排列组合方法归纳大全
排列组合方法归纳大全[文摘][整理]
排列组合方法归纳大全解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有列方式的种数为______2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种______十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1.10个相同的球装5个盒中,每盒至少一有多少装法?_____x y z w求这个方程组的自然数解的组数_____2 .100十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在的抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有______2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.本题还有如下分类标准:十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习题:1.同一寝室4人,每人写一贺年卡集中起来,然后每人各拿一别人的贺年卡,则四贺年卡不同的分配方式有多少种?2.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有72种十七.化归策略例17.:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是解决排列类应用题的主要方法(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.1.一位老师和5位同学站成一排照相,老师不站在两端的排法( )A.450 B.460 C.480 D.5002.排一有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?[例2] 要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种C.42种 D.48种[例3] 有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.求解排列、组合综合题的一般思路排列、组合的综合问题,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.4.4个不同的球,4个不同的盒子,把球全部放入盒.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?1.(2012·高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!2.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A .12种B .10种C .9种D .8种3.在“神九”航天员进行的一项太空实验中,先后要实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B 和C 实施时必须相邻,请问实验顺序的编排方法共有()A .24种B .48种C .96种D .144种4.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有()A .192种B .128种C .96种D .12种5.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A .10种B .15种C .20种D .30种6.(2012·高考)现有16不同的卡片,其中红色、黄色、蓝色、绿色卡片各4.从中任取3,要求这3卡片不能是同一种颜色,且红色卡片至多1,不同取法的种数为()A .232B .252C .472D .4847.12名选手参加校园歌手大奖赛,大赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,则不同的获奖种数是()A .123B .312C .A312D .12+11+108.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是()A .20B .9C .C39D .C 24C 15+C 25C149.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有()A .252种B .112种C .20种D .56种10.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则A B CD不同的选法共有_种.11.如图M,N,P,Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有________种.12.某公司计划在、、、四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是________(用数字作答).13.(2013·模拟)某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).14.(2013·模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________(用数字作答).15.已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?16.从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?17.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,不同的放法有多少种?18.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.。
排列组合常见的九种方法
排列组合常见的九种方法
1. 直接排列法:将元素按照一定次序排列,每种排列方案都是一个不同的结果。
例如,3个元素的排列数为 3! = 3 × 2 × 1 = 6。
2. 递归法:将问题逐步分解成每一步只有相对简单的子问题,从而不断求解。
通过递归,经过一系列不同的子过程,得到最终的结果。
3. 循环法:使用循环来枚举所有的可能的排列组合情况。
通常用于数组、字符串等元素的排列组合问题。
4. 分组排列法:将待排列的元素按照一定属性分组,再对每组内的元素进行排列组合,最终将每组的结果进行组合得到最终的结果。
5. 交换法:通过元素间的交换,对所有可能的排列组合进行枚举。
该方法需要注意元素交换时的顺序。
6. 邻项对换法:将相邻的两项进行对换,直到所有项都被排列组合了一遍。
7. 插入法:将新的元素依次插入已有元素的任意位置,直到所有元素都被排列组合了一遍。
8. 非递增排列法:将待排列的元素按照一定属性进行排序,然后将元素从最大的开始进行排列组合。
9. 非递减排列法:将待排列的元素按照一定属性进行排序,然后将元素从最小的开始进行排列组合。
超全超全的排列组合的二十种解法
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。
定义的前提条件是m≦n,m与n均为自然数。
①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。
从6种颜色中取出4种进行排列呢。
解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。
A(6,6)=6x5x4x3x2x1=720。
A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。
[计算公式]排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2) (1)例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
组合的定义及其计算公式1组合的定义有两种。
定义的前提条件是m≦n。
①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。
解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[( 4x3x2x1)/2]/2=6。
[计算公式]组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
排列组合方法归类大全
排列组合的常见题型及其解法一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种) 四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
解题方法是:先将n 个元素进行全排列有A n n 种,m m n ()≤个元素的全排列有A m m种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,则有A A n n m m 种排列方法。
