流体力学
流体力学简介

设环流速度为u,机翼远前方气流的速度和压强可视为
常量,与位置无关,分别设为v和p0,机翼上部的压强为 p1,下部为p2,则由伯努利方程,有
p0
1 2
v2
p1
1 2
(v
u)2
由此得
p0
Байду номын сангаас1 2
v2
p2
1 2
(v
u)2
p2
p1
1 2
[(v
u)2
(v
u)2 ]
2uv
a1 b1
因为时间t极短,所以 p1 S1
v1
a1b1和a2b2是两段极短的 位移,在每段极短的位
移中,压强p、截面积S
h1
和流速v都可看作不变。
a2 b2
h2 p2
v2 S2
设p1、S1、v1和p2、S2、v2分
a1 b1
别是a1b1与a2b2处流体的压 强、截面积和流速,则后方
p1 S1
v1
根据伯努利方程,在等 高(水平)流管中,有
p 1 v2 常量
2
即,流速大处压强小,流速小处压强大.
例题1 水电站常用水库出水管道处水流的动能来发 电.出水管道的直径与管道到水库水面高度h相比为 很小,管道截面积为S.试求出水处水流的流速和流 量。
解:把水看作理想流体.在 水库中出水管道很小,水 流作定常流动.如图所示, 在出水管中取一条流线ab. 在水面和管口这两点处的 流速分别为va和vb.在大水 库小管道的情况下,水面 的流速va远比管口的小,可 以忽略不计,即va=0.
网球、乒乓球中的”弧 圈球”以及足球中的” 香蕉球”偏离原运动方 向的现象,就是由于这一 效应造成的.
流体力学基础知识

目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体力学课件(全)

Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
流体力学

h1 流体运动示图
在这个过程中,机械能的增量为:
a´ 2 v2
h2
△2
l
△E = E 2 - E 1
状态2的(动能+势能)- 状态1的(动能+势能)
△E = E 2 - E 1
1 1 2 △ E = △m v2+△mgh 2 - △m v12 - △mgh 1 2 2
在这个过程中,流体两端 的压力对流体作的功为:
= 3.6×105 Pa
第四节 伯努利方程的应用
一.文特利管(串接在管道中测量流体流速)
s1 s2
已知条件:粗管和细管的横截面s1、 s2,水银柱的高度差h 原理:设,流体密度为ρ,大小管处的 压强分别为P1、P2,流速分别为v1、v2 由连续性方程和伯努利方程
h
曲管压强计
消去v2,可得
1ρ v 2 + = 1ρ v 2 +P P1 2 2 2 1 2
△F dF =lim △S =d P S 液体内部压强的特点:
△S 0
单位: Pa (帕斯卡)
1.静止液体内部同一点各个方向的压强相等。 2. 静止液体内部随深度的增加,压强也增加。
ρ P= g h
3. 密闭容器内的静止流体受到
也称重力压强
P
e
外界压强时,流体内任一点的 压强是:
ρ P= P + g h
设:入水端和出水端的截面分别为A1和A2
由:
入水端
v A = v A = 常数
1 1 2 2 1 2 1 2 2 2
2
1
(
v =v
π d) ( A 2 = ( 6.4 =v × 4.0 A 2.5 d) π ( 2 = 26 m/s
1
2
流体力学的基本概念

