得到:111||||(||2)||222OM PF PF a PF a ='=-=- ||MF a =-,||||||||||OM MT MF MT a FT a ∴-=--=-,连接OT ,因为PT 是圆的切线,则OT FT ⊥,在Rt FOT ∆中,||OF c =,||OT a =,||FT b ∴==.||||OM MT b a ∴-=-.故选:B .4.设1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,点P 在双曲线上,已知1||PF 是2||PF 和12||F F 的等差中项,且12120F PF ∠=︒,则该双曲线的离心率为( )A .1B .32C .52D .72【解答】解:设1||PF m =,2||PF n =,由1||PF 是2||PF 和12||F F 的等差中项,12120F PF ∠=︒, 则点P 在C 的右支上,2m n a ∴-=,12122||||||PF PF F F =+,即22m n c =+, 22m c a ∴=-,24n c a =-,由余弦定理可知:22212111212||||||2||||cos F F PF PF PF PF F PF =+-∠,222(2)(22)(24)2(22)(24)cos120c c a c a c a c a ∴=-+----︒, 整理得222920c ac c -+=,由c e a=, 22970e e ∴-+=,由1e >,解得:72e =, 曲线的离心率为72, 故选:D .5.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且1F M MP ⊥,则||OM 的取值范围是( ) A .(0,)cB .(0,)aC .(,)b aD .(,)c a【解答】解:如图,延长2PF ,1F M ,交于N 点,PM 是12F PF ∠平分线,且1F M MP ⊥,1||||PN PF ∴=,M 为1F N 中点,连接OM ,O 为12F F 中点,M 为1F N 中点 2212111||||||||||||||||222OM F N PN PF PF PF ∴==-=- 在椭圆22221(0,0)x y a b xy a b+=>>≠中,设P 点坐标为0(x ,0)y则10||PF a ex =+,20||PF a ex =-,120000|||||||||2|2||PF PF a ex a ex ex e x ∴-=+-+==P 点在椭圆22221(0,0)x y a b xy a b+=>>≠上,0||(0x ∴∈,]a ,又当0||x a =时,1F M MP ⊥不成立,0||(0,)x a ∴∈ ||(0,)OM c ∴∈.故选:A .6.设1(,0)F c -,2(,0)F c 是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值b C .定值cD .不确定,随P 点位置变化而变化【解答】解:过点1F 作PQ 的垂线,垂足为Q ,交2PF 的延长线于M , 由三角形1PF M 为等腰三角形,可得Q 为1F M 的中点, 由双曲线的定义可得122||||||2PF PF F M a -==, 由三角形的中位线定理可得21||||2OQ F M a ==, 故选:A .7.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线:280l x y +-=与椭圆22:11612x y C +=相切于点P ,椭圆C 的焦点为1F ,2F ,由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线的方程为( ) A .210x y --=B .10x y -+=C .210x y -+=D .10x y --=【解答】解:由光学性质知直线1PF ,2PF 与l 的夹角相等,则12F PF ∠的角平分线所在的直线为法线,即与直线l 垂直的直线,而直线:280l x y +-=,所以设所求的直线的方程为20x y m -+=, 联立222803448x y x y +-=⎧⎨+=⎩,整理可得:2690y y -+=,解得3y =, 代入直线l 的方程可得2380x +⨯-=,可得2x =, 即(2,3)P ,将(2,3)P 代入所求的直线方程可得:2230m ⨯-+=,可得1m =-, 所以12F PF ∠的角平分线所在的直线的方程为210x y --=, 故选:A .8.根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为( )A .B .CD 【解答】解:由已知可得0(A x ,2)在第一象限,将点A 的坐标代入双曲线方程可得:20412x -=,解得0x =A 2), 又由双曲线的方程可得1a =,b,所以c =,则2F , 所以2||2AF =,且点A ,2F都在直线x =12||||OF OF =所以12122||tan ||F F F AF AF ∠==,所以1260F AF ∠=︒, 设2F AM ∠的角平分线为AN ,则21(18060)602F AN ∠=︒-︒⨯=︒, 所以直线AN 的倾斜角为150︒,所以直线的斜率为tan150︒= 故选:B .9.设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是( )AB .32C .52D1【解答】解:由双曲线的方程可知,渐近线为by x a=±,分别与30(0)x y m m -+=≠联立,解得(3am A a b --,)3bm a b --,(3am B a b -+,)3bma b+, AB ∴中点坐标为222(9ma b a -,2223)9mb b a -, 点(,0)P m 满足||||PA PB =, ∴22222230939mb b a ma mb a --=---, 2a b ∴=,c ∴,c e a ∴==. 故选:A .10.椭圆22221(0)x y a b a b +=>>的右焦点为(,0)F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是( )ABCD .35【解答】解:设(,)Q m n ,由题意可得2222221n c m c bn b m cc m n ab ⎧=-⎪-⎪+⎪=⋅⎨⎪⎪+=⎪⎩①②③,由①②可得:322c cb m a -=,222bc n a=,代入③可得:3222222222()()1c cb bc a a a b -+=, 解得2422(441)41e e e e -++=, 可得,62410e e +-=.即64422422210e e e e e -+-+-=, 可得242(21)(21)0e e e -++=解得e . 故选:B .二.多选题(共1小题)11.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,C 的一条渐近线l 的方程为y =,且1F 到l的距离为点P 为C 在第一象限上的点,点Q 的坐标为(2,0),PQ 为12F PF ∠( )A .双曲线的方程为221927x y -=B .12||2||PF PF = C .12||36PF PF += D .点P 到x【解答】解:渐近线l 的方程为y =,∴ba, 1(,0)F c -到l 的距离为|()|bc b ⋅-∴==, 3a ∴=,∴双曲线的标准方程为221927x y -=,即选项A 正确;26c a =+, 1(6,0)F ∴-,2(6,0)F ,由角分线定理知,1122||||82||||4PF FQ PF QF ===,即选项B 正确;由双曲线的定义知,12||||26PF PF a -==, 112||12||PF F F ∴==,2||6PF =,在等腰△12PF F 中,221121||312cos ||124PF PFF F F ∠===, 21sin PF F ∴∠= 222119||||cos 6642P x OF PF PF F ∴=-⋅∠=-⨯=, 221||sin 6P y PF PF F =⋅∠==D正确;||OP ∴=,12|||2|2||PF PF OP OP ∴+===C 错误.故选:ABD .三.填空题(共7小题)12.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则||PF = 2 ;P 点的坐标为 .【解答】解:椭圆22195x y +=的3a =,b 2c =,23e =设椭圆的右焦点为F ',连接PF ',线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得||2||4PF AO '==,设P 的坐标为(,)m n ,可得2343m -=,可得32m =-,n =,由||2||4PF AO '==,||642PF =-=,故答案为:2;3(2-.13.已知F 是抛物线2y x =的焦点,A 、B 是该抛物线上的两点,||||3AF BF +=,则线段AB 的中点到y 轴的距离为54. 【解答】解:由于F 是抛物线2y x =的焦点, 得1(4F ,0),准线方程14x =-,设1(A x ,1)y ,2(B x ,2)y , 1211||||344AF BF x x ∴+=+++=, 解得1252x x +=, ∴线段AB 的中点横坐标为54. ∴线段AB 的中点到y 轴的距离为54. 故答案为:54.14.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为. 【解答】解:设||AF a =,||BF b =,连接AF 、BF ,由抛物线定义,得||||AF AQ =,||||BF BP =,在梯形ABPQ 中,2||||||MN AQ BP a b =+=+. 由余弦定理得,22222||2cos120AB a b ab a b ab =+-︒=++, 配方得,22||()AB a b ab =+-, 又2()2a b ab +, 222213()()()()44a b ab a b a b a b ∴+-+-+=+得到3||()2AB a b +.∴1()||2||3(a b MN AB a b +=+, 即||||MN AB. .15.设抛物线22(0)y px p =>的焦点为F ,已知A ,B 为抛物线上的两个动点,且满足60AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 1 .【解答】解:设||AF a =,||BF b =, 由抛物线定义,得||||AF AQ =,||||BF BP = 在梯形ABPQ 中,2||||||MN AQ BP a b ∴=+=+. 由余弦定理得,22222||2cos60AB a b ab a b ab =+-︒=+- 配方得,22||()3AB a b ab =+-, 又()2a b ab + 2, 222231()3()()()44a b ab a b a b a b ∴+-+-+=+得到1||()2AB a b +. ∴||1||MN AB ,即||||MN AB 的最大值为1. 故答案为:116.抛物线22(0)y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足90AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为. 【解答】解:设||AF a =,||BF b =, 由抛物线定义,得||||AF AQ =,||||BF BP = 在梯形ABPQ 中,2||||||MN AQ BP a b ∴=+=+. 由余弦定理得,22222||2cos90AB a b ab a b =+-︒=+,配方得,22||()2AB a b ab =+-, 又()2a b ab +2, 222211()2()()()22a b ab a b a b a b ∴+-+-+=+得到2||()2AB a b +.∴||22||MN AB ,即||||MN AB 的最大值为.17.已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = 6 .【解答】解:不妨设A 在双曲线的右支上AM 为12F AF ∠的平分线∴1122||||82||||4AF F M AF MF === 又12||||26AF AF a -== 解得2||6AF = 故答案为618.如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是 11(,)22- .【解答】解:由题意知,椭圆C 在点0(P x ,0)y 处的切线方程为00143xx yy +=,且0(2,2)x ∈-, ∴切线的斜率为034x y -,而12F PF ∠的角平分线的斜率为0y x t-, 又切线垂直于12F PF ∠的角平分线, 0000314x y y x t ∴-⋅=--,即011(42t x =∈-,1)2. 故答案为:1(2-,1)2.四.解答题(共8小题)19.已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,P 为椭圆E上除长轴端点外任意一点,△12PF F 周长为12. (1)求椭圆E 的方程;(2)作12F PF ∠的角平分线,与x 轴交于点(,0)Q m ,求实数m 的取值范围.【解答】解:(1)椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为:1(2,0)F -,2(2,0)F ,2c ∴=,△12PF F 周长为12, 21248a ∴=-=,4a ∴=,则b =∴椭圆E 的方程为2211612x y +=.(2)在△12PF F 中,1||(,)PF a c a c ∈-+,即1||(2,6)PF ∈, PQ 为12F PF ∠的角平分线,∴1212||||||||QF QF PF PF =, 由合比性质得12121212||||||||21||||||||22QF QF QF QF c PF PF PF PF a +====+, 即111||||(1,3)2QF PF =∈, 1||(2)2QF m m =--=+,2(1,3)m ∴+∈, (1,1)m ∴∈-.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.【解答】解:(1)设所求椭圆方程为22221x y a b+=,则2||5F B =, 由椭圆的性质:12||||2BF BF a +=,所以12||||1(35)422BF BF a +==+=,b ===所以椭圆的方程为2211612x y +=.(2)由椭圆的方程为2211612x y +=,则1(2,0)F -,2(2,0)F .①存在直线8x =,使得P 到2F 和P 到直线x m =的距离之比为定值. 设椭圆上的点0(P x ,0)y ,则2||PF P 到直线x m =的距离0||d m x =-,所以20||PF d = 所以,当8m =时,2||12PF d =(定值). 即存在8m =,使得P 到2F 和P 到直线8x =的距离之比为定值12. ②设椭圆上的点0(P x ,0)y ,则001200,22y y k k x x ==+-, 又椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,证明如下:对于椭圆2211612x y +=,当0y >,y =y '=所以椭圆2211612x y +=在0(P x ,0)y处的切线方程为00)y y x x -=-,又由220011612x y +=,可以整理切线方程为:000003)()4x y y x x x x y -=-=--, 即切线方程为00004()3()y y y x x x -=--,即220000344348x x y y y x +=+=,也即0011612x x y y+=.所以椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,同理可证:当0y <,椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,综述:椭圆2211612x y +=在点0(P x ,0)y 处的切线方程为0011612x x y y+=,所以在点0(P x ,0)y 处的切线l 的斜率为034x y -, 又由光学性质可知:直线PQ l ⊥,所以00314x k y -⋅=-,则0043yk x =. 所以0001000424(2)33y x x k k x y x ++=⋅=, 0002000424(2)33y x x k k x y x --=⋅=, 那么0012004(2)4(2)8333x x k k k k x x +-+=+=. 21.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>与直线:()l x m m R =∈,四点(3,1)-,(-,0),(3,1)-,(中有三个点在椭圆C 上,剩余一个点在直线l 上. ()I 求椭圆C 的方程;(Ⅱ)若动点P 在直线l 上,过P 作直线交椭圆C 于M ,N 两点,使得||||PM PN =,再过P 作直线l MN '⊥.证明直线l '恒过定点,并求出该定点的坐标.【解答】()I 解:由题意有3个点在椭圆C 上,根据椭圆的对称性,则点(3,1)-,(3,1)-一定在椭圆C 上, 即22911a b+=①,⋯(2分)若点(-0)在椭圆C上,则点(-,0)必为C 的左顶点,而3>,则点(-0)一定不在椭圆C 上,故点(C上,点(-,0)在直线l 上,⋯(4分)所以22331a b+=②, 联立①②可解得212a =,24b =,所以椭圆C 的方程为221124x y +=; ⋯(6分)(Ⅱ)证明:由()I 可得直线l的方程为x =-设(P -0)y,0(y ∈, 当00y ≠时,设1(M x ,1)y 、N 2(x ,2)y ,显然12x x ≠, 又PM PN =,即P 为线段MN 的中点,M ,N 代入椭圆方程相减可得直线MN⋯(10分) 又l MN '⊥,所以直线l '的方程为0y y x -=+,⋯(13分)即y x =, 显然l '恒过定点(,0),⋯(15分) 当00y =时,直线MN即x =-l '为x轴亦过点(,0); 综上所述,l '恒过定点(3-,0). ⋯(16分) 22.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,上顶点为B .Q 为抛物线224y x =的焦点,且10F B QB ⋅=,12120F F QF += (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过定点(0,4)P 的直线l 与椭圆C 交于M ,N 两点(M 在P ,N 之间),设直线l 的斜率为(0)k k >,在x 轴上是否存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形?若存在,求出实数m 的取值范围;若不存在,请说明理由.【解答】解:(Ⅰ)由已知(6,0)Q ,1F B QB ⊥, 1||46QF c c ==+,所以2c =.⋯(1分)在Rt △1F BQ 中,2F 为线段1F Q 的中点, 故2||24BF c ==,所以4a =.⋯(2分)于是椭圆C 的标准方程为2211612x y +=.(Ⅱ)设:4(0)l y kx k =+>,1(M x ,1)y ,2(N x ,2)y ,取MN 的中点为0(E x ,0)y . 假设存在点(,0)A m ,使得以AM ,AN 为邻边的平行四边形为菱形,则AE MN ⊥. 联立22224(43)3216011612y kx k x kx x y =+⎧⎪⇒+++=⎨+=⎪⎩△102k >⇒>. 1202232164343k k x x x k k --+=∴=++,00212443y kx k =+=+. 因为AE MN ⊥,所以1kAE k=-. 2221211644()34343434k k m m k k k k k k=-⨯--⇒=-=-++++.12k >,∴31443,34k k k k+∈+所以[m ∈. 23.在①离心率12e =,②椭圆C过点3(1,)2,③△12PF F中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、F ,过1F 且斜率为k 的直线l 交椭圆于P 、Q 两点,已知椭圆C的短轴长为_____. (1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:1||||PQ NF 为定值. 【解答】解:(1)选择①离心率12e =,可得12c e a ==,2b =,即b , 解得2a =,1c =,即有椭圆的方程为22143x y +=;选②椭圆C 过点3(1,)2,即有221914a b +=,又2b =,即b =2a =,即有椭圆的方程为22143x y +=;选③△12PF F可得P 位于短轴的端点时,取得最大值,且为1232c b =,即为bc=2b =,即b =,1c =,2a ==,即有椭圆的方程为22143x y +=;(2)证明:设直线l 的方程为(1)y k x =+,联立椭圆方程可得2222(34)84120k x k x k +++-=,设1(P x ,1)y ,2(Q x ,2)y ,可得2122834k x x k +=-+,212241234k x x k -=+,可得4222221212222264164812(1)||()41(34)3434k k k PQ x x x x kk k k -+=+-=+-=+++,设PQ 的中点为(,)H t s ,可得21224234x x k t k +==-+,2334ks k =+, 由题意可得2223134434HNN kk k k k x k +==---+,解得2234N k x k =-+, 可得221223(1)|||1|3434k k NF k k+=-+=++, 可得1||4||PQ NF =,即为定值.24.已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【解答】解:()I 四边形OABC 为菱形,B 是椭圆的右顶点(2,0)∴直线AC 是BO 的垂直平分线,可得AC 方程为1x =设(1,)A t ,得22114t +=,解之得t =(舍负)A ∴的坐标为,同理可得C 的坐标为(1,因此,||AC =,可得菱形OABC 的面积为1||||32S AC BO == ()II 四边形OABC 为菱形,||||OA OC ∴=,设||||(1)OA OC r r ==>,得A 、C 两点是圆222x y r +=与椭圆22:14x W y +=的公共点,解之得22314x r =-设A 、C 两点横坐标分别为1x 、2x ,可得A 、C 两点的横坐标满足 21231x x r ==-,或2131x r -且2231x r =-,①当2121x x r ==-时,可得若四边形OABC 为菱形,则B 点必定是右顶点(2,0);②若2131x r -且2231x r =-,则120x x +=,可得AC 的中点必定是原点O ,因此A 、O 、C 共线,可得不存在满足条件的菱形OABC 综上所述,可得当点B 不是W 的顶点时,四边形OABC 不可能为菱形.25.已知过抛物线2:2(0)C y px p =>的焦点,斜率为1(A x ,1)y 和2(B x ,212)()y x x <两点,且9||2AB =.(1)求抛物线C 的方程; (2)若抛物线C 的准线为l ,焦点为F ,点P 为直线:20m x y +-=上的动点,且点P 的横坐标为a ,试讨论当a 取不同的值时,圆心在抛物线C 上,与直线l 相切,且过点P 的圆的个数.【解答】解:(1)抛物线22y px =的焦点(2p F ,0),准线方程为2px =-∴直线AB 的方程为)2py x =-, 代入22y px =可得2281020x px p -+= 1254x x p ∴+=, 由抛物线的定义可知,1299||||||42AB AF BF x x p p =+=++==, 2p ∴=,∴抛物线C 的方程为24y x =;(2)设(,2)P a a -,则过P 与直线:20m x y +-=垂直的直线方程为22y x a =+-, 与24y x =联立,可得2244840x ax a a -+-+=,∴△22164(484)3216a a a a =--+=-, ∴△0>,12a >,满足条件的圆的个数是2个;△0=,12a =,满足条件的圆的个数是1个;△0<,12a <,满足条件的圆的个数是0个. 26.设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解答】解:(1)方法一:抛物线2:4C y x =的焦点为(1,0)F , 设直线AB 的方程为:(1)y k x =-,设1(A x ,1)y ,2(B x ,2)y ,则2(1)4y k x y x =-⎧⎨=⎩,整理得:22222(2)0k x k x k -++=,则21222(2)k x x k ++=,121x x =, 由21222(2)||28k AB x x p k+=++=+=,解得:21k =,则1k =, ∴直线l 的方程1y x =-;方法二:抛物线2:4C y x =的焦点为(1,0)F ,设直线AB 的倾斜角为θ,由抛物线的弦长公式2224||8p AB sin sin θθ===,解得:21sin 2θ=,4πθ∴=,则直线的斜率1k =,∴直线l 的方程1y x =-;(2)由(1)可得AB 的中点坐标为(3,2)D ,则直线AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+,设所求圆的圆心坐标为0(x ,0)y ,则00220005(1)(1)162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得:0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩,因此,所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.。