完整版)排列组合方法归纳
完整版)排列组合方法归纳如果你想要成功,就需要有恒心作为良友,经验作为参谋,小心作为兄弟,希望作为哨兵。
这是成功的关键。
1、特殊元素和位置的优先法在排列和组合问题中,如果有特殊的元素或位置要求,就需要优先满足这些要求。
例如,要求从0、1、2、3、4、5中选出不重复的五位奇数的数量是多少。
首先,末位必须是奇数,因此应该优先安排末位,共有C3种选择。
然后,首位不能是0,因此应该优先安排首位,共有C4种选择。
最后,安排其他位置,共有A4^3种选择。
根据分步计数原理,可以得出总共有C3*C4*A4^3=288种不重复的五位奇数。
2、相邻问题的捆绑法如果题目规定了相邻的元素必须在一起,可以将它们捆绑成一个大元素,参与排列。
例如,如果A、B、C、D、E五个人并排站成一排,要求A和B必须相邻且B在A的右边,那么可以将A和B看作一个人,且B固定在A的右边,问题就变成了4个人的全排列,共有A4=24种不同的排列方式。
3、相离问题的插空法如果元素不能相邻,可以先将无位置要求的元素全排列,然后将规定的不能相邻的元素插入到这些元素的空位和两端。
例如,七个人并排站成一排,要求甲和乙不能相邻,那么除了甲和乙以外的其他5个人有A5种排列方式。
然后,甲和乙可以插入6个空位中的任意两个,共有A6种插法。
因此,总共有A5*A6=3600种不同的排列方式。
4、选排问题的先选后排法如果需要从一组元素中选出符合要求的元素,然后安排它们的位置,可以使用先选后排法。
例如,有四个不同的球放入编号为1、2、3、4的四个盒子中,问恰有一个空盒的放法有多少种。
首先从四个球中选出两个球作为一组,其余两个球各自为一组,共有C4种选法。
然后,将三个球放入四个盒子中,共有A4种排列方式。
因此,总共有C4*A4=144种放法。
5、相同元素分配问题的隔板法如果需要将n个相同的元素分成m份,并且每份至少有一个元素,可以使用隔板法。
将m-1块隔板插入n个元素排成的n-1个空隙中,所有分法数为C(n-1)。
排列组合方法大全
排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m种不同的2方法,…,在第n类办法中有m种不同的方法,n那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m种不同的方法,…,2做第n步有m种不同的方法,那么完成这件事共n有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,,以 先排末位共有13C 然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略443例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种解:分两步进行第一步排2个相声和3个独唱共有55A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A不同的方法,由分步计数原理,节目的不同顺序共有5456A A种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A种方法。
排列组合常见21种解题方法
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
排列组合20种常用方法
排列组合20种常用方法
1. 列出所有可能的组合
2. 使用递归排列组合
3. 使用循环排列组合
4. 使用动态规划排列组合
5. 使用回溯法排列组合
6. 使用数学公式计算排列组合
7. 使用位运算排列组合
8. 使用逆序排列组合
9. 使用有序集合排列组合
10. 使用栈数据结构排列组合
11. 使用队列数据结构排列组合
12. 使用重复排列组合
13. 使用有限制条件的排列组合
14. 使用自定义函数进行排列组合计算
15. 使用字符串拆分和拼接进行排列组合
16. 使用二叉树进行排列组合
17. 使用堆进行排列组合
18. 使用图进行排列组合
19. 使用集合进行排列组合计算
20. 使用贪心算法进行排列组合。
排列组合问题常用方法(二十种)
解排列组合问题常用法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
排列组合问题17种方法
完成一件事,有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法. 12nN=m +m ++m 复习巩固1.分类计数原理(加法原理)完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 12nN=m m m 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.※解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置先排末位共有___ 然后排首位共有___最后排其它位置共有___13C 13C 14C 14C 34A 34A 由分步计数原理得=28813C 14C 34A 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件1.7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?练习题解一:分两步完成;第一步选两葵花之外的花占据两端和中间的位置35A 有种排法第二步排其余的位置:3454A A ∴共有种不同的排法44有A 种排法解二:第一步由葵花去占位:24A 有种排法第二步由其余元素占位:55A 有种排法2545A A ∴共有种不同的排法小结:当排列或组合问题中,若某些元素或某些位置有特殊要求的时候,那么,一般先按排这些特殊元素或位置,然后再按排其它元素或位置,这种方法叫特殊元素(位置)分析法。
排列组合方法归类大全
排列组合的常见题型及其解法一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种) 三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种) 四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
解题方法是:先将n 个元素进行全排列有A n n 种,m m n ()≤个元素的全排列有A m m种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,则有A A n n mm 种排列方法。
(完整版)排列组合方法大全,推荐文档
排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,n 1m 2m …,在第类办法中有种不同的方法,那么完成这件事共有:n n m 12nN m m m =+++ 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,n 1m 2m 做第步有种不同的方法,那么完成这件事共有:n n m 12nN m m m =⨯⨯⨯ 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中55A 间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种46A 5456A A目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 147A 种坐法,则共有种方法。
(完整版)排列组合方法归纳
排列组合方法总结1、【特殊元素、特殊位置】优先法在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( )解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的元素占了这两个位置,先安排末位共有13C ;然后排首位共计有14C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( )解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,3、【相离问题】插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( )解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种 4、【选排问题】先选后排法从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插入n 个元素排成一排的n-1个空隙中,所有分法数为:11--m n C 。