流体力学的基本概念流体力学是研究流体在运动和静止时的物理学科,广泛应用于工程、自然科学和医学领域。
流体力学的基本概念包括:流体、速度场、流线、通量、压力、连通性、黏度等。
下面将对这些基本概念进行介绍。
1. 流体流体是指能够流动的物质,包括气体和液体。
与固体不同的是,流体没有一定的形状,并且具有很强的流动性。
流体力学研究的是在流体中运动和转化的能量和物质。
2. 速度场在流体力学中,速度场指的是在空间中的任何一个点(x,y,z)处,流体在该点的速度向量V(x,y,z)。
速度场可以用向量场表示,它是一个三维矢量,表示流体在不同点的速度和方向。
3. 流线流线是指在流体中某个时刻从每个点出发的一条曲线,它的方向与该点的速度向量方向相同。
流线可用于描述流体在空间中的流动状态,它的密度越集中,表示流体流动越迅速。
4. 通量在流体力学中,通量是指通过一定面积的流体的质量或者体积。
它可以通过流体穿过该面积的速度与面积相乘来计算。
通量是流体力学中的重要概念,与流体的流动速度和流体的面积有关。
5. 压力压力是指单位面积受到的力的大小,以牛顿/平方米表示。
在流体力学中,压力是指垂直于流体流动方向的单位面积上的压力大小,它与流体的密度和流速有关。
6. 连通性流体力学中的连通性是指流体不可穿透的性质,即两个靠近的流体体积不能相互穿透。
在流体运动中,连通性是一条重要的限制条件。
连通性是流体力学中常常需要掌握的概念,尤其是在流体的运动与静止的过程中。
7. 黏度黏度是指流体阻力的大小,它是描述流体的粘性的物理量。
黏度可以用来描述流体在运动中的阻力大小,阻力越大,黏度也就越大。
黏度是流体力学中非常重要的物理量,它影响了流体的运动和可塑性。
流体力学全部总结

(二)图解法
适用范围:规则受压平面上的静水总压力及其作用点的求解 原理:静水总压力大小等于压强分布图的体积,其作用 线通过压强分布图的形心,该作用线与受压面的交点便 是总压力的作用点(压心D)。
液体作用在曲面上的总压力
一、曲面上的总压力 • 水平分力Px
Px dPx hdAz hc Az pc AZ
z1
p1 g
u12 2g
z2
p2 g
u2 2 2g
上式被称为理想流体元流伯诺里方程 ,该式由瑞士物理学家 D.Bernoulli于1738年首先推出,称伯诺里方程 。
应用条件:恒定流 不可压缩流体 质量力仅重力 微小流束(元流)
三、理想流体元流伯诺里方程的物理意义与几何意义
几何意义
p x p y p z pn
X
流体平衡微分方程 (欧拉平衡方程)
1 p x 1 p y 1 p z
Y Z
0 0 0
物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量
力分量彼此相等。压强沿轴向的变化率( p , p , p )等于该轴向单位体积上的 x y z 质量力的分量(X, Y, Z)。
u x x
u y y
u z z
0
适用范围:理想流体恒定流的不可压缩流体流动。
二、恒定总流连续性方程
取一段总流,过流断面面积为A1和A2;总流中 任取元流,过流断面面积分别为dA1和dA2,流速为 恒定流时流管形状与位置不随时间改变; u1和u2
考虑到: 不可能有流体经流管侧面流进或流出; 流体是连续介质,元流内部不存在空隙;
第三节 连续性方程
流体力学

流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。
研
欧拉法
究
方
着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t
流体力学

流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。
对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。
一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。
显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。
飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。
在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。
在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。
图为验证伯努利方程的空气动力实验。
补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。
伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。
流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功
令
HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准
(完整版)流体力学 第一章 流体力学绪论

第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
什么是流体力学

什么是流体力学
流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。
流体力学可以按照研究对象的运动方式分为流体静力学和流体动力学,前者研究处于静止状态的流体,后者研究力对于流体运动的影响。
流体力学按照应用范围,分为:水力学及空气力学等等。
流体力学是连续介质力学的一们分支,是以宏观的角度来考虑系统特性,而不是微观的考虑系统中每一个粒子的特性。
流体主要计算公式