圆锥曲线压轴题及详解

圆锥曲线压轴题及详解

1.如图,已知椭圆内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若.(1)证明:;(2)若M点恰好为椭圆中心O(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.求弦AB长的最小值.2.设椭圆的两个焦点为点为其短轴的一个端点,满足(Ⅰ)求椭圆的方程;(Ⅱ)过点做两条互相垂直的直线设与椭圆交于点与椭圆交于点求的最小值.3.在直角坐标系中,点到点,的距离之和是,点的轨迹与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和.⑴求轨迹的方程; ⑵当时,证明直线过定点.4.已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.(1)证明和均为定值;(2)设线段的中点为,求的最大值;(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.5.椭圆x2+=1短轴的左右两个端点分别为A,B,直线l:y=kx+1与x 轴、y轴分别交于两点E,F,交椭圆于两点C,D.(Ⅰ)若=,求直线l的方程;(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求k的值.6.过直线上的点作椭圆的切线、,切点分别为、,联结(1)当点在直线上运动时,证明:直线恒过定点;(2)当∥时,定点平分线段7.设为椭圆上的一个动点,过点作椭圆的切线与⊙:相交于两点,⊙在两点处的切线相交于点.(1)求点的轨迹方程;(2)若是第一象限的点,求△的面积的最大值.8.设F是椭圆的左焦点,直线l为其左准线,直线l与x轴交于P,M、N为椭圆C的左右顶点。

已知|MN|=8,且|PM |=2|MF|. (1)若过点P的直线与椭圆C相交于不同的两点A,B, 求证:∠AFM=∠BFN; (2)求△ABF的面积的最大值.9.已知A,B是椭圆C:+=1(a>b>0)的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交于其于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列.(Ⅰ)求椭圆C的方程;(Ⅱ)若记△AMB,△ANB的面积分别为S 1,S 2求的取值范围.10.已知椭圆:的右焦点为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,与直线交于点,若直线的斜率成等差数列,求的值.11.已知A、B分别为曲线与x轴的左、右两个交点,直线l过点B且与x轴垂直,P为l上异于点B的点,连结AP与曲线C交于点M.(1)若曲线C为圆,且,求弦AM的长;(2)设N是以BP为直径的圆与线段BM的交点,若O、N、P三点共线,求曲线C的方程.12.如图,已知椭圆的上顶点为,离心率为,若不过点的动直线与椭圆相交于、两点,且.(1)求椭圆的方程;(2)求证:直线过定点,并求出该定点的坐标.13.已知抛物线圆的圆心为点。

第三章 圆锥曲线的方程【压轴题专项训练】(解析版)

第三章 圆锥曲线的方程【压轴题专项训练】(解析版)

第三章圆锥曲线的方程【压轴题专项训练】一、单选题1.已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x 交于不同的两点A 、B ,若x 轴是∠APB 的角平分线,则直线l 一定过点A .(12,0)B .(1,0)C .(2,0)D .(-2,0)【答案】B 【分析】根据抛物线的对称性,分析得出直线过的顶点应该在x 轴上,再设出直线的方程,与抛物线方程联立,设出两交点的坐标,根据角分线的特征,得到所以AP 、BP 的斜率互为相反数,利用斜率坐标公式,结合韦达定理得到参数所满足的条件,最后求得结果.【详解】根据题意,直线的斜率不等于零,并且直线过的定点应该在x 轴上,设直线的方程为x ty m =+,与抛物线方程联立,消元得2220y ty m --=,设1122(,),(,)A x y B x y ,因为x 轴是∠APB 的角平分线,所以AP 、BP 的斜率互为相反数,所以1212011y yx x +=++,结合根与系数之间的关系,整理得出12122(1)()0ty y m y y +++=,即2(2)220t m tm t -++=,2(1)0t m -=,解得1m =,所以过定点(1,0),故选B.【点睛】该题考查的是有关直线过定点问题,涉及到的知识点有直线与抛物线的位置关系,韦达定理,角平分线的性质,两点斜率坐标公式,思路清晰是正确解题的关键.2.已知1F ,2F 分别为椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 是椭圆上位于第二象限内的点,延长1PF 交椭圆于点Q ,若2PF PQ ⊥,且2PF PQ =,则椭圆的离心率为A-B 1C D .2【答案】A 【分析】由题意可得2PQF 为等腰直角三角形,设|PF 2|=t ,运用椭圆的定义可得|PF 1|=2a ﹣t ,再由等腰直角三角形的性质和勾股定理,计算可得离心率.【详解】解:PF 2⊥PQ 且|PF 2|=|PQ |,可得△PQF 2为等腰直角三角形,设|PF2|=t ,则|QF 2|,由椭圆的定义可得|PF 1|=2a ﹣t,24t a=则t =2(2a ,在直角三角形PF 1F 2中,可得t 2+(2a ﹣t )2=4c 2,4(6﹣)a 2+(12﹣a 2=4c 2,化为c 2=(9﹣a 2,可得e =ca-.故选A.【点睛】本题考查椭圆的定义、方程和性质,主要是离心率的求法,考查等腰直角三角形的性质和勾股定理,以及运算求解能力.3.已知12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 2|>|PF 1|,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为()A .4B .6C.D .8【答案】D 【分析】由题意可得112||||2PF F F c ==,再设椭圆和双曲线得方程,再利用椭圆和双曲线的定义和离心率可得2133e e +的表达式,化简后再用均值不等式即可求解.【详解】由题意得:112||||2PF F F c ==,设椭圆方程为221122111(0)x y a b a b +=>>,双曲线方程为222222221(0,0)x y a b a b -=>>,又∵121212||||2,||||2PF PF a PF PF a +=-=.∴2122||+22,||22PF c a PF c a =-=,∴122a a c -=,则22112122393333e a a a c c e a c ca ++=+=2222229(2)3633c a a c a c ca c a ++==++2236683a cc a =++≥+=,当且仅当2233a c c a =,即23e =时等号成立.则2133e e +的最小值为8.故选:D 【点睛】考查椭圆和双曲的定义,焦半径公式以及离心率,其中将2133e e +化为22911(18)(218)833a c c a ++≥=为解题关键,注意取等号.4.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为()AB .3C .6D【答案】C 【分析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+,再利用均值不等式得到答案.【详解】设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F F F P c ==,又1211222,2F P F P a F P F P a +=-=,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=,()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++.,22222a cc a +≥=,当且仅当2222a c c a =时取等号,21e 2e 2∴+的最小值为6,故选:C .【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+是解题的关键,意在考查学生的计算能力.5.已知点A 是抛物线()2:20C x py p =>的对称轴与准线的交点,点F 为抛物线的焦点,过A 作抛物线的一条切线,切点为P,且满足PA =C 的方程为()A .28x y =B .24x y =C .22x y=D .2x y=【答案】C 【分析】本题首先可根据题意得出点0,2p A ⎛⎫- ⎪⎝⎭,然后设切线方程为2p y kx =-、切点为(),P P P x y ,通过联立抛物线与切线方程解得1k =±,最后对1k =、1k =-两种情况分别进行讨论,通过PA =.【详解】由题意可知,抛物线准线方程为2py =-,点0,2p A ⎛⎫- ⎪⎝⎭,切线斜率k 一定存在,设过点A 与抛物线相切的直线方程为2py kx =-,切点(),P P P x y ,联立抛物线与切线方程222p y kx x py⎧=-⎪⎨⎪=⎩,转化得2220x pkx p -+=,222440p k p ∆=-=,解得1k =±,当1k =时,直线方程为2py x =-,2220x px p -+=,解得P x p =,则22P P p p y x =-=,因为PA =2222PP p x y ⎛⎫++= ⎪⎝⎭,解得1p =;当1k =-时,同理得1p =,综上所述,抛物线方程为22x y =,故选:C.【点睛】本题考查抛物线方程的求法,考查直线与抛物线相切的相关问题的求解,考查判别式的灵活应用,考查两点间距离公式,考查转化与化归思想,考查计算能力,是中档题.6.已知点E 是抛物线2:2(0)C y px p =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在EFP ∆中,若sin sin EFP FEP μ∠=⋅∠,则μ的最大值为()ABCD【答案】C 【分析】利用抛物线的几何性质,求得,E F 的坐标.利用抛物线的定义以及正弦定理,将题目所给等式转化为1cos PEFμ=∠的形式.根据余弦函数的单调性可以求得μ的最大值.【详解】由题意得,准线:2p l x =-,,02p E ⎛⎫- ⎪⎝⎭,,02p F ⎛⎫⎪⎝⎭,过P 作PH l ⊥,垂足为H ,则由抛物线定义可知PH PF =,于是sin sin EFP PEFEP PFμ∠==∠11cos cos PE PH EPH PEF ===∠∠,cos y x =在()0,π上为减函数,∴当PEF ∠取到最大值时(此时直线PE 与抛物线相切),计算可得直线PE 的斜率为1,从而45PEF ∠=︒,max μ∴,故选C.【点睛】本小题主要考查抛物线的几何性质,考查直线和抛物线的位置关系,还考查了正弦定理.属于中档题.7.抛物线22(0)y px p =>的焦点为F ,准线为l ,A 、B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是A .23B .1C .32D .16【答案】B【详解】设|AF|=a ,|BF|=b ,连接AF 、BF ,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ 中,2|MN|=|AQ|+|BP|=a+b .由余弦定理得,|AB|2=a 2+b 2﹣2abcos60°=a 2+b 2﹣ab ,配方得,|AB|2=(a+b )2﹣3ab ,又∵ab≤2(2a b +∴(a+b )2﹣3ab≥(a+b )2﹣34(a+b )2=14(a+b )2得到|AB|≥12(a+b ).∴||MN AB≤1,即||MN AB的最大值为1.故选B .点睛:本题难点在寻找解题的思路,作为一个最值的问题,这里首先要联想到函数的思想,先求出|MN|,|AB|,再利用基本不等式解答.8.设抛物线22y x =的焦点为F,过点0)M 的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,||2BF =,则BCF △与ACF 的面积之比BCF ACFS S等于A .45B .23C .47D .12【答案】A【详解】如图过B 作准线12l x =-:的垂线,垂足分别为11A B ,,BCF ACFBC S SAC=,又11,B BC A AC ∽11BC BB ACAA =,,由拋物线定义112BB BF AA AFAF ==.由12BF BB ==知32B B x y ,==02AB y x ∴-=-:把22y x =代入上式,求得22A A y x ==,,15 2AF AA ∴==.故24552BCF ACFBF SSAF===.故选A .9.已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率.详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP得,222tan sin cos PAF PAF PAF ∠=∴∠∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,π54sin()3c a c e a c PAF =∴==+-∠,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为AB .105C.3D.5【答案】D【详解】分析:由题意可知:可设A (-c ,2b a),C (x ,y ),由S △ABC =3S △BCF2,可得222=AF F C ,根据向量的坐标运算求得x=2c ,y=22b a-,代入椭圆方程,根据离心率公式即可求得椭圆的离心率.详解:设椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0),由x=-c ,代入椭圆方程可得by x a=±可设A (﹣c ,),C (x ,y ),由,可得222=AF F C ,即有2(2,)2(,)b c x c y a -=-),即2c=2x-2c ,可得:x=2c ,22b y a=-代入椭圆得:,根据离心率公式可知:16e 2+1-e 2=4,解得0<e<1,则D 点睛:本题考查椭圆的标准方程及简单几何性质,考查向量的坐标运算,考查计算能力,属于中档题.二、多选题11.已知椭圆22:143x y C +=的左、右焦点分别为F 、E ,直线x m =()11m -<<与椭圆相交于点A 、B ,则()A .椭圆C 的离心率为2B .存在m ,使FAB 为直角三角形C .存在m ,使FAB 的周长最大D .当0m =时,四边形FBEA 面积最大【答案】BD 【分析】直接求出椭圆的离心率判断A ;利用椭圆的对称性及角AFB 的范围判断B ;利用椭圆定义及数学转化分析FAB ∆的周长判断C ;由四边形面积公式分析D 正确.【详解】解:如图所示:对于A ,由椭圆方程可得,2a =,b =1c =,椭圆C 的离心率为12e =,故A 错误;对于B ,当0m =时,可以得出3AFE π∠=,若取1m =时,得3tan 1tan44AFE π∠=<=,根据椭圆的对称性,存在m 使FAB 为直角三角形,故B 正确;对于C ,由椭圆的定义得,FAB 的周长||||||AB AF BF =++||(2||)(2||)4||||||AB a AE a BE a AB AE BE =+-+-=+--,||||||AE BE AB + ,||||||0AB AE BE ∴-- ,当AB 过点E 时取等号,||||||4||||||4AB AF BF a AB AE BE a ∴++=+-- ,即直线x m =过椭圆的右焦点E 时,FAB 的周长最大,此时直线AB 的方程为1x m c ===,但是11m -<<,∴不存在m ,使FAB 的周长最大,故C 错误;对于D ,||FE 一定,根据椭圆的对称性可知,当0m =时,||AB 最大,四边形FBEA 面积最大,故D 正确.故选:BD .【点睛】本题考查椭圆的几何性质,考查数形结合的解题思想,考查分析问题与求解问题的能力.12.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为1F ,点A 坐标为()0,1,点P 双曲线左支上的动点,且1APF △的周长不小于14,则双曲线C 的离心率可能为()AB .2C D .3【答案】ABC 【分析】1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9,2||||2PA PF a ++的最小值不小于9,分析出当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +,可得a 的范围,从而可得答案.【详解】由右焦点为1F ,点A 的坐标为(0,1),1||5AF ==,1APF △的周长不小于14,即周长的最小值不小于14,可得1||||PA PF +的最小值不小于9又2F 为双曲线的左焦点,可得12||||2PF PF a =+,1||||PA PF +=2||||2PA PF a ++,当A ,P ,2F 三点共线时,2||||2PA PF a ++取最小值52a +所以529a +≥,即2a ≥,因为c =可得c e a=.故选:ABC .【点睛】求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围13.已知O 为坐标原点,()1,2M ,P 是抛物线C :22y px =上的一点,F 为其焦点,若F 与双曲线2213x y -=的右焦点重合,则下列说法正确的有()A .若6PF =,则点P 的横坐标为4BC .若POF 外接圆与抛物线C 的准线相切,则该圆面积为9πD .PMF △周长的最小值为3【答案】ACD 【分析】先求出4p =,选项A 求出点P 的横坐标为042PF x p-==,判断选项A 正确;选项B 求出抛物线的准线被双曲线所截得的线段长度为22b a ==B 错误;选项C 先判断POF 外接圆的圆心的横坐标为1,再判断POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,最后求出半径和外接圆面积,判断选项C 正确;选项D 直接求出PMF △的周长为3C ≥+D 正确.【详解】解:因为双曲线的方程为2213x y -=,所以23a =,21b =,则2c ==,因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以=22p ,即4p =,选项A :若6PF =,则点P 的横坐标为042PF x p-==,所以选项A 正确;选项B :因为抛物线C 的焦点F 与双曲线2213x y -=的右焦点重合,所以抛物线的准线被双曲线所截得的线段长度为223b a =,所以选项B 错误;选项C :因为(0,0)O 、(2,0)F ,所以POF 外接圆的圆心的横坐标为1,又因为POF 外接圆与抛物线C 的准线相切,所以圆心到准线的距离等于圆心到焦点F 的距离等于半径,所以圆心在抛物线上且到准线的距离为3,所以3r =,所以该外接圆面积为29S r ππ==,所以选项C 正确;选项D :因为PMF △的周长为()2232P P M pC PF PM MF x PM x PM x =++=++=+++=选项D 正确.故选:ACD 【点睛】本题考查抛物线的定义的几何意义,双曲线的通径长,14.已知抛物线212x y =的焦点为F ,()11,M x y ,()22,N x y 是抛物线上两点,则下列结论正确的是()A .点F 的坐标为1,08⎛⎫⎪⎝⎭B .若直线MN 过点F ,则12116x x =-C .若MF NF λ=,则MN 的最小值为12D .若32MF NF +=,则线段MN 的中点P 到x 轴的距离为58【答案】BCD 【分析】由抛物线标准方程写出焦点坐标判断A ,根据焦点弦性质判断B ,由向量共线与焦点弦性质判断C ,利用抛物线定义把抛物线上的点到焦点的距离转化为到准线的距离,结合中点坐标公式判断D .【详解】解:易知点F 的坐标为10,8⎛⎫⎪⎝⎭,选项A 错误;根据抛物线的性质知,MN 过焦点F 时,212116x x p =-=-,选项B 正确;若MF NF λ=,则MN 过点F ,则MN 的最小值即抛物线通经的长,为2p ,即12,选项C 正确,抛物线212x y =的焦点为10,8⎛⎫⎪⎝⎭,准线方程为18y =-,过点M ,N ,P 分别做准线的垂直线MM ',NN ',PP ',垂足分别为M ',N ',P ',所以MM MF '=,NN NF '=.所以32MM NN MF NF ''+=+=,所以线段34MM NN PP ''+'==所以线段MN 的中点P 到x 轴的距离为13158488PP '-=-=,选项D 正确.故选:BCD .【点睛】本题考查抛物线的定义与标准方程,考查抛物线的焦点弦性质,对抛物线22y px =,AB 是抛物线的过焦点的弦,1122(,),(,)A x y B x y ,则212y y p =-,2124p x x =,12AB x x p =++,AB最小时,AB 是抛物线的通径.三、填空题15.过抛物线C :y 2=4x 的焦点F 的动直线交C 于A ,B 两点,线段AB 的中点为N ,点P (12,4).当|NA |+|NP |的值最小时,点N 的横坐标为____.【答案】9【分析】根据椭圆定义问题可转化为|MN |+|NP |的最小值问题,数形结合可得M ,N ,P 三点共线时有最小值.【详解】分别过点A ,B ,N 作准线的垂线,垂足为A 1,B 1,M ,如图所示,由抛物线的定义知,|AA 1|=|AF |,|BB 1|=|BF |,∴|AB |=|AF |+|BF |=|AA 1|+|BB 1|=2|MN |,∴|NA |+|NP |=12|AB |+|NP |=|MN |+|NP |,故原问题可转化为|MN |+|NP |的最小值问题,当M ,N ,P 三点共线时,|MN |+|NP |取得最小值,此时y N =y P =4,设A (x 1,y 1),B (x 2,y 2),则21122244y x y x ⎧=⎨=⎩,两式相减得,1212y y x x --=124y y +=42N y =41242=⨯,即直线AB 的斜率为12,又直线AB 经过点F (1,0),∴直线AB 的方程为y =12(x ﹣1),把4N y =代入,得14(1)2N x =-解得N x =9,∴当|NA |+|NP |的值最小时,点N 的横坐标为9.故答案为:916.已知抛物线C :()220y px p =>的焦点为F ,过点Fl 交C 于A ,B两点,以线段AB 为直径的圆交y 轴于M ,N 两点,设线段AB 的中点为Q ,若点F 到C 的准线的距离为3,则sin QMN ∠的值为______.【答案】58【分析】由题意得3p =,可得抛物线的方程和直线AB 的方程,联立直线AB 方程和抛物线方程,运用韦达定理和中点坐标公式可得AB 的中点Q 的坐标和弦长AB ,可得圆Q 的半径,在QMN 中,由锐角三角函数的定义可得所求值【详解】解:抛物线C :()220y px p =>的焦点为(,0)2p F ,准线方程为2p x =-,由题意得3p =,则抛物线方程为236,(,0)2y x F =,则直线AB的方程为3)2y x =-,由23)26y x y x⎧=-⎪⎨⎪=⎩,得22731504x x -+=,设,A B 的横坐标分别为12,x x ,则125x x +=,所以AB 的中点Q 的坐标为5(2,12538AB x x p =++=+=,则圆Q 的半径为4,在QMN 中,552sin 48QMN ∠==,故答案为:58【点睛】关键点点睛:此题考查抛物线的定义、方程和性质,以及直线与抛物线的位置关系,解题的关键是联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式进行转化,考查方程思想和计算能力,属于中档题17.已知双曲线E :22221(0,0)x y a b a b-=>>的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M ,N 两点(点F 1位于点M 与点N 之间),且13MN F N =,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e 为__.【分析】由对称性得ON ⊥MN ,由点到直线距离公式得1F N ,然后由勾股定理求得,,a b c 的关系得出离心率.【详解】解:双曲线E :22221(0,0)x y a b a b -=>>的渐近线方程为b y x a=±,∵|ON |=OP |,且F 1P ⊥OM ,可得△PF 1O ≌△NF 1O ,ON ⊥MN ,双曲线的一条渐近线方程为bx ﹣ay =0,则|F 1N |=|F 1P |b .∵13MN F N =,∴|MN |=3b ,|MF 1|=2b ,由勾股定理可得,|ON |=|OP |a =,|PM |,又|MN |2+|ON |2=|OM |2,∴(3b )2+a 2=(a )2,整理可得a ,即3c 2=4a 2,∴3c e a ==.18.已知椭圆C :2222x y a b+=1(a >b >0)的焦距为4,直线l :y =2x 与椭圆C 相交于点A 、B ,点P 是椭圆C 上异于点A 、B 的动点,直线PA 、PB 的斜率分别为k 1、k 2,且k 1•k 2=59-,则椭圆C 的标准方程是__.【答案】2295x y +=1【分析】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),代入作差法表示出k 1•k 2=59-,与224a b -=联立,即可求出椭圆的标准方程.【详解】设P (x 0,y 0),A (x 1,y 1),B (﹣x 1,﹣y 1),则2200221x y a b+=,2211221x y a b +=,两式作差得22220101220x x y y a b --+=.因为直线PA ,PB 的斜率都存在,所以2201x x -≠0.所以22b a=﹣22012201y y x x --=﹣01010101y y y y x x x x --⨯+-=﹣k 1•k 2=59,则22590a b -=,又因为焦距为4,则224a b -=,联立两式可得229,5a b ==所以该椭圆的方程为:2295x y +=1故答案为:2295x y +=1四、解答题19.已知椭圆2222:1(0)x y C a b a b+->>的左、右焦点分别是F 1、F 2,上、右顶点分别是A 、B ,满足∠F 1AF 2=120°,||AB =.(1)求椭圆C 的标准方程;(2)与圆x 2+y 2=1相切的直线l 交椭圆C 于P 、Q 两点,求|PQ |的最大值及此时直线l 的斜率.【答案】(1)22:14x C y +=;(2)|PQ |max =2;直线l的斜率为2k =±.【分析】(1)由焦点12AF F △得出,,a b c 的关系,解得,,a b c 得椭圆标准方程;(2)设直线方程为x =ty +m ,由直线与圆相切得,t m 关系,直线方程代入椭圆方程,计算出0∆>,设设P (x 1,y 1),Q (x 2,y 2),由韦达定理得1212,y y y y +,求得12y y -,得弦长PQ ,=n换元后用基本不等式得最值及直线斜率.【详解】解:(1)因为2tan ∠=cOAF b,||AB =,得tan 60cb︒==,又a 2=b 2+c 2,所以=c ,a 2=4b 2,5b 2=5,解得b =1,a =2,椭圆的标准方程为22:14x C y +=;(2)由题意知直线l 不能平行于x 轴,所以设为x =ty +m ,由已知得(0,0)到x ﹣ty ﹣m =0的距离为11=,所以m 2=t 2+1,联立直线和椭圆得(ty +m )2+4y 2=4,即(t 2+4)y 2+2tmy +m 2﹣4=0,得△=(2tm )2﹣4(t 2+4)(m 2﹣4)=﹣4(4m 2﹣4t 2﹣16)=16(t 2﹣m 2+4)=16×3,设P (x 1,y 1),Q (x 2,y 2),则|y 2﹣y 1|==,||PQ =y 2﹣y 1|=n ,则n ≥1,2||233PQ n n n==≤++,当3=n n,即n =|PQ |max =2,此时t =l 的斜率为1=t 20.已知双曲线E :2222x y a b -=1(a >0,b >0)的右焦点为F ,离心率e =2,直线l :x =2a c与E 的一条渐近线交于Q ,与x 轴交于P ,且|FQ |(1)求E 的方程;(2)过F 的直线交E 的右支于A ,B 两点,求证:PF 平分∠APB .【答案】(1)2213y x -=;(2)证明见解析.【分析】(1)先将直线l 的方程与渐近线方程联立求出点Q 的坐标,求出PF 的长,从而可求出|FQ |,再由|FQ |b 的值,再结合离心率可求出a 的值,从而可求出E 的方程;(2)设过点F 得直线方程为:x =my +2,设A (x 1,y 1),B (x 2,y 2),直线方程与双曲线方程联立方程组,消去x ,再利用根与系数的关系,然后表示出k P A ,k PB ,相加化简,若等于零,可得PF 平分∠APB 【详解】解:(1)不妨设直线l :x =2a c与E 的一条渐近线b y x a =交于Q ,则由2a x cb y xa ⎧=⎪⎪⎨⎪=⎪⎩得y Q =ab c ,又PF =c ﹣2a c =2b c,∴|FQ |2=(ab c )2+(2b c)2=b 2=3,∴b ,又离心率e =2,∴2224a b a +=,∴a =1.∴E 的方程为:2213y x -=.(2)设过点F 得直线方程为:x =my +2,A (x 1,y 1),B (x 2,y 2).联立22233x my x y =+⎧⎨-=⎩,可得(3m 2﹣1)y 2+12my +9=0,则1221231my y m -+=-,122931y y m =-,∵过F 的直线交E 的右支于A ,B 两点,∴y 1y 2<0,可得﹣3<m<3,又P (12,0),∴k P A +k PB =12121122y y x x +--=12211233()()2211()()22y my y my x x +++--,∴122133(()22y my y my +++=2my 1y 2+123()2y y +=2293122031231mm m m -⋅+⨯=--∴k P A +k PB =0,∴PF 平分∠APB .21.已知0a b >>,曲线Γ由曲线()22122:10x y C y a b +=≥和曲线22222:1(0)x y C y a b-=<组成,其中曲线1C 的右焦点为()12,0F ,曲线2C 的左焦点()26,0F -.(1)求,a b 的值;(2)若直线l 过点2F 交曲线1C 于点,A B ,求1ABF 面积的最大值.【答案】(1)4a b ⎧=⎪⎨=⎪⎩(2【分析】(1)根据椭圆和双曲线的焦点即可列出式子求解;(2)设出直线l 的方程,与椭圆联立,利用韦达定理可表示出三角形的面积,即可求出最值.【详解】解:(1)由题意:12(2,0),(6,0)F F -,2222364a b a b ⎧+=∴⎨-=⎩,解得222016a b ⎧=⎨=⎩即4a b ⎧=⎪⎨=⎪⎩(2)由(1)知,曲线221:1(0)2016x y C y +=≥,点2(6,0)F -,设直线l 的方程为:6(0)x my m =->,联立22612016x my x y =-⎧⎪⎨+=⎪⎩得:()225448640m y my +-+=,22(48)464(54)0m m ∴∆=-⨯⨯+>,又0m >,1m ∴>,设()()1122,,,A x y B x y ,1224854m y y m ∴+=+,1226454y y m =+,12y y ∴=-,1ABF ∴面积21222111165118225454S F F y y m m =-=⨯⨯=++,令0t =>,221m t ∴=+,94S t t∴=+,当且仅当32t =,即2m =时等号成立,所以1ABF【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.22.已知抛物线()220C y px p =>:的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若,A B 是C 上的两个动点,且,A B 两点的横坐标之和为8.(ⅰ)设线段AB 的中垂线为l ,证明:l 恒过定点.(ⅱ)设(ⅰ)中定点为D ,当AB 取最大值时,且P ,D 位于直线AB 两侧时,求四边形PADB 的面积.【答案】(1)24y x =;(2)(ⅰ)证明见解析;(ⅱ).【分析】(1)根据题意得0t >,22242pp t pt⎧+=⨯⎪⎨⎪=⎩,进而解方程即可得答案;(2)(ⅰ)设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,进而分12x x =和12x x ≠两种情况求解直线l 方程,以证明直线过定点;(ⅱ)直线AB 与抛物线24y x =联立方程消去x ,根据韦达定理与弦长公式求得||10AB ≤当且仅当26n =时等号成立,进而得直线:220AB x ±-=,再讨论P ,D 位于直线AB 两侧时得:220AB x -=,进而根据点到直线的距离求解点,P D 到直线AB 的距离以求解四边形的面积.【详解】解:(1)由抛物线的性质得0t >,所以根据抛物线的定义得:22242pp t pt⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,且128x x +=.(ⅰ)证明:设AB 中点为(),E m n ,则1242x x m +==,122y y n +=,当12x x =时,0l y =:;当12x x ≠时,2121222121214()42AB y y y y k x x y y y y n--====--+,则2l nk =-,:(4)2n l y n x -=--,令0y =,得6x =,故直线过定点()6,0综上,l 恒过定点()6,0.(ⅱ)由(ⅰ)知直线2:(4)AB y n x n-=-,即()42n x y n =-+,所以直线AB 与抛物线24y x =联立方程消去x ,整理得2222160y ny n -+-=,由0∆>,得21216,2n y y n +<=,212216y y n =-,2212416|||102n n AB y y ++-=-≤=,当且仅当26n =时等号成立,所以AB 的最大值为10,此时直线AB 的方程为:220AB x -=.对于直线220x -=,(2602)21(2)20⎡⎤⨯⨯-⨯⨯-->⎣⎦,所以点,P D 在同侧,不合题意,对于直线220x +-=,满足P ,D 位于直线AB 两侧,所以直线:220AB x +-=,点P 到直线AB 的距离1d =点D 到直线AB 的距离2d =所以()1212PADB S AB d d =⋅+=。

圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)

圆锥曲线(选填题)压轴题系列专题(一):圆锥曲线与“四心”问题(第4讲)(解析版)

专题一:圆锥曲线与四心问题(内心、重心、垂心、外心)从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。

而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。

“四心”问题进入圆锥曲线,让我们更是耳目一新。

因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.专题目录:第1讲、圆锥曲线与内心问题第2讲、圆锥曲线与重心问题第3讲、圆锥曲线与垂心问题第4讲、圆锥曲线与外心问题第4讲、圆锥曲线与外心问题:三角形的外心:三角形三条垂直平分线的交点 知识储备:(1)、O 是ABC ∆的外心||||||OC OB OA ==⇔(或222OC OB OA ==);(2)、若点O 是ABC △的外心,则()()()OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=0.(3)、若O 是ABC ∆的外心,则sin 2sin 2B sin 02A OA OB C OC ⋅+⋅+⋅=; (4)、多心组合:ABC ∆的外心O 、重心G 、垂心H 共线,即OG ∥OH 经典例题例1.(2019年成都七中半期16题)1F ,2F 分别为双曲线22221(,0)x y a b a b-=>的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为_______ .1 【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,122PF PF a -=,则()()2222212121224PF PF PF PF PF PF c a ⋅=+--=-,()()2222121212484PFPF PFPF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =,=,整理得24c a ⎛⎫=+ ⎪⎝⎭1e =. 【点睛】本小题主要考查双曲线的定义,考查向量数量积为零的意义,考查双曲线离心率的求法,考查方程的思想,考查运算求解能力,属于中档题.例2.(2018全国高中数学联赛(湖北预赛))已知点P 的双曲线()222210,0x y a b a b-=>>上,12F F 、为双曲线的两个焦点,且210PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为____.1- 【解析】由120PF PF ⋅=,知1290PPF ∠=︒.设12,PF m PF n ==, 又122F F c =,则可得()1,22R c r m n c ==+-, 2224m n c +=, ① 2m n a -=. ②设rk R=,则()122r kR kc m n c ===+-,即有()22m n k c +=+. ③由①②③可得()22222248k c a c ++=,所以()22222213122c a k c e -+==-=,解得1k =-.故12PF F ∆的内切圆半径r 与外接圆半径R1- 例3.(2020年河南省质量检测(二)改编)已知椭圆22143x y +=的左、右焦点分别为12,F F ,过2F 的直线l 交椭圆C 于,A B 两点,过A 作x 轴的垂线交椭圆C 与另一点Q (Q 不与,A B 重合).设ABQ ∆的外心为G ,则2ABGF 的值为 .【答案】4【解析】由题意知,直线AB 的斜率存在,且不为0,设直线AB 为1x my =+, 代入椭圆方程得()2234690m y my ++-=. 设()()1122,,,A x y B x y ,则12122269,3434m y y y y m m --+==++, 所以AB 的中点坐标为2243,3434m m m -⎛⎫⎪++⎝⎭,所以()212221213434m AB y m m +=-=-++. 因为G 是ABQ ∆的外心,所以G 是线段AB 的垂直平分线与线段AQ 的垂直平分线的交点,AB 的垂直平分线方程为22343434m y m x m m ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2134x m =+,即21,034G m ⎛⎫⎪+⎝⎭,所以222213313434m GF m m +=-=++,所以()22222121||1234433334m AB m m GF m ++===++,所以2||AB GF 值为4. 【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,属于难题.例4.(2020年湖北省宜昌市高三调研12题)设(),0F c 为双曲线2222:1(0,0)x y E a b a b-=>>的右焦点,以F 为圆心,b 为半径的圆与双曲线在第一象限的交点为P ,线段FP 的中点为D ,∆POF 的外心为I ,且满足()0OD OI λλ=≠,则双曲线E 的离心率为( ) ABC .2D【答案】D【解析】由题,因为()0OD OI λλ=≠,所以O 、D 、I 三点共线,因为点D 为线段FP 的中点,∆POF 的外心为I ,所以DI PF ⊥,即OD PF ⊥, 设双曲线的左焦点为(),0F c '-,则点O 为线段F F '的中点,则在PFF '中,//PF OD ',即PF PF '⊥,所以PFF '是直角三角形,所以222F F F P PF ''=+,因为PF b =,由双曲线定义可得2PF PF a '-=,所以2PF a b '=+, 则()()22222c a b b =++,因为222c a b =+,整理可得2b a =,所以c =,则ce a==,故选:D 【点睛】本题考查求双曲线的离心率,考查双曲线的定义的应用.例5.(2019年衡水中学联考12题)已知坐标平面xOy 中,点1F ,2F 分别为双曲线222:1x C y a-=(0a >)的左、右焦点,点M 在双曲线C 的左支上,2MF 与双曲线C 的一条渐近线交于点D ,且D 为2MF 的中点,点I 为2OMF △的外心,若O 、I 、D 三点共线,则双曲线C 的离心率为( )AB .3CD .5【答案】C【解析】不妨设点M 在第二象限,设(,)M m n ,2(,0)F c ,由D 为2MF 的中点,O 、I 、D 三点共线知直线OD 垂直平分2MF ,则:1OD y x a=,故有n a m c =--,且1122m c n a +⋅=⋅,解得21a m c-=,2n a c =, 将212,a a M c c ⎛⎫-⎪⎝⎭,即2222,a c a c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()2222222241aca a c c--=,化简可得225c a =,即e =当点M 在第三象限时,同理可得e =故选:C.【点睛】本题主要考查双曲线的标准方程,双曲线的简单性质的应用,运用平面几何的知识分析出直线OD 垂直平分2MF ,并用a c ,表示出点M 的坐标是解决此题的难点,属于中档题.例6.(2019云南省曲靖市二模16题)已知斜率为1的直线与抛物线24y x =交于,A B 两点,若OAB ∆的外心为(M O 为坐标原点),则当AB MO最大时,AB =____.【答案】.【解析】由题意知,MO 为OAB 外接圆的半径,在OAB 中,由正弦定理可知,2sin AB R AOB=∠(R 为OAB 外接圆的半径),当sin 1AOB ∠=,即90AOB ∠=︒时,AB MO取得最大值2.设()11,A x y ,()22,B x y ,易知10y ≠,20y ≠,则12120x x y y +=,得221212016y y y y ⋅+=,即12160y y +=.设直线AB 的方程为y x t =+,即x y t =-,代入24y x =得,2440y y t -+=,则124y y +=,124y y t =,所以4160t +=,解得4t =-.故12AB y y =-==.故答案为:【点睛】本题主要考查了正弦定理,直线与抛物线的关系,弦长公式,属于中档题.课后训练:变式1.P 为双曲线()2222:1,0x y C a b a b-=>上一点,12,F F 分别为C 的左、右焦点,212PF F F ⊥,若12PF F ∆外接圆半径与其内切圆半径之比为52,则C 的离心率为( ) AB .2CD .2或3【答案】D【解析】不妨设P 为右支上的点,则122PF PF a -=,设双曲线的半焦距为c ,则22b PF a=,212b PF a a =+,又12Rt PF F 外接圆半径为21122b PF a a=+. 12Rt PF F 内切圆的半径为222222-22b bc ac a a a r c a+---===, 因为12PF F ∆外接圆半径与其内切圆半径之比为52,故252=2b aac a +-, 故22560c ac a -+=,所以2c a =或3c a =,即2e =或3e =.故选:D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.变式2.(2018上海市高三模拟)已知椭圆22116x y m +=和双曲线221412x y m-=-,其中012m <<,若两者图像在第二象限的交点为A ,椭圆的左右焦点分别为B 、C ,T 为△ABC 的外心,则•AT BC 的值为_____. 【答案】16.【解析】已知椭圆22116x y m +=和双曲线221412x y m-=-,焦距相等所以焦点相同,设(,0),(,0),B c C c c -=A 为两曲线在第二象限的交点,||||AB AC <,84AB AC AB AC ⎧+=⎪⎨-=-⎪⎩,||2AB =, 设000(,),42A x y x -<<-,220016m y m x =-,||AB ==0424c x ===+=,08x c ∴=-,因为O 为BC 中点,△ABC 的外心T 在y 轴上,0OT BC ⋅=,08()(,)(2,0•)16AT B OT OA BC OA BC y c cC =-⋅=-⋅=--⋅=【点睛】本题考查求椭圆与双曲线交点的坐标,考查向量数量积运算,考查计算求解能力,属于中档题.变式3. P 为双曲线()2222:10,0x y C a b a b-=>>右支上的一点,12,F F 分别为左、右焦点,212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的3倍,则双曲线C 的离心率为( )A.3 B.4 C.3或3 D.4或4-【答案】C【解析】212PF F F ⊥,∴点P 的坐标为2,b c a ⎛⎫ ⎪⎝⎭22b PF a =,则212b PF a a =+12PF F ∆的外接圆半径21122PF b r a a==+ 其内切圆半径222222b bc a a a r c a +--==- 12PF F ∆的外接圆半径是其内切圆半径的3倍,123r r ∴=,即()232b a c a a+=-化简可得22670c ac a --=即2670e e --=解得3e =±C【点睛】本题主要考查了计算双曲线的离心率,结合题意先计算出外接圆和内切圆的半径,然后结合数量关系求出结果,属于中档题.变式4.(2018年四川省棠湖中学三诊16题)已知点1(,0)F c -,2(,0)(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为__________. 【答案】4【解析】由G 是△PF 1F 2的外心,则G 在y 轴的正半轴上,120GF GF GP λ++=, 则1212()GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则△PF 1F 2的面积S=12×b×2c=bc=8,由a 2=b 2+c 2≥2bc=16,则a ≥4,当且仅当时取等号, ∴a 的最小值为4,故答案为4.【点睛】(1)本题主要考查平面向量的共线定理和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析出1212()GP GF GF GO λλ=-+=-,得到P ,G ,O 三点共线,即P 位于上顶点.变式5.F 1,F 2分别为双曲线22221x y a b-=(a ,b >0)的左、右焦点,点P 在双曲线上,满足12PF PF ⋅=0,若△PF 1F 2的内切圆半径与外接圆半径之比为13,则该双曲线的离心率为_____.【答案】2【解析】120PF PF =,12PF PF ∴⊥.∴12PF F ∆的外接圆半径为1212F F c =,∴12PF F ∆的内切圆的半径为3c.设12PF F ∆的内切圆的圆心为M ,过M 作x 轴的垂线MN ,连接1MF ,2MF ,则3cMN =,设1NF m =,2NF n =,则2m n c +=,①不妨设P 在第一象限,由双曲线的定义可知122PF PF m na -=-=,② 由①②可得m a c =+,n c a =-,12PF PF ⊥,且1MF ,2MF 分别是12PF F ∠,21PF F ∠的角平分线,12214MF F MF F π∴∠+∠=,又121tan 33()MN c c MF F NF m a c ∠===+,2123()MN cMF F NF c a ∠==-, ∴2223()3()119()c c c a c a c c a ++-=--,化简可得2292a c =,故292e =,32e ∴=.故答案为:322.【点睛】本题考查了双曲线的性质,直线与圆的位置关系,属于中档题变式6. 数学家欧拉在1765年提出定理:三角形的外心、重心、垂心,依次在同一条直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称为三角形的欧拉线.已知ABC ∆的顶点)4,0(),0,2(B A ,若其欧拉线方程为02=+-y x ,则顶点C 的坐标是 .【答案】()4,0-【解析】设(),C m n ,由重心坐标公式得,ABC ∆的重心为24,33m n ++⎛⎫⎪⎝⎭, 代入欧拉线方程得:242033m n++-+=,整理得:40m n -+= ① AB 的中点为()1,2,40202AB k -==--,AB 的中垂线方程为()1212y x -=-,即230x y -+=. 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩..ABC ∴∆的外心为()1,1-.则()()22221131m n ∴++-=+,整理得:22228m n m n ++-= ②联立①②得:4,0m n =-=或0,4m n ==.当0,4m n ==时,B C 重合,舍去.∴顶点C 的坐标是()4,0-. 考点:1新概念问题;2三角形的外心,重心,垂心.。

