MOSFET驱动方式详解
常见的MOSFET驱动方式驱动电路的参数计算
常见的MOSFET驱动方式,驱动电路的参数计算在简单的了解MOS管的基本原理以及相关参数后,如何在实际的电路中运用是我们努力的方向。
比如在实际的MOS驱动电路设计中,如何去根据需求搭建电路,计算参数,根据特性完善电路,根据实际需求留余量等等,在这些约束条件下搭建一个相对完善的电路。
参考了一些资料后,就我目前的需求和自身的理解力分享相关的一些笔记和理解。
1.常见的MOSFET驱动方式直接驱动:最简单的驱动方式,比如用单片机输出PWM信号来驱动较小的MOS。
使用这种驱动方式,应注意几点;一是实际PWM和MOS的走线距离必定导致寄生电感引起震荡噪声,二是芯片的驱动峰值电流,因为不同芯片对外驱动能力不一样。
三是MOS的寄生电容Cgs、Cgd如果比较大,导通就需要大的能量,没有足够的峰值电流,导通的速度就会比较慢。
图腾柱/推拉式驱动电路由两个三极管构成,上管是NPN型,下管是PNP型三极管,两对管共射联接处为输出端,结构类似于乙类推挽功率放大器。
利用这种拓扑放大驱动信号,增强电流能力。
(驱动IC内部也是集成了类似的结构)隔离式驱动电路为了满足安全隔离也会用变压器驱动。
如图其中R1抑制振荡,C1隔直流通交流同时防止磁芯饱和。
隔离式的驱动电路不太常见,就不做过多的了解。
小结:当然除以上驱动电路之外,还有很多其它形式的驱动电路。
对于各种各样的驱动电路并没有一种是最好的,只能结合具体应用,选择最合适的拓扑。
2.驱动电路的参数计算我的实际工作中碰到最多的驱动电路是以下这种能够控制开关速度的驱动电路,我就以它举例做进一步的分析。
如图,在驱动电阻Rg2上并联一个二极管。
其中D1常用快恢复二极管,使关断时间减小同时减小关断损耗,Rg1可以限制关断电流,R1为mos管栅源极的下拉电阻,给mos管栅极积累的电荷提供泄放回路。
(根据MOSFET栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以R1也起降低输入阻抗作用,一般取值在10k~几十k)Lp为驱动走线的杂散寄生电感,包括驱动IC引脚、MOS引脚、PCB走线的感抗,精确的数值很难确定,通常取几十nH。
详细讲解MOSFET管驱动电路
详细讲解M O S F E T管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素;这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的;下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创;包括MOS管的介绍,特性,驱动以及应用电路;1,MOS管种类和结构MOSFET管是FET的一种另一种是JFET,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种;至于为什么不使用耗尽型的MOS管,不建议刨根问底;对于这两种增强型MOS管,比较常用的是NMOS;原因是导通电阻小,且容易制造;所以开关电源和马达驱动的应用中,一般都用NMOS;下面的介绍中,也多以NMOS 为主;MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的;寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍;在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管;这个叫体二极管,在驱动感性负载如马达,这个二极管很重要;顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的;2,MOS管导通特性导通的意思是作为开关,相当于开关闭合;NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况低端驱动,只要栅极电压达到4V或10V就可以了;PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况高端驱动;但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS;3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗;选择导通电阻小的MOS管会减小导通损耗;现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有;MOS在导通和截止的时候,一定不是在瞬间完成的;MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失;通常开关损失比导通损失大得多,而且开关频率越快,损失也越大;导通瞬间电压和电流的乘积很大,造成的损失也就很大;缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数;这两种办法都可以减小开关损失;4,MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了;这个很容易做到,但是,我们还需要速度;在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电;对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大;选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小;第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压;而高端驱动的MOS管导通时源极电压与漏极电压VCC相同,所以这时栅极电压要比VCC大4V或10V;如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了;很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管;上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量;而且电压越高,导通速度越快,导通电阻也越小;现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了;MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs;讲述得很详细,所以不打算多写了;5,MOS管应用电路MOS管最显着的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光;现在的MOS驱动,有几个特别的需求,1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate上的电压只有;这时候,我们选用标称gate电压的MOS管就存在一定的风险;同样的问题也发生在使用3V或者其他低压电源的场合;2,宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动;这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的;为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值;在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗;同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗;3,双电压应用在一些控制电路中,逻辑部分使用典型的5V或者数字电压,而功率部分使用12V甚至更高的电压;两个电压采用共地方式连接;这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题;在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构;于是我设计了一个相对通用的电路来满足这三种需求;电路图如下:图1 