流体主要计算公式流体是液体和气体的统称,具有流动性和变形性。
流体力学是研究流体静力学和动力学的学科,其中主要涉及到流体的力学性质、运动规律和力学方程等内容。
在流体力学的研究中,有一些重要的计算公式被广泛应用。
下面将介绍一些常见的流体力学计算公式。
1.流体静力学公式:(1)压力计算公式:P=F/A-P表示压力-F表示作用力-A表示受力面积(2)液体静力学公式:P=hρg-P表示液体压力-h表示液体高度-ρ表示液体密度-g表示重力加速度2.流体动力学公式:(1)流体流速公式:v=Q/A-v表示流速-Q表示流体流量-A表示流体截面积(2)流体流量公式:Q=Av-Q表示流体流量-A表示流体截面积-v表示流速(3)连续方程:A1v1=A2v2-A1和A2表示流体截面积-v1和v2表示流速(4) 流体动能公式:E = (1/2)mv^2-E表示流体动能-m表示流体质量-v表示流速(5)流体的浮力公式:Fb=ρVg-Fb表示浮力-ρ表示液体密度-V表示浸泡液体的体积-g表示重力加速度3.流体阻力公式:(1)层流阻力公式:F=μAv/L-F表示阻力-μ表示粘度系数-A表示流体截面积-v表示流速-L表示流动长度(2)湍流阻力公式:F=0.5ρACdV^2-F表示阻力-ρ表示流体密度-A表示物体的受力面积-Cd表示阻力系数-V表示物体相对于流体的速度4.比力计算公式:(1)应力计算公式:τ=F/A-τ表示应力-F表示力-A表示受力面积(2)压力梯度计算公式:ΔP/Δx=ρg-ΔP/Δx表示压力梯度-ρ表示流体密度-g表示重力加速度(3) 万斯压力计算公式:P = P0 + ρgh-P表示压力-P0表示参考压力-ρ表示流体密度-g表示重力加速度-h表示液体的高度以上是一些流体力学中常见的计算公式,涉及到压力、流速、阻力、浮力以及比力等方面的运算。
这些公式在解决流体力学问题时非常有用,可以帮助我们理解和分析流体的运动和力学性质。
流体力学基本知识-流体运动的基本知识

v2 2g
v2 2g
3.过流断面:流体运动时,与元流或总流全部流线 正交的横断面。以dw或w示之,单位:m2或cm2。
注意:均匀流的过流断面为平面;
非均匀流的过流断面一般为曲面,其中渐变 流的过流断面可视为平面。
4.流量 (1)体积流量:流体运动时,单位时间内通过过流 断面的流体体积。以Q表示,单位:m3/s,L/s。 (2)重量流量:流体运动时,单位时间内通过过流 断面的流体流量。以Q表示,单位:N/s。 (3)质量流量:流体运动时,单位时间内通过过流 断面的流体质量。以Q表示,单位:kg/s。
3.流体流动型态的判别
雷诺数
vd
Re 2000
-------层流
雷诺数
Re
vd
2000
-------紊流
注意:建筑设备工程中,绝大多数的流体运动都处
于紊流型态。
三、沿程水头损失 采用半经验公式:
hf
l v2
d 2g
为沿程阻力系数,它是反映边界粗糙情 况和
流态对水头损失影响的一个系数。
第三节 流体运动的基本知识 一、流体运动的基本概念
(一)压力流与无压流
1.压力流:流体在压差作用下流动时,流体整个周 围和固体壁相接触,没有自由表面,如供热管道。
供热管道
2.无压流:液体在重力作用下流动时,液体的部分 周界与固体壁相接触,部分周界与气体相接触,形 成自由表面,如天然河流等。
天然河流
(二)恒定流与非恒定流
1.恒定流 :流体运动时,流体中任一位置的压强、 流速等运动要素不随时间变化的流动。
2.非恒定流 :流体运动时,流体中任一位置的运动 要素如压强、流速等随时间变化的流动。
注意:自然界中都是非恒定流,工程中取为 恒定流。
流体力学第一章

