分式加减运算(讲义)(含答案)
分式的加减(1) 公开课精品课件
异分母分数如何加减?
异分母 分数相加 减,先通 分,变为同 分母的分
数,再加
1 1 ?, 1 1 ?. 减。
x 2x
x 2x
异分母分式相加 减 ,先通分,变为同分 母的分式,再加减.
a c ad bc ad bc. b d bd bd bd
(3) 2ab2 1 1 2a 2b (4) a 2 2ab b2
(a b)2 (b a)2
a2 b2 b2 a2)如何把分母化为相同的?
小结:注意符号问题
1.先化简,再求值:
x2
1
, 其中x 1.5
x1 1 x
)
×
(
a 1 a
分子相加减
分母不变
把1看作a a
计算:
(1) 5x 3y 2x x2 y2 x2 y2
(2) a 3b a - b ab ab
ac bc
(3)
a2 b2 a2 b2
注意:当分子 是多项式时, 把分子看作一 个整体,先用 括号括起来!
结果要化为 最简分式或
分子相加
减。
1 2 ?, 1 2 ?.
aa
aa
同分母分式相加 减 ,分母不变,把分子 相加减.
ab ab cc c
ab ab cc c
下列运算对吗?如不对,请改正.
(1) 5 2 10 ( × ) xx x
7
x
94 5
(2) aa
(
2a
×
)
5 a
(3)1 1 2 aa
2003年的森林面积增长率是: 2002年的森林面积增长率是:
(完整版)分式加减乘除运算
(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。
16.2.2分式的加减
延伸与拓展
链接一:甲、乙两地相距s千米,汽车从甲地到 乙地按v千米/时的速度行驶,若按(v+a)千米/ 时的速度行驶,可提前多少小时到达? mn 3 n 链接二:若 n 4 ,则 m 的值等于( )
7 A. 4
4 B. 3
4 C. 7
3 D. 4
小结:谈谈本节课收获?
(1)分式加减运算的方法思路:
3x 4 x2 x 1 x 1
(2)
a2 b 2 2ab 练习1:(1) a b a b
x2 4 (2) x 2 x 2
ax ay 例2、 x y yx
2 xy 2 1 1 2 x 2 y 2 ( x y) ( y x )2
练习2、(1)
4x 4y ;(2) = x y yx
;
3 1 5 、 、 的最简公分母是 ( 3) 4x 2x 6x
2m mn 2.计算 的结果是( 2m n n 2m
A. )
.
mn n 2m
B.
mn n 2m
3m n C. n 2m
3m n D. n 2m
3. 计算:
2
a b (3) a b a b ba x2 x 1 4 x (4) ( 2 2 ) 2 x 2x x 4x 4 x 2x
a b a b 2ab (5) ( 2 ) 2 a b a b (a b)( a b)
2 2
2
2
应用:
1.黑猫警长接到举报,A地有坏蛋在搞破坏活动,经分 析有两条路都可从警察局到A地,每一条路都是3km,其 中第一条是平路,第二条有1km的上坡路和2km的下坡路。 黑猫警长在上坡路上的车速是v km/h,在平路上车速为 2vkm/h,在下坡路上的车速为3v km/h. (1)黑猫警长走第一条平路需要多长时间?你的依 据是什么?
人教版数学八年级上册学案15.2.2《分式的加减》(含答案)
15.2.2 分式的加减 第1课时 分式的加减学习目标:1.熟练地进行同分母的分式加减法的运算.2.会把异分母的分式通分,转化成同分母的分式相加减. 预习阅读教材=,完成预习内容. 知识探究 观察思考:(1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,________不变,把分子________. 异分母分数相加减,先________,再把________相加减. 类比分数的加减,你能说出分式的加减法则吗?1.同分母分式相加减,________不变,把________相加减. 用字母表示为:a c +b c =________;a c -bc=________.2.异分母分式相加减,先________,变为________的分式,再________. 用字母表示为:a b +c d =________;a b —cd =________.自学反馈1.y x +2x =________.2.5y -a y =________.3.a x +b y =________.4.2x 3m -x2n=________.活动1 小组讨论例1.(1)课本问题3中的1n +1n +3=2n +3n (n +3).(2)课本问题4中的s 3-s 1s 2-s 2-s 1s 1=s 1(s 3-s 1)-s 2(s 2-s 1)s 1s 2.例2.计算:(1)5x +3y x 2-y 2-2x x 2-y 2; (2)12p +3q +12p -3q .解:(1)原式=5x +3y -2x x 2-y 2=3x +3y (x +y )(x -y )=3(x +y )(x +y )(x -y )=3x -y. (2)原式=2p -3q (2p +3q )(2p -3q )+2p +3q (2p +3q )(2p -3q )=2p -3q +2p +3q (2p +3q )(2p -3q )=4p4p 2-9q 2.活动2 跟踪训练 1.计算:(1)x +1x -1x ; (2)a b +1+2a b +1-3a b +1.2.计算:(1)12c 2d +13cd 2; (2)32m -n -2m -n (2m -n )2; (3)a a 2-b 2-1a +b .点拨:1.在分式有关的运算中,一般总是先把分子、分母分解因式; 2.注意:过程中,分子、分母一般保持分解因式的形式.课堂小结1.分式加减运算的方法思路:异分母相加减――→通分转化为同分母相加减――→分母不变分子(整式)相加减2.分式相加减时,如果分子是一个多项式,要将分子看成一个整体,先用括号括起来,再运算,可减少出现符号错误.3.分式加减运算的结果要约分,化为最简分式(或整式).第2课时 分式的混合运算学习目标1.灵活应用分式的加减法法则. 2.会进行分式加减乘除混合运算. 预习阅读教材“例7、例8”,完成预习内容. 知识探究1.同分母的分式相加减,________不变,分子相加减.异分母的分式相加减:先________,化为____________,然后再按________分式的加减法法则进行计算.分式加减的结果要化为________.2.分数的混合运算顺序是________________________.类比分数的混合运算法则你能猜想出分式的混合运算顺序吗?试一试. 分式的混合运算顺序是________________________.自学反馈 计算:(1)1-3x 2y ÷3x 2y ·2y 3x ; (2)1+1a -1-2a +1a 2+a -2; (3)⎝ ⎛⎭⎪⎫-a b 2÷⎝ ⎛⎭⎪⎫2a 5b +a 25b .点拨:严格按照计算顺序计算,在计算过程中,分式前面是“-”号时,计算时一定要注意符号变化.活动1 小组讨论计算:(1)(x 2y )2·y 2x -x y 2÷2y 2x ; (2)x +1x ·(2x x +1)2-(1x -1-1x +1).解:(1)原式=x 24y 2·y 2x -x y 2·x 2y 2=x 8y -x 22y 4=xy 38y 4-4x 28y 4=xy 3-4x28y4. (2)原式=x +1x ·4x 2(x +1)2-[x +1(x +1)(x -1)-x -1(x +1)(x -1)] =4x x +1-2(x +1)(x -1)=4x (x -1)(x +1)(x -1)-2(x +1)(x -1)=4x 2-4x -2(x +1)(x -1).活动2 跟踪训练 1.计算:x +y +x 2+y2x -y .2.先化简,再求值:x -y x +2y ÷x 2-y2x 2+4xy +4y2-2,其中x =2.25,y =-2.点拨:在运算过程中,要注意分式乘方不要漏乘;加减计算要注意符号;和整数或整式相加减时注意把整式或整数看成分母是1的整式或整数,通分后再计算;化简求值,一定要换成最简分式再求值. 