用于NMOS的驱动电路图2 用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh;Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通;R2和R3提供了aPWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置;Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有左右,大大低于的Vce;R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值;这个数值可以通过R5和R6来调节;最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制;必要的时候可以在R4上面并联加速电容;这个电路提供了如下的特性:1,用低端电压和PWM驱动高端MOS管;2,用小幅度的PWM信号驱动高gate电压需求的MOS管;3,gate电压的峰值限制4,输入和输出的电流限制5,通过使用合适的电阻,可以达到很低的功耗;6,PWM信号反相;NMOS并不需要这个特性,可以通过前置一个反相器来解决;在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题;DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电;目前DC-DC转换器设计技术发展主要趋势有:1高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善;小功率DC-DC转换器的开关频率将上升到兆赫级;2低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求;这些技术的发展对电源芯片电路的设计提出了更高的要求;首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作;其次,对于电池供电的便携式电子设备来说,电路的工作电压低以锂电池为例,工作电压~,因此,电源芯片的工作电压较低;MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关;但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法;这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求;在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路;这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹;本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路;电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压,负载电容为60pF时,工作频率能够达到5MHz以上;自举升压电路自举升压电路的原理图如图1所示;所谓的自举升压原理就是,在输入端IN 输入一个方波信号,利用电容Cboot将A点电压抬升至高于VDD的电平,这样就可以在B端输出一个与输入信号反相,且高电平高于VDD的方波信号;具体工作原理如下;当VIN为高电平时,NMOS管N1导通,PMOS管P1截止,C点电位为低电平;同时N2导通,P2的栅极电位为低电平,则P2导通;这就使得此时A点电位约为VDD,电容Cboot两端电压UC≈VDD;由于N3导通,P4截止,所以B点的电位为低电平;这段时间称为预充电周期;当VIN变为低电平时,NMOS管N1截止,PMOS管P1导通,C点电位为高电平,约为VDD;同时N2、N3截止,P3导通;这使得P2的栅极电位升高,P2截止;此时A 点电位等于C点电位加上电容Cboot两端电压,约为2VDD;而且P4导通,因此B点输出高电平,且高于VDD;这段时间称为自举升压周期;实际上,B点电位与负载电容和电容Cboot的大小有关,可以根据设计需要调整;具体关系将在介绍电路具体设计时详细讨论;在图2中给出了输入端IN电位与A、B两点电位关系的示意图;驱动电路结构图3中给出了驱动电路的电路图;驱动电路采用Totem输出结构设计,上拉驱动管为NMOS管N4、晶体管Q1和PMOS管P5;下拉驱动管为NMOS管N5;图中CL为负载电容,Cpar为B点的寄生电容;虚线框内的电路为自举升压电路;本驱动电路的设计思想是,利用自举升压结构将上拉驱动管N4的栅极B点电位抬升,使得UB>VDD+VTH ,则NMOS管N4工作在线性区,使得VDSN4 大大减小,最终可以实现驱动输出高电平达到VDD;而在输出低电平时,下拉驱动管本身就工作在线性区,可以保证输出低电平位GND;因此无需增加自举电路也能达到设计要求;考虑到此驱动电路应用于升压型DC-DC转换器的开关管驱动,负载电容CL很大,一般能达到几十皮法,还需要进一步增加输出电流能力,因此增加了晶体管Q1作为上拉驱动管;这样在输入端由高电平变为低电平时,Q1导通,由N4、Q1同时提供电流,OUT端电位迅速上升,当OUT端电位上升到VDD-VBE时,Q1截止,N4继续提供电流对负载电容充电,直到OUT端电压达到VDD;在OUT端为高电平期间,A点电位会由于电容Cboot 上的电荷泄漏等原因而下降;这会使得B点电位下降,N4的导通性下降;同时由于同样的原因,OUT端电位也会有所下降,使输出高电平不能保持在VDD;为了防止这种现象的出现,又增加了PMOS管P5作为上拉驱动管,用来补充OUT端CL的泄漏电荷,维持OUT端在整个导通周期内为高电平;驱动电路的传输特性瞬态响应在图4中给出;其中a为上升沿瞬态响应,b为下降沿瞬态响应;从图4中可以看出,驱动电路上升沿明显分为了三个部分,分别对应三个上拉驱动管起主导作用的时期;1阶段为Q1、N4共同作用,输出电压迅速抬升,2阶段为N4起主导作,使输出电平达到VDD,3阶段为P5起主导作用,维持输出高电平为VDD;而且还可以缩短上升时间,下降时间满足工作频率在兆赫兹级以上的要求;需要注意的问题及仿真结果电容Cboot的大小的确定Cboot的最小值可以按照以下方法确定;在预充电周期内,电容Cboot 上的电荷为VDDCboot ;在A点的寄生电容计为CA上的电荷为VDDCA;因此在预充电周期内,A点的总电荷为Q_{A1}=V_{DD}C_{boot}+V_{DD}C_{A} 