推荐使用的热电阻Pt100测温电路
PT100温度传感器测量电路
PT100温度传感器测量电路温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围.本电路选择其工作在 -19℃至500℃范围。
整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。
前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在 0℃到 500℃的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的 500℃在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
其实,计算的方法有多种,关键是要按照传感器的 mV/℃为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。
Pt100铂电阻测温电路(稳定版)
常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号AV进行温度采样,即进行A/D 转换。
A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。
由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。
热电阻pt100三线制接法
热电阻pt100三线制接法热电阻PT100是一种常用的温度传感器,它能够将温度转换为电阻值。
而PT100的三线制接法是一种常见的连接方式,能够有效地提高测量精度和抗干扰能力。
在PT100三线制接法中,有三根导线分别连接到PT100传感器的三个端口上。
其中两根导线被用作电源线,另外一根导线则用作信号线。
这种接法相比于常见的两线制接法,能够消除导线电阻对测量结果的影响,提高了测量的准确性。
在实际应用中,PT100三线制接法常用于长距离传输和抗干扰要求较高的场合。
由于导线电阻对测量结果的影响被消除,可以更准确地测量温度。
同时,通过增加一根导线,可以降低因外界干扰而引起的误差,提高了测量的稳定性和可靠性。
在进行PT100三线制接法的连接时,需要注意以下几点:1. 确保导线的连接正确无误。
其中,两根电源线需要连接到电源,信号线则连接到测量仪器或控制系统。
2. 导线的选择要合适。
一般情况下,导线的截面积越大,电阻越小,对测量结果的影响就越小。
因此,建议选择截面积较大的导线。
3. 导线的长度要适中。
导线的长度过长会增加电阻,从而影响测量精度;而长度过短则可能影响测量的范围。
因此,在选择导线长度时,需要根据具体情况进行合理搭配。
4. PT100的接线盒要密封良好。
接线盒的密封性能对于保护导线和传感器非常重要,能够防止水分、灰尘等进入,避免损坏传感器或导线。
PT100三线制接法是一种提高测量精度和抗干扰能力的方法。
通过正确连接导线,可以消除导线电阻对测量结果的影响,提高测量的准确性和稳定性。
在实际应用中,我们应当根据具体需求选择合适的导线和长度,并确保接线盒的密封性能良好。
这样才能更好地利用PT100三线制接法进行温度测量,满足工业生产和科学实验的需求。
pt100接线图
pt100接线图
四线可以当三线用,一边的两根并一起,
三线的可以当四线用,单根的一边接两根,
主要差别是变送部分;
1、Pt100铂电阻的三种接线方式在原理上的不同:
二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。
四线没有电桥,完全只是用恒
流源发送,电压计测量,最后给出测量电阻值。
2、Pt100热电阻的三种接线方式对测量精度的影响
连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效
消除这种影响。
与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。
其中,I+、I-端是为了
给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。
请参阅下图:
三线制PT100接到仪表上时,不需要短接线。
三线制只是在电阻的其中一端接出两条线而已,主要是为了平衡由于导线引起的阻值误差。
热电阻的一端引出一根导线把它接入电桥的一个桥臂中,另外一端引出两根导线,一根连在与热电阻桥臂相邻的桥臂中,另一根与电桥的供电电源相连,与电桥的平衡无关。
温度为零时输出100欧的电阻值
PT100测量温度是用不同的电阻值来表示温度的,当测温点与二次表距离增加时,导线也增加,导线的阻值会被二次表认为是温度值,为了消除导线延长对温度的影响,所以使用三线制。
相当于把桥路中的热敏电阻(铂电阻)二端和供电线一起引到现场,这样就是三线制了。
pt100热电阻接线图
pt100 热电阻接线图pt100 热电阻二线制接法如下图。
变送器通过导线L1、L2 给热电阻施加激励电流I,测得电势V1、V2。
计算得Rt:由于连接导线的电阻RL1、RL2 无法测得而被计入到热电阻的电阻值中,使测量结果产生附加误差。
如在100℃时Pt100 热电阻的热电阻率为0.379Ω/℃,这时若导线的电阻值为2Ω,则会引起的测量误差为5.3 ℃。