课堂小结 1.“把分子相加减”就是把各个分式的分子“整体”相加减.在这里要注意分数线的作用.2.注意分式和分数有相同的混合运算顺序:先乘方,再乘除,然后加减.3.运算结果,能约分的要约分,要化成最简分式.课堂小练一、选择题1.化简的结果是()A.x+1B.x﹣1C.﹣xD.x2.已知,则的值是()A. B.﹣ C.2 D.﹣23.计算的正确结果是()A.0B.C.D.4.计算:的结果为()5.计算﹣a﹣1的正确结果是( )A.﹣ B. C.﹣ D.6.如图所示的分式化简,对于所列的每一步运算,依据错误的是( )A.①:同分母分式的加减法法则B.②:合并同类项法则C.③:提公因式法D.④:等式的基本性质二、填空题7.化简1x +3+6x 2-9的结果是________.8.计算: += .9.计算:﹣= .10.= .11.化简:= .12.计算:﹣= .13.计算: += .14.计算的结果是___________15.计算:a a +2-4a 2+2a=________.参考答案1.D .2.D3.C4.A5.答案为:A .6.答案为:D7.答案为:1x -3;8.答案为:x+1 9.答案为:1. 10.答案为:a ﹣3. 11.答案为:x+y.12.故答案为:.13.答案为:2 14.答案为:.15.答案为:a -2a。
分式讲义
分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
人教版八年级数学上册 15.2 分式的运算(含答案)
15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nna a -=。
2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。
专题5.3分式的加减法运算(知识解读)
专题5.3 分式的加减法运算(知识解读)【学习目标】1. 类比分数的加减法运算法则,探究分式的加减法运算法则.2. 能进行简单的分式加、减运算.3. 掌握分式的加、减、乘、除混合运算.4. 掌握分式的化简求值.【知识点梳理】考点1:同分母分式的加减同分母分式相加减,分母不变,把分子相加减; 上述法则可用式子表为:. 注意:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.考点2:异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减. 上述法则可用式子表为:. 注意:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.a b a b c c c ±±=a c ad bc ad bc b d bd bd bd ±±=±=【典例分析】【考点1 同分母分式的加减】【典例1】(2017•湖北)化简:﹣.【解答】解:﹣===【变式11】(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.【答案】A【解答】解:原式=﹣===x+1.故选:A.【变式12】(2020•淄博)化简+的结果是()A.a+b B.a﹣b C.D.【答案】B【解答】解:原式====a﹣b.故选:B.【变式13】(攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n 【答案】A【解答】解:+=﹣==m+n.故选:A.【考点2 异分母分式的加减】【典例2】(2016•南京)计算﹣.【解答】解:﹣=﹣==.【变式21】(2015•百色)化简﹣的结果为()A.B.C.D.【答案】C【解答】解:原式=﹣====.故选:C.【变式22】(2019•济南)化简+的结果是()A.x﹣2B.C.D.【答案】B【解答】解:原式=+==,故选:B.【变式23】(2016•甘孜州)化简:+.【解答】解法一:+=+==.解法二:+=+=+=.【典例3】(2015春•扬州校级月考)计算(1)﹣(2)﹣(3)﹣x﹣1.【解答】解:(1)﹣===﹣;(2)﹣=﹣===;(3)﹣x﹣1=﹣==.【变式31】(2019秋•石景山区期末)计算:﹣.【解答】解:原式=+==【变式32】(秋•南充期末)计算:﹣.【解答】解:原式=﹣,=,=,=,=.【变式33】(2020•鼓楼区一模)计算.【解答】解:原式====【考点分式化简】【典例4】(2016•聊城)计算:(﹣).【解答】解:原式=•=•=﹣.【变式41】(2021•碑林区校级一模)化简:(﹣)÷.【解答】解:原式=[﹣]÷=÷=•=.【变式42】(2020秋•潍城区期中)计算:(1);(2);(3).【解答】解:(1)原式=•==;(2)原式=﹣==;(3)原式=•+=+==.【变式43】(2021•金州区校级模拟)计算:÷﹣1.【解答】解:原式=•﹣1=﹣=.【变式44】(2020秋•华龙区校级期中)计算(1);你(2).【解答】解:(1)原式=﹣•=﹣==;(2)原式=÷=•=.【典例5】(2021秋•北碚区校级期中)先化简再求值:÷(x﹣1+),其中x=2.【解答】解:原式=÷=÷=•=,当x=2时,原式=1【变式5】(2021秋•雨花区校级月考)先化简,再求值:,其中a=2022.【答案】﹣.【解答】解:原式=()÷=()×==﹣.当a=2022时,原式=﹣=﹣.【典例6】(2021•射阳县二模)先化简,再求值:()÷,其中x从1,2,3中取一个你认为合适的数代入求值.【答案】1【解答】解:原式=[]===,∵x(x+1)(x﹣1)≠0,∴x≠0且x≠±1,∴x可以取2或3,当x=2时,原式=,当x=3时,原式==1.【变式6】(2022•牟平区校级开学)化简求值:,再从﹣1≤x <2中选一个整数值,对式子进行代入求值.【解答】解:原式=÷=•=﹣,∵﹣1≤x<2且x为整数,∴x=﹣1,0,1,2,当x=1时,原式没有意义,舍去;当x=﹣1时,原式=;当x=0时,原式=1;当x=2时,原式=﹣.【典例7】(2021•潍城区二模)先化简,再求值:(﹣)÷(x+2﹣),其中x是不等式组的整数解.【解答】解:原式=[+]÷[﹣]=(+)÷(﹣)=÷=•=,由,解得:﹣1<x≤2,∵x是整数,∴x=0,1,2,由分式有意义的条件可知:x不能取0,1,故x=2,∴原式==2.【变式7】(2021•苍溪县模拟)先化简:,再从不等式组的解集中取一个合适的整数值代入求值.【解答】解:原式===2(x+1)﹣(x﹣1)=2x+2﹣x+1=x+3.解不等式组,得﹣3<x≤1.由分式有意义的条件可知:x不能取﹣1,0,1,且x是整数,∴x=﹣2.当x=﹣2时,原式=1.【典例8】(2021秋•兴宁区校级月考)先化简,再求值:,其中a满足a2+2a﹣3=0.【解答】解:原式=•=•=•=2a(a+2)=2(a2+2a),∵a满足a2+2a﹣3=0,∴a2+2a=3,当a2+2a=3时,原式=2×3=6.【变式8】(2021秋•沭阳县校级月考)先化简,再求值:(﹣)÷,其中x2﹣x﹣6=0.【解答】解:原式=[﹣]÷=•=•=•=,∵x2﹣x﹣6=0,∴x=3或x=﹣2,由分式有意义的条件可知:x不能取﹣2,故x=3,∴原式==﹣.。
八年级数学上册分式混合运算(讲义及答案)(人教版)
②
1
③
ab
当 a=1, b=1 时,原式 =1.
④
以上过程有两处错误,第一次出错在第
______步(填写序号) ,原因:
____________________________________________;_
还有第 _______步出错(填写序号) ,原因:
__________________________________________________._
x 2; 2x
11
x
(2) x1 x1
2x2
; 2
(3) 1
4 a2 4
a; a2
第1页 共7页
(4) a 3a 4 1 1 ;
a3
a2
(5) x 1 3
x2 4x 4 ;
x1
x1
(6) a a
1 1
a a2 2a 1
1. a
2. 化简求值:
第2页 共7页
(1)先化简,再求值:
x2 1 1 x x2 2x 1 x 1
请你写出此题的正确解答过程.