1B点电位为GND,因此在B点的寄生电容Cpar上的电荷为0;在自举升压周期,为了使OUT端电压达到VDD,B点电位最低为VB=VDD+Vthn;因此在B点的寄生电容Cpar上的电荷为Q_{B}=V_{DD}+V_{thn}Cpar 2忽略MOS管P4源漏两端压降,此时Cboot上的电荷为VthnCboot ,A点寄生电容CA的电荷为VDD+VthnCA;A点的总电荷为QA2=V_{thn}C_{BOOT}+V_{DD}+V_{thn}C_{A} 3同时根据电荷守恒又有Q_{B}=Q_{A}-Q_{A2} 4综合式1~4可得C_{boot}=\frac{V_{DD}+V_{thn}}{v_{DD}-v_{thn}}Cpar+\frac{v_{thn}}{v_{DD}-v_{ thn}}C_{A}=\frac{V_{B}}{v_{DD}-v_{thn}}Cpar+\frac{V_{thn}}{v_{DD}-v_{thn}}C_{ A} 5从式5中可以看出,Cboot随输入电压变小而变大,并且随B点电压VB变大而变大;而B点电压直接影响N4的导通电阻,也就影响驱动电路的上升时间;因此在实际设计时,Cboot的取值要大于式5的计算结果,这样可以提高B点电压,降低N4导通电阻,减小驱动电路的上升时间;P2、P4的尺寸问题将公式5重新整理后得:V_{B}={V_{DD}-V_{thn}\frac{C_{boot}}{Cpar}-V_{thn}\frac{C_{A}}{Cpar} 6 从式6中可以看出在自举升压周期内, A、B两点的寄生电容使得B点电位降低;在实际设计时为了得到合适的B点电位,除了增加Cboot大小外,要尽量减小A、B两点的寄生电容; 在设计时,预充电PMOS管P2的尺寸尽可能的取小,以减小寄生电容CA;而对于B点的寄生电容Cpar来说,主要是上拉驱动管N4的栅极寄生电容,MOS管P4、N3的源漏极寄生电容只占一小部分;我们在前面的分析中忽略了P4的源漏电压,因此设计时就要尽量的加大P4的宽长比,使其在自举升压周期内的源漏电压很小可以忽略;但是P4的尺寸以不能太大,要保证P4的源极寄生电容远远小于上拉驱动管N4的栅极寄生电容;阱电位问题如图3所示,PMOS器件P2、P3、P4的N-well连接到了自举升压节点A上;这样做的目的是,在自举升压周期内,防止他们的源/漏--阱结导通;而且这还可以防止在源/漏--阱正偏时产生由寄生SRC引起的闩锁现象;上拉驱动管N4的阱偏置电位要接到它的源极,最好不要直接接地;这样做的目的是消除衬底偏置效应对N4的影响;Hspice仿真验证结果驱动电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证;在表1中给出了电路在不同工作电压、不同负载条件下的上升时间tr和下降时间tf 的仿真结果;在图5中给了电路工作在输入电压、工作频率为5MHz、负载电容60pF条件下的输出波形;结合表1和图5可以看出,此驱动电路能够在工作电压为,工作频率为5MHz,并且负载电容高达60pF的条件下正常工作;它可以应用于低电压、高工作频率的DC-DC转换器中作为开关管的驱动电路;结论本文采用自举升压电路,设计了一种BiCMOS Totem结构的驱动电路;该电路基于Samsung AHP615 BiCMOS工艺设计,可在电压供电条件下正常工作,而且在负载电容为60pF的条件下,工作频率可达5MHz以上;。
mosfet电压隔离驱动方案
mosfet电压隔离驱动方案MOSFET电压隔离驱动方案随着现代电子技术的快速发展,电路的稳定性和可靠性要求也越来越高。
在一些特殊的应用场景中,如高频电路、高压电路、噪声环境下的电路等,需要对电路进行电压隔离来提高系统的稳定性和安全性。
MOSFET电压隔离驱动方案因其高速、低功耗和可靠性等优势,成为了一种常用的解决方案。
MOSFET(金属氧化物半导体场效应晶体管)是一种常见的半导体器件,具有高速开关和低功耗的特点。
通过控制MOSFET的栅极电压,可以实现对电路的开关控制。
而MOSFET电压隔离驱动方案则是利用MOSFET的特性来实现电路之间的电压隔离。
在MOSFET电压隔离驱动方案中,一般会使用光耦来实现电路间的隔离。
光耦是一种能够将电路间的信号通过光信号进行转换的器件。
它由发光二极管(LED)和光敏二极管(光电晶体管)组成。
当输入信号施加在发光二极管上时,发光二极管会发出光信号,光信号经过隔离区域后,被光敏二极管接收并转换为与输入信号相同的电信号。
通过光耦将输入信号与MOSFET的栅极连接起来,当输入信号施加在光耦上时,光敏二极管会产生相应的电信号,通过MOSFET的栅极电压来控制MOSFET的导通和关断。
由于光耦实现了输入信号和MOSFET之间的电气隔离,可以有效地提高系统的稳定性和安全性。
MOSFET电压隔离驱动方案具有以下几个优势:1. 高速开关:MOSFET具有快速的开关速度,可以实现高频电路的要求。
通过光耦隔离驱动MOSFET,可以实现输入信号的快速响应,提高系统的响应速度。
2. 低功耗:MOSFET的工作电流较小,具有较低的功耗。
通过光耦隔离驱动MOSFET,可以进一步降低功耗,提高系统的能效。
3. 可靠性高:MOSFET具有较高的可靠性,长时间工作不易出现故障。
通过光耦隔离驱动MOSFET,可以避免外部电源的电压干扰和噪声对系统的影响,提高系统的稳定性和可靠性。
4. 成本低:MOSFET电压隔离驱动方案相对于其他电压隔离方案来说,成本较低。
MOS管驱动电路总结
MOS管驱动电路总结MOS(金属氧化物半导体)管驱动电路是一种常见的功率电子器件,用于驱动高功率负载或控制功率器件的开关。
它通过电路中的MOS管(也称为MOSFET)来实现开关效果。
MOSFET驱动电路的设计与应用具有重要意义,下面是对MOS管驱动电路的总结。
一、MOS管的基本原理MOS管是一种具有与传统晶体管相似结构的半导体器件。
它的核心部分是氧化层上的金属层和半导体基区。
MOS管通过改变基区和导通层之间的电阻来实现开关效果。
MOS管具有低输入电阻、高输入阻抗、快速开关速度和较低的功耗等优势。
二、MOS管的驱动方式1.直流驱动:直流驱动方式是最简单的方式,只需将DC信号连接到MOS管的栅极,使其在正常工作区域内工作。
直流驱动方式适用于低频应用。
2.求幅驱动:幅度驱动方式是通过向MOS管的栅极施加一个脉宽调制信号来控制其导通和关闭状态。
脉宽调制信号的幅度决定了MOS管的开启程度,从而控制输出信号的幅度。
求幅驱动方式适用于一些需要调整信号幅度的应用。
3.双电源驱动:双电源驱动方式使用两个电源分别给MOS管的源极和栅极提供电压。
这种驱动方式可以保持MOS管在稳态工作区域内,避免其处于截止区或饱和区,从而提高工作效率。
三、MOS管驱动电路的设计要点1.选择适当的驱动电路结构和元件:常见的MOS管驱动电路结构包括共射极结构、共源结构和H桥结构。
不同结构适用于不同的应用场景。
此外,还需选择合适的电阻、电容和二极管等元件。
2.考虑驱动电源和信号电源的匹配:驱动电路的电源电压应与MOS管的额定电压匹配,以确保稳定可靠的工作。
此外,还需注意输入信号的频率和幅度与驱动电路的匹配性。
3.保护电路的设计:由于MOS管具有较高的功率特性,对驱动电路的保护显得尤为重要。
常见的保护电路包括过流保护、过温保护、过压保护和短路保护等。