例:(1)10个三好生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案故共有不同的分配方案为为6984C =种 (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵6、【平均分组问题】消序法平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后一定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。
排列组合全部20种方法
排列组合解法解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行, 确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略1、由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.练习、7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略2、7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习、某人射击8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4、7人排队, 其中甲乙丙3人顺序一定共有多少不同的排法练习、10人身高各不相等, 排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法五.重排问题求幂策略5、把6名实习生分配到7 个车间实习, 共有多少种不同的分法练习1.某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8 名乘客人, 他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略6、8 人围桌而坐, 共有多少种坐法一般地,n 个不同元素作圆形排列, 共有(n-1)! 种排法. 如果从n 个不同元素中取出m个元素作1圆形排列共有1An mn练习、 6 颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略7、8 人排成前后两排, 每排 4 人, 其中甲乙在前排,丙在后排,共有多少排法练习、有两排座位,前排11 个座位,后排12 个座位,现安排 2 人就座规定前排中间的 3 个座位不能坐,并且这 2 人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略8、有5个不同的小球, 装入 4 个不同的盒内, 每盒至少装一个球, 共有多少不同的装法.练习、一个班有 6 名战士, 其中正副班长各 1 人现从中选 4 人完成四种不同的任务, 每人完成一种任务, 且正副班长有且只有 1 人参加, 则不同的选法有种九. 小集团问题先整体后局部策略9、用 1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹 少个练习、1. 计划展出 10 幅不同的画 , 其中 1 幅水彩画 , 4幅油画 , 5幅国画 , 排成一行陈列 , 要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5 男生和5女生站成一排照像 ,男生相邻 ,女生也相邻的排法有 种十. 元素相同问题隔板策略10、有 10个运动员名额,分给 7个班,每班至少一个 , 有多少种分配方案将 n 个相同的元素分成 m 份(n ,m 为正整数) , 每份至少一个元素 ,可以用 m-1块隔板, 插入 n 个元素排成一排的 n-1 个空隙中,所有分法数为 C n m 11练习题:1. 10 个相同的球装 5 个盒中 , 每盒至少一有多少装法2 . x y z w 100 求这个方程组的自然数解的组数十一 .正难则反总体淘汰策略11、从 0,1,2,3,4,5,6,7,8,9 取法有多少种有些排列组合问题 , 正面直接考虑比较复杂 , 而它的反面往往比较简捷 , 可以先求1, 5在两个奇数之间 , 这样的五位数有多这十个数字中取出三个数,使其和为不小于 10 的偶数 , 不同的练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种十二.平均分组问题除法策略12、 6 本不同的书平均分成 3 堆,每堆 2 本共有多少分法练习题:1、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法2、10 名学生分成3组,其中一组 4 人, 另两组 3 人但正副班长不能分在同一组,有多少种不同的分组方法3、某校高二年级共有六个班级,现从外地转入 4 名学生,要安排到该年级的两个班级且每班安排 2 名,则不同的安排方案种数为_____十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目有多少选派方法解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做练习:1、从 4 名男生和 3 名女生中选出 4 人参加某个座谈会,若这 4 人中必须既有男生又有女生,则不同的选法共有2、3 成人 2 小孩乘船游玩,1 号船最多乘 3 人, 2 号船最多乘 2 人,3 号船只能乘1人,他们任选2只船或 3 只船, 但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略14、马路上有编号为1,2,3,4,5,6,7,8,9 的九只路灯, 现要关掉其中的 3 盏, 但不能关掉相邻的 2 盏或 3 盏, 也不能关掉两端的2盏, 求满足条件的关灯方法有多少种一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒练习、某排共有10个座位,若 4 人就坐,每人左右两边都有空位,那么不同的坐法有多少种十五.实际操作穷举策略15、设有编号1,2,3,4,5 的五个球和编号1,2,3,4,5 的五个盒子,现将 5 个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同, 有多少投法对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收练习1、同一寝室 4 人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种2、给图中区域涂色,要求相邻区域不同色, 现有4种可选颜色, 则不同的着色方法有种十六. 分解与合成策略16、30030 能被多少个不同的偶数整除练习: 正方体的8 个顶点可连成多少对异面直线分解与合成策略是排列组合问题的一种最基本的解题策略, 把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构, 用分类计数原理和分步计数原理将问题合成, 从而得到十七.化归策略17、25 人排成5×5 方阵, 现从中选 3 人, 要求 3 人不在同一行也不在同一列, 不同的选法有多少种处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,练习、某城市的街区由12 个全等的矩形区组成其中实线表示马路,从 A 走到的最短路径有多少种十八.数字排序问题查字典策略18、由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105 大的数数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数, 根据分类计数原理求出其总数。
排列组合方法大全【范本模板】
排列组合方法归纳大全复习巩固1。
分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事.分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2。
怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3。
确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4。
解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一。
特殊元素和特殊位置优先策略例1。
由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:先排末位共有13C 然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二。
相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排.由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四。
排列组合方法归纳大全