4. 课堂上,王老师出了这样一道题:
已知 x
2 015
5
3 ,求代数式
x2 2x 1 x2 1
1 x 3 的值. x1
小明觉得直接代入计算太复杂了, 同学小刚帮他解决了问题, 并解释说:“结
果与 x 无关”.解答过程如下:
第5页 共7页
x ,其中 x=3. x1
( 2)先化简,再求值:
b2 a2
a2 ab
a 2 1, b 2 1.
2ab b2 a
a
1 1 ,其中 ab
( 3)先化简分式 x
第五章第03讲 分式的加减法(10类热点题型讲练)(解析版)--初中数学北师大版8年级下册
第03讲分式的加减法(10类热点题型讲练)1.熟练掌握同分母的分式加减运算;2.会找最简公分母,能进行分式通分,理解并掌握异分母分式的加减法则;3.能进行分式的混合运算及较复杂的分式化简求值.知识点01分式的通分分式的通分:利用分式的性质,将分式的分母变成最小公倍数,分子根据分母扩大的倍数相应扩大,不改变分式的值。
具体步骤:①通过短除法,求出分式分母的最小公倍数;②分母变为最小公倍数的值,确定原式分母扩大的倍数;③分子对应扩大相同倍数.知识点02最简公分母最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.知识点03同分母分式的加减同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.知识点04异分母分式的加减异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.注意:分式是分数的扩展,因此分式的运算法则与分数的运算法则类似.知识点01平面向量基本定理知识点02平面向量的坐标表示知识点03平面向量的坐标运算题型01同分母分式加减法题型02最简公分母题型03通分题型04异分母分式加减法题型05整式与分式相加减题型06已知分式恒等式,确定分子或分母【点睛】本题考查分式的加减,解题关键是掌握分式加法的运算法则.【变式训练】题型07分式加减混合运算题型08分式加减的实际应用【点睛】本题主要考查了分式加减的应用,解题的关键是根据题意列出分式,熟练掌握分式加减运算法则,准确计算.【变式训练】题型09分式加减乘除混合运算题型10分式化简求值一、单选题1.(23-24八年级上·天津红桥·期末)计算2111x x x x --++的结果是()A .1B .1x +C .11x +D .1x x +2.(22-23八年级上·贵州黔南·期末)分式22x x -,36x -的最简公分母是()A .2x -B .()2x x -C .()()323x x --D .()32x x -【答案】D【分析】本题考查了最简公分母,先因式分解取系数的最小公倍数,字母的最高次幂,1,3的最小公倍数为3,x 的最高次幂为1,2x -的最高次幂为1,则得出最简公分母.A .2222233y y x x ⎛⎫= ⎪⎝⎭B .110x y y x-=--C .3263x x y y ⎛⎫-=- ⎪⎝⎭D .()111333x y x y +=+将这些防护服尽快投入使用,增加了人手,最后平均每天比原计划多生产了60套,则工厂完成这个订单的时间比原计划提前()A .60x x y ⎛⎫- ⎪⎝⎭天B .60x x y y ⎛⎫- ⎪+⎝⎭天C .60x x y y ⎛⎫-⎪-⎝⎭天D .60x x y y ⎛⎫-⎪-⎝⎭天5.(23-24九年级下·湖北武汉·开学考试)已知2220x x --=,计算2121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是()A .1B .1-C .0.5D .0.5-二、填空题6.(2023八年级下·江苏·专题练习)计算:221b a b a b+=-+.7.(23-24八年级上·山东东营·阶段练习)将分式29-a 和93a-进行通分时,最简公分母是【答案】()()333a a -+-【分析】本题考查了分式的通分;先对分式的分母进行因式分解,然后即可确定它们的最简公分母.【详解】解:∵()()2933a a a -=+-,()9333a a -=--,∴最简公分母是()()333a a -+-,故答案为:()()333a a -+-.8.(23-24八年级上·湖南长沙·阶段练习)若2574515x A Bx x x x -=+--+-,A ,B 为常数,则2A B -的值为.9.(2024八年级下·全国·专题练习)小刚在化简22a b M--时,整式M 看不清楚了,通过查看答案,发现得到的化简结果是1a b-,则整式M 是.和,多次重复进行这种运算的过程如下:则第2024次运算的结果2024y =.(用含字母x 的式子表示)三、解答题11.(22-23八年级上·山东济宁·阶段练习)通分:(1)235a b c 与2710c a b;(2)22x x +与21x x-.(1)2111x x x -++;(2)24411a a a a a a -+⎛⎫-÷⎪--⎝⎭.(1)2m n m n n m m n n m -++---(2)22211111 m m mmm m-+-⎛⎫÷--⎪-+⎝⎭14.(23-24八年级上·全国·课时练习)计算:(1)22211x x x -++;(2)3a b a b a b b a -+---;(3)2243164x x+--;(4)222a a a ---.(1)211y y y ---;(2)2221111x x x +--+-;(3)21613962x x x x------;(4)2()a b a b a b+--+.16.(2024九年级下·山东·专题练习)下面是某同学计算11a a ---的解题过程:解:211a a a ---()-=---22111aa a a ……………………①()2211a a a --=-………………………②2211a a a a -+-=-………………………③111a a -==-.……………………………④上述解题过程从第几步开始出现错误?请写出正确的解题过程.17.(23-24八年级上·江苏南通·阶段练习)先化简,再求值:111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭,请从1-,0或2中选择你喜欢的一个数代入求值.18.(22-23八年级下·辽宁本溪·阶段练习)先化简,再求值:111x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中()1013.142x π-⎛⎫=-+ ⎪⎝⎭形式,那么称这个分式为“美好分式”,如:112122111111x x x x x x x x +-+-==+=+-----,则11x x +-是“美好分式”.(1)下列分式中,属于“美好分式”的是______;(只填序号)①6325x x +;②232x x +;③33x x +;④24321x x +-.(2)将“美好分式”2221x x x -+-化成一个整式与一个分子为常数的分式的和的形式;(3)判断2251117x x x x x x x---÷+-的结果是否为“美好分式”,并说明理由.形式,那么称这个分式为“和谐分式”.如:514144111111x x x x x x x x ++++==+=++++++,则51x x ++是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①23x x+;②21x x +;③21x x +-.(2)将“和谐分式”2472y y y -+-化成一个整式与一个分子为常数的分式的和的形式;(3)应用:先化简22321112a a a a a a a-+--÷--,并回答:a 取什么整数时,该式的值为整数?3a ∴=,3a ∴=时,该式的值为整数.。
分式的加减(第2课时)课件
2x 8.
· x 2 x 2 x · x 2 x 2 原式 3x x 2 x x 2 x
3 x 2 x 2
2x 8.
【跟踪训练】
在一段坡路,小明骑自行车上坡的速度为每小时v1 km, 下坡时的速度为每小时v2 km,则他在这段路上、下坡的平 均速度是每小时( )
v1 +v 2 A. km 2 2v v C. 1 2 km v1 +v 2
v1v 2 B. km v1 +v 2
D.无法确定
s 【解析】选C.设这段路长为s km,小明上坡用 v h,下 1 s s s 2s ( + ) 坡用 h,它走上、下坡的平均速度为 v1 v2 v2
sv2 +sv1 v1 v 2 2v1v 2 =2s ( )=2s = (km/h) . v1v2 s(v1 +v2 ) v1 +v2
4a 2 1 a 4 2· b ab b b 2 2 4a 4a 4a 4a (a b) 2 2 2 2 b (a b) b b (a b) b (a b)
4 a 2 4 a 2 4 ab 4 ab 4a 2 2 b (a b) b (a b) b(a b)
4.(凉山·中考)已知:x2-4x+4与|y-1|互为相反数,
x y 则式子( y - x )÷(x+y)的值等于_______.