4.电流放大器的设计:为了提高MOS管的驱动能力,通常需要使用电流放大器来增大输出电流,从而驱动更大的负载。
mos驱动芯片
mos驱动芯片MOS驱动芯片是一种常用的半导体芯片,在电子设备中广泛应用于各种驱动电路中。
MOS驱动芯片主要用于对MOSFET (金属氧化物半导体场效应晶体管)进行控制和驱动。
本文将对MOS驱动芯片的基本工作原理、特点和应用进行详细介绍。
MOS驱动芯片的基本工作原理是通过MOSFET的控制端来控制输出电路中的MOSFET。
MOSFET是一种控制型元件,其工作方式是通过控制端的电压来改变其通道的导电性。
当控制端电压为低电平(开关状态)时,MOSFET的通道导电性较小,电流无法通过;而当控制端电压为高电平(关断状态)时,MOSFET的通道导电性增大,电流可以通过。
MOS驱动芯片通过控制端的输出电平来控制MOSFET的导通和关断,从而实现对输出电路的控制。
MOS驱动芯片具有以下几个特点:1.高集成度:MOS驱动芯片具有高度集成的特点,可以将多个驱动电路集成在一个芯片上,从而减小电路板的体积和成本。
2.高驱动能力:MOS驱动芯片能够提供较高的驱动能力,可以驱动电流较大的MOSFET,从而适应各种应用场合的需求。
3.低功耗:MOS驱动芯片采用低功耗的设计,可以减小整个电路的能耗,延长电池寿命。
4.可靠性高:MOS驱动芯片采用先进的工艺和可靠的材料,具有较高的抗干扰能力和稳定性,能够在不同环境下正常工作。
MOS驱动芯片在电子设备中有广泛的应用,主要包括以下几个方面:1.电机驱动:MOS驱动芯片可以用于直流电机和步进电机的驱动,实现电机的正转、反转和速度控制等功能。
2.电源逆变器:MOS驱动芯片可以用于电源逆变器的驱动,通过控制MOSFET的导通和关断来实现交流电源的逆变。
3.电源开关:MOS驱动芯片可以用于电源开关的控制,通过控制MOSFET的导通和关断来实现电源的开关。
4. LED驱动:MOS驱动芯片可以用于LED灯的驱动,通过控制MOSFET的开关状态来控制LED灯的亮灭。
5.直流/直流变换器:MOS驱动芯片可以用于直流/直流变换器的驱动,实现不同电压和电流的转换。
电源设计经验之MOS管驱动电路篇
电源设计经验之MOS管驱动电路篇MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。
MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。
下面一起探讨MOSFET用于开关电源的驱动电路。
在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。
但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。
更细致的,MOSFET还应考虑本身寄生的参数。
对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。
当电源IC与MOS管选定之后,选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。
一个好的MOSFET驱动电路有以下几点要求:(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。
(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。
(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。
(4)驱动电路结构简单可靠、损耗小。
(5)根据情况施加隔离。
下面介绍几个模块电源中常用的MOSFET驱动电路。
1、电源IC直接驱动MOSFET图1 IC直接驱动MOSFET电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。
第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。
第二,了解一下MOSFET的寄生电容,如图1中C1、C2的值。
如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。
如果驱动能力不足,上升沿可能出现高频振荡,即使把图1中Rg减小,也不能解决问题!IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。
MOSFET电流源驱动原理及实现
MOSFET电流源驱动原理及实现王仲娟,葛芦生王文娟郝玲玲陈志杰束林(安徽工业大学安徽马鞍山243002)摘要:在开关电源中,随着开关频率的提高,开关器件MOSFET的开关损耗也相应增加。
目前大多数都是采用电压源的驱动方法,此驱动方法存在Miller效应、开关时间长、开关损耗大等一些缺点。
本文对电流源驱动原理进行了分析,并以BUCK电路为例,实现了电流源驱动电路。
通过两种驱动类型比较分析,证明了电流源驱动方式可以缩短开关时间,从而可以有效的减低损耗,提高工作效率。
关键字:电流源驱动开关时间Abstract:In the switching power supply,along with turn-on frequency’s enchancement,the switch component MOSFET switching loss also correspondingly increase.At present the conventional driver is used majority,but this method has the Miller effect,the switching time to be long,switching loss big and so on some shortcomings.This paper has carried on the analysis to the current source driver principle,and take the BUCK circuit as the example,has realized current source driver circuit.Through compared with the conventional driver,had proven the current source driver might reduce the switching time,thus might effective decrease the loss,raised the working efficiency.Keyword:current source driver,switching time引言:目前随着微电子技术的发展,电力电子电路正走向高频化,已出现了各种各样的全控型器件。
5种常用MOS电路
5种经典MOSFET驱动电路MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。
MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。
下面一起探讨MOSFET用于开关电源的驱动电路。
在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。