排列组合方法归纳大全解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有列方式的种数为______ 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种______十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法?_____ 2 .100x y z w +++=求这个方程组的自然数解的组数_____十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在的抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安 排2名,则不同的安排方案种数为______十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有______2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. 本题还有如下分类标准:十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习题:1.同一寝室4人,每人写一贺年卡集中起来,然后每人各拿一别人的贺年卡,则四贺年卡不同的分配方式有多少种?2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种54321十七.化归策略例17.:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?BA十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是解决排列类应用题的主要方法(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.1.一位老师和5位同学站成一排照相,老师不站在两端的排法( )A.450 B.460C.480 D.5002.排一有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?[例2] 要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种C.42种D.48种[例3] 有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.求解排列、组合综合题的一般思路排列、组合的综合问题,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.4.4个不同的球,4个不同的盒子,把球全部放入盒.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?1.(2012·高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3!B.3×(3!)3C.(3!)4D.9!2.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.在“神九”航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有( ) A.24种B.48种C.96种D.144种4.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中5.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.10种B.15种C.20种D.30种6.(2012·高考)现有16不同的卡片,其中红色、黄色、蓝色、绿色卡片各4.从中任取3,要求这3卡片不能是同一种颜色,且红色卡片至多1,不同取法的种数为( )A.232 B.252C.472 D.4847.12名选手参加校园歌手大奖赛,大赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,则不同的获奖种数是( )A.123B.312C.A312D.12+11+108.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是( )A.20 B.9C.C39D.C24C15+C25C149.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有( )A.252种B.112种C.20种D.56种10.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有_种.11.如图M,N,P,Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有________种.12.某公司计划在、、、四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是________(用数字作答).13.(2013·模拟)某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).14.(2013·模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________(用数字作答).15.已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?16.从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?17.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,不同的放法有多少种?18.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.。
排列组合方法技巧总汇
总结排列组合题型一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
排列组合方法归纳大全
排列组合方法归纳大全解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个 练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为______ 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种______十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法_____ 2 .100x y z w +++=求这个方程组的自然数解的组数_____十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有______2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.本题还有如下分类标准:十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十七.化归策略例17.:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种BA十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是解决排列类应用题的主要方法54321(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.1.一位老师和5位同学站成一排照相,老师不站在两端的排法( )A.450 B.460 C.480 D.5002.排一张有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种[例2] 要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种 C.42种 D.48种[例3] 有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.求解排列、组合综合题的一般思路排列、组合的综合问题,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.4.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法(2)恰有1个盒内有2个球,共有几种放法(3)恰有2个盒不放球,共有几种放法1.(2012·辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A.3×3!B.3×(3!)3 C.(3!)4D.9!2.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种 B.10种 C.9种D.8种3.在“神九”航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有( )A.24种 B.48种 C.96种D.144种4.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中A.192种 B.128种 C.96种 D.12种5.