pt100 热电阻三线制接法PT100 铂电阻传感器有三条引线,可用A、B、C(或黑、红、黄)来代表三根线,三根线之间有如下规律:A 与B 或C 之间的阻值常温下在110 欧左右,B 与C 之间为0 欧,B 与C 在内部是直通的,原则上B 与C 没什幺区别。
仪表上接传感器的固定端子有三个:A 线接在仪表上接传感器的一个固定的端子,B 和C 接在仪表上的另外两个固定端子,B 和C 线的位置可以互换,但都得接上,如果中间接有加长线,三条导线的规格和长度要相同。
热电阻的3 线和4 线接法:是采用2 线、3 线、4 线,主要由使用的二次仪表来决定。
一般显示仪表提供三线接法,PT100 一端出一颗线,另一端出两颗线,都接仪表,仪表内部通过桥抵消导线电阻。
一般PLC 为四线,每端出两颗线,两颗接PLC 输出恒流源,PLC 通过另两颗测量PT100 上的电压,也是为了抵消导线电阻,四线精确度最高,三线也可以,两线最低,具体用法要考虑精度要求和成本。
pt100 三线制接线方式原因PT100 热电阻0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃。
由于其电阻值小,灵敏度高,所以引线的阻值不能忽略不计,采用热电阻三线式接法可消除引线线路电阻带来的测量误差,原理如下:PT100 热电阻引出的三根导线截面积和长度均相同(即r1=r2=r3),测量铂电阻的电路一般是不平衡电桥,铂电阻(Rpt100)作为电桥的一个桥臂电阻,将导线一根(r1)接到电桥的电源端,其余两根(r2、r3)分别接到铂电阻所在的桥臂及与其相邻的桥臂上,这样两桥臂都引入了相同阻值的引线电阻,电桥处于平衡状态,引线线电阻的变化对测量结果没有任何影响。
热电阻pt100温度传感器电路图工作原理图解
热电阻pt100温度传感器电路图⼯作原理图解 PT100是⼀种正温度系数的热敏电阻。
说到什么是正温度系数?就必须要结合负温度系数来讲了。
随着温度的升⾼,电阻的阻值变⼤,就是正温度系数的热敏电阻,相反,如果随着温度的升⾼,电阻的阻值变⼩,就是负温度系数的热敏电阻。
PT100之所以应⽤很⼴泛,不仅是因为它可以测的温度范围宽(零下⼏⼗度到零上⼏百度),还因为它的线性度⾮常好。
“线性度”,说的直⽩⼀点就是温度每变化⼀度,电阻的阻值升⾼的幅度是基本相同的。
这样,就⼤⼤的简化了我们的程序。
不过,PT100也有它的缺点,就是温度每上升⼀度,阻值变化太⼩了,只有0.39欧姆。
这样就需要硬件上提供⾼精度低噪声的转换。
⽹上流传有很多电路,很多电路其实都是不能当作产品⽤的。
下⾯给⼤家提供⼀种⾼精度的电路,就是成本有些⾼,不过品质好。
对于测温电路,其实有很多可以值得研究的地⽅,⼩电路有⼤智慧。
⽐如,你可以⼀眼就看出来这个电路不能测零下的温度吗?你可以计算出来这个电路可以测量的温度范围是从多少度到多少度吗?你可以修改这个电路,让它可以测到你所需要的温度范围吗?如果把反相(-IN)和同相(+IN)两条线调换,后果如何? 看看,你觉得电路简单,那么上⾯的问题都可以回答吗? 电路解释: 越简单的电路,稳定性就越好。
该电路中的四个电阻都需要⽤0.1%精度的。
电路只⽤了⼀个电桥和⼀个差分放⼤器。
R2 R3 R4与PT100组成电桥电路,REF3030为电桥电路提供标准的3.00V电压。
AD623⽤⼀个2K的放⼤反馈电阻精确的把电桥的压差放⼤51倍。
(为什么是51倍,详见AD623的datasheet) PT100接法: 细⼼的⼩伙伴,会研究⼀下PT100的接法。
PT100⼀般有两线和三线的传感器。
因为线本⾝肯定有电阻,⽽上⾯也提到过,每变化⼀度,PT100只变化0.39欧姆,那么如果PT100的线很长的话,电阻就越⼤,线不同,电阻就不同,就肯定会⼤⼤的影响测出来的结果。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0 100.00 124.381 100.39 124.850 119.40 147.79100 138.51 170.64150 157.33 192.93200 175.86 214.68250 194.10 235.90300 212.05 256.59350 229.72 276.79400 247.09 296.48450 264.18 315.69单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0 100.00 124.381 100.39 124.850 119.40 147.79100 138.51 170.64150 157.33 192.93200 175.86 214.68250 194.10 235.90300 212.05 256.59350 229.72 276.79400 247.09 296.48450 264.18 315.69单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
超实用简单的的pt100测温点路
热电阻Pt100测温电路铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。
PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。
由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。
校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。
常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。