备战2022年新高考数学圆锥曲线压轴题精选与解析

备战2022年新高考数学圆锥曲线压轴题精选与解析

备战2022年新高考数学圆锥曲线压轴题精选与解析一、有关圆幂定理型压轴题【方法点拨】1.相交弦定理:如下左图,圆O 的两条弦AB 、PC 相交于圆内一点P ,则PA PB PC PD ⋅=⋅.2. 切割线定理:如下右图,PT 为圆O 的切线,P AB 、PCD 为割线,则2PT PA PB =⋅();3.割线定理:如下右图,P AB 、PCD 为圆O 的割线,则PA PB PC PD ⋅=⋅.说明:上述三个定理可以统一为22PA PB PO R ⋅=-(其中R 是半径),统称为圆幂定理.【典型题示例】例1 如图,在平面直角坐标系x O y 中,已知点,点P 是圆O :上的任意一点,过点作直线BT 垂直于AP ,垂足为T ,则2P A +3PT 的最小值是__________.【答案】 【分析】从题中已知寻求P A 、PT 间的关系是突破口,也是难点,思路一是从中线长定理入手,二是直接使用圆幂定理. 【解法一】由中线长公式可得,则 (1,0)A -224x y +=(1,0)B 93221862PT PA PA+=+≥=22212()2PO PA PB AB =+-22=10PA PB +CA ODPBTPOACD,则在中,,即 所以时取等)【解法二】∵BT ⊥ AP ,∴点T 的轨迹是圆,其方程是:x 2+y 2=1,过点P 作该圆的切线PC ,C 为切点,则PC,由切割线定理得:所以时取等).点评:解法二中,先运用定直线张直角,得到隐圆,然后运用切割线定理得出定值,最后再使用基本不等式予以解决,思路简洁、解法明快.在有关解析几何的题目中,首先考虑相关的几何性质是解决这类问题的首选方向.在△AOM 中,由正弦定理得:OMsinA =√5,而OA =OM =2, 所以sinA =√5,所以tan A =2.故直线AB 的斜率为2.例3 在平面直角坐标系xOy 中,过点(1,0)M 的直线l 与圆225x y +=交于,A B 两点,222cos 2PA PB AB P PA PB+-=⋅3cos P PA PB =⋅Rt PBT ∆cos PT PB P =3PT PA=9232PA PT PA PA+=+≥=2PA =23PC PA PT =⋅=9232PA PT PA PA+=+≥=PA =其中A 点在第一象限,且2BM MA =,则直线l 的方程为 . 【答案】y =x -1【分析】本题思路有下列几种:①利用向量坐标设点转化,点参法;②设直线方程的在x轴上的截距式,联立方程组;③垂径定理后二次解三角形;④相交弦定理;⑤利用”爪”型结构,得2133OM OA OB =+,两边平方求得AOB ∠的余弦值. 【解法一】:易知直线l 的斜率必存在,设直线l 的方程为y =k (x -1).由BM →=2MA →,设BM =2t ,MA =t .如图,过原点O 作OH ⊥l 于点H ,则BH =3t2.设OH =d ,在Rt △OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5. 在Rt △OMH 中,d 2+⎝⎛⎭⎫t 22=OM 2=1,解得d 2=12, 则d 2=k 2k 2+1=12,解得k =1或k =-1. 因为点A 在第一象限, BM →=2MA →,由图知k =1, 所以所求的直线l 的方程为y =x -1.【解法二】由2BM MA =,设BM =2t ,MA =t又过点M 的直径被M 分成两段长为51-、51+ 由相交弦定理得()()225151t =-+,解之得2t =过原点O 作OH ⊥l 于点H ,在Rt △OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5,解得d 2=12,(下同解法一,略).【解法三】设A (x 1,y 1),B (x 2,y 2),则BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以⎩⎪⎨⎪⎧1-x 2=2(x 1-1),-y 2=2y 1.当直线AB 的斜率不存在时,BM →=MA →,不符合题意. 当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 2+y 2=5,得(1+k 2)y 2+2ky -4k 2=0,则⎩⎪⎨⎪⎧y 1+y 2=-2k1+k 2,y 1·y 2=-4k 21+k2,-y 2=2y 1,解得⎩⎪⎨⎪⎧y 1=2k1+k 2,y 2=-4k1+k2,所以y 1·y 2=-8k 2(1+k 2)2=-4k 21+k2,即k 2=1.又点A 在第一象限, 所以k =1,即直线AB 的方程为y =x -1.【解法四】设A (x 1,y 1),B (x 2,y 2),则BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以⎩⎪⎨⎪⎧ 1-x 2=2(x 1-1),-y 2=2y 1,即⎩⎪⎨⎪⎧-x 2=2x 1-3,-y 2=2y 1.又⎩⎪⎨⎪⎧ x 21+y 21=5,x 22+y 22=5,代入可得⎩⎪⎨⎪⎧x 21+y 21=5,(2x 1-3)2+4y 21=5,解得x 1=2,代入可得y 1=±1.又点A在第一象限,故A (2,1),由点A 和点M 的坐标可得直线AB 的方程为y =x -1. 点评:上述各种解法中,以解法一、解法二最简、最优.【巩固训练】1. 在平面直角坐标系xoy 中,M 是直线3x =上的动点,以M 为圆心的圆M ,若圆M 截x 轴所得的弦长恒为4,过点O 作圆M 的一条切线,切点为P ,则点P 到直线2100x y +-=距离的最大值为 .2.在平面直角坐标系xOy 中,圆C :(m >0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A ,B 两点,l 2与圆C 相切于点D .若AB =OD ,则直线l 1的斜率为 .3. 在平面直角坐标系xOy 中,设直线2y x =-+与圆222x y r +=(0)r >交于A B 、两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = .4.在平面直角坐标系xOy 中,已知点()0,1P 在圆C :22222410++-+-+=x y mx y m m 内,若存在过点P 的直线交圆C 于A 、B 两点,且△PBC 的面积是△PAC 的面积的2倍,则实数m 的取值范围为 .5.在平面直角坐标系xOy 中,圆22:(2)()3C x y m ++-=.若圆C 存在以G 为中点的弦AB ,且2AB GO =,则实数m 的取值范围是 .6.已知直线3y ax =+与圆22280x y x ++-=相交于,A B 两点,点()00,P x y 在直线2y x =上且PA PB =,则0x 的取值范围为 .222()x m y r -+=【答案与提示】1.【答案】 2.【答案】 【解析一】作CE ⊥AB 于点E ,则 ,由OECD 是矩形,知CE 2=OD 2,∴,化简得, 即cos ∠OCD ==,tan ∠COB =tan ∠OCD =,∴直线l 1的斜率为.设OD =t (又∴直线l 13.244164416OC ⎪⎝⎭即222225159cos 16816r r r AOB r =+∠+,整理化简得3cos 5AOB ∠=-. 5±22222221144CE BC BE BC AB BC OD =-=-=-2222215()44r m r m r -=--=222254r m m r -=-r m =CDOC 3r m=55±2m t =Rt COE ∆过点O 作AB 的垂线交AB 于D , 则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=.又圆心到直线的距离OD ==222212cos 5OD AOD r r ∠===,r = 【解法二】注意到线性表示时的系数和为2,联想“三点共线”. 由5344OC OA OB =+,即153288OC OA OB =+ 得A B D 、、三点共线(其中D 是AB 的中点),且:3:5AD BD =, 设,5BD x =思路一:垂径定理后二次解三角形,()222224r x r x ⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=+⎩,解之得r =思路二:相交弦定理,()22335224r r x x r x ⎧⋅=⋅⎪⎨⎪=+⎩,解之得r =. 4.【答案】4,49⎡⎫⎪⎢⎣⎭5.【答案】[【提示】易知OA OB ⊥,考察临界状态,只需过原点作圆的切线,切点弦的张角大于等于直角即可.6.【答案】 (1,0)(0,2)-⋃二、 抛物线过焦点的弦【方法点拨】设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α为弦AB 的倾斜角.则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AF |=p 1-cos α,|BF |=p1+cos α (其中点A 在x 轴上侧,点B 在x 轴下侧) .(3)弦长|AB |=x 1+x 2+p =2psin 2α.(4)1|AF |+1|BF |=2p. 3AD x =(5)以弦AB 为直径的圆与准线相切.【典型题示例】例 1 已知抛物线()02:2>=p px y C 的焦点F 到其准线的距离为4,圆()12:22=+-y x M ,过F 的直线l 与抛物线C 和圆M 从上到下依次交于A ,P ,Q ,B四点,则BQ AP 4+的最小值为 . 【答案】13【分析】易知4p =,圆心(2,0)M 即为焦点F ,故445AP BQ AF BF +=+-,再利用抛物线的定义,进一步转化为445A B AP BQ x x +=++,利用4A B x x =、基本不等式即可. 【解析】易知4p =,圆心(2,0)M 即为焦点F所以()()414145AP BQ AF BF AF BF +=-+-=+- 根据抛物线的定义22A A p AF x x =+=+,22B B pBF x x =+=+ 所以()()4242545A B A B AP BQ x x x x +=+++-=++又244A B p x x ==所以445513A B AP BQ x x +=++≥=,当且仅当4A B x x =,即41A B x x =⎧⎨=⎩时等号成立,此时直线l的方程是y =-所以BQ AP 4+的最小值为13.例2 已知斜率为k 的直线l 过抛物线C :y 2=2px (p >0)的焦点,且与抛物线C 交于A ,B 两点,抛物线C 的准线上一点M (-1,-1)满足MA ·MB =0,则|AB |= ( ) A. B. C .5 D .6 【答案】C【分析】将MA ·MB =0直接代入坐标形式,列出关于A ,B 中点坐标的方程,再利用斜率布列一方程,得到关于A ,B 中点坐标的方程组即可.这里需要说明的是,MA ·MB =0转化的方法较多,如利用斜边中线等于斜边一半等,但均不如上法简单. 【解析】易知p =2设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,y 1y 2=-4,11(1,1)MA x y =++,22(1,1)MB x y =++ ∵MA ·MB =0∴1212(1)(1)(1)(1)0x x y y +++++=,化简得12121x x y y +++= 设A 、B 中点坐标为(x 0,y 0),则0012x y += ① 又由直线的斜率公式得12122212121204244AB y y y y k k y y x x y y y --=====-+-,001y k x =-∴00021y y x =-,即2002(1)y x =- ② 由①、②解得032x =∴12025AB x x p x p =++=+=,答案选C. 点评:本题的命题的原点是阿基米德三角形,即从圆锥曲线准线上一点向圆锥曲线引切线,则两个切点与该点所构成的三角形是以该点为直角顶点的直角三角形.以此为切入点解决此题,方法则更简洁.例3 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5D.6【答案】B【解析】 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E ,设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m , 由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92. 【巩固训练】1.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938C.6332D.942.已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则下列结论正确的是( ) A.抛物线C 的准线方程为y =-1 B.线段PQ 的长度最小为4 C.点M 的坐标可能为(3,2) D.OP →·OQ →=-3恒成立3.已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 交C 于A ,B 两点,分别过A ,B 作准线l 的垂线,垂足分别为P ,Q .若|AF |=3|BF |,则|PQ |=________.4.已知抛物线C 的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,若112AF BF+=,则符合条件的抛物线C 的一个方程为__________.5.过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF = .6.过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______.【答案与提示】1.【答案】D【解析一】 由已知得焦点坐标为F ⎝⎛⎭⎫34,0,因此直线AB 的方程为y =33⎝⎛⎭⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.【解析二】 由2p =3,及|AB |=2p sin 2α得|AB |=2p sin 2α=3sin 230°=12. 原点到直线AB 的距离d =|OF |·sin 30°=38,故S △AOB =12|AB |·d =12×12×38=94.2.【答案】 BCD【解析】因为焦点F 到准线的距离为2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,A 错误.当线段PQ 垂直于x 轴时长度最小,此时|PQ |=4,B 正确.设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1.联立得方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +1.消去x 并整理,得y 2-4my -4=0,Δ=16m 2+16>0,则y 1+y 2=4m ,所以x 1+x 2=m (y 1+y 2)+2=4m 2+2,所以M (2m 2+1,2m ).当m =1时,可得M (3,2),C 正确.可得y 1y 2=-4,x 1x 2=(my 1+1)(my 2+1)=m 2y 1y 2+m (y 1+y 2)+1=1,所以OP →·OQ →=x 1x 2+y 1y 2=-3,D 正确.故选BCD.3.【答案】 833【解析】F (1,0),不妨设A 在第一象限,A (x 1,y 1),B (x 2,y 2),由|AF |=3|BF |得y 1=-3y 2①设l AB :y =k (x -1)与抛物线方程联立得 ky 2-4y -4k =0,y 1+y 2=4k ,y 1·y 2=-4,②结合①②解得y 2=-233,|PQ |=|y 1-y 2|=|-3y 2-y 2|=-4y 2=833.4.【答案】满足焦准距为1即可,如22y x =. 【解析】由公式112AF BF p +=得22p=,解得1p =,满足焦准距为1即可,如22y x =等. 5.【答案】65 【解析一】设AF =m ,BF =n ,则有25121121mnm n Pp ,解得65=m 或45m =(舍).【解析二】抛物线22y x =的焦点坐标为)0,21(,准线方程为21-=x 设A ,B 的坐标分别为),(),,(2211y x y x ,则414221==p x x 设n BF m AF ==,,则21,2121-=-=n x m x 所以有⎪⎪⎩⎪⎪⎨⎧=+=--122541)21)(21(n m n m ,解得65=m 或45=n ,所以65=AF . 6.【答案】32【解析】直接由112n m p+=立得(其中m ,n 是焦点弦被焦点所分得的两线段长,p 就是焦准距).三、椭圆、双曲线的焦点弦被焦点分成定比【方法点拨】1. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过F 的直线l 与椭圆相交于A B、两点,直线l 的倾斜角为θ,且=()AF FB λλ>0,则e θλ、、间满足1cos 1e λθλ-=+. 2.长短弦公式:如下图,长弦=1cos ep AF e θ-,短弦=1cos epBF e θ+(其中p 是焦参数,即焦点到对应准线的距离,θ是直线l 与x 轴的夹角,而非倾斜角). 说明:(1)公式1的推导使用椭圆的第二定义,不必记忆,要有“遇过将焦半径转化为到准线距离”的意识即可.(2)双曲线也有类似结论.【典型题示例】例1 已知椭圆方程为2214x y +=,AB 为椭圆过右焦点F 的弦,则的最小值||2||AF FB ∴+F xA BO为 .【解析】由,得,,则椭圆的离心率为,右准线方程为 如图,过作于,则,① 设的倾斜角为, 则,② 联立①②,可得,同理可得,.令,,,. .当且仅当时上式取等号. 的最小值为. 2214x y +=2a =c =e =:l x =A AM l ⊥M ||||AF AM =AB θ||||||cos ||cos ||cos AM CF AF AF AF θθθ=-==||AF =||BF ||2||AF BF ∴++==cos t θ=[1t ∈-1]1||2||32(6)12AF FB ∴+==-+-322(6)1263t-+++326363t =+t ||2||AF FB ∴+34+故答案为:.例 2 (2021·江苏南京盐城二调·7)已知双曲线()2222100x y C a b a b-=>>:,的左、右焦点分别为F 1,F 2,过点F 2作倾斜角为θ的直线l 交双曲线C 的右支于A ,B 两点,其中点A 在第一象限,且cos θ=14.若|AB |=|AF 1|,则双曲线C 的离心率为A .4B .15C .32 D .2【答案】D【解析】22cos b AF a c θ=-,22cos b BF a c θ=+,2222122122230124b AB AF BF AF a AF BF a a e e ac =+==+⇒=⇒=⇒--=⇒+2e =.例3 已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,与过右焦点F 且斜率为k (k >0)的直线相交于A ,B 两点.若AF →=3FB →,则k =________.【答案】2【解析】如右图,设l 为椭圆的右准线,过A 、B3224+分别向l 作垂线AA /、BB /,A /、B /分别是垂足,过B 作AA /垂线BD ,D 是垂足 设BF =t ,AF =3t则t BB e '=,3t AA e'= Rt ABD 中,2,4tAD AB t e==故11cos 23AD AB e θ=== 又k >0,所以tan 2k θ==.xDF B BAyO B / A /【巩固训练】1. 设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的离心率为________.2.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.3. 已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .4.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的左右焦点,若E 上存在不同两点A ,B ,使得123F A F B =,则该椭圆的离心率的取值范围为( )A .1,1)B .1)-C .(2-,1)D .(0,2【答案与提示】1.【解析】如右图,设直线AB 的倾斜角为θ则12Rt AF F ,21212,b F F c AF a==所以cos θ=由|AF1|=3|F1B|、长短弦公式得:31cos1cosep epe eθθ=-+,化简得:2cos1eθ=1=,即4e===解之得:213e(负值已舍),所以33e.2.【答案】333.【答案】3+4.【答案】C【解析】延长1AF交椭圆于1A,根据椭圆的对称性,则211F B A F=,1113F A A F=,由12F A F Bλ=,且1||1cosepF Aeθ=-,11||1cosepA Feθ=+,由112A F F B=,所以1cos1cosep epe eλθθ=-+,整理得1cos1eλθλ-=+,其中[0θ∈,2)π,由A,B不重合,所以0θ≠,cose eθ=<,解得2e>,所以,椭圆的离心率的取值范围(2,1).。

圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S=|AB|•d=.△ABC综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1..(2)由题意可知,点O为PP′的中点,则=2S△POQ设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S=|OF|•|y1﹣y2|=.△POQ设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l的斜率存在,设为k,则直线l的方程为:y=kx,由y=kx和y=x2﹣1,得x2﹣kx﹣1=0.设A(x1,y1),B(x2,y2),于是x1+x2=k,x1•x2=﹣1,又点M的坐标为(0,﹣1).所以k MA•k MB=•====﹣1.故MA⊥MB,即MD⊥ME;(Ⅱ)设直线MA的斜率为k1,则直线MA的方程为y=k1x﹣1.联立y=x2﹣1可得或则点A的坐标为(k1,k12﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为(﹣,﹣1).于是S1=|MA|•|MB|=|k1|•••|﹣|•=.由椭圆方程x2+4y2=4和y=k1x﹣1,得(1+4k12)x2﹣8k1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵,∴a2=2c2=b2+c2,b=c,a2=2b2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b2=4,a2=8,所以椭圆C的方程为:;(2)当直线l斜率存在时,设直线l方程:y=kx+1,由得(2k2+1)x2+4kx﹣6=0,△=16k2+24(2k2+1)>0,设,假设存在定点Q(0,t)符合题意,∵∠PQA=∠PQB,∴k QA=﹣k QB,∴=,∵上式对任意实数k恒等于零,∴4﹣t=0,即t=4,∴Q(0,4),当直线l斜率不存在时,A,B两点分别为椭圆的上下顶点(0,﹣2),(0,2),显然此时∠PQA=∠PQB,综上,存在定点Q(0,4)满足题意.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由点在椭圆C上可得:,整理为:9a2+4b2=4a2b2,由椭圆C的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a>b>0可解得:,故椭圆C的方程为:.(2)设点P、Q的坐标分别为(x1,y1),(x2,y2),点A的坐标为(﹣2,0),故,可得y1y2=2(x1+2)(x2+2),设直线PQ的方程为y=kx+m(直线PQ的斜率存在),可得(kx1+m)(kx2+m)=2(x1+2)(x2+2),整理为:,联立,消去y得:(4k2+3)x2+8kmx+(4m2﹣12)=0,由△=64k2m2﹣4(4k2+3)(4m2﹣12)=48(4k2﹣m2+3)>0,有4k2+3>m2,有,,故有:,整理得:44k2﹣32km+5m2=0,解得:m=2k或,当m=2k时直线PQ的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意,当时直线PQ的方程为,即,过定点.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.【解答】解:(1)椭圆Γ:=1(0<b<2)的a=2,向量与的夹角为,可得|BF1|=|BF2|=a==2b=2,即b=1,则椭圆方程为+y2=1;(2)设P(m,n),可得+n2=1,即n2=1﹣,•=(1﹣m,﹣n)•(﹣m,﹣n)=m2﹣m+n2=m2﹣m+1=(m﹣)2+,由﹣2≤m≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6,则•的范围是[,6];(3)证明:当直线l的斜率不存在时,设M(x1,y1),N(x2,y2),由k BM+k BN=+==1,x1=x2,y1=﹣y2,得x1=﹣2,此时M,N重合,不符合题意;设不经过点P的直线l方程为:y=kx+m,M(x1,y1),N(x2,y2),由得(1+4k2)x2+8ktx+4t2﹣4=0,x1+x2=﹣,x1x2=,k BM+k BN=+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I)根据题意,解得,故椭圆C的方程为.…(5分)(II)根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)(III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ的中点.要使四边形OPMQ为平行四边形,则N为OM的中点,所以.要使点M在椭圆C上,则,即12k2+9=0,此方程无解.所以在椭圆C上不存在点M,使得四边形OPMQ为平行四边形.….(14分)13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF2⊥x轴,|OD|=1,∴AB∥OD,∵O为F1F2为的中点,∴D为BF1的中点,∵AD⊥F1B,∴|AF1|=|AB|=2|AF2|=4|OD|=4,∴2a=|AF1|+|AF2|=4+2=6,∴a=3,∴|F1F2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y0),直线PA1:y﹣=x,令y=0,得x M=;直线PA2:y+=x,令y=0,得x N=;|OM|•|ON|=,∵+=1,∴6﹣y02=x02,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=,∴2a=|EF1|+|EF2|=+=4,∴a=2,∴b2=a2﹣c2=8﹣2=6,∴椭圆方程为+=1,(Ⅱ)设点P的坐标为(0,t),当直线MN的斜率不存在时,可得M,N分别是椭圆的两端点,可得t=±,当直线MN的斜率存在时,设直线MN的方程为y=kx+t,M(x1,y1),N(x2,y2),则由=2可得x1=﹣2x2,①,由,消y可得(3+4k2)x2+8ktx+4t2﹣24=0,由△>0,可得64k2t2﹣4(3+4k2)(4t2﹣24)>0,整理可得t2<8k2+6,由韦达定理可得x1+x2=﹣,x1x2=,②,由①②,消去x1,x2可得k2=,由,解得<t2<6,综上得≤t2<6,又以F1P为直径的圆面积S=π•,∴S的范围为[,2π).15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由题意可得:,∵平行于x轴的直线交椭圆于A,B两点,且.∴,a=,∴c=2,b2=a2=﹣c2=2.∴椭圆C的方程为(Ⅱ)设直线l的方程为y=k(x﹣2),代入椭圆C的方程,得(3k2+1)x2﹣12k2x+12k2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k2+3)x2+8kx﹣8=0.其判别式△>0,x1+x2=﹣,x1x2=﹣.∴•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)],=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.【解答】解:(1)设F1,F2分别为(﹣c,0),(c,0)可得,b2=c2﹣a2=3a2,又点(1,)在双曲线C上,∴,解得,c=1.连接PQ,∵OF1=OF2,OP=OQ,∴四边形PF1QF2的周长为平行四边形.∴四边形PF1+PF2=2>2,∴动点P的轨迹是以点F1、F2分别为左右焦点的椭圆(除左右顶点),∴动点P的轨迹方程(y≠0);(2)∵x12+x22=2,,∴y12+y22=1.∴|OG|•|MN|=•=•=.∴当3﹣2x1x2﹣2y1y2=3+2x1x2+2y1y2⇒x1x2+y1y2=0时取最值,此时OM⊥ON,△OMN为直角三角形.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.【解答】解:(I)设B(,y1),C(,y2),∵AB⊥AC,∴+y1y2=0,∴y1y2=﹣4p2.∴设BC的中点M(x,y),则=x,y1+y2=2y,∵y12+y22=(y1+y2)2﹣2y1y2,∴px=4y2+8p2,∴M的轨迹方程为:y2=(x﹣8p).(II)A(,t0),设直线BC的方程为y=kx+b,B(,y1),C(,y2),∴k AB==,k AC==,∵AB⊥AC,∴•=﹣1.即y1y2+t0(y1+y2)+t02+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t02+4p2=0.解得b=﹣t0﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t0,∴直线BC过定点(2p+,﹣t0).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF 2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y0),则H(﹣x0,﹣y0),不妨设x0<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即k GP=﹣k HP,所以,化简得x0y0=﹣6,即,代入,化简得,解得x 0=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。

圆锥曲线压轴题含答案

圆锥曲线压轴题含答案

1. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12PP 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN2. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点.(1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.x3. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程;(2)求证:A M B 、、三点共线.4. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且P 在直线l 的左上方.(1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.AxyOPB5. 如图,椭圆22122:1(0)x y C a b a b +=>>的离心率为2,x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥;②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =?请说明理由.6. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .7. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b -=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.8.已知以原点O为中心,F 为右焦点的双曲线C的离心率e =(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.1.解:(1)由已知得,则直线的方程为:,令得,即,设,则,即代入得:,即P的轨迹E的方程为。

高考数学压轴题突破训练——圆锥曲线(含详解)

高考数学压轴题突破训练——圆锥曲线(含详解)
14. 已知双曲线 的左右两个焦点分别为 ,点P在双曲线右支上.
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①


由方程①知 > <
, < < , .
7.解:解:令
则 即

又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为

∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.

高考数学压轴题——圆锥曲线大题十个大招含答案全解析

高考数学压轴题——圆锥曲线大题十个大招含答案全解析

终结圆锥曲线大题十个大招招式一:弦的垂直平分线问题 (25)招式二:动弦过定点的问题 (26)招式四:共线向量问题 (28)招式五:面积问题 (35)招式六:弦或弦长为定值、最值问题 (38)招式七:直线问题 (43)招式八:轨迹问题 (47)招式九:对称问题 (54)招式十、存在性问题 (57)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试(含答案解析)

(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试(含答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+= 3.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B C .12D .24.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D5.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .56.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .22B 2C .322D .327.已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( ) A .221124x y +=B .2211612x y +=C .221128x y +=D .2212016x y +=8.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .(1,23C .5,43⎡⎤⎢⎥⎣⎦D .[2,23]9.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .22y x =±B .2y x =C .3y x =D .3y x =10.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .2273+ B .273+ C .53D .212.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .2833y x =B .21633y x =C .28x y =D .216x y =二、填空题13.若A 、B 、C 是三个雷达观察哨,A 在B 的正东,两地相距6km ,C 在A 的北偏东30°,两地相距4km ,在某一时刻,B 观察哨发现某种信号,测得该信号的传播速度为1km /s ,4s 后A 、C 两个观察哨同时发现该信号,在如图所示的平面直角坐标系中,指出发出了这种信号的点P 的坐标___________.14.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.15.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且3||PF =,则双曲线C 的标准方程为_________. 17.已知椭圆222:1(06)6x y G b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是___________.18.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.19.如图所示,已知M ,N 为双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,点M与点Q 关于x 轴对称,2516ME MQ =,直线NE 交双曲线右支于点P ,若2NMP π∠=,则e =_____________.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.已知点M ⎭在椭圆2222:1(0)x y C a b a b +=>>上,且点M 到C 的左,右焦点的距离之和为4. (1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点,O M )上,求OA OB ⋅的取值范围.22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆C 的方程;(2)过点M 分别作直线MA 、MB 交椭圆于A B 、两点,设两直线MA 、MB 的斜率分别为12k k 、,且128k k +=,探究:直线AB 是否过定点,并说明理由.23.已知直线:1l y kx =+过抛物线()2:20E x py p =>的焦点,且与抛物线E 交于A 、B 两点,点M 为AB 中点.(1)求抛物线E 的方程;(2)以AB 为直径的圆与x 轴交于C 、D 两点,求MCD △面积取得最小值时直线l 的方程.24.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点. 25.过平面上点P 作直线11:2l y x =,21:2l y x =-的平行线分别交y 轴于点M ,N 且228OM ON +=.(1)求点P 的轨迹C 方程;(2)若过点()0,1Q 的直线l 与轨迹C 交于A ,B 两点,若AOB S △l 的方程.26.已知椭圆()2222:10x y C a b a b+=>>,A ,B 为椭圆的左、右顶点,点()0,2N -,连接BN 交椭圆C 于点Q ,ABN 为直角三角形,且:3:2NQ QB = (1)求椭圆的方程;(2)过A 点的直线l 与椭圆相交于另一点M ,线段AM 的垂直平分线与y 轴的交点P 满足154PA PM ⋅=,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线0x y -+=过(,0)F c -,所以00c --+=,得c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-, 又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B【分析】首先利用点,C D分别是线段AB的两个三等分点,则211222x xyy=-⎧⎪⎨=⎪⎩,得1112ykx=⋅,再利用点差法化简得2212214y bx a=,两式化简得到选项.【详解】设()11,A x y,()22,B x y,,C D分别是线段AB的两个三等分点,()1,0C x∴-,10,2yD⎛⎫⎪⎝⎭,则112,2yB x⎛⎫-⎪⎝⎭,得211222x xyy=-⎧⎪⎨=-⎪⎩,1121121131232yy y ykx x x x-===⋅-,利用点差法22112222222211x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()1212121222x x x x y y y ya b+-+-+=,整理得到2212214y bx a=,即222222244b a ck ka a-=⇒=,即221k e+=故选:B【点睛】关键点点睛:本题的关键利用三等分点得到211222x xyy=-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.B解析:B【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.4.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-.由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.6.C解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB 的斜率为21=-∴直线AB 的方程为1)y x =-,由2422(1) y xy x⎧=⎪⎨=-⎪⎩,整理可得22520x x-+=,解得12x=,212x=当212x=时,22y=-,因此AOB的面积为:1211113||||||||12122222222 AOB AOF BOFS S S OF y OF y=+=+=⨯⨯+⨯⨯=.故选:C.【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决. 7.C解析:C【分析】根据椭圆的定义以及余弦定理,结合221cos cos0AF O BF F∠+∠=列方程可解得a,b,即可得到椭圆的方程.【详解】22||2||AF BF=,2||3||AB BF∴=,又1||||AB BF=,12||3||BF BF∴=,又12||||2BF BF a+=,2||2aBF∴=,2||AF a∴=,13||2BF a=,12||||2AF AF a+=,1||AF a∴=,12||||AF AF∴=,A∴在y轴上.在Rt2AF O 中,22cos AF O a∠=,在12BF F △中,由余弦定理可得22221316()()822cos 2242a a a BF F a a +--∠==⨯⨯. 221cos cos 0AF O BF F ∠+∠=,可得22802a a a -+=,解得212a =.2221248b a c =-=-=.椭圆C 的方程为:221128x y +=.故选:C . 【点睛】方法点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求.8.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-,即112122,M F F D F DE M =∴=,可知四边形12MF DE 为平行四边形;又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故==ce a, 故双曲线C的渐近线方程为y = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54Px a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=,又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.12.D解析:D 【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 二、填空题13.【分析】转化条件为点在线段的垂直平分线上再结合双曲线的定义可得点在以、为焦点的双曲线的左支上联立方程即可得解【详解】由题意点即则线段的中点为直线的斜率所以线段的垂直平分线的斜率所以线段的垂直平分线的解析:(-【分析】转化条件为点P 在线段AC 的垂直平分线上,再结合双曲线的定义可得点P 在以A 、B 为焦点的双曲线的左支上,联立方程即可得解. 【详解】由题意,点()3,0A ,()3,0B -,()34cos60,4sin 60C +即(5,C , 则线段AC的中点为(,直线AC的斜率AC k ==, 所以线段AC的垂直平分线的斜率3k =-, 所以线段AC的垂直平分线的方程为)43y x =--即33y x =-+, 设(),P x y ,由PA PC =可得点P 在线段AC 的垂直平分线上,又46PA PB AB -=<=,所以点P 在以A 、B 为焦点的双曲线的左支上,该双曲线的方程为()221245x y x -=≤-,所以22145233x y x y x ⎧-=⎪⎪⎪≤-⎨⎪⎪=-+⎪⎩,解得8x y =-⎧⎪⎨=⎪⎩. 所以点P的坐标为(-.故答案为:(-. 【点睛】 关键点点睛:解决本题的关键是对条件的转化,转化条件为点P 为线段AC 的垂直平分线与双曲线左支的交点,运算即可得解.14.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.15.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题解析:4【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入e =即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则22222||(2)8AD b b a b b a =++-=+.因为||||AD AB =,所以2282b a a +=,即2238b a =,故22221b e a =+=. 故答案为:224.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.16.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,233b a =,结合222c a b =+,整理求得结果. 【详解】根据题意,可知233b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.17.①③【分析】运用椭圆的定义可得也在椭圆上分别画出两个椭圆的图形即可判断①正确;通过的变化可得②不正确;由图象可得当的横坐标和纵坐标的绝对值相等时的值取得最小即可判断③【详解】解:椭圆的两个焦点分别为解析:①③ 【分析】运用椭圆的定义可得P 也在椭圆222166y x b+=-上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,||OP 的值取得最小,即可判断③.【详解】解:椭圆222:1(06x y G b b+=<<的两个焦点分别为1F ,0)和2(F 0),短轴的两个端点分别为1(0,)B b -和2(0,)B b ,设(,)P x y ,点P 在椭圆G 上,且满足1212||||||||PB PB PF PF +=+,由椭圆定义可得,12||||22PB PB a b +==>,即有P 在椭圆222166y x b+=-上. 对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称,故①正确;对于②,由图象可得轨迹关于x ,y 轴对称,且06b <<,则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 仅有两个,故②不正确;对于③,点P 靠近坐标轴时(0b →或6)b →,||OP 越大,点P 远离坐标轴时,||OP 越小,所以226b b -=,即23b =时,取得最小值,此时22:163x yG +=,与22163y x += 两方程相加得22222222x y x y +=⇒+=,即||OP 的最小值为 2,故③正确.故答案为:①③.【点睛】本题考查椭圆的对称性及由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆,及到定点距离的最值的判断.18.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫--⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.19.【分析】设利用点差法得到即可求出离心率;【详解】解:设则由得从而有又所以又由从而得到所以所以故答案为:【点睛】双曲线的离心率是双曲线最重要的几何性质求双曲线的离心率(或离心率的取值范围)常见有两种方解析:54【分析】设()()1122,,,M x y P x y 利用点差法得到22PM PN b k k a⋅=,即可求出离心率; 【详解】解:设()()1122,,,M x y P x y ,则()()1111,,,N x y Q x y ---.由2516ME MQ =,得1117,8E x y ⎛⎫- ⎪⎝⎭,从而有11119,16MN PN ENy y k k k x x ===-,又1190,MN yNMP k x ∠==,所以11MP x k y =-, 又由()()()()22112212121212222222221111x y a bx x x x y y y y ab x y a b ⎧-=⎪⎪⇒+-=+-⎨⎪-=⎪⎩, 从而得到22PM PNb k k a⋅=所以211211991616PM PN x y b k k y x a ⎛⎫⋅=-⋅-== ⎪⎝⎭,所以54e ==.故答案为:54【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.(1)2214x y +=;(2)861,540⎛⎫- ⎪⎝⎭.【分析】(1)本小题根据已知条件直接求出2a =,1b =,再求出椭圆方程即可.(2)本小题先设A 、B 两点,再将OA OB ⋅转化为只含m 的表达式,最后根据m 的范围确定OA OB ⋅的范围,即可解题. 【详解】解:(1)∵点M ⎭在椭圆C :22221x y a b +=(0a b >>)上,∴222112a b +=,又∵24a =, ∴ 2a =,1b =.∴椭圆C 的方程:2214x y +=;(2)设点A 、B 的坐标为11(,)A x y ,22(,)B x y ,则AB 中点1212,22x x y y ++⎛⎫⎪⎝⎭在线段OM 上,且12OM k =,则12122()x x y y +=+,又221112x y +=,222212x y +=,两式相减得()()()()1212121202x x x x y y y y -++-+=, 易知120x x -≠,120y y +≠,所以()1212121212y y x xx x y y -+=-=--+,则1AB k =-. 设AB 方程为y x m =-+,代入2214xy +=并整理得2258440x mx m -+-=.由216(5)0m ∆=->解得25m <,又由(12425x x m +=∈,则0m <<. 由韦达定理得1285m x x +=,2124(1)5m x x -⋅=,故OA OB ⋅1212x x y y =+()()1212x x x m x m =+-+-+ ()212122x x m x x m =-++ ()22281855m m m -=-+285m =-又∵. 04m <<∴OA OB ⋅的取值范围是861,540⎛⎫- ⎪⎝⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)22184x y +=;(2)直线AB 过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析【分析】(1)通过点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形,可求得,a b ,从而可求椭圆方程;(2)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及128k k +=,可得直线AB 的方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 的方程,即可得到结论.【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12F MF △是等腰直角三角形,可得a =,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx mx y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k --+==++, 128k k +=12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+ 12212121142(2)()2(2)2(2)828x x km k m k m k m x x x x m +-=+-+=+-=+-=- 42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭;若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -, 由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭.【点睛】方法及易错点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和椭圆方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系对题目条件进行化简计算,从而可得出结论,另外设直线方程时常常不要忽略斜率是否存在的问题.23.(1)24x y =;(2)1y =. 【分析】(1)求出抛物线E 的焦点坐标,将焦点坐标代入直线l 的方程,求出p 的值,即可求得抛物线E 的方程;(2)设点()11,A x y 、()22,B x y ,联立直线l 与抛物线E 的方程,求出点M 的坐标,求出点M 到CD 的距离以及CD ,可得出MCD △的面积的表达式,利用函数的单调性可求得MCD △面积的最小值,进而可求得对应的直线l 的方程. 【详解】(1)抛物线2:2E x py =的焦点为0,2p ⎛⎫ ⎪⎝⎭,则0,2p ⎛⎫ ⎪⎝⎭在:1l y kx =+上,12p ∴=,2p ∴=,所以,抛物线E 的方程为24x y =; (2)设()11,A x y 、()22,B x y ,由241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以,212121616044k x x k x x ⎧∆=+>⎪+=⎨⎪=-⎩, 则AB 中点()22,21Mk k +,()21241AB x k =-==+,所以,以AB 为直径的圆M 的半径()221r k=+,M 到CD 的距离221d k=+,CD ==((221221212MCD S k k ∴=⨯⨯+=+△,令()20k t t =≥,则(21MCDSt =+[)0,+∞单调递增.当0t =时,即0k =时,MCD Sl 的方程为1y =.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值. 24.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QR x =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQpPR x k p QR x k ===. ()2因为222,p p A k k ⎛⎫⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离.25.(1)221164x y +=;(2)112y x =±+.【分析】(1)首先设点()00,P x y ,利用平行线的性质求点,M N 的坐标,代入228OM ON +=,求点P 的轨迹方程;(2)由(1)可知,轨迹C 方程221164x y +=,直线:1l y kx =+与椭圆方程联立,利用公式1212AOBS OQ x x =⋅-△表示面积,求直线的斜率.。