【解析】由题意知(x2-4x+4)+|y-1|=0, 即(x-2)2+|y-1|=0,∴x=2,y=1.
当 x=2,y=1时,原式= 答案:
1 2
2-1 1 = . 2 1 2
《分式的加减》专题练习(含答案)
《分式的加减》专题练习专题一 寻找规律,进行特殊的分式加减运算1.化简:2411241111x x x x ----+++.2.先观察下列等式,然后用你发现的规律解答问题.第1个等式:a 1=311⨯=21×(1﹣31); 第2个等式:a 2=531⨯=21×(31﹣51); 第3个等式:a 3=751⨯=21×(51﹣71); 第4个等式:a 4=971⨯=21×(71﹣91); ……请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100+a n 的值.专题二 整体代换思想3.已知115a b -=,求2322a ab b a ab b +---的值.专题三 分式加减法的实际应用【知识要点】1.同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减).A C A CB B B±±=. 2. 异分母的分式加减法法则异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减).A C AD BC AD BCB D BD BD BD±±=±=. 3.分式的混合运算分式的混合运算顺序:先算乘除,再算加减;如果有括号,要先算括号里的.【温馨提示】1.解分式混合运算题时,要注意:(1)运算顺序;(2)注意符号;(3)能运用运算律时,用运算律进行简便运算.2.运算的结果一定要化成最简分式或整式.【方法技巧】进行分式的加减运算时:(1)若一个分式的分母可以分解因式,应先分解因式,以便于寻找最简公分母和通分;(2)当算式中出现整式时,应将整式当成一个整体,看作是分母为1的“分式”,再通分变形.参考答案1.解:原式=241124(1)(1)(1)(1)11x x x x x x x x +----+-+-++ =224224111x x x ---++=224442(1)2(1)4111x x x x x +-----+=444411x x --+ =44884(1)4(1)11x x x x +----=881x -. 2.解:(1)1911⨯ 111()2911⨯- (2)1(21)(21)n n -+ 12×11()2121n n --+ (3)a 1+a 2+a 3+a 4+…+a n =12×(1﹣31)+21×(31﹣51)+21×(51﹣71)+21×(71﹣91)+…+21×112121n n ⎛⎫- ⎪-+⎝⎭ =12(1﹣31+31﹣51+51﹣71+71﹣91+…+112121n n --+) =12(1﹣121n +)=12×221n n +=21n n +. 3.解:因为115a b -=,即5b a ab-=,所以5a b ab -=-.故 2322()32()2a ab b a b ab a ab b a b ab +--+=----=2(5)371(5)27ab ab ab ab ab ab-+-==---.。
分式的加减乘除混合运算
例2.计算:
1.
2 3x
x
2
y
x y 3x
x
y
x
x
y
分析与解:
巧用分配律
原式
2 3 x
x
2
y
x y 3x
(x
y )
•
x
x
y
2 3x
2
1 3x
1
•
x
x
y
2• x x y
2x x y
2.
(m
2
n)3
1 m
1 n
m2
1 2mn
n2
1 m2
1 n2
mn
m3n3
例1.(1) ( a 2b )3 •( c )2 • ( bc )4 c ab a
解:(1)原式 (a 2b)3 • c2 • (bc)4
(c)3 (ab)2
a4
分子、分 母分别乘 方
a6b3 c2 b4c4 ••
c3 a2b2 a4 b5c3
(2)( a
b)3
a2 (
b2
)2
2a
ab3
分析与解:原式
(m
2
n)3
mn mn
(m
1
n)2
m2 m
n2 n2 2
m3n3 mn
(m
2
n)2
1 mn
(m
1
n)2
m2 n2 m2n2
m3n3 mn
2mn m2 n2 mn (m n)2 (m n)2 m n
2mn m2 n2 mn (m n)2 m n mn
(a b)3 • a2b6 8a3 (a2 b2 )2
人教版八年级数学上册(教案).2.2分式的加减-分式的混合运算
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式混合运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,关于分式混合运算的实践活动,我发现学生们在讨论和实验操作环节表现得非常积极,课堂氛围也很活跃。这说明学生们对于将理论知识应用于实际问题的兴趣较高。但同时,我也注意到有些小组在讨论过程中偏离了主题,没有围绕分式混合运算进行深入探讨。针对这一点,我需要在下一次的教学中加强对讨论主题的引导,确保学生们能够紧扣教学目标进行学习。
4.分式运算中约分的重要性,以及如何寻找公因式进行约分。
5.应用分式混合运算解决实际问题,如速度、密度等物理量的计算。
二、核心素养目标
1.掌握分式的加减乘除法则,提高学生的数学运算能力,培养其逻辑思维和推理能力。
2.通过分式的混合运算,增强学生解决实际问题的能力,使其能将数学知识应用于生活情境。
3.培养学生在分式运算中约分、寻找公因式的技巧,提高数学化简和优化解决问题的能力。
4.强化学生对分式概念的理解,使其能从数量关系和空间形式的角度把握事物的本质特征,发展几何直观和数学抽象。
5.激发学生的团队协作意识,通过小组讨论与合作解决问题,培养沟通能力和集体荣誉感。
三、教学难点与重点
1.教学重点
-分式的加减乘除法则:这是本节课的核心内容,包括同分母分式加减、异分母分式加减(通分)、分式乘除等基本法则。
人教版八年级数学上册(教案).2.2分式的加减-分式的混合运算
分式的运算(含答案)
分式的运算【知识精读】1. 分式的乘除法法则;当分子、分母是多项式时,先进行因式分解再约分。
2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。
求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。
(2)同分母的分式加减法法则(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。
3. 分式乘方的法则(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。
学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。
下面我们一起来学习分式的四则运算。
【分类解析】例1:计算的结果是()A. B. C. D.分析:原式故选C说明:先将分子、分母分解因式,再约分。
例2:已知,求的值。
分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。
解:原式例3:已知:,求下式的值:分析:本题先化简,然后代入求值。
化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。
最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。
这是解决条件求值问题的一般方法。
解:故原式例4:已知a、b、c为实数,且,那么的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。
解:由已知条件得:所以即又因为所以例5:化简:解一:原式解二:原式说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。
分式的加减法
10bc 8ac 12a2b2c
9ab
练习2 怎样进行分式的加减运算?
计算: 1 3 a 15 ;
2 a b a2 b2
a 5a
b a ab
1解:原式
53 5a
a
15 5a
15
(a 5a
15)
a 5a
1 5
;
(2)解:原式 a2 b2 a2 b2
a2 b2 (a2 b2)
ab ab ab
ab
0
例题解析 吃透例题 , 成功一半
例
计算:
(1)
x
1
3
x
1
3
;
3
(1)解:原式
(x
x3 3)(x
3)
(x
xx -33
3)(x
3)
(x 3) (xx -33)
x 3x 3
x
x
3 x
3x
3
3
x
6 2
9
.
分子相减时, “减式”要配括号!