常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。
其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。
下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行)一、桥式测温电路桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。
测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω精密电阻),以下内容回复可见当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。
差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。
设计及调试注意点:1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小;2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。
实用低成本PT100测温电路两例_V1.0
实用PT100测温电路两例概述PT100铂热电阻是一种常用的温度传感器。
其测温原理是利用了金属铂自身电阻随着温度近乎线性变化的特点。
相较于其他测温元件(热电偶和热敏电阻),PT100铂热电阻的热稳定性好、精度高、漂移小,通常用在-200℃~600℃范围内的精密测温系统中。
PT100测温探头一般有2线、3线和4线这几种引线方式。
3线和4线的引线方式,主要是为了后面的调理电路能修正引线电阻带来的影响。
当然,引线越多,探头价格越贵。
PT100铂热电阻在0℃时是100Ω,当温度每变化1℃,电阻变化约0.385Ω。
如果引线电阻1Ω,那么会引入大约2.56℃的误差。
所以设计时应根据实际情况,选用不同的引线方式。
对于要求不高,引线不长(<0.5米)的系统,此时引线电阻很小,一般几十毫欧,引线电阻引入的误差可以忽略,推荐使用2线方式。
对于引线比较长的系统,引线电阻比较大,而且阻值不可预测,则应使用3线或4线方式。
根据IEC60751标准,PT100铂热电阻的阻值与温度之间关系如下:其中:下表是PT100铂热电阻的温度-电阻速查表:温度℃电阻值Ω温度℃电阻值Ω温度℃电阻值Ω温度℃电阻值Ω-20018.5220107.79240190.47460267.56-18027.1040115.54260197.71480274.29-16035.5460123.24280204.90500280.98-14043.8880130.90300212.05520287.62-12052.11100138.51320219.15540294.21-10060.26120146.07340226.21560300.75-8068.33140153.58360233.21580307.25-6076.33160161.05380240.18600313.71-4084.27180168.48400247.09620320.12-2092.16200175.86420253.96640326.480100.00220183.19440260.78660332.79表1PT100温度-电阻速查表PT100铂热电阻温度采集系统主要有两种实现方式:1.恒流方式,2.电桥方式。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:GAGGAGAGGAFFFFAFAF传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:GAGGAGAGGAFFFFAFAF单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照(500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值GAGGAGAGGAFFFFAFAF是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
Pt100热电阻的测温电路
┊
┊ 光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
┊ 国家标准 GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律
┊
┊ 转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检
装
┊ 测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电
┊
┊ 8 致谢………………………………………………………………………………19
┊
┊ 参考文献……………………………………………………………………………20
┊
┊
┊
┊
1 前言
共 20 页 第 3 页
吉林建工学院城建学院信息工程系自动化专业课程设计论文纸
┊
┊
┊
┊ 1.1 传感器概况
┊
┊
┊
┊
传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如
┊
信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控