但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。
更细致的,MOSFET还应考虑本身寄生的参数。
对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。
当电源IC与MOS管选定之后,选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。
一个好的MOSFET驱动电路有以下几点要求:(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。
(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。
(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。
(4)驱动电路结构简单可靠、损耗小。
(5)根据情况施加隔离。
下面介绍几个模块电源中常用的MOSFET驱动电路。
1:电源IC直接驱动MOSFET图1 IC直接驱动MOSFET电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。
第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。
第二,了解一下MOSFET的寄生电容,如图1中C1、C2的值。
如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。
如果驱动能力不足,上升沿可能出现高频振荡,即使把图1中Rg减小,也不能解决问题!IC 驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。
mosfet 栅极驱动电路应用说明
mosfet 栅极驱动电路应用说明嘿,朋友!想象一下,你走进了一个充满各种高科技设备的实验室,里面的工程师们正忙碌地操作着仪器,而在这其中,MOSFET 栅极驱动电路就像是一个神秘而重要的小角色,默默发挥着巨大的作用。
先来说说这 MOSFET 栅极驱动电路到底是个啥?简单来说,它就像是一个聪明的指挥官,控制着 MOSFET 这个“小兵”的行动。
MOSFET 呢,你可以把它想象成一个开关,而栅极驱动电路就是那个决定开关什么时候开、什么时候关的关键因素。
在我们的日常生活中,你可能没直接见到过 MOSFET 栅极驱动电路,但它可无处不在。
比如说,你的手机充电器里就可能有它的身影。
当你给手机充电时,这个小小的电路就在精准地控制着电流和电压,保证充电过程既快速又安全。
要是没有它,说不定你的手机充电就会变得慢吞吞,甚至还有可能出现危险。
再比如,你家里的电脑电源中也有它在辛勤工作。
它能让电脑的电源稳定输出,让你的电脑在运行各种程序时都能稳稳当当,不会突然死机或者出现故障。
咱们来看看它在实际应用中的一些细节。
假设工程师小王正在设计一个电动自行车的控制器,这时候 MOSFET 栅极驱动电路就派上大用场啦!小王一边盯着电脑屏幕上复杂的电路图,一边嘴里念叨着:“这可不能出错,不然车子跑不起来可就麻烦了!”他手里拿着笔,在纸上不停地计算着参数,一会儿皱起眉头,一会儿又露出满意的笑容。
在这个过程中,MOSFET 栅极驱动电路的参数选择至关重要。
驱动电压要是不够,MOSFET 就不能完全导通,效率就会大打折扣;要是驱动电压太高,又可能会损坏器件。
这就好比你跑步的时候,步子迈得太小跑不快,步子迈得太大又容易摔跤。
而且,栅极驱动电路的上升和下降时间也得控制好。
时间太短,会产生很大的电磁干扰;时间太长,又会影响整个系统的性能。
这就好像你做饭的时候,火候掌握不好,要么菜没熟,要么就烧焦了。
还有啊,这个电路的驱动能力也得足够强,才能驱动大电流的MOSFET 。
mosfet driver 驱动芯片工作原理
mosfet driver 驱动芯片工作原理Mosfet Driver驱动芯片工作原理驱动芯片在现代电子设备中扮演着重要的角色。
它们能够将微弱的控制信号转化为高功率的输出信号,从而驱动功率器件如金属氧化物场效应管(MOSFET)。
其中,MOSFET驱动芯片(Mosfet Driver)是一种特殊的驱动芯片,它用于精确控制MOSFET开关的速度和效率。
本文将介绍Mosfet Driver驱动芯片的工作原理。
1. Mosfet Driver的基本原理Mosfet Driver主要通过输出高电流来快速充放电MOSFET的输入和输出电容,以实现快速切换MOSFET的导通和截止。
Mosfet Driver的特点是能够提高MOSFET的开关速度,降低开关损耗。
此外,Mosfet Driver还能够提供更好的电流放大和电压放大能力,可驱动更复杂的电路和功率器件。
因此,它被广泛应用于高频电路、电源管理、电机驱动以及其他需要高速开关的场合。
2. Mosfet Driver的工作原理Mosfet Driver工作原理的核心是在输入端接收到控制信号后,将其放大并转化为高电流输出。
通常,Mosfet Driver由电流放大器、电压放大器和高功率驱动电路组成。
2.1 电流放大器电流放大器是Mosfet Driver的核心组成部分之一。
它能够将输入信号的微弱电流放大为较大的电流,并输出给驱动电路。
这种放大的作用可以提高MOSFET的开关速度和切换效率。
电流放大器通常采用晶体管或操作放大器来实现。
2.2 电压放大器电压放大器是Mosfet Driver的另一核心组成部分,它能够将输入信号的微弱电压放大为较大的电压,并提供给MOSFET的控制端。
电压放大器通常由放大电路和电压放大倍数控制电路组成。
通过精确控制电压放大倍数,可以实现对MOSFET的精确控制。
2.3 高功率驱动电路高功率驱动电路是Mosfet Driver的另一个重要组成部分,它能够提供足够的电流和电压去驱动大功率MOSFET。
MOSFET半桥驱动电路要点
MOSFET半桥驱动电路要点一、MOSFET半桥驱动电路的工作原理MOSFET半桥驱动电路由两个MOSFET和两个驱动电路组成。
其中,一个MOSFET被称为高侧MOSFET,负责控制负载之间的正电源连接;另一个MOSFET称为低侧MOSFET,负责控制负载之间的地连接。
驱动电路通过调整控制信号的频率和占空比,控制MOSFET的导通和截止,从而控制负载的开关状态。
二、MOSFET半桥驱动电路的优点1.高效率:MOSFET具有低导通电阻和快速开关速度,能够提供高效率的功率转换。
2.可靠性高:MOSFET具有较高的动态响应和较低的导通电阻,降低了功率损耗和瞬态温度上升。
3.高频特性好:由于MOSFET具有快速开关速度,因此可以在高频范围内工作,满足一些特殊应用的需求。
4.体积小:MOSFET半桥驱动电路的体积相对较小,适用于有限的空间。
三、MOSFET半桥驱动电路的要点1.驱动电路设计:驱动电路需要提供适宜的电压和电流给MOSFET,保证其可靠的开关动作。
驱动电路通常由开关电路、电流供应器和电压变换器等组成。
2.控制信号:控制信号包括频率和占空比两个参数。
频率通常由驱动电路自动生成,而占空比则由控制器调节,调整占空比能够控制开关频率和负载的平均电压。
3.选择合适的MOSFET:MOSFET的选择应该根据负载的特性和需求进行。
主要考虑导通电阻、开关速度和功率耗散等参数,以确保MOSFET在驱动电路中正常工作。