圆锥曲线压轴小题(含答案40页)

圆锥曲线压轴小题(含答案40页)

圆锥曲线压轴小题(含答案)1. 已知点 O 为双曲线 C 的对称中心,过点 O 的两条直线 l 1 与 l 2 的夹角为 60∘,直线 l 1 与双曲线 C 相交于点 A 1,B 1,直线 l 2 与双曲线 C 相交于点 A 2,B 2,若使 ∣A 1B 1∣=∣A 2B 2∣ 成立的直线 l 1 与 l 2 有且只有一对,则双曲线 C 离心率的取值范围是 ( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞) 2. 已知椭圆 E:x 25+y 24=1 的一个顶点为 C (0,−2),直线 l 与椭圆 E 交于 A ,B 两点,若 E 的左焦点为 △ABC 的重心,则直线 l 的方程为 ( ) A. 6x −5y −14=0 B. 6x −5y +14=0C. 6x +5y +14=0D. 6x +5y −14=03. 设双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的右焦点为 F ,过点 F 作与 x 轴垂直的直线 l 交两渐近线于 A ,B 两点,且与双曲线在第一象限的交点为 P ,设 O 为坐标原点,若 OP ⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ (λ,μ∈R ),λ⋅μ=316,则双曲线的离心率为 ( )A.2√33B.3√55C. 3√22D. 984. 双曲线x 2a 2−y 2b 2=1 的左,右焦点分别为 F 1,F 2,过 F 1 作圆 x 2+y 2=a 2 的切线交双曲线的左,右支分别于点 B ,C ,且 ∣BC ∣=∣CF 2∣,则双曲线的渐近线方程为 ( ) A. y =±3x B. y =±2√2xC. y =±(√3+1)xD. y =±(√3−1)x 5. 已知“若点 P (x 0,y 0) 在双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 上,则 C 在点P 处的切线方程为 C:xx 0a 2−yy 0b 2=1”,现已知双曲线 C:x 24−y 212=1 和点Q (1,t )(t ≠±√3),过点 Q 作双曲线 C 的两条切线,切点分别为 M ,N ,则直线 MN 过定点 ( )A. (0,2√3)B. (0,−2√3)C. (4,0)D. (−4,0)6. 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,∣MF∣=5,若以MF为直径的圆过点(0,2),则C的方程为( )A. y2=4x或y2=8xB. y2=2x或y2=8xC. y2=4x或y2=16xD. y2=2x或y2=16x7. 设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60∘的直线A1B1和A2B2,使∣A1B1∣=∣A2B2∣,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)8. 如图,双曲线x 2a2−y2b2=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点P是双曲线右支上一点,PF1交左支于点Q,交渐近线y= bax于点R.M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是( )A. √2B. √3C. 2D. √59. 已知m,n,s,t∈R∗,m+n=3,ms +nt=1,其中m,n是常数且m<n,若s+t的最小值是3+2√2,满足条件的点(m,n)是椭圆x24+y216=1一弦的中点,则此弦所在的直线方程为( )A. x−2y+3=0B. 4x−2y−3=0C. x+y−3=0D. 2x+y−4=010. 设双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2=( )A. 1+2√2B. 4−2√2C. 5−2√2D. 3+2√211. 已知抛物线y2=2px(p>0)的焦点F恰为双曲线x2a2−y2b2=1(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为( )A. √2B. √2+1C. 2D. 2+√212. 如图,斜线段 AB 与平面 α 所成的角为 60∘,B 为斜足,平面 α 上的动点 P 满足 ∠PAB =30∘,则点 P 的轨迹是 ( )A. 直线B. 抛物线C. 椭圆D. 双曲线的一支13. 已知定点 M (1,54),N (−4,−54),给出下列曲线方程:① 4x +2y −1=0;② x 2+y 2=3;③x 22+y 2=1;④x 22−y 2=1.在曲线上存在点P 满足 ∣MP∣=∣NP∣ 的所有曲线方程是 ( )A. ①③B. ②④C. ①②③D. ②③④14. 双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的左右焦点为 F 1,F 2,P 是双曲线上一点,满足 ∣PF 2∣=∣F 1F 2∣,直线 PF 1 与圆 x 2+y 2=a 2 相切,则双曲线的离心率为 ( )A. 54B. √3C. 2√33D. 5315. 过双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的左焦点 F 1,作圆 x 2+y 2=a 2 的切线交双曲线右支于点 P ,切点为 T ,PF 1 的中点 M 在第一象限,则以下结论正确的是 ( ) A. b −a =∣MO∣−∣MT∣ B. b −a >∣MO∣−∣MT∣C. b −a <∣MO∣−∣MT∣D. b −a =∣MO∣+∣MT∣16. 在椭圆 x 216+y 29=1 内,通过点 M (1,1) 且被这点平分的弦所在的直线方程为 ( ) A. 9x −16y +7=0 B. 16x +9y −25=0C. 9x +16y −25=0D. 16x −9y −7=017. 已知椭圆 C 1:x 2m 2+y 2=1(m >1) 与双曲线 C 2:x 2n 2−y 2=1(n >0) 的焦点重合,e 1,e 2 分别为 C 1,C 2 的离心率,则 ( ) A. m >n 且 e 1e 2>1 B. m >n 且 e 1e 2<1C. m <n 且 e 1e 2>1D. m <n 且 e 1e 2<118. 已知点P为双曲线x 2a2−y2b2=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左右焦点,且∣F1F2∣=b2a,I为三角形PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为( )A. 1+2√22B. 2√3−1C. √2+1D. √2−119. 已知F1,F2为双曲线C:x2−y2=1的左、右焦点,点P在C上,∠F1PF2=60∘,则点P到x轴的距离为( )A. √32B. √62C. √3D. √620. 直线4kx−4y−k=0与抛物线y2=x交于A,B两点,若∣AB∣=4,则弦AB的中点到直线x+12=0的距离等于( )A. 74B. 2 C. 94D. 421. 设A为双曲线x 216−y29=1的右支上一动点,F为该双曲线的右焦点,连AF交双曲线于点B,过点B作直线BC垂直于双曲线的右准线,垂足为C,则直线AC必过定点( )A. (4110,0) B. (185,0) C. (4,0) D. (225,0)22. 已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为−1,则1y1+1y2+1y3的值为( )A. −12p B. −1pC. 1pD. 12p23. 设点P(x,y)是曲线a∣x∣+b∣y∣=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足√x2+y2+2x+1+√x2+y2−2x+1≤2√2,则√2a+b取值范围为( )A. (0,2]B. [1,2]C. [1,+∞)D. [2,+∞)24. 若直线mx+ny=4和⊙O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆x 29+y24=1的交点个数为( )A. 至多1个B. 2个C. 1个D. 0个25. 平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是( )A. 一条直线B. 一个圆C. 一个椭圆D. 双曲线的一支26. 直线y=x+3与曲线y 29−x∣x∣4=1( )A. 没有交点B. 只有一个交点C. 有两个交点D. 有三个交点27. 直线y=2k与曲线9k2x2+y2=18k2∣x∣(k∈R,且k≠0)的公共点的个数为( )A. 1B. 2C. 3D. 428. 已知双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作平行于C的渐近线的直线交C于点P.若PF1⊥PF2,则C的离心率为( )A. √2B. √3C. 2D. √529. 已知椭圆x 24+y2b2=1(0<b<2),左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若∣BF2∣+∣AF2∣的最大值为5,则b的值是( )A. 1B. √2C. 32D. √330. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:①x2−y2=1,②y=x2−∣x∣,③y=3sinx+4cosx,④∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④31. 设直线 l 与抛物线 y 2=4x 相交于 A ,B 两点,与圆 (x −5)2+y 2=r 2(r >0) 相切于点 M ,且 M 为线段 AB 的中点.若这样的直线 l 恰有 4 条,则 r 的取值范围是 ( )A. (1,3)B. (1,4)C. (2,3)D. (2,4)32. 椭圆 a 2x 2+y 2=a 2 (0<a <1) 上离顶点 A (0,a ) 距离最大的点恰好是另一个顶点 Aʹ(0,−a ),则 a 的取值范围是 ( )A. (√22,1)B. [√22,1)C. (0,√22)D. (0,√22]33. 已知集合 M ={(x,y )∣x 2+y 2≤1},若实数 λ,μ 满足:对任意的(x,y )∈M ,都有 (λx,μy )∈M ,则称 (λ,μ) 是集合 M 的“和谐实数对”.则以下集合中,存在“和谐实数对”的是 ( ) A. {(λ,μ)∣λ+μ=4} B. {(λ,μ)∣λ2+μ2=4}C. {(λ,μ)∣λ2−4μ=4}D. {(λ,μ)∣λ2−μ2=4}34. 已知两点 M (1,54) 、 N (−4,−54),给出下列曲线方程:① 4x +2y −1=0;② x 2+y 2=3;③x 22+y 2=1;④x 22−y 2=1.曲线上存在点 P 满足 ∣MP ∣=∣NP ∣ 的所有曲线方程是 ( )A. ①②③B. ②④C. ①③D. ②③④35. 过点 (√2,0) 引直线 l 与曲线 y =√1−x 2 相交于 A ,B 两点,O 为坐标原点,当 △AOB 的面积取最大值时,直线 l 的斜率等于 ( )A. √33B. −√33C. ±√33D. −√336. 如图,一条直线与抛物线 y 2=2px (p >0) 交于 A ,B 两点,且 OA ⊥OB ,OD ⊥AB 于 D ,若点 D 的坐标为 (2,1),则抛物线方程为 ( )A. y 2=54xB. y 2=52xC. y 2=5xD. y 2=10x37. 已知 F 是抛物线 y 2=x 的焦点,点 A,B 在该抛物线上且位于 x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中 O 为坐标原点),则 △ABO 与 △AFO 面积之和的最小值是 ( )A. 2B. 3C.17√28D. √1038. 已知点 C 在以 O 为圆心的圆弧 AB 上运动(含端点).OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =0,OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +2yOB ⃗⃗⃗⃗⃗ (x,y ∈R ),则 x 2+y 的取值范围是 ( ) A. [−√22,√22] B. [12,√22] C. [−12,12]D. [−√22,12] 39. 已知抛物线 y 2=4x 的焦点为 F ,点 P (x,y ) 为该抛物线上的动点,若点 A (−1,0),则 |PF ||PA |的最小值为 ( )A. 12B. √22C. √32D.2√2340. P 是抛物线 y =x 2 上任意一点,则当 P 和直线 x +y +2=0 上的点距离最小时,P 与该抛物线的准线距离是 ( )A. 19B. 12C. 1D. 241. 已知直线 l:y =k (x −2)(k >0) 与抛物线 C:y 2=8x 交于 A ,B 两点,F 为抛物线 C 的焦点,若 ∣AF ∣=2∣BF ∣,则 k 的值是 ( )A. 13B. 2√23C. 2√2D. √2442. 如图所示是一个正方体的表面展开图,A,B,C 均为棱的中点,D 是顶点,则在正方体中,异面直线 AB 和 CD 的夹角的余弦值为 ( )A. √25B. √35C. √105D. √5543. 如图,M ,N 是焦点为 F 的抛物线 y 2=4x 上的两个不同的点,且线段MN 的中点 A 的横坐标为 3,直线 MN 与 x 轴交于 B 点,则点 B 的横坐标的取值范围是 ( ) A. (−3,3] B. (−∞,3]C. (−6,−3)D. (−6,−3)∪(−3,3]44. 已知椭圆 M:x 24+y 2=1 的上、下顶点为 A ,B ,过点 P (0,2) 的直线 l与椭圆 M 相交于两个不同的点 C ,D (C 在线段 PD 之间),则 OC ⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ 的取值范围为 ( )A. (−1,16)B. [−1,16]C. (−1,134)D. [−1,134)45. 若抛物线y=4x2的焦点是F,准线是l,则过点F和点M(4,4)且与准线l相切的圆有( )A. 0个B. 1个C. 2个D. 4个46. 如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为x2a2+y2b2=1(a>b>0),若直线AC与BD的斜率之积为−14,则椭圆的离心率为( )A. 12B. √22C. √32D. 3447. 已知P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直线与直线l的位置关系是( )A. 平行B. 重合C. 垂直D. 斜交48. 已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为( )A. 4B. 3C. 2D. 149. 已知双曲线x 2a2−y2b2=1(a>0,b>0)上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=−12,则m的值为( )A. 34B. 32C. 54D. 5250. 已知抛物线M:y2=4x,圆N:(x−1)2+y2=r2(r>0),过点(1,0)的直线l与圆N交于C,D两点,交抛物线M于A,B两点,则满足∣AC∣=∣BD∣的直线l只有三条的必要条件是( )A. r∈(0,1]B. r∈(1,2]C. r∈(32,4) D. r∈[32,+∞)51. 已知P为抛物线y=12x2上的动点,点P在x轴上的射影为Q,点A的坐标是(6,172),则∣PA∣+∣PQ∣的最小值是( )A. 8B. 192C. 10 D. 21252. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的左焦点为 F 1,左、右顶点分别为 A 1,A 2,P 为双曲线上任意一点,则分别以线段 PF 1,A 1A 2 为直径的两个圆的位置关系为 ( ) A. 相切 B. 相交C. 相离D. 以上情况都有可能53. 已知 F 1,F 2 分别是椭圆x 24+y 23=1 的左,右焦点,A 是椭圆上一动点,圆 C 与 F 1A 的延长线,F 1F 2 的延长线以及线段 AF 2 相切,若 M (t,0) 为其中一个切点,则 ( ) A. t =2 B. t >2C. t <2D. t 与 2 的大小关系不确定 54. 已知点 A ,B 是双曲线 x 2−y 22=1 上的两点,O 为坐标原点,且满足OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =0,则点 O 到直线 AB 的距离等于 ( )A. √2B. √3C. 2D. 2√255. 已知椭圆x 24+y 2b 2=1(0<b <2),左右焦点分别为 F 1,F 2,过 F 1 的直线 l 交椭圆于 A ,B 两点,若 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,则 b 的值是 ( )A. 1B. √2C. 32D. √356. 抛物线 y 2=2px (p >0) 的准线交 x 轴于点 C ,焦点为 F ,A ,B 是抛物线的两点.已知 A ,B ,C 三点共线,且 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,直线 AB 的斜率为 k ,则有 ( )A. k 2=14B. k 2=√34C. k 2=12D. k 2=√3257. 已知椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 √32,过右焦点 F 且斜率为 k (k >0) 的直线与 C 相交于 A 、 B 两点.若 AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则 k = ( )A. 1B. √2C. √3D. 258. 设直线l:2x+y+2=0关于原点对称的直线为l′,若lʹ与椭圆x2+y24=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为12的点P的个数为( )A. 1B. 2C. 3D. 459. 已知抛物线y2=−x与直线y=k(x+1)相交于A、B两点,则△AOB的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 钝角三角形60. 已知点F为抛物线y2=−8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且∣AF∣=4,则∣PA∣+∣PO∣的最小值为( )A. 6B. 2+4√2C. 2√13D. 4+2√561. 椭圆x 225+y216=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则∣y2−y1∣的值是( )A. √53B. 103C. 203D. 5362. 点P在直线l:y=x−1上,若存在过P的直线交抛物线y=x2于A,B两点,且∣PA∣=∣AB∣,则称点P为“ A点”,那么下列结论中正确的是( )A. 直线l上的所有点都不是“ A点”B. 直线l上仅有有限个点是“ A点”C. 直线l上的所有点都是“ A点”D. 直线l上有无穷多个点(点不是所有的点)是“ A点”63. 过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1p +1q等于( )A. 2aB. 12a C. 4a D. 4a64. 已知椭圆C:x 22+y2=1,点M1,M2,⋯,M5为其长轴AB的6等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2,⋯,P10,则10条直线AP1,AP2,⋯,AP10的斜率乘积为( )A. 14B. 116C. −18D. −13265. 椭圆4x2+9y2=144内有一点P(3,2),过点P的弦恰好以P为中点,那么这条弦所在直线的方程为( )A. 3x+2y−12=0B. 2x+3y−12=0C. 4x+9y−144=0D. 9x+4y−32=066. 如图,等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈(0,π2),以A、B为焦点,且过点D的双曲线的离心率为e1;以C、D为焦点,且过点A的椭圆的离心率为e2,则( )A. 当θ增大时,e1增大,e1e2为定值B. 当θ增大时,e1减小,e1e2为定值C. 当θ增大时,e1增大,e1e2增大D. 当θ增大时,e1减小,e1e2减小67. 已知a>0,过M(a,0)任作一条直线交抛物线y2=2px(p>0)于P,Q两点,若1∣MP∣2+1∣MQ∣2为定值,则a=( )A. √2pB. 2pC. p2D. p68. 在抛物线y=x2+ax−5(a≠0)上取横坐标为x1=−4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )A. (−2,−9)B. (0,−5)C. (2,−9)D. (1,−6)69. 椭圆C的两个焦点分别为F1(−1,0)和F2(1,0),若该椭圆C与直线x+y−3=0有公共点,则其离心率的最大值为( )A. √612B. √66C. √55D. √51070. 已知抛物线y=−x2+3上存在关于直线x+y=0对称的相异两点A、B,则∣AB∣等于( )A. 3B. 4C. 3√2D. 4√271. 记椭圆x 24+ny24n+1=1围成的区域(含边界)为Ωn(n=1,2,⋯),当点(x,y)分别在Ω1,Ω2,⋯上时,x+y的最大值分别是M1,M2,⋯,则limn→∞M n=( )A. 0B. 14C. 2D. 2√272. 已知曲线f(x)=x3+x2+x+3在x=−1处的切线恰好与抛物线y=2px2相切,则过该抛物线焦点且垂直于对称轴的直线与抛物线相交所得的线段长为( )A. 18B. 14C. 8D. 473. 已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且∣AK∣=√2∣AF∣,则△AFK的面积为( )A. 4B. 8C. 16D. 3274. 已知直线x+2y−3=0与圆x2+y2+x−6y+m=0相交于P,Q两点,O为坐标原点,若OP⊥OQ,则m等于( )A. 3B. −3C. 1D. −175. 中心在原点,焦点坐标为(0,±5√2)的椭圆被直线3x−y−2=0截得的弦的中点的横坐标为12,则椭圆方程为( )A. 2x 225+2y275=1 B. 2x275+2y225=1 C. x225+y275=1 D. x275+y225=176. 若方程√x2+1=a(x−1)恰有两个不同的实根,则实数a的取值范围是( )A. −1<a<−√22B. a<−√22或a>√22C. −1<a<−√22或√22<a<1 D. a<−1或−1<a<−√2277. 已知直线 y =k (x +2) (k >0) 与抛物线 C :y 2=8x 相交 A 、B 两点,F 为 C 的焦点.若 ∣FA ∣=2∣FB ∣,则 k = ( )A. 13B. √23C. 23D. 2√2378. 已知抛物线 M :y 2=4x ,圆 N :(x −1)2+y 2=r 2(其中 r 为常数,r >0),过点 (1,0) 的直线 l 交圆 N 于 C 、 D 两点,交抛物线 M 于 A 、 B 两点,且满足 ∣AC∣=∣BD∣ 的直线 l 只有三条的必要条件是 ( )A. r ∈(0,1]B. r ∈(1,2]C. r ∈(32,4)D. r ∈[32,+∞)79. 已知 O 是平面上的一个定点,A,B,C 是平面上不共线的三个点,动点 P满足 OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗∣∣AB ⃗⃗⃗⃗⃗ ∣∣+AC⃗⃗⃗⃗⃗∣∣AC ⃗⃗⃗⃗⃗ ∣∣),λ∈(0,+∞),则点 P 的轨迹一定通过△ABC 的 ( )A. 外心B. 内心C. 重心D. 垂心80. 点 P 在直线 l:y =x −1 上,若存在过 P 的直线交抛物线 y =x 2 于 A ,B 两点,且 ∣PA∣=∣AB∣,则称点 P 为" A 点",那么下列结论中正确的是 ( ) A. 直线 l 上的所有点都是" A 点" B. 直线 l 上仅有有限个点是" A 点" C. 直线 l 上的所有点都不是" A 点"D. 直线 l 上有无穷多个点(但不是所有的点)是" A 点"答案第一部分1. A2. B 【解析】设 A (x 1,y 1),B (x 2,y 2),椭圆x 25+x 24=1 的左焦点为(−1,0),因为点 C (0,−2),且椭圆左焦点 F 1 恰为 △ABC 的重心,所以x 1+x 2+03=−1,y 1+y 2−23=0,所以 x 1+x 2=−3,y 1+y 2=2, ⋯⋯① 因为x 125+y 124=1,x 225+y 224=1,所以两式相减得:(x 1+x 2)(x 1−x 2)5+(y 1+y 2)(y 1−y 2)4=0,将 ① 代入得:y 1−y 2x 1−x 2=65,即直线 l 的斜率为 k =y 1−y 2x 1−x 2=65,因为直线 l 过AB 中点 (−32,1),所以直线 l 的方程为 y −1=65(x +32),故答案为 6x −5y +14=0.3. A 【解析】双曲线的渐近线为:y =±ba x ,设焦点 F (c,0),则A (c,bc a ),B (c,−bca ),P (c,b 2a ), 因为 OP⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ , 所以 (c,b 2a )=((λ+μ)c,(λ−μ)bca ), 所以 λ+μ=1,λ−μ=bc ,解得:λ=c+b 2c ,μ=c−b 2c , 又由 λμ=316,得:c 2−b 24c 2=316,解得:a 2c 2=34,所以,e =c a=2√33.4. C5. C【解析】设 M (x 1,y 1),N (x 2,y 2),则切点分别为 M ,N 的切线方程为x 1x 4−y 1y 12=1,x 2x 4−y 2y 12=1.因为点 Q (1,t ) 在两条切线上, 所以x 14−y 1t 12=1,x 24−y 2t 12=1.所以M,N两点均在直线x4−ty12=1上,即直线MN的方程为x4−ty12=1,显然直线过点(4,0).6. C7. A 【解析】先考虑焦点在x轴上的双曲线,由双曲线的对称性知,满足题意的这一对直线也关于x轴(或y轴)对称,又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30∘且小于等于60∘,即tan30∘<ba ≤tan60∘,所以13<b2a2≤3.又所以43<e2≤4,解得2√33<e≤2.焦点在y轴上的双曲线与焦点在x轴上的双曲线的开口宽窄要求完全相同,所以离心率的范围一致.8. C 【解析】设PF1的方程为y=k(x+c),k>0,与渐近线方程y=ba x联立,可得R(ackb−ka,bckb−ka),把直线y=k(x+c)代入双曲线x 2a2−y2b2=1,可得(b2−a2k2)x2−2ca2k2x−a2c2k2−a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=2ca2k2b2−a2k2,即有中点M(ca 2k2b2−a2k2,cb2kb2−a2k2),由A(a,0),F2(c,0),RF2⊥PF1,可得k RF2=bck2ack−bc=−1k,即有bk2+2ak−b=0,解得k=c−ab(负的舍去),由AM⊥PF1,可得k AM=cb2kca2k2−ab2+a3k2=−1k,即为(c3+a3)k2=a(c2−a2),即有(c3+a3)(c−a)2=ab2(c2−a2)=a(c2−a2)2,化为c=2a,即e=ca=2.9. D 【解析】因为m,n,s,t为正数,m+n=3,ms +nt=1,s+t的最小值是3+2√2,所以(s+t)(ms +nt)的最小值是3+2√2,所以 (s +t )(m s +n t )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s=ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2. 