┊
┊ 制等要求。它是实现自动检测和自动控制的首要环节。
┊
订
“传感器”在新韦式大词典中定义为: “从一个系统接受功率,通常以另一种
┊
┊ 形式将功率送到第二个系统中的器件”。 根据这个定义,传感器的作用是将一种能
┊ 量转换成另一种能量形式,所以不少学者也用“换能器-Transducer”来称谓“传感
┊
┊ 的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与
┊
┊ 手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过
程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因
PT100温度传感器测量电路
!-
温度 ℃ 0 1 50 100 150 200 250 300 350 400 450 500
PT100 阻值 Ω 100.00 100.39 119.40 138.51 157.33 175.86 194.10 212.05 229.72 247.09 264.18 280.98
传感两端电压 mV 124.38 124.8 147.79 170.64 192.93 214.68 235.90 256.59 276.79 296.48 315.69 334.42
!-
PT100 温度传感器的接线方式
Pt100,就是说它的阻值在 0 度时为 100 欧姆,PT100 温度传感器是一种以铂(Pt)作
成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下: R=Ro(1+αT)
Pt100 温度传感器的主要技术参数如下: 测量范围:-200℃~+850℃; 允许偏差值△℃:A 级±(0.15+0.002│t│), B 级±(0.30+ 0.005│t│); 热响应时间<30s; 最小置入深度:热电阻的最小置入深度≥200mm; 允通电流≤5mA。 另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压 等优点。 PT100 温度传感器三根芯线的接法
!-
其中 α=0.00392,Ro 为 100Ω(在 0℃的电阻值),T 为摄氏温度,因此白金作成的电阻式 温度传感器,又称为 PT100
后级单片机电路的原理图如下:
!-
从传感器前置放大电路输出的信号,就送入到 HT46R23 的 A/D 转换输入端口
(PB0/AN0),由单片机去进行各种必需的处理。首先是进行软件非线性校正,把输入
Pt100铂电阻测温电路(稳定版)
常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号A V进行温度采样,即进行A/D 转换。
A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。
由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。
PT100如何测温,信号如何处理,如何接线
PT100如何测温,信号如何处理,如何接线
PT100是正温度系数的热敏电阻,线性度⽐较好可以⽤来连续测温,下⾯介绍PT100的测温原理和接线⽅式。
1.什么是PT100
PT100是铂电阻,随着温度的升⾼电阻增⼤,并且基本呈线性⽅式,很适合⽤作连续测温,所
以很多⼯业⽤温度传感器都是⽤PT100来实现的。
这⾥的100是指铂电阻的阻值在0℃时为
100Ω。
相应的PTT1000是指,在0℃时电阻值为1000Ω。
2.PT100的测温原理和调理⽅式
在使⽤PT100测温时,通常⽤惠斯通电桥来实现。
即利⽤三个定值电阻和PT100组成惠斯通电桥,当温度发⽣变化时导致PT100阻值发⽣变化,从⽽使电阻两端的压差发⽣变化。
后端处理电路以AD620/AD623查分运放为例,通过调节电阻R51可以设置查分运放的放⼤倍数,信号经过调理后可以进⼊单⽚机进⾏AD采样。
如下的电路,是我应经成熟应⽤的,产品已
经量产多年,⽐较稳定,⼤家可以参考。
3.PT100的接线⽅式
PT100的接线⽅式有四线制、三线制、两线制,在采样精度要求不是⾮常精确的情况下,三线
制⽤的⽐较多。
如下图所⽰,是PT100的三线制和两线制的接线⽅法。
其实从图上可以看出,接线类似,在接线时注意要把电阻接⼊采样端。
pt100热电阻三线制原理
pt100热电阻三线制原理
热电阻是一种测量温度的传感器,常用的类型之一是PT100
热电阻。
PT100热电阻是基于铂电阻特性工作的,其电阻值随
温度的变化而变化。
为了准确地测量温度,通常需要使用三线制连接方式。
三线制连接方式是通过三条导线来连接PT100热电阻和测量
设备。
其中两条导线用于传递电流,一条导线用于测量电阻的电压。
三条导线的接线方式如下:
- 第一条导线连接PT100热电阻的一端,同时连接一个稳定的
电流源。
- 第二条导线连接PT100热电阻的另一端,同时连接一个电压表。
- 第三条导线连接电流源和电压表的公共接地点。
工作原理是这样的:电流从第一条导线流过PT100热电阻,
根据热电阻的电阻值,会有一定的电压降落在第二条导线上。
电压表用于测量这个电压值,进而确定PT100热电阻的电阻值,从而推导出温度值。
由于使用了三线制连接方式,可以有效地减小由于导线电阻造成的误差。
其中一条导线用于电流供应,不产生测量误差;第二条导线用于测量电阻的电压,准确测量了PT100热电阻的