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.10种 B.15种 C.20种D.30种6.(2012·山东高考)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A.232 B.252 C.472 D.4847.12名选手参加校园歌手大奖赛,大赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,则不同的获奖种数是( )A.123 B.312 C.A312D.12+11+108.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是( )A.20 B.9 C.C39D.C24C15+C25C149.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有( )A.252种 B.112种 C.20种D.56种10.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有_种.11.如图M,N,P,Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有________种.12.某公司计划在北京、上海、兰州、银川四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是________(用数字作答).13.(2013·武汉模拟)某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).14.(2013·宜昌模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________(用数字作答).15.已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少16.从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数(2)上述七位数中,3个偶数排在一起的有几个(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个17.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,不同的放法有多少种名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.。
排列组合方法归类大全
排列组合方法归类大全本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March排列组合的常见题型及其解法一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种) 三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合方法归纳大全解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个 练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为______ 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种______十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法_____ 2 .100x y z w +++=求这个方程组的自然数解的组数_____十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有______2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.本题还有如下分类标准:十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十七.化归策略例17.:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种BA十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是54321v1.0 可编辑可修改解决排列类应用题的主要方法(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.1.一位老师和5位同学站成一排照相,老师不站在两端的排法( )A.450 B.460 C.480 D.5002.排一张有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种[例2] 要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种 C.42种 D.48种[例3] 有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.求解排列、组合综合题的一般思路排列、组合的综合问题,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.4.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法(2)恰有1个盒内有2个球,共有几种放法(3)恰有2个盒不放球,共有几种放法1.(2012·辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )v1.0 可编辑可修改A .3×3!B .3×(3!)3C .(3!)4D .9!2.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种3.在“神九”航天员进行的一项太空实验中,先后要实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B 和C 实施时必须相邻,请问实验顺序的编排方法共有( )A .24种B .48种C .96种D .144种4.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有( )A .192种B .128种C .96种D .12种5.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A .10种B .15种C .20种D .30种6.(2012·山东高考)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4847.12名选手参加校园歌手大奖赛,大赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,则不同的获奖种数是( )A .123B .312C .A 312D .12+11+108.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( ) A .20 B .9 C .C 39D .C 24C 15+C 25C 149.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有( )A .252种B .112种C .20种D .56种10.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有_种.11.如图M ,N ,P ,Q 为海上四个小岛,现要建造三座桥,将这四个小岛连接起 来,则不同的建桥方法有________种.12.某公司计划在北京、上海、兰州、银川四个候选城市投资3个不同的项目,且在同一个城市A B CD投资的项目不超过2个,则该公司不同的投资方案种数是________(用数字作答).13.(2013·武汉模拟)某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).14.(2013·宜昌模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________(用数字作答).15.已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少16.从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数(2)上述七位数中,3个偶数排在一起的有几个(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个17.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,不同的放法有多少种名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.。