例题解析
练 3 :阅读下面题目的计算过程。
ab
ab 1 1
解法2:多项式-a -b看成整体,分母是1
a2 a b a2 (a b) a2 (a b)
ab
ab
ab 1
加括号
例5计算:
再来试试
2
2a b
• 1 ab ab b 4
解:原式
4a2 1 a 4
b2
• ab b b
4a2 b2 (a b)
4a b2
4a2 b2 (a b)
3 1 a 4a
3 4a a a 4a 4a a
12a 4a 2
湘教版八年级数学上册《分式的加法和减法 》知识全解
《分式的加法和减法》知识全解课标要求:掌握分式的加减法法则,并能熟练地进行分式的加减法运算,能根据多级运算顺序,熟练地进行分式的综合运算。
知识结构:内容解析:一、同分母分式的加减法法则:分母不变,分子相加减。
同分母分式相加减的一般步骤:1.分母不变,分子相加减,如果分子是多项式,那么添括号后相加减。
2.分子去括号,注意去掉括号前面的“-”号后,括号内的各项要变符号。
3.分子合并同类项。
4.约分,把结果化成最简分式或整式。
注意:(1)同分母分式相加减,分母不变,只需将分子作加减运算,但注意每个分子是整体,要适时添括号。
(2)对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。
二、异分母分式的加减法法则:异分母分式的加减法,先通分化为同分母的分式,然后相加减。
异分母分式的加减法步骤:1.正确地找出各分式的最简公分母;2.准确地得出各分式的分子,分母应乘的因式;3.通分后,进行同分母分式的加减运算;4.公分母保持积的形式将各分子展开;5.将得到的结果化为最简分式。
注意:(1)异分母分式的加减运算,首先观察每个分式是否是最简分式,能约分的先约分,使分式简化然后再通分,这样可使运算简化。
(2)作为最后的结果,如果是分式,那么应该是最简分式。
三、分式的混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算应从左到右依次进行;如果有括号,先算括号内的,如果有多重括号,一般由内向外依次进行。
正确进行分式的混合运算,理清以下各要点:(1)分清运算级别,按照运算顺序“从高到低,从左到右,括号从小到大”的规定进行。
(2)将各分式的分子、分母分解因式后再进行运算。
(3)遇到除法运算的时候,可以先化成乘法运算。
(4)注意处理好每一步运算中遇到的符号。
(5)最后结果要注意化简。
(6)在运算过程中,每进行一步都要检验一下,不要到最后才检验。
重点、难点:本节的重点是:分式的加减运算,熟练地进行分式的混合运算。
(完整版)分式加减教案
第五章分式与分式方程第三节分式的加减法〔第一课时〕一、授课目的1、知识与技术掌握同分母分式的加减法法那么,会进行简单分式的加减运算。
2、过程与方法经历研究分式加减运算法那么的过程,进一步培养代数化归意识和类比思想。
3、感神态度与价值观经过学习认识到数与式的联系,激发学生学习数学的兴趣,重视学习过程中对学生的概括、概括、交流等能力的培养;丰富数学感情与思想。
二、授课重点〔1〕同分母分式的加减运算法那么,同分母分式加减法的简单应用。
〔2〕类比、转变的思想的浸透。
三、授课难点〔1〕分子为多项式括号要加括号。
〔2〕当分式的分母是互为相反式时,转变为同分母。
四、授课过程1、情况引入〔1〕做一做:你能说说上面原由?1212777775751212式子的1212特点吗?并思虑做法运算法那么:同分母的分数相加减,分母不变,把分子相加减.1221a a x x35742b2b3y3y〔 2〕猜一猜:运算法那么:同分母的分式相加减,分母不变,把分子相加减.〔类比思想〕用式子表示为:b c b ca a a2、同分母加减例 1〔 1〕a ba b ;〔2〕 x224;ab ab x x2〔3〕m 2n4m n ;〔4〕x 3x 2 x 1 . m n m n x1x 1 x 1目的:授课生如何运用法那么进行运算,经过这 4 道例题,让学生学会加减法运算并注意运算时可能出现的问题。
注意:在进行运算时假设分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式—化简。
牛刀小试 1:(1)3x2x2xy ;(2)b2a22ab .2 x y2x y a b a b注意:经过学生的解答情况,对法那么做进一步的讲解,力求让学生理解并掌握同分母分式的加减法法那么。
3、拓展提高例2 计算〔 1〕 xy ; 〔 2〕 a21 2a . x yy xa 11 a牛刀小试 2:① 计算:2 x 1x 1 1 x② 先化简,再求值x 25 x 1 x x2x 22 , 其中 x 2021 .x目的:这是一组分母互为相反式的分式加减的题目,实那么是简单的异分母分式的加减法,经过例题的讲解,又有练一练的坚固,应该能够掌握,第三小题有意增加难度,在于学生能力的提高。
第19讲 分式的加减及综合计算(解析版)
原创精品资源学科网独家享有版权,侵权必究!1第19讲分式的加减及综合计算模块一:分式的加、减法一、同分母的分式加减法法则:同分母分式相加减,分母不变,分子相加减.二、异分母的分式加减法法则:(1)通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分,这几个相同的分母叫做公分母.(2)异分母分式加减法法则:分母不同的几个分式相加减,应先进行通分,化成同分母分式后再进行加减运算,运算结果能化简的必须化简.【例1】计算:(1)x yx y x y ---;(2)211a ab ab+-.【答案】(1)1;(2)b2.【解析】本题主要考查同分母的加减法,注意计算结果一定要是最简分式.【例2】化简22x y y x y x---的结果是()A 、x y--B 、y x-C 、x y-D 、x y+【答案】A【解析】本题主要考查同分母的加减法,注意结果为最简分式.【例3】计算:(1)22x x+;(2)31269x x+.【答案】(1)x x 242+;(2)321843x x +【解析】(1)222442222x x x x x x x++=+=;(2)22333312343469181818x x x x x x x++=+=.【总结】本题主要考查异分母分式的加减法.【例4】计算:(1)a b b c ab bc++-;(2)2212y x x x y y -+-.【答案】(1)ac ac -;(2)22232242xy x x y x y +-+.【解析】(1)()()()c a b a b c b c a a b b c ca cb ab ac c aab bc abc abc abc abc ac++-+++----=-===;(2)()323222222222121224222222x x y x x y x y y x y x x x y y xy xy xy xy--+-++-=+-=.【总结】本题主要考查异分母分式的加减法,注意结果要化为最简分式.【例5】计算:(1)23(3)3x xx x ---;(2)2216322a a a a a --++--.【答案】(1)()223x x -;(2)4102--a a .【解析】(1)23(3)3x x x x ---()()2233(3)3x x x x x -=---2233(3)x x x x -+=-22(3)x x =-;(2)2216322a a a a a --++--()()()()161221a a a a a -=-++-+()()()()()()()()()1262122122a a a a a a a a a --+=-++-++-()()()232612122a a a a a a -+--=++-原创精品资源学科网独家享有版权,侵权必究!3()()()2910122a a a a a --=++-()()()()()101122a a a a a -+=++-()()1022a a a -=+-2104a a -=-.【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算.【例6】某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下.已知该同学上楼速度是a 米/分,下楼速度是b 米/分,求他上、下楼的平均速度.(用含a 、b 的代数式表示)【答案】b a ab+2.【解析】b a ababb a b a +=+=+22112.【总结】本题要注意速度等于路程除以时间,不要简单的求两个速度的平均数.模块二:分式的综合计算一、分式的综合运算:与分数的混合运算类似,先算乘除,再算加减,如果有括号,要先算括号内的.【例7】计算:a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为()A 、a b b-B 、a b b+C 、a ba-D 、a b a+【答案】A【解析】原式=bba b a a ab b a -=+⋅-22.