电阻值;第三条导线用于公共接地,保证了信号的地参考一致。
总结来说,PT100热电阻三线制原理是利用三条导线完成电流
供应和电压测量,通过测量电阻值来间接确定温度值。
这种连接方式可以提高测量的准确性,并减小由于导线电阻带来的误差。
PT100四线制测温电路
『电阻式温度检测器』(RTD,Resistance Temperature Detector)-一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。
大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。
PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度因此白金作成的电阻式温度检测器,又称为PT100。
1:Vo=2.55mA ×100(1+0.00392T)=0.255+T/1000 。
2:量测Vo时,不可分出任何电流,否则量测值会不準。
电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为2.55mA,使得量测电压V如箭头所示为0.255+T/1000。
其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。
6V齐纳二极体的作用如7.2V齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为2.55V。
其后差动放大器之输出为Vo=10(V2-V1)=10(2.55+T/100-2.55)=T/10,如果现在室温为25℃,则输出电压为2.5V。
相关文章: 铂电阻测温电路的线性化设计方法摘要:介绍一种基于A/D转换原理的铂电阻测温的非线性校正方法,分析了铂电阻线性测温的原理,并给出了A/D转换器7135与单片机89C51接口电路及试验数据。
PT100铂电阻内外接线
PT100铂电阻内外接线图!PT100铂电阻外部引线有2、3、4根,它内外部特别是与传感器是怎样接的,能否画张图。
1、PT100铂电阻是热电阻,用来测温T;2、测温原理是:(1)电阻的电流I一定时,电阻的温度T变化时其阻值R随着变化,电阻的端电压 U = IR 也随着变化;(2)只要测得电压U的大小,就可算出其阻值R的大小,就可推算出温度T的大小;3、测温的精确度主要决定电压U的测量精确度;4、电阻的电流一定要经过一个连接点C1进入电阻,在经过一个连接点C2流出电阻(C1、C2叫电流桩);5、连接点C1、C2有接触电阻,电流经过时产生接触电压Uj1、Uj2;6、测量电阻的电压时,也有两根线与电阻两端分别连接,连接点分别是P1、P2(叫电位桩);7、如果P1、P2、C1、C2四个连接点的顺序是C1-P1-R-P2-C2 ,那么测量电阻的电压的读数里不包括接触电压Uj1、`Uj2,测量精度高,测温准确;8、如果P1、P2、C1、C2四个连接点的顺序是P1-C1-R-C2-P2,那么测量电阻的电压的读数里包括接触电压Uj1、Uj2,测量误差大,测温不准确;9、这样测温时就有三种接线:(1)电阻的电流接线和电压测量接线合二为一(C1P1-R-P2C2),就是所谓的二线制接线;(2)电阻的电流接线和电压测量接线一端合二为一,另一端分开(C 1P1-R-P2-C2),就是所谓的三线制接线;(3)电阻的电流接线和电压测量接线两端都分开(C1-P1-R-P2-C2),就是所谓的四线制接线;10、如果你用过双臂电桥,双臂电桥就是四线制接线,单臂电桥就是两线制接线,一个道理;1、刚才讲的是热电阻测温接线的原理;2、现在回答楼主“PT100铂电阻外部引线有2、3、4根,它内外部特别是与传感器是怎样接的”:(1)电阻的电流接线和电压测量接线合二为一(C1P1-R-P2C2),就是所谓的二线制接线,因为只有两根线,热电阻没有极性,随便接;(2)电阻的电流接线和电压测量接线一端合二为一,另一端分开(C 1P1-R-P2-C2),就是所谓的三线制接线,这时C1P1公共连接点到C 2有电压或电流,到P2没有电压或电流;(3)电阻的电流接线和电压测量接线两端都分开(C1-P1-R-P2-C2),就是所谓的四线制接线,这时C1、C2之间有电压或有电流,而P1、P 2之间没有电压或电流;3、知道哪个端是P1、P2、C1、C2,按顺序连接即可;。
pt100测温电路(经典测温范围)
pt100测温电路(经典测温范围)pt100 测温电路(经典测温范围):温度传感器PT100,可以工作在-200 度到650 度的范围。
整个电路分为两部分,一是传感器前置放大电路,一是单片机AD 转换和显示控制软件非线性校正等部分。