不可压缩流体——液体——β值: 每增加1个大气压,水体积压缩为1/20000,所以, 一般不考虑水体的压缩。 若E=∞,ρ=const 实际液体:惯性、重力……,水流运动复杂; 理想液体:实际液体的简化——即ρ=const,不膨 胀,无粘性,无表面张力。 气体——可压缩流体。
求。 牛顿三定律(惯性定律、F=ma、作用力与反作用力) 质量守恒定律 能量守恒及其转化规律 动量守恒定律
水力学
(1)质量守恒定律
dm 0 dt
(2)机械能转化与守恒定律:动能+压能+位能+能量损失 =常数
(3)牛顿第二运动定律
F ma
(4)动量定律
d (mu ) F dt
二、连续介质模型 实质——分子间有间隙,分子随机运动导 致物理量不连续。
1.2.2 表面力
1、表面力:又称面积力(Surface Force) ,是毗邻流体 或其它物体作用在隔离体表面上的直接施加的接触力。它的大 小与作用面面积成正比。 按作用方向可分为: 压力:垂直于作用面。
切力:平行于作用面。
2 或 Pa N/m 2、应力:单位面积上的表面力,单位: 压强 p lim P A0 A T
后续课程:水文学、土力学、工程地质等;并直
接服务于工程应用。 • 其他:a.素质教育——“力学文化”、“水文化” ;
b .注册工程师考试必考科目;
c .研究生入学考试必考或选考科目之一。
本课程的基本要求 • 具有较为完整的理论基础,包括: (1)掌握流体力学的基本概念; (2)熟练掌握分析流体力学的总流分析方法,熟悉量 纲分析与实验相结合的方法,了解求解简单平面势流的方 法; (3)掌握流体运动能量转化和水头损失的规律,对传 统阻力有一定了解。
(完整版)流体力学

第1章绪论一、概念在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸作用在一定量的流体上的压强增加时,体积减小Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Kt体积弹性模量越大,流体可压缩性越小等温Ev=p等嫡Ev=kpk二Cp/Cv作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dp/p)(低速流动气体不可压缩)流体抵抗剪切变形的一种属性动力粘度:|1,单位速度梯度下的切应力U=T/(dv/dy)运动粘度:V,动力粘度与密度之比,v=u/pV=|!=0的流体T=+-|idv/dy(T大于零)、T=^V/8切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念流体内任意点的压强大小都与都与其作用面的方位无关微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0流体平衡微分方程重力场下的简化:dp二一pdW二一pgdz不可压缩流体静压强基本公式z+p/pg二C不可压缩流体静压强分布规律p=p0+pgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强二当地大气压+表压表压二绝对压强一当地大气压真空压强=当地大气压-绝对压强单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??F=pS+pgsinayS当p二大气压强,F=pgsinayS压力中心:二、计算1、U型管测压计的计算;2、绝对压强、计示压强及真空压强的换算3、平壁面上静压力大小的计算。
一、流体力学

• 分类:按运动方式分为流体静力学和流体 分类:按运动方式分为流体静力学 流体静力学和 动力学。 动力学。
2
流体力学概论
• 应用:在水利工程学、空气动力学、气象学、气 应用:在水利工程学、空气动力学、气象学、 体和液体输运、 体和液体输运、动物血液循环和植物液汁输运等 领域有运用。 领域有运用。
高尔夫球表面为什么有很多小凹坑? 高尔夫球表面为什么有很多小凹坑?
v1
1 2
v2
3
v3
8
1.2
理想流体的定常流动 流管——流线围成的管子 流线围成的管子. 流管 流线围成的管子
一般流线分布随时间改变. 一般流线分布随时间改变
二、定常流动
空间各点流速不随时间变化称定常流动. 空间各点流速不随时间变化称定常流动
定常流动流体能 加速流动吗? 加速流动吗?
v = v ( x, y, z)
1 2 1 2 P + ρvA = P + ρvB A B 2 2 SAvA = SBvB
A B h1 h H1
∵P −P = (ρ银 −ρ流)gh B A
2(ρ银 −ρ流)gh ∴vA = ρ流[1−(SA / SB)2]
所以流量为
Q= SAvA = SBvB = SASB
2(ρ银 −ρ流)gh 2 2 ρ流(SB −SA)
阻力系数约为0.8 阻力系数约为
阻力系数仅为0.137 阻力系数仅为
3
流体力学概论
• 应用: 应用:
植物水分运输动力? 植物水分运输动力? 人体血液循环图 毛细作用 渗透压 水分中的负压强
4
1.1
流体静力学
1、静止流体内应力的特点 压强 、
静止流体内部应力的特点: 静止流体内部应力的特点: a、 ∆ ⊥∆ ,无切向应力。(表现为流动性) F S b、同一点不同方位的截面的应力大小相等。 由上述第二个特点可引入:压强P 由上述第二个特点可引入:压强
1流体力学基本知识