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例8】计算:262393m m mm ⎛⎫⎛⎫⎛⎫-÷ ⎪ ⎪ ⎪+--⎝⎭⎝⎭⎝⎭的结果为()A 、1B 、33m m -+C 、33m m +-D 、33m m +【答案】A【解析】原式=()()1333233363=+++=-⋅+--+mm m m m m m m .【总结】本题依旧考查的是分式的混合运算,注意先乘除后加减.【例9】计算:(1)22211()()a b ab a b b a a b a b--÷-+--;(2)2284111[(1)(442a a a a+-⋅-÷--.【答案】(1)ab a b -+;(2)22+-a a .【解析】(1)22211((a b ab a b b a a b a b--÷-+--()()()()()()()()2()a a b b a b ab b a a b a b a b a b a b a b ab ab ⎡⎤-+=+-÷-⎢⎥+-+-+-⎢⎥⎣⎦()()222a ab ab b ab ab a b a b b a -++-=⋅+--()()()2a b ab a b a b b a-=⋅+--ab a b=-+;(2)2284111[(1)()]442a a a a+-⋅-÷--()()284421[((224422a a a a a a a a a +=-⋅-÷-+-()()()228212242a aa a aa -=-⋅⋅+--412a =-+22a a -=+.【总结】本题主要考查分式的混合运算,在计算时一方面注意法则的准确运用,一方面注意方法的灵活.【例10】已知320a b -=,求下式的值:(1)(1b a b a a a b a a b+-÷---+.【答案】-5.【解析】∵320a b -=,∴23=a b ,2-=-b a a ,52=+b a a .∴(1)(1b a b a a a b a a b +-÷---+332121225⎛⎫⎛⎫=++÷-- ⎪ ⎪⎝⎭⎝⎭5=-.【总结】本题主要是利用分式的性质,通过整体代入的思想求值,另外本题也可以通过分式的混合运算,算出分式的最终结果之后再求值.【例11】化简:11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- .原创精品资源学科网独家享有版权,侵权必究!5【答案】()()99199---a a 【解析】11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- 1111111=1213210099a a a a a a a +-+-++-------- 1100a =-.【总结】本题主要是类比分数的拆项的思想来求解,注意方法的恰当选择.1.(2022秋黄浦七年级期末真题)12-的结果是()A .12B .12-C .2D .2-【答案】A【分析】根据负整数指数幂法则即可得.【详解】解:1122-=,故选:A .【点睛】本题考查了负整数指数幂,熟练掌握运算法则是解题关键.2.(2022秋浦东新区七年级期末真题)如果2210a a --=,那么代数式242aa a a ⎛⎫-⋅ ⎪+⎝⎭的值是()A .3-B .1-C .1D .3【答案】B【分析】先化简所求的式子,再根据2210a a --=,可以得到221a a -=-,然后代入化简后的式子即可.【详解】解:242aa a a ⎛⎫-⋅⎪+⎝⎭2242a a a a -=⋅+()()2222a a a a a +-=⋅+()2a a =-22a a =-,2210a a --= ,221a a ∴-=-,∴原式1=-,故选:B .【点睛】本题考查了分式的化简求值,掌握分式的混合运算法则是解答本题的关键.3.计算23111b b b a a a +-+++的结果是()A .0B .61b a +C .()3361b a -+D .1b a -+【答案】A【分析】根据分式的混合运算法则即可求解.【详解】解:23111b b b a a a +-+++231b b b a +-=+0=,故选:A .【点睛】本题主要考查分式的混合运算,掌握同分母分式的加减法运算法则是解题的关键.4.(2022秋黄浦七年级期末真题)已知244A x =-,1122B x x=++-,其中2x ≠±,下列说法正确的是()A .A B=B .A ,B 互为倒数C .A ,B 互为相反数D .以上均不正确【答案】C【分析】把A 、B 先分别化简,然后观察比较.【详解】∵B=222111122442222444x x x x x x x x x ----+=-===-+-+----,且A=244x -,∴A 、B 互为相反数,故选C .【点睛】本题考查分式的加减运算,这类题通常的解题思路是将A 、B 两个式子分别先化简,然后再根据化简的结果进行分析判断,得出结论.5.(2022秋徐汇区七年级期末真题)如图是嘉琪进行分式计算的过程,下列判断不正确的是()原创精品资源学科网独家享有版权,侵权必究!7A .第二步运用了分式的基本性质B .从第三步开始出现错误C .原分式的计算结果11x -D .当1x =时,原分式的值为0【答案】D【分析】根据分式的混合运算法则和分式有意义的条件即可解答.【详解】解:第二步将11x +变为()()()111x x x -+-,即分式的分子和分母同时乘()1x -,是运用了分式的基本性质,故A 正确,不符合题意;第三步分式相减时,把分母减没了,出现错误,故B 正确,不符合题意;从第三步开始,正确的计算如下,()()2(1)11x x x x --=+-…………第三步()()111x x x +=+-…………第四步11x =-…………第五步.∴原分式的计算结果为11x -,故C 正确,不符合题意;当1x =时,原分式没有意义,故D 错误,符合题意.故选D .【点睛】本题考查分式的化简求值.掌握分式的混合运算法则和分式的分母不能为0是解题关键.6.(2022秋青浦区七年级期末真题)计算312112a a a a++--的结果是()A .1B .1-C .2121a a +-D .4121a a +-【答案】A【分析】根据同分母分式减法计算法则求解即可.【详解】解:312112a a a a++--312121a a a a +=---3121a a a --=-2121a a -=-1=,故选A .【点睛】本题主要考查了同分母分式减法,正确计算是解题的关键.7.(2022秋浦东新区七年级期末真题)计算211a a a a ++++的结果是()A .1a a +B .21a a ++C .3D .2【答案】D【分析】根据同分母分式加法计算法则求解即可.【详解】解:211a a a a ++++21a a a ++=+221a a +=+()211a a +=+2=,故选D .【点睛】本题主要考查了同分母分式加法,熟知相关计算法则是解题关键.8.(2022秋徐汇区七年级期末真题)计算12x x+=_____.【答案】3x【分析】根据同分母分式相加,分母不变,只把分子相加,进行计算即可.【详解】解:123x x x+=,故答案为:3x.【点睛】本题要考查了同分母分式的加法,解题的关键是掌握:同分母分式相加,分母不变,只把分子相加.原创精品资源学科网独家享有版权,侵权必究!99.化简分式2422x x x ---的结果为______.【答案】2x +/2x+【分析】根据分式的减法法则进行计算.【详解】2422x x x ---242x x -=-()()222x x x +-=-2x =+,故答案为:2x +.【点睛】本题考查了分式的减法,正确的计算是解题的关键.10.(2022秋民办华育七年级期中真题)化简22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭的结果为______.【答案】1m n-【详解】解:22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭222m n m mn n m m m ⎛⎫--=÷- ⎪⎝⎭222m n m mn n m m--+=÷()2m n mm m n -=⨯-1m n=-故答案为:1m n-【点睛】此题考查了分式的混合运算,熟练掌握运算顺序和法则是解题的关键.11.已知50x y --=,则11⎛⎫-÷ ⎪-++⎝⎭yx y x y x y 的值为______.【答案】25/0.4【分析】先将括号里面的通分,将除法转化为乘法,约分化简,代入x y -的值,即可求解.【详解】原式()()()()x y x yx y y x y x y x y x y ⎡⎤+-+=-⨯⎢+-+-⎢⎥⎣⎦()()2yx yyx y x y +=⨯+-2x y=-5x y -= ∴225x y =-故答案为:25.【点睛】本题考查了分式化简求值,正确化简分式是解题的关键.12.计算:23111m m m +-=++______.【答案】2【分析】根据同分母的减法运算可进行求解.【详解】解:231222111m m m m m ++-==+++;故答案为2.【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.13.