传感器前置放大电路:后级单片机的电路原理图:PT100 计算公式PT100 计算公式热电阻是中低温区最常用的一种温度检测器,它主要特点就是测量精度高,性能稳定.下面的是在单片机程序中我自己使用计算公式: 一:相关资料中给出的公式: 1. 铂热电阻的温度特性.在0~850℃范围内Rt=R0(1+At+Bt2) 在-200~0℃范围内Rt=R0[1+At+Bt2+C(t-100)t3] 式中A,B,C 的系数各为:A=3.90802 乘以103℃-1 B=-5.802 乘以107℃-2 C=-4.27350 乘以1012℃-4 2. 铜热电阻的温度特性:在-50~150℃范围内Rt=R0[1+At+Bt2+Ct3] A=4.28899 乘以103℃1 B=-2.133 乘以107℃2 C=1.233 乘以109℃3 二,程序中我自己使用的计算公式: 2.温度测量技术(PT100): 当T 0 RT=Rt 当T 420 RT= Rt+ Rt2*2.15805393*10-6 当0T 420 RT= Rt*[1+(R420-Rt)*3.301723797*10-7]+ Rt2*2.15805393*10-6 相关系数及说明: RT 为对应与温度的线形值,其结果等效于显示温度值Rt 为实际测量的阻抗值,其值是已经减去100(电桥差放的参考值)的值对应的16 进制值: 3.301723797*10-7 = B142h * 237 2.15805393*10-6 = 90D3h * 234 R420 = (25390-10000)*2.517082601*128 = 4BA8F3h(4958451.35736192) 其中这里的结果都是已经乘100 的值,在显示的时候应该先处理. 三:温度测量技术(CU50): RT=Rt(1+at) RT 和Rt 分别为温度为T℃和0℃时候的阻抗值. a 为铜电阻的温度系数.一般取4.25 乘以103/℃~4.28乘以103/℃tips:感谢大家的阅读,本文由我司收集整编。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。
PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。
由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。
校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。
常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。
常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。
其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。
下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行)
一、桥式测温电路
桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。
测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为
100Ω精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。
差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。
设计及调试注意点:
1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小;
2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求
3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作
4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。
测量电位器的阻值时须在没有接入电路时调节,这是因为接入电路后测量的电阻值发生了改变。
5. 理论上,运放输出的电压为输入压差信号×放大倍数,但实际在电路工作时测量输出电压与输入压差信号并非这样的关系,压差信号比理论值小很多,实际输出信号为
4.096*(RPt100/(R1+RPt100)- RVR2/(R1+RVR2)) (1)
式中电阻值以电路工作时量取的为准。
6. 电桥的正电源必须接稳定的参考基准,因为如果直接VCC的话,当网压波动造成VCC发生波动时,运放输出的信号也会发生改变,此时再到以VCC未发生波动时建立的温度-电阻表中去查表求值时就不正确了,
这可以根据式(1)进行计算得知。
二、恒流源式测温电路
恒流源式测温的典型应用电路如图3所示。
测温原理:通过运放U1A将基准电压4.096V转换为恒流源,电流流过Pt100时在其上产生压降,再通过运放U1B将该微弱压降信号放大(图中放大倍数为10),即输出期望的电压信号,该信号可直接连AD转换芯片。
根据虚地概念“工作于线性范围内的理想运放的两个输入端同电位”,运放U1A的“+”端和“-”端电位V+=V-=4.096V;假设运放U1A的输出脚1对地电压为Vo,根据虚断概念,(0-V-)/R1+(Vo-V-)/RPt100=0,因此电阻Pt100上的压降VPt100=Vo-V-=V-*RPt100/R1,因V-和R1均不变,因此图3虚线框内的电路等效为一个恒流源流过一个Pt100电阻,电流大小为V- /R1,Pt100上的压降仅和其自身变化的电阻值有关。
设计及调试注意点:
1. 电压基准源可以采用TL431按图1的电路产生可调的。
2. 等效恒流源输出的电流不能太大,以不超过1mA为准,以免电流大使得Pt100电阻自身发热造成测量温度不准确,试验证明,电流大于1.5mA将会有较明显的影响。
3. 运放采用单一5V供电,如果测量的温度波动比较大,将运放的供电改为±15V双电源供电会有较大改善。
4. 电阻R2、R3的电阻值取得足够大,以增大运放的U1B的输入阻抗。
5. 当然做恒流源还有很多方法,TL431的Datasheet上就有其作为恒
流源的详细介绍。