设以 (1,2) 为中点的弦交椭圆x 24+y 216=1 于 A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2) 分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.10. C【解析】如图,设 ∣AF 1∣=m ,则 ∣BF 1∣=√2m ,∣AF 2∣=m −2a ,∣BF 2∣=√2m −2a ,所以 ∣AB ∣=∣AF 2∣+∣BF 2∣=m −2a +√2m −2a =m ,得 m =2√2a ,又由 ∣AF 1∣2+∣AF 2∣2=∣F 1F 2∣2,可得 m 2+(m −2a )2=4c 2,即得 (20−8√2)a 2=4c 2,所以 e 2=c 2a 2=5−2√2.11. B 【解析】根据题意 p 2=c ,设抛物线与双曲线的一个交点为 A ,则有 A (c,2c ),因为点 A 在双曲线上,所以有 c 2a2−4c 2b 2=1,整理得 e 2−2e −1=0,所以双曲线的离心率 e =1+√2.12. C 13. D 【解析】提示:对于①,可得 MN 的中点为 O (−32,0) 不在直线l:4x +2y −1=0 上,k MN =12,又直线 4x +2y −1=0 的斜率为 k l =−2,即 k l k MN =−1,所以线段 MN 的中垂线 y =−2x −3 不与 4x +2y −1=0 相交,所以①不成立;对于②,因为 (−32)2+02<3,所以 MN 的中点为 O (−32,0) 在圆 x 2+y 2=3 的内部,所以线段 MN 的中垂线与圆相交,所以②正确;对于③和④,只需联立线段 MN 的中垂线 y =−2x −3 与曲线方程,判断判别式即可,可得③和④都成立.14. D 【解析】设 PF 1 与圆相切于点 M ,因为 ∣PF 2∣=∣F 1F 2∣,所以 △PF 1F 2 为等腰三角形,设 N 为 PF 1 中点,则 F 2N ⊥PF 1,又 OM ⊥PF 1,O 为 F 1F 2 中点,所以 ∣F 1M ∣=12∣F 1N ∣=14∣PF 1∣,又因为在直角三角形 F 1MO 中,∣F 1M ∣2=∣F 1O ∣2−a 2=c 2−a 2=b 2,所以 ∣F 1M ∣=b =14∣PF 1∣ ⋯⋯①,又 ∣PF 1∣=∣PF 2∣+2a =2c +2a ⋯⋯②,c 2=a 2+b 2 ⋯⋯③,由①②③解得 e =c a=53.15. A【解析】连 OT ,则 OT ⊥F 1T ,在直角三角形 OTF 1 中,∣F 1T ∣=√∣OF 1∣2−∣OT∣2=b .连 PF 2,M 为线段 F 1P 的中点,O 为坐标原点,所以 ∣OM∣=12∣PF 2∣,所以∣MO∣−∣MT∣=12∣PF 2∣−(12∣PF 1∣−∣F 1T ∣)=12(∣PF 2∣−∣PF 1∣)+b =12×(−2a )+b =b −a.16. C 【解析】设以点 M (1,1) 为中点的弦两端点为 P 1(x 1,y 1),P 2(x 2,y 2), 则 x 1+x 2=2,y 1+y 2=2. 又x 1216+y 129=1, ⋯⋯①①−② 整理得:y 1−y 2x 1−x 2=−916,所以以点 M (1,1) 为中点的弦所在直线的斜率 k =−916. 所以中点弦所在直线方程为 y −1=−916(x −1),即 9x +16y −25=0.17. A 【解析】由题意知 m 2−1=n 2+1,即 m 2=n 2+2, (e 1e 2)2=m 2−1m 2⋅n 2+1n 2=(1−1m 2)(1+1n 2), 代入 m 2=n 2+2,得 m >n ,(e 1e 2)2>1. 18. D 19. B 20. C【解析】直线 4kx −4y −k =0,即 y =k (x −14),即直线 4kx −4y −k =0 过抛物线 y 2=x 的焦点 (14,0),设A (x 1,y 1),B (x 2,y 2),则 ∣AB ∣=x 1+x 2+12=4,故 x 1+x 2=72,则弦 AB 的中点的横坐标是 74,弦 AB 的中点到直线 x +12=0 的距离是 74+12=94.21. A 【解析】设 AB:x =my +5,与双曲线方程联立得 (9m 2−16)y 2+90my +81=0,设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=−90m 9m 2−16,y 1y 2=819m 2−16.右准线方程为 x =165,所以 C (165,y 2),则 AC:y −y 2=y 2−y 1165−x 1(x −165),令y =0,化简可得 x =4110.特殊法:设 A (5,94),则 B (5,−94),C (165,−94).故 k AC =94−(−94)5−165=52,直线AC 为 y −94= 52(x −5),即:10x −4y −41=0,与 x 轴交点为 (4110,0),可得答案.22. B 23. D 【解析】因为 √x 2+y 2+2x +1+√x 2+y 2−2x +1=√(x +1)2+y 2+√(x −1)2+y 2≤2√2,所以一动点 P (x,y ) 的轨迹是以点 (−1,0) 和点 (1,0) 为焦点椭圆及其内部,椭圆的方程为x 22+y 2=1,又曲线a ∣x ∣+b ∣y ∣=1 表示的区域为一平行四边形,因为曲线 a∣x∣+b ∣y ∣=1(a ≥0,b ≥0) 上任意一点,其坐标 (x,y ) 均满足 √x 2+y 2+2x +1+√x 2+y 2−2x +1≤2√2,即平行四边形在椭圆的内部,所以有 {1b ≤1,1a≤√2解得 {b ≥1,√2a ≥1, 所以 √2a +b ≥2.24. B 【解析】由直线与圆没有交点可得 ∣−4∣√m 2−n 2>2,即 m 2+n 2<4,n 2<4−m 2, 所以n 29+m 29+4−m 24=1−5m 236<1,所以点 (m,n ) 在椭圆x 29+y 24=1 的内部,故经过点 (m,n ) 的直线与椭圆由 2 个交点. 25. A26. D 【解析】当 x >0 时,曲线为 y 29−x 24=1,将直线 y =x +3 代入曲线方程得 x =0(舍)或 x =245,故此时有一个交点;当 x ≤0 时,曲线为y 29+x 24=1,将直线 y =x +3 代入曲线方程得 x =0 或x =−2413,故此时有两个交点. 因此共有 3 个交点.27. D 【解析】将 y =2k 代入 9k 2x 2+y 2=18k 2∣x∣ 得:9k 2x 2+4k 2=18k 2∣x∣⇒9∣x ∣2−18∣x∣+4=0,显然该关于 ∣x ∣ 的方程有两正解,即 x 有四解,所以交点有 4 个.28. D 【解析】设点 P 坐标为 (x P ,y P ),由已知,直线 PF 2 的方程为 y =b a(x −c ),代入双曲线方程得 x P =a 2+c 22c,y P =−b 32ac,因为 PF 1⊥PF 2,所以k PF 1⋅k PF 2=−1,即−b 32ac a 2+c 22c+c ⋅ba=−1,化简得 b 4=a 4+3a 2c 2,即 (c 2−a 2)2=a 4+3a 2c 2,即 c 2=5a 2,所以 e 2=5,e =√5.29. D 【解析】由椭圆的方程可知 a =2,由椭圆的定义可知,∣AF 2∣+∣BF 2∣+∣AB ∣=4a =8,所以 ∣AB ∣=8−(∣AF 2∣+∣BF 2∣)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则 2b 2a=3.所以 b 2=3,即 b =√3.30. C【解析】①中 x 2−y 2=1 是一个等轴双曲线,它不存在"自公切线"; ②如图所示,曲线在点 (−12,−14) 和点 (12,−14) 处的切线重合;③ y =3sinx +4cosx =5sin (x +φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线"; ④中曲线如图所示,不存在"自公切线".31. D 【解析】设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则 {y 12=4x 1,y 22=4x 2,所以(y 1+y 2)(y 1−y 2)=4(x 1−x 2)⋯∗.①当 x 1=x 2,即直线 l 斜率不存在时,此时一定存在 2 条满足题意的直线,如图:②当 x 1≠x 2 时,设直线 l 的斜率为 k ,∗ 式化为 2y 0⋅y 1−y 2x 1−x 2=4,即 ky 0=2.由直线与圆相切得y 0−0x 0−5⋅k =−1,即 ky 0=5−x 0=2,所以 x 0=3,即点M 在直线 x =3 上.而 x =3 与抛物线交点为 N(3,±2√3),与 x 轴的交点为 P (3,0), 圆心到 N 、 P 的距离分别为 4、2.当 r =4 时,点 N 在圆上,没有对应的直线满足要求;当 r =2 时,点 M 在 x 轴上,没有对应的直线满足要求;当 2<r <4 时,过点 M 作圆的切线即可满足要求,如图所示: 这样的切线恰有两条,从而直线 l 恰有 4 条,则 2<r <4.32. B 【解析】提示:由对称性,可设椭圆上任意一点 P 的坐标为 (x 0,y 0),所以 x 02=1−y 02a2,∣AP ∣2=1−y 02a2+(y 0−a )2=(a 2−1a 2)y 02−2ay 0+a 2+1.因为 0<a <1,所以 a 2−1a 2<0,关于 y 0 的二次函数图象开口向下,所以对称轴 y 0=a 3a 2−1≥−a .解得 √22≤a <1.33. C 【解析】由实数 λ,μ 满足:对任意的 (x,y )∈M ,都有 (λx,μy )∈M ,即 λ2x 2+μ2y 2≤1 ,所以 ∣λ∣≤1 , ∣μ∣≤1 .而 {∣λ∣≤1,∣μ∣≤1. 构成的区域如图:A 、B 、D 选项的集合所表示的曲线均与 (λ,μ) 所表示的区域无交点,C 选项所表示的抛物线与区域有交点,符合题意.34. D 【解析】由题意,知 P 点必在线段 MN 的垂直平分线上. ∵ MN 的中点为 (−32,0),直线 MN 斜率为 12,∴ MN 的垂直平分线方程是 y =−2x −3,它显然与①中的直线平行,∴ 排除A 、C ;注意到选项B 、D 的区别,联立垂直平分线方程与椭圆方程,解得③中曲线上存在符合题设条件下的 P 点. 35. B【解析】如图,设直线 AB 的方程为 x =my +√2 (显然 m <0 ),A (x 1,y 1),B (x 2,y 2),P(√2,0),联立 {x =my +√2,y =√1−x 2. 消去 x 得 (1+m 2)y 2+2√2my +1=0,由题意得 Δ=8m 2−4(1+m 2)>0,所以 m 2>1, 由根与系数的关系得 y 1+y 2=−2√2m1+m 2,y 1⋅y 2=11+m 2,所以 S △AOB =S △POB −S △POA 令 t =1+m 2(t >2), 所以 S △AOB =√2⋅√t−2t 2=√2⋅√−2(1t −14)2+18,所以当 1t=14,即 t =4,m =−√3 时,△AOB 的面积取得最大值,此时,直线l 的斜率为 −√33. 36. B 【解析】设 A (x 1,y 1),B (x 2,y 2),依题意,k OD =12,k AB =−2, 所以直线 AB 方程为 y −1=−2(x −2),即 y =−2x +5,代入抛物线方程得 4x 2−(20+2p )x +25=0, 所以 {x 1+x 2=10+p 2,x 1x 2=254. ⋯⋯①又因为 OA ⊥OB ,所以 x 1x 2+y 1y 2=5x 1x 2−10(x 1+x 2)+25=0, ⋯⋯②, 将 ① 代入 ② 得 5×254−10×10+p 2+25=0,解得 p =54,37. B 【解析】我们设 A (x 1,y 1),B (x 2,y 2),直线 AB 方程为 x =my +t .直线 AB 交 x 轴于点 M (t,0). 联立直线和抛物线的方程消去 x 得 因为 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =2,所以 解得 y 1y 2=−2,即 t =2,所以 AB 过 x 轴上定点 M (2,0). 所以当且仅当 98∣y 1∣=2∣y 1∣,即 ∣y 1∣=43时,等号成立.38. B 【解析】建立如图所示的坐标系,可设 A (1,0),B (0,1),设 ∠AOC =α(0≤α≤π2),则 OC⃗⃗⃗⃗⃗ (cosα,sinα), 所以 OC ⃗⃗⃗⃗⃗ =(x,2y )=(cosα,sinα), 所以 x2+y =12(cosα+sinα)=√22sin (α+π4)(0≤α≤π2). 由 π4≤α+π4≤3π4,可得 sin (α+π4)∈[√22,1],39. B 【解析】抛物线 y 2=4x 的准线方程为 l:x =−1. 过点 P 作 PFʹ⊥l ,垂足为 Fʹ, 由抛物线的定义,得 |PF |=|PFʹ|, 故 |PF ||PA|=|PFʹ||PA |=cos∠PAF ,即求 cos∠PAF 的最小值,又 0≤∠PAF <π2,故需使 ∠PAF 最大.当直线 PA 与抛物 y 2=4x 相切时,∠PAF 最大,|PF ||PA |取得最小值,这时,设直线 PA 的方程为 y =k (x +1), 联立 {y =k (x +1),y 2=4x,消去 y 得,k 2x 2+(2k 2−4)x +k 2=0, 则 Δ=(2k 2−4)2−4k 4=0, 所以 k 2=1, 解得 k =±1.故此时 tan∠PAF =1,∠PAF =π4,所以 cos∠PAF =√22. 40. B41. C 【解析】法一 据题意画图, 作 AA 1⊥lʹ,BB 1⊥lʹ,BD ⊥AA 1 .设直线 l 的倾斜角为 θ,∣AF ∣=2∣BF ∣=2r , 则 ∣AA 1∣=2∣BB 1∣=2∣AD ∣=2r , 所以有 ∣AB ∣=3r ,∣AD ∣=r ,则 ∣BD ∣=2√2r ,k =tanθ=tan∠BAD =∣BD∣∣AD∣=2√2 .法二 直线 y =k (x −2) 恰好经过抛物线 y 2=8x 的焦点 F (2,0),由 {y 2=8x,y =k (x −2).可得 ky 2−8y −16k =0,因为 ∣FA ∣=2∣FB ∣,所以 y A =−2y B .则 y A +y B =−2y B +y B =8k,所以 y B =−8k,y A ⋅y B =−16,所以−2y B 2=−16,即 y B =±2√2,又 k >0,故 k =2√2 .42. C 【解析】如图,还原正方体,连接 A 1B 1,B 1D 1,A 1D 1 . ∠D 1B 1A 1 即为所求角.设正方形的边长为 2,则 A 1B 1=2√2,A 1D 1=B 1D 1=√5. 在 △D 1B 1A 1 中用余弦定理,得 AB 和 CD 的夹角的余弦值为√105. 43. A 【解析】(i )若直线 MN 的斜率不存在,则点 B 的坐标为 (3,0).(ii )若直线 MN 的斜率存在,设 A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2).则由 {y 12=4x 1,y 22=4x 2,得 y 12−y 22=4(x 1−x 2),所以y 1−y 2x 1−x 2(y 1+y 2)=4,即 k MN =2t ,所以直线 MN 的方程为 y −t =2t(x −3), 所以点 B 的横坐标 x B =3−t 22.由 {y −t =2t (x −3),y 2=4x, 消去 x 得 y 2−2ty +2t 2−12=0.由 Δ>0 得 t 2<12,又 t ≠0, 所以 x B =3−t 22∈(−3,3).综上,点 B 的横坐标的取值范围为 (−3,3].44. D 【解析】当直线斜率不存在时,直线方程为 x =0,C (0,1),D (0,−1),此时 OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =−1; 当直线斜率存在时,设斜率为 k ,C (x 1,y 1),D (x 2,y 2),则直线方程为 y =kx +2,与椭圆方程联立得 (1+4k 2)x 2+16kx +12=0,Δ=(16k )2−48(1+4k 2)=64k 2−48>0,得 k 2>34,x 1+x 2=−16k 1+4k2,x 1x 2=121+4k 2,所以因为 k 2>34,所以 1+4k 2>4,0<171+4k 2<174,所以 −1<OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ <134. 综上,OC ⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ 的取值范围是 [−1,134). 45. C【解析】由已知,过点 F 和点 M (4,4) 且与准线 l 相切的圆的圆心在抛物线 y =4x 2 上,又因为此圆过 F 和 M ,所以圆心在 MF 的垂直平分线上,抛物线 y =4x 2 与 MF 的垂直平分线的交点有两个,故过点 F 和点 M (4,4) 且与准线 l 相切的圆有 2 个.46. C 【解析】因为内外两个椭圆的离心率相同,不妨设 B 点坐标为 (0,tb ),A 点坐标为 (ta,0),设直线 BD 斜率为 k 1,AC 斜率为 k 2,则 BD 的方程为 y =k 1x +tb ,AC 的方程为 y =k 2x −k 2ta .由 BD 、 AC 与椭圆相切易得由①得 k 12=(t 2−1)b 2a 2 ⋯⋯③ 由②得 k 22=b 2a 2(t 2−1) ⋯⋯④又因为 k 1k 2=−14,所以 a =2b ,从而椭圆的离心率为 √32.47. A 【解析】P 1(x 1,y 1) 是直线 l 上的一点,故有 f (x 1,y 1)=0,P 2(x 2,y 2) 是直线 l 外一点,故 f (x 2,y 2)≠0,是一个非零实数,从而 f (x,y )+f (x 1,y 1)+f (x 2,y 2)=0 表示的直线与直线 l 平行且不重合. 48. A 【解析】根据题意,解得 ℎ=√2,即点 C 到直线 AB 的距离为 √2.问题转化为与直线 AB 距离为 √2 的直线与抛物线交点的个数. 由两平行线间的距离公式,得与直线 AB 距离为 √2 的直线方程为分别将直线与抛物线方程联立,解得这两直线与抛物线分别有 2 个交点,因此,共有 4 个不同的 C 点满足条件.49. B 【解析】∵ 双曲线上的一点到双曲线左、右焦点的距离之差为 4,∴a =2.∵ A (x 1,2x 12),B (x 2,2x 22) 关于直线 y =x +m 对称,∴{2x 12−2x 22x 1−x 2=−1,x 1+x 22+m =2x 12+2x 222,整理得 x 1+x 2=−12,m =32.50. D【解析】(i ) 当 l 与 x 轴垂直时,直线 l:x =1 与抛物线 M 交于点 (1,±2),与圆 N 交于点 (1,±r ),显然满足 ∣AC ∣=∣BD ∣.(ii ) 当 l 与 x 轴不垂直时,设直线 l 的方程为 x =my +1.由 {x =my +1,y 2=4x, 消去 x ,得 y 2−4my −4=0.设 A (x 1,y 1),B (x 2,y 2),且 y 1<y 2,则 y 1+y 2=4m,y 1y 2=−4, 所以 (y 1−y 2)2=(y 1+y 2)2−4y 1y 2=16(m 2+1).由 {x =my +1,(x −1)2+y 2=r 2, 解得 y =±√r 2m 2+1. 设 C (x 3,y 3),D (x 4,y 4),且 y 3<y 4,则 (y 3−y 4)2=4r 2m 2+1.由 ∣AC ∣=∣BD ∣,得 ∣y 3−y 1∣=∣y 4−y 2∣,即 ∣y 1−y 2∣=∣y 3−y 4∣. 显然,当 r >2 时,m 有两解,对应的直线 l 有两条.又当 r =2 时,m =0,此时直线 l 斜率不存在,即为第一种情况 综合(i )(ii ),当 r ≥2 时,对应的直线 l 有三条,故D 适合.51. B 【解析】抛物线的准线方程为 y =−12,设抛物线焦点为 F ,则点 F 坐标为 (0,12).根据抛物线的定义可得 ∣PQ ∣=∣PF ∣−12,所以 ∣PA∣+∣PQ ∣=∣PF ∣+∣PQ ∣−12.所以 ∣PA∣+∣PQ ∣ 的最小值为 ∣FQ ∣−12=192.52. A 【解析】提示:如图,设 PF 1 的中点为 M ,因为 OM 为 △PF 1F 2 的中位线,所以 ∣OM ∣=12∣PF 2∣,设以线段 PF 1 、A 1A 2 为直径的两圆的半径分别是 r 、 a ,则两圆的圆心距为 ∣OM ∣=12∣PF 2∣=12(2a−∣PF 1∣)=12(2a −2r )=a −r ,所以两圆的位置关系是内切.53. A 【解析】由已知得圆 C 是 △AF 1F 2 的旁切圆, 点 M 是圆 C 与 x 轴的切点,设圆 C 与直线 F 1A 的延长线,AF 2 分别相切于点 P ,Q ,则由切线的性质可知:∣AP ∣=∣AQ ∣,∣F 2Q ∣=∣F 2M ∣,∣F 1M ∣=∣F 1P ∣, 所以所以 ∣MF 1∣+∣MF 2∣=2a , 所以 t =a =2.54. A 【解析】由于双曲线为中心对称图形,为此可考察特殊情况,设 A 为 y =x 与双曲线在第一象限的交点,则不妨设 B 为直线 y =−x 与双曲线在第四象限的一个交点,因此直线 AB 与 x 轴垂直,点 O 到 AB 的距离即为点 A 或点 B 的横坐标的值,联立直线与双曲线的方程,求出 x 的值即可. 55. D【解析】由椭圆的定义得 ∣AF 1∣+∣AF 2∣=2a =4,∣BF 1∣+∣BF 2∣=2a =4,所以 ∣AF 1∣+∣BF 1∣=4a −(∣BF 2∣+∣BF 1∣),因为 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,所以 ∣AF 1∣+∣BF 1∣ 的最小值为 3,当直线 l 与 x 轴垂直的时候,∣AF 1∣+∣BF 1∣ 最小,所以此时 A (−c,32),代入椭圆方程解得 b =√3.56. D 【解析】设直线 AB 的方程为 y =k (x +p2),A (x 1,y 1),B (x 2,y 2) ,联立直线与抛物线得 k 2x 2+(k 2p −2p )x +p 2k 24=0,所以 x 1+x 2=2p−k 2p k 2,x 1x 2=p 24,又 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,所以 2∣AB ∣=∣AF ∣+∣BF ∣,又 ∣AB ∣=√1+k 2∣x 1−x 2∣=√1+k 2⋅2p√1−k 2k 2,∣AF ∣+∣BF ∣=x 1+x 2+p ,所以 4(1−k 4)=1,解得 k 2=√32. 57. B 【解析】设 A (x 1,y 1),B (x 2,y 2),由于 AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则有 由 e =√32,可设 a =2t,c =√3t,b =t ,代入椭圆方程整理得而直线 AB 的方程为 x =sy +√3t (s =1k),代入 x 2+4y 2−4t 2=0,消去 x 并整理得 那么把 y 1=−3y 2 代入得 消去 y 2,解得 s =√22,从而 k =√2.58. B 【解析】∵ 直线 l:2x +y +2=0 关于原点对称的直线为 l ′:−2x −y +2=0,lʹ 与椭圆 x 2+y 24=1 的交点为 (1,0),(0,2),∴ ∣AB ∣=√5.∵ S △PAB =12×∣AB ∣×d =12,∴ P 到直线 lʹ 的距离为 d =√55.∴ P 在与 lʹ 平行且到 lʹ 距离为 √55的直线 m 上,设 m:−2x −y +c =0,则√55=∣2−c∣√5,解得 c =1 或 c =3.而 m 1:−2x −y +3=0 与椭圆无交点,m 2:−2x −y +1=0 与椭圆有两个交点,故符合题意的点共有两个.59. B 【解析】提示:联立抛物线方程和直线方程,设 A (x 1,y 1),B (x 2,y 2),然后可求得 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0.所以 OA ⊥OB . 60. C【解析】由已知可得抛物线 y 2=−8x 的焦点坐标为 (−2,0),准线方程为 x =2,设点 A 坐标为 (x 0,y 0),根据抛物线的定义可得 2−x 0=4,所以 x 0=−2,y 0=±4.O 关于准线的对称点为 Oʹ(4,0),则 P 点为 AOʹ 与准线 x =2 的交点时 ∣PA∣+∣PO∣ 有最小值,且最小值为 AOʹ=2√13.61. D 【解析】由已知得 a =5,b =4,c =3,又 △ABF 2 的内切圆周长为 π,得内切圆的半径为 r =12,根据椭圆的定义有 ∣AB ∣+∣AF 2∣+∣BF 2∣=4a =20,则 S △ABF 2=12(∣AB ∣+∣AF 2∣+∣BF 2∣)×r =5,又因为 S △ABF 2=12∣F 1F 2∣∣y 2−y 1∣,所以 ∣y 2−y 1∣=53.62. C 【解析】设 A (x 1,x 12),B (x 2,x 22),P (x 0,x 0−1),根据题意 A 是 PB 的中点,所以 2x 1=x 2+x 0,2y 1=x 22+x 0−1,因为点 A 在抛物线 y =x 2 上,代入抛物线方程有看成关于 x 2 的一元二次方程,则 Δ=8(x 02−x 0+1)>0,所以直线上所有点都是“ A 点”.63. C 【解析】提示:设出直线方程,与抛物线方程联立,利用韦达定理及抛物线定义求解.其他方法:(特殊情况)当直线 PQ 平行于 x 轴时.解出 P 、 Q 两点坐标分别为 (−12a,14a),(12a ,14a ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,已知椭圆内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若.
(1)证明:
;(2)若M点恰好为椭圆中心O(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.求弦AB长的最小值.
2.设椭圆的两个焦点为点
为其短轴的一个端点,满足
(Ⅰ)求椭圆的方程;(Ⅱ)过点做两条互相垂直的直线设与椭圆交于点
与椭圆交于点求的最小
值.
3.在直角坐标系中,点到点,的距离之和是,点的轨迹与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和.
⑴求轨迹的方程; ⑵当时,证明直线过定点.
4.已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.(1)证明和均为定值;(2)设线段的中点为,求的最大值;(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
5.椭圆x2+=1短轴的左右两个端点分别为A,B,直线l:y=kx+1与x 轴、y轴分别交于两点E,F,交椭圆于两点C,D.(Ⅰ)若=,求直
线l的方程;(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求k的值.
6.过直线上的点作椭圆的切线、,切点分别为、,联结
(1)当点在直线上运动时,证明:直线恒过定点;
(2)当∥时,定点平分线段
7.设为椭圆上的一个动点,过点作椭圆的切线与⊙:
相交于两点,⊙在两点处的切线相交于点.(1)求点的轨迹方程;
(2)若是第一象限的点,求△的面积的最大值.
8.设F是椭圆的左焦点,直线l为其左准线,直线l与x轴交于P,M、N为椭圆C的左右顶点。