(2022秋青浦区七年级期末真题)已知13a b =,则2222a ab b a b ++=+________.【答案】1310【分析】由13a b =可得3b a =,代入式子进行化简即可求解.【详解】解:13a b =,3b a ∴=,原式22222399a a a a a +=++2213131010a a ==.故答案:1310.【点睛】本题考查了分式化简求值,掌握化简求值方法是解题的关键.原创精品资源学科网独家享有版权,侵权必究!1114.(2022秋上宝七年级期中真题)通分(1)314x y ,246xy (2)26a a +,219a a --(3)229a a -,2369a a -+(4)21(1)4a a -+-,21242a a a --+【答案】(1)33213412y x y x y =,223248612x xy x y =(2)(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-(3)2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+(4)212(1)(1)42(1)(3)a a a a a --=+--+,2132422(1)(3)a a a a a a -+=--+-+【分析】根据分式的基本性质,把几个异分母分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分.根据分式的通分的概念逐个化简即可.【详解】(1)最简公分母:3212x y ,33213412y x y x y =,223248612x xy x y =;(2)最简公分母:2(3)(3)a a +-(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-;(3)最简公分母:2(3)(3)a a -+,2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+;(4)最简公分母:2(3)(1)a a +-,21112(1)(1)4(3)(1)32(1)(3)a a a a a a a a a ---===--+-+-+,2211132422(1)2(1)2(1)(3)a a a a a a a a a --+==-=--+---+.【点睛】本题考查了分式通分的概念,理解分式通分的概念,会正确求出几个分式的最简公分母是解题的关键.15.化简:(1)()1333x x x ---;(2)2111x x x+--;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭.【答案】(1)1x (2)1x +(3)1x +(4)22a bb a+-【分析】(1)根据异分母分式的减法运算法则求解即可;(2)根据同分母分式的加法运算法则求解即可;(3)根据分式的混合运算法则求解即可;(4)根据分式的混合运算法则求解即可;【详解】(1)()1333x x x ---()()333x x x x x =---()33x x x -=-1x=;(2)2111x x x+--2111x x x =---211x x -=-()()111x x x +-=-1x =+;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭()()1111211x x x x x x -⎛⎫-÷ ⎪--+⎝=-⎭-()()11212x x x x x +--⨯--=原创精品资源学科网独家享有版权,侵权必究!131x =+;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭()222223a b b a b a b a b a b +⎛⎫-=÷ ---⎝⎭()22224a b b a b a a b+=-÷--()()()2222a a b a b ba b a b +-+⨯--=22a bb a +=-.【点睛】此题考查了分式的加减乘除混合运算,解题的关键是熟练掌握以上运算法则.1.分式2411÷--xxx x 的值可能等于()A .0B .1C .2D .4【答案】B【详解】解:()()2441411111x xxx x x x x x x -÷=⋅--+-+,401x ≠+,故选项A 不符合题意;41x =+,则3x =,存在,故选项B 符合题意;()421x =+,则1x =,此时原式无意义,故选项C 不符合题意;()441x =+,则0x =,此时原式无意义,故选项D 不符合题意;故选:B .【点睛】此题主要考查了分式的乘除,正确化简分式是解题关键.2.已知13xyx y =+,15yzy z =+,16zxz x =+,则xyzxy yz zx =++()A .14B .12C .17D .19【答案】C【分析】结合题意得3x y xy +=,5y z yz +=,6z x zx+=从而求出1117x y z ++=,对xyz xy yz zx ++进行化简得1111z x y++代入即可求解.【详解】解:13xy x y =+ ,15yz y z =+,16zx z x =+,3x y xy +∴=,5y z yz +=,6z x zx+=,113x y ∴+=,115y z +=,116z x+=,111111356x y y z z x∴+++++=++,1117x y z∴++=,1111117xyz xy yz zx xy yz zx xyz xyz xyz z x y===++++++,故选:C .【点睛】本题考查了分式的化简求值,解题的关键是结合题意求出1111z x y++.3.若分式24932321x A B x x x x -=---+-(A 、B 为常数),则A 、B 的值为()A .43A B ==;B .71A B ==;C .17A B ==;D .3513A B =-=;【答案】B 【分析】等式右边进行分式的减法运算,再根据对应项的系数相等可求解.【详解】解:∵321A B x x -+-()()()()132321A x B x x x --+=+-()()32321Ax A Bx Bx x ---=+-()()22323A B x x A B x --+--=,∴()()2223493232A B x A B x x x x x ---+=----,∴3429A B A B -=⎧⎨+=⎩,则71A B =⎧⎨=⎩,故选:B .【点睛】本题考查了分式的加减法、解二元一次方程组,熟练掌握分式加减运算法则是解答的关键.原创精品资源学科网独家享有版权,侵权必究!154.已知2610m m --=,则22126m m m -+的值为______.【答案】39【分析】由已知得到16m m-=和22261m m m -=+,再整体代入,利用完全平方公式化简即可求解.【详解】解:将2610m m --=,两边同时除以m ,得:16m m -=,由2610m m --=,可得:22261m m m -=+,所以22126m m m -+2211m m =++2112m m ⎛⎫ ⎪⎝⎭=+-+2162=++39=.故答案为:39.【点睛】本题考查了分式的加减以及完全平方公式的运用,解题关键是正确将已知变形.5.甲、乙两港口分别位于长江的上、下游,相距50千米,一艘轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,轮船往返两个港口一次共需______小时.【答案】22100aa b -【分析】分别求出顺流和逆流时的速度,利用路程、时间、速度之间的关系即可列式求解.【详解】解: 轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,∴顺流速度为()a b +千米/时,逆流速度为()a b -千米/时,甲、乙两港口分别位于长江的上、下游,相距50千米,∴轮船往返两个港口一次共需时间为:()()()()2250505050100a b a b a a b a b a b a b a b -+++==+-+--,故答案为:22100a a b -.【点睛】本题考查分式加减的应用,解题的关键是计算出轮船顺流和逆流时的速度,根据路程、时间、速度之间的关系列出分式.6.分式化简:22424422x x x x x x x ⎛⎫---÷= ⎪-++-⎝⎭___.【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式2(2)(2)22(2)2x x x x x x x ⎡⎤+---=-⨯⎢⎥-+⎣⎦22222x x x x x x +--⎛⎫=-⨯ ⎪-+⎝⎭()()()()2222222x x x x x x +---=⨯+-82(2)(2)x x x x x-=-+82x =+.故答案为:82x +.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.若()()112121A x x x x =+----,则A =__________.