4.过电压和过电流保护:MOSFET在工作过程中可能会遇到过电压和过电流的情况,因此需要设置保护电路,以避免损坏MOSFET。
常用的保护电路包括过压保护、过流保护和过温保护等。
四、MOSFET半桥驱动电路的应用MOSFET半桥驱动电路广泛应用于各种领域,如电机驱动、电源转换、电磁阀控制等。
在电机驱动领域中,MOSFET半桥驱动电路可以实现对电机的正、反转控制,调整电机的转速和力矩。
在电源转换领域中,MOSFET半桥驱动电路可以实现高效率的功率转换,提供稳定的输出电压和电流。
MOSFET的半桥驱动电路设计要领详解
MOSFET的半桥驱动电路设计要领详解MOSFET(金属氧化物半导体场效应晶体管)的半桥驱动电路是一种常用的电路配置,用于将直流电源转换为交流信号。
它在工业和电子设备中被广泛应用,常见于电机控制、电源转换和逆变器等领域。
本文将详细介绍MOSFET半桥驱动电路的设计要领。
1.MOSFET的选择:首先,需要选择适合应用的MOSFET。
选择MOSFET时,需要考虑其额定电压、最大电流、导通电阻和开关速度等参数。
合适的MOSFET应具有低导通电阻、高开关速度和低静态功耗。
2.驱动电路的电源:半桥驱动电路需要两个电源,一个用于上半桥,另一个用于下半桥。
这些电源的电压应根据MOSFET的额定电压确定。
通常,电源电压应略高于MOSFET的额定电压,以确保MOSFET在工作时能充分导通。
3.驱动电路的控制信号:半桥驱动电路的控制信号通常来自于微控制器或其他逻辑电路。
控制信号需要提供给驱动电路,以控制MOSFET的开关。
通常,控制信号是一个矩形波形,频率取决于所需的开关频率。
4.驱动电路的设计:半桥驱动电路通常由两个部分组成:上半桥和下半桥。
每个半桥都由一个N沟道MOSFET(NMOS)和一个P沟道MOSFET(PMOS)组成,以实现全桥的驱动。
下面将详细介绍每个半桥的设计要领。
-上半桥设计要领:上半桥的NMOS和PMOS的源极分别连接到共源节点,以便在MOSFET 导通时共享电流。
NMOS的栅极通过一个电阻连接到地,而PMOS的栅极则连接到驱动电路的控制信号。
这样,当驱动电路的控制信号为高电平时,上半桥的NMOS导通,而PMOS关断;反之,当控制信号为低电平时,NMOS 关断,PMOS导通。
-下半桥设计要领:下半桥的设计与上半桥类似,只是NMOS和PMOS的源极分别连接到共源节点的反方向。
这样,当驱动电路的控制信号为高电平时,下半桥的NMOS关断,PMOS导通;反之,当控制信号为低电平时,NMOS导通,PMOS 关断。
MOS管工作原理和驱动电路的详细讲解
详细讲解MOSFET管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。
这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。
下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。
包括MOS管的介绍,特性,驱动以及应用电路。
1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS。
原因是导通电阻小,且容易制造。
所以开关电源和马达驱动的应用中,一般都用NMOS。
下面的介绍中,也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。
寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。
这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V 就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。
MOSFET驱动变压器设计详解
MOSFET驱动变压器设计详解MOSFET(金属氧化物半导体场效应晶体管)是一种常用的功率开关器件,由于其高开关速度和低导通电阻等特点,被广泛应用于各种电力电子设备中。
MOSFET驱动变压器是通过MOSFET管的开关操作来实现变压器的变换功能。
首先,需要确定所需的变压器参数,包括输入和输出电压、输出功率和变比。
这些参数将直接影响到变压器的设计和选型。
接下来,选择适合的开关频率。
开关频率决定了变压器的尺寸和效率,一般情况下,高频率将导致变压器体积小但效率低,低频率则相反。
选择合适的开关频率需要考虑具体应用需求和性能要求。
然后,根据变压器的变比和输入电压,计算出变压器的输入电流。
这将有助于选择适合的MOSFET管,确保其能够承受所需的电流和功率。
接下来,选择合适的MOSFET驱动电路。
MOSFET驱动电路可以将控制信号转换为适当的电压和电流来驱动MOSFET管。
这些电路通常包括信号隔离、电平转换、电流放大等功能。
常见的MOSFET驱动电路包括单端驱动和全桥驱动。
在设计MOSFET驱动变压器时,需要注意以下几点:1.选择合适的MOSFET管。
MOSFET管的参数应与变压器的电流和功率要求匹配,包括导通电压、漏电流、功率损耗等。
2.设计合适的MOSFET驱动电路。
MOSFET驱动电路需要能够提供足够的电流和电压来驱动MOSFET管,同时要考虑信号隔离和输出保护等功能。
3.保护电路设计。
在MOSFET驱动变压器中,应考虑过流、过压、过温等故障保护功能的设计,以保证设备的安全性和可靠性。
4.使用合适的散热措施。
MOSFET驱动变压器工作时会有较大的功率损耗,导致设备发热。
因此,需要采取合适的散热措施,如散热片、散热风扇等。
总结起来,设计MOSFET驱动变压器需要考虑多个因素,包括变压器参数、选择合适的MOSFET管和驱动电路、故障保护和散热等。
这些步骤需要综合考虑各种因素,以实现稳定、高效的变压功能。
详解MOSFET驱动电路的设计
详细讲解MOSFET管驱动电路作者:来源:电源网关键字:MOSFET结构开关驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。
这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。
下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。
包括MOS 管的介绍,特性,驱动以及应用电路。
1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS。
原因是导通电阻小,且容易制造。
所以开关电源和马达驱动的应用中,一般都用NMOS。
下面的介绍中,也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。
寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。
这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然P MOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
mosfet外围驱动电路器件的解释
mosfet外围驱动电路器件的解释MOSFET外围驱动电路器件解释:
MOSFET外围驱动电路器件是一种用于驱动金属氧化物半导体场效
应晶体管(MOSFET)的电路器件。
MOSFET是一种常见的半导体器件,广泛应用于电子设备中的功率放大、开关和调节电路中。