已知|MN|=8,且|PM |=2|MF|. (1)若过点P的直线与椭圆C相交于不同的两点A,B, 求证:∠AFM=∠BFN; (2)求△ABF的面积的最大值.
9.已知A,B是椭圆C:+=1(a>b
>0)的左,右顶点,
B(2,0),过椭圆C的右焦点F的直线交于
其于点M,N,交直线x=4于点P,且直线P
A,PF,PB的斜率成等差数列.(Ⅰ)求椭
圆C的方程;(Ⅱ)若记△AMB,△ANB的面积分别为S 1,S 2求的取值范围.
10.已知椭圆:的右焦点为,且椭圆过点
.(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于两点,与直线交于点,若直线的斜率成等差数列,求的值.
11.已知A、B分别为曲线与x轴的左、右两个交点,直线l过点B且与x轴垂直,P为l上异于点B的点,连结AP与曲线C交于
点M.(1)若曲线C为圆,且,求弦AM的长;(2)设N是以BP为直径的圆与线段BM的交点,若O、N、P三点共线,求曲线C的方程.
12.如图,已知椭圆的上顶点为,离心率为,若不过点的动直线与椭圆相交于、两点,且.
(1)求椭圆的方程;
(2)求证:直线过定点,并求出该定点的坐标.
13.已知抛物线圆的圆心为点。

(1)求点到抛物线的准线的距离;
(2)已知点是抛物线上一点(异于原点),过点作圆的两条切线,交抛物线于两点,若过两点的直线垂直于,求直线的方程。

14.已知的三个顶点都在抛物线上,为抛物线的焦点,点为的中点,。

(Ⅰ)若,求点的坐标;
(Ⅱ)求面积的最大值。

15.已知抛物线的顶点为,焦点。

(Ⅰ)求抛物线的方程;
(Ⅱ)过作直线交抛物线于两点。

若直线分别交直线:于两点,求的最小值。

16.
若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”。

已知当x>2时,点P(x,0)存在无穷多条“相关弦”。

给定x0>2。

(1)证明:点P(x0,弦”的弦长中是否存在最大值?
若存在,求其最大值(用x0表示):若不存在,请说明理由。

17.已知抛物线y2=2px(p>0)的焦点F,点Q(0,2),FQ的中
点在抛物线上.(1)求抛物线方程;(2)设直线l:y=kx+m(k,m∈R)
与抛物线切于点M,与抛物线的准线交于N,若以MN为直径的圆过定点R,R到直线l的距离为d,求的最小值及相应的直线方程.
18.设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)证明:圆与轴必有公共点;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.。

相关文档
最新文档