(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
流体力学(流体运动学)

§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t
得
dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()⊥
-++
+φφφ
φφ1
4210
.01
Re 3
1Re
161
Re
8=
2
.0log 4.03
4
∥
D C
其中,面积
颗粒在迎流方向上投影
计算颗粒表面积
等体积球横截面积
-2=∥φ
向上投影面积
计算颗粒在垂直迎流方
等体积球横截面积
=⊥φ
The sphericity (Φ) represents the ratio between the surface area of the volume equivalent sphere and that of the considered particle, the cross-wise sphericity (Φ⊥) is the ratio between the cross-sectional area of the volume equivalent sphere and the projected cross-sectional area of the considered particle and the lengthwise sphericity (Φ||) is the ratio between the cross-sectional area of the volume equivalent sphere and the difference between half the surface area and the mean projected longitudinal cross-sectional area of the considered particle.
b/a=2回转椭球体A=90
C d
Re
流线型是前圆后尖,表面光滑,略象水滴的形状。
具有这种形状的物体在流体中运动时所受到的阻力最小,所以汽车、火车、飞机机身、潜水艇、轮船等外形常做成流线型。
是物体的一种外部形状,通常表现为平滑而规则的表面,没有大的起伏和尖锐的棱角。
流体在流线型物体表面主要表现为层流,没有或很少有湍流,这保证了物体受到较小的阻力。
流线型物体通常较为美观,经常出现在产品的外观设计等 比如说,动物鲸鱼就有一种流线体 流体与物体间相对运动速率.
接触面材质.
举例: 潜艇,飞机(空气也是流体).
(1)流体的阻力与物体的形状、正截面积大小、物体相对于流体的速度、流体的性质等有关;
(2)泳衣,船头,模仿鲔鱼体形的核潜艇,流线型汽车
与很多因素有关,比如流体的粘滞系数,物体的形状,以及流体面是不是无限宽广,他们之间的相对运动速度。
在流体力学中,钝体就是[非流线体],如圆柱,球,桥墩和汽车等等N 多.....
钝体有较大的甚至压倒优势的压差阻力.由于压差阻力的大小与物体的形状有很大关系,因此,压差阻力又称为形状阻力。
钝体尾流的双重小波包分解:根据湍流相干结构和非相干结构不相关的特性,提出了一种钝体尾流双重小波包分解的新算法,将湍流的运动分解成相干分量和非相干分量。
该算法以湍流相干分量和非相干分量的相关系数作为迭代的控制指标,减小了过去算法中的随意性。
用该算法对大长宽比的钝体尾流三维超声波流速仪测量数据的分析表明:1.钝体间距与宽度之比大于4时,钝体间的相互影响可以忽略不计;2.流线型的钝体尾流紊动强度较小。
b/a=2回转椭球体A=90
C d
Re
b/a=2回转椭球体A=0
C d
Re
b/a=2回转椭球体A=0
C d
Re
b/a=2回转椭球体A=90与A=0
C d
Re
b/a=2回转椭球体A=90与A=0
C d
Re
球
扁球面
长球面
不等边
其中是一点的,是
(注意,当时,也就是在极点时,这个参数不是一一对应的)
,其中是,是
其中
(扁球面)或(长球面),
;、是第一类和第二类不完
其中。
这样相对误差最多为%(Knud Thomsen公式);的值对于接近于球的椭球较为适宜,其相对误差最多为%(David W. Cantrell公式)。
对于的情况,有一个精确的公式:
扁球面:
长球面:
比和都小很多时,表面积近似等于。
[编辑]质量性质
均匀密度的椭球的质量为:
其中是密度。
均匀密度的椭球的转动惯量为:
其中、和分别是关于x、y和z轴的转动惯量。
惯性积为零。
容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。
反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:。