MOSFET外围驱动电路器件的主要功能是将输入信号转换为适当的
电压和电流,以控制MOSFET的导通和截止。
它通常由多个部分组成,包括信号源、电流源、输入电阻和电容。
信号源是驱动电路器件的输入端,通常由信号发生器或其他电子设
备提供电信号输入。
电流源是用于产生适当的电流,以确保MOSFET
在工作范围内稳定可靠地工作。
输入电阻根据信号源的输出特性和MOSFET的输入阻抗匹配,以确保输入信号能够有效驱动MOSFET。
电容则用于提供对输入信号的滤波和储存。
MOSFET外围驱动电路器件的工作原理是将输入信号通过合适的电
路组成将其转换为适当的电压和电流,以满足MOSFET的工作要求。
通过输入信号的变化,驱动电路器件可以控制MOSFET的导通和截止,从而实现电路的开关和调节功能。
MOSFET外围驱动电路器件是一种用于驱动MOSFET的电路器件,它能够将输入信号转换为适当的电压和电流,以控制MOSFET的工作
状态。
它在电子设备中起着重要作用,广泛应用于功率放大、开关和
调节电路中。
怎样正确连接并使用MOSFET
怎样正确连接并使用MOSFET MOSFET (金属-氧化物-半导体场效应晶体管) 是一种常用的功率半导体器件,广泛应用于电子和电力系统中。
本文旨在向读者介绍如何正确地连接和使用MOSFET。
一、MOSFET的连接方式及原理MOSFET一般有三个引脚:源极 (Source)、栅极 (Gate) 和漏极(Drain)。
连接MOSFET之前,我们需要了解不同类型的MOSFET和其连接方式。
1. N沟道MOSFET (N-Channel MOSFET)N沟道MOSFET使用N型衬底,其中电流主要是由电子流动而产生。
在常见的N沟道MOSFET连接方式中,源极连接至负极,栅极连接至控制信号源,漏极连接至负载电路。
2. P沟道MOSFET (P-Channel MOSFET)P沟道MOSFET使用P型衬底,其中电流主要是由空穴流动而产生。
在常见的P沟道MOSFET连接方式中,源极连接至正极,栅极连接至控制信号源,漏极连接至负载电路。
在连接MOSFET时,应仔细阅读器件手册以确保正确连接不同引脚。
错误的连接方式可能导致器件烧毁或工作异常。
二、使用MOSFET的注意事项为了正确使用MOSFET并确保其可靠性和效率,以下是一些需要注意的事项:1. 电压和电流限制在使用MOSFET时,应确保输入信号的电压和电流在规定范围内。
超过器件额定值可能造成损坏或不可预测的结果。
2. 静态和动态参数了解和考虑静态及动态参数对MOSFET性能的影响是至关重要的。
静态参数包括开关阈值电压、漏极电流等,而动态参数包括开关速度和功率损失等。
3. 瞬态保护MOSFET容易受到静电放电等瞬态事件的损害。
为了保护MOSFET并延长其寿命,应使用适当的瞬态保护措施,如瞬态电压抑制器或电磁干扰滤波器等。
4. 散热和温度控制在高功率应用中,MOSFET可能会产生大量热量。
因此,必须提供足够的散热措施,例如风扇或散热器,以确保器件工作温度在安全范围内。
光纤驱动mosfet
光纤驱动mosfet
光纤驱动MOSFET是一种新型的高速开关器件,可以实现高速开关和电压放大功能。
它采用光电二极管驱动,通过光纤传递信号控制MOSFET的开关。
相比传统的电压控制MOSFET,光纤驱动MOSFET 具有更高的响应速度和精度。
光纤驱动MOSFET的主要优势在于其高速开关功能。
传统MOSFET
的开关速度受限于电荷的迁移速度和电压控制的精度,而光纤驱动MOSFET则通过光纤传输信号,可以实现实时响应和高精度的电压控制,从而实现更快的开关速度和更高的精度。
另外,光纤驱动MOSFET还具有较低的导通电阻和漏电流,可以在高功率和高频率下保持稳定的工作状态,适用于高频率和高功率的应用
领域,比如无线通信和高速数据传输等。
然而,光纤驱动MOSFET也存在一些不足之处,主要是其成本较高且需要专业的光纤技术和驱动电路技术支持。
同时,在一些特殊环境下,光纤驱动MOSFET也可能存在光纤断裂等故障问题,需要更高的维护成本和技术支持。
总体来说,光纤驱动MOSFET是一种极具潜力的高速开关器件,可以
满足高频率和高精度的实时控制需求。
随着光纤技术和驱动电路技术的不断发展,光纤驱动MOSFET的应用前景也将不断扩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
II. MOSFET TECHNOLOGY
The bipolar and the MOSFET transistors exploit the same operating principle. Fundamentally, both type of transistors are charge controlled devices which means that their output current is proportional to the charge established in the semiconductor by the control
opposed to the -2.2mV/°C temperature coefficient of a p-n junction, the MOSFETs exhibit a positive temperature coefficient of
approximately 0.7%/°C to 1%/°C. This positive temperature coefficient of the MOSFET makes it an ideal candidate for parallel operation in higher power applications where using a single device would not be practical or possible. Due to the positive TC of the channel resistance, parallel connected MOSFETs tend to share the current evenly among themselves. This current sharing works automatically in MOSFETs since the positive TC acts as a slow negative feedback system. The device carrying a higher current will heat up more – don’t forget that the drain to source voltages are equal – and the higher temperature will increase its RDS(on) value. The increasing resistance will cause the current to decrease, therefore the temperature to drop. Eventually, an equilibrium is reached where the parallel connected devices carry similar current levels. Initial tolerance in RDS(on) values and different junction to ambient thermal resistances can cause significant – up to 30% – error in current distribution.