【答案】1-【分析】首先将等式右边通分,然后根据题意得到()112x A x =-+-,然后求解即可.【详解】∵121A x x +--()()()()()212121A x x x x x x --=+----()()()1221x A x x x -+-=--∵()()112121A x x x x =+----∴()112x A x =-+-∴()22x A x -=-∴1A =-.故答案为:1-.【点睛】此题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算法则.8.计算:(1)2221651565a a a a a a a a a --+⋅÷++++;(2)29(2)33666x x x x x x --+--+-.原创精品资源学科网独家享有版权,侵权必究!17(2)26xx +【分析】(1)因式分解约分即可得到答案;(2)通分合并再因式分解约分即可得到答案.【详解】(1)解:原式1(5)(1)1(5)(5)(1)a a a a a a a a a -++=⨯⨯++--15a =-;(2)解:原式221896(318)(6)(6)x x x x x x x -+----+=+-2(6)(6)(6)x x x x -=+-26x x =+.【点睛】本题考查分式化简,解题的关键是熟练掌握整式乘法及因式分解.9.已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭的值.【答案】2ab a b -+,14a ,b ,再根据分式的混合运算法则先化简后代值求解即可.【详解】解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩原式22()()b a a b a a b a a b a b a b ⎡⎤----⎡⎤=÷⋅⎢⎥⎢⎥+--⎣⎦⎣⎦2b a b ab a b b a b--=⋅⋅+-2ab a b=-+,当14a =-,12b =时,原式21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭=-=-+.【点睛】本题考查非负数的性质、分式的混合运算、解二元一次方程组等知识,正确运用法则是解题的关键,是中考常考题型,可以通过此类题目的训练提高计算能力.10.计算(1)22211444a a a a a --÷-+-;(2)211a a a ---【答案】(1)2(1)(2)a a a ++-(2)11a -【分析】(1)先将两个分式分解因式,然后再约分化简即可.(2)先通分,再化简求解.【详解】(1)解:原式21(2)(2)2(2)(1)(1)(1)(2)a a a a a a a a a -+-+=⋅=-+-+-(2)解:原式=2111a a a +--=2(1)(1)1a a a a -+--=2211a a a -+-=11a -【点睛】本题考查了分式的加减、乘除运算,掌握通分、分解因式的方法是求解的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式加减运算(讲义)
➢ 课前预习
1. 观察下列分数加减运算的式子:
121235555++==, 121215555--==-, 1132325236666++=+==, 1132321236666--=-==. 猜一猜,______b c a a +=,______b c a a -=,
_________b d bc a c ac +=+=,___________b d bc a c ac
-=-=.
➢ 知识点睛
1. 分式的通分:
根据_______________,异分母的分式可以化为_______的分式,这一过程称为分式的通分.
对异分母分式进行通分时,需要注意两点:
①为了计算方便,通常取最简公分母(即各分母的所有因式的最高次幂的积)作为它们的共同分母.
②分子、分母是多项式时,通常先因式分解,再找最简公分母.
2. 分式的加减法法则:
同分母的分式相加减,_______不变,把_______相加减;
异分母的分式相加减,先_______,化成_________________,然后再按同分母分式的加减法法则进行计算.
3. 分式混合运算顺序:
先算乘方,再算乘除,最后算加减.如果有括号,先算括号里面的.
分式化简计算时,需要注意两点:
①在进行分式运算前,要先把分式的分子和分母_________,能约分的,通常先约分.
②分式的乘除要______,加减要______,最后的结果要化成______________.
➢ 精讲精练
1. 分式的加减运算:
(1)a b
a b
ab ab +-+;
(2)22+a b a b a b -+;
(3)3
45
+1+1+1x x
x x x x +++-;
(4)251222x x x x x x -+-----;
(5)315
5a a a -+;
(6)22142a a a ---;
(7)211
393a
a a a a -+---+;
(8)222m n mn m n m n n m +++--;
(9)
1
y
xy x xy x
+
+-
;(10)
22
13
1
a
a a a
-
+
--
;
(11)
24
2
2
a
a
a
+
+-
-
;(12)
2
1
1
a
a
a
--
-
.
2.分式的混合运算:
(1)
242
222
x x
x x x
⎛⎫+
+÷
⎪
--
⎝⎭
;(2)
341
1
32
a
a
a a
-
⎛⎫⎛⎫
+-
⎪⎪
--
⎝⎭⎝⎭
;
(3)
2
344
1
11
x x
x
x x
-+
⎛⎫
--÷
⎪
--
⎝⎭
;(4)
2
21
4
a a b
b a b b
⎛⎫
⋅-÷
⎪-
⎝⎭
;
(5)
22
222
2
x x y xy
x y x xy y x xy
-
+⋅
+-++
;
(6)
32
2
121 2691
x x x x
x x x
--+
÷-
+--
.
3.先化简,再求值:
222
2
211
b a ab b
a
a a
b a a b
⎛⎫
-+⎛⎫
÷++
⎪ ⎪
-⎝⎭
⎝⎭
,其中
a1,b1.
4.先化简
2
2
1221
x x x x
x x x x
-
⎛⎫
-÷
⎪
---+
⎝⎭
,然后从13
x
-≤≤中选取一个你认为合适的整数
x代入求值.
5. 先化简3423332a a a a a a a +-+⎛⎫-÷⋅ ⎪+++⎝⎭
,然后从不等式组 25<324
a a --⎧⎨⎩≤的解集中选取一个你认为符合题意的a 代入求值.
6. 课堂上,王老师出了这样一道题:
已知5x =,求代数式22213111x x x x x -+-⎛⎫÷+ ⎪-+⎝⎭
的值. 小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关”.解答过程如下:
2(1)13(1)(1)1
111112(1)
12
_________x x x x x x x x x x x x -++-=÷+-+-=÷+-+=⋅+-=原式①②③④ 当5x =时,12
=原式. (1)从原式到步骤①,用到的数学知识有_______________;
(2)步骤②中空白处的代数式应为_____________________;
(3)从步骤③到步骤④,用到的数学知识有_____________.
7. 某农场原计划在m 天内收割小麦960公顷,实际每天比原计划多收割40公顷,
实际_________天完成了任务.
8. 某工厂储存了a 天用的煤m 吨,要使储存的煤比预定的时间多用d 天,每天应节
约用煤_________吨.
9.某蓄水池装有A,B两个进水管,每小时可分别进水a吨,b吨,若单独开放A进
水管,p小时进可将该水池注满.如果A,B两个水管同时开放,那么能提前________小时将该蓄水池注满.
【参考答案】
➢课前预习
1.ad
ac
,
bc ad
ac
+
;
ad
ac
,
bc ad
ac
-
;
➢知识点睛
1.分式的基本性质,同分母;
2.分母,分子;通分,同分母的分式;
3. ①因式分解;②约分,通分,最简分式或整式;
➢ 精讲精练
1. (1)2b
; (2)a b -; (3)2-; (4)2x +; (5)15; (6)12a +; (7)2729a a --; (8)m n m n
-+; (9)221y xy x +-;(10)21a a a -+; (11)82a --;(12)11
a -. 2. (1)2x ; (2)2a +; (3)22
x x +--; (4)24a ab b -; (5)2222x y x y +-; (6)32x
. 3. 化简得原式=1ab -
,将a 和b 代入结果为12
-; 4. 化简得原式=12
x --,将x =3代入,结果为-1;(答案不唯一) 5. 化简得原式=3a +,将a =0时代入,结果3;(答案不唯一) 6. (1)因式分解,通分,分式的基本性质;
(2)221
x x -+; (3)约分(或分式的基本性质).
7. 2424m m
+ 8. ()
md a a d + 9.
pb a b
+。