electrode. When these devices are used as switches, both must be driven from a low impedance source capable of sourcing and sinking sufficient current to provide for fast insertion and extraction of the controlling charge. From this point of view, the MOSFETs have to be driven just as “hard” during turn-on and turnoff as a bipolar transistor to achieve comparable switching speeds. Theoretically, the switching speeds of the bipolar and MOSFET devices are close to identical, determined by the time required for the charge carriers to travel across the semiconductor region. Typical values in power devices are approximately 20 to 200 picoseconds depending on the size of the device.
2-1
current is practically zero. Also, the controlling charge and accordingly the storage time in the MOSFET transistors is greatly reduced. This basically eliminates the design trade-off between on state voltage drop – which is inversely proportional to excess control charge – and turnoff time. As a result, MOSFET technology promises to use much simpler and more efficient drive circuits with significant economic benefits compared to bipolar devices.
The popularity and proliferation of MOSFET technology for digital and power applications is driven by two of their major advantages over the bipolar junction transistors. One of these benefits is the ease of use of the MOSFET devices in high frequency switching applications. The MOSFET transistors are simpler to drive because their control electrode is isolated from the current conducting silicon, therefore a continuous ON current is not required. Once the MOSFET transistors are turned-on, their drive
Furthermore, it is important to highlight especially for power applications, that MOSFETs have a resistive nature. The voltage drop across the drain source terminals of a MOSFET is a linear function of the current flowing in the semiconductor. This linear relationship is characterized by the RDS(on) of the MOSFET and known as the on-resistance. Onresistance is constant for a given gate-to-source voltage and temperature of the device. As
Design And Application Guide for High Speed MOSFET Gate Drive Circuits
By Laszlo Balபைடு நூலகம்gh
ABSTRACT
The main purpose of this paper is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Thus it should be of interest to power electronics engineers at all levels of experience.
Several, step-by-step numerical design examples complement the paper.
I. INTRODUCTION
MOSFET – is an acronym for Metal Oxide Semiconductor Field Effect Transistor and it is the key component in high frequency, high efficiency switching applications across the electronics industry. It might be surprising, but FET technology was invented in 1930, some 20 years before the bipolar transistor. The first signal level FET transistors were built in the late 1950’s while power MOSFETs have been available from the mid 1970’s. Today, millions of MOSFET transistors are integrated in modern electronic components, from microprocessors, through “discrete” power transistors.