八年级下册数学第三章《图形的平移与旋转》

合集下载

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(有答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(有答案解析)

一、选择题1.如图,根据ABC 的已知条件,按如下步骤作图:(1)以A 圆心,AB 长为半径画弧;(2)以C 为圆心,CB 长为半径画弧,两弧相交于点P ;(3)连接BP ,与AC 交于点O ,连接AP 、CP .以下结论:①BP 垂直平分AC ;②AC 平分BAP ∠;③四边形ABCP 是轴对称图形也是中心对称图形;④ABC APC ≌△△,请你分析一下,其中正确的是( )A .①④B .②③C .①③D .②④2.如图,在平面直角坐标系xOy 中,点P 的坐标为22,⎛⎫ ⎪ ⎪⎝⎭,将线段1OP ,绕点O 按顺时针方向旋转45,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP 、、2021OP ,则20202021OP P ∆的面积为( )A .4038224B .40392C 403722D .40382 3.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:①AC =AD ;②AB ⊥EB ;③BC =EC ;④∠A =∠EBC ;其中一定正确的是( )A .①②B .②③C .③④D .②③④4.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=9,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则点O 到AD 1的距离为( )A .3B .35C .65D .5 5.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 6.下列图形是我国国产汽车的标识,在这四个汽车标识中,是中心对称图形的是( ) A . B .C .D .7.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A .3个B .4个C .5个D .6个8.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个9.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②10.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称B.轴对称和平移C.平移和旋转D.旋转和轴对称11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.12.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定二、填空题13.如图,把ABC绕点A顺时针旋转50°得到ADE,点B的对应点是D,则直线BC与DE所夹的锐角是______.14.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S =;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).15.如图,将△ABC 绕点A 顺时针旋转一定的角度至△ADE 处,使得点C 恰好在线段DE 上,若∠ACB =75°,则旋转角为________度.16.以A (﹣2,7),B (﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y )(﹣2≤y ≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为_____.17.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点()1,2P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P 的坐标为_________.19.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;23.如图,在平面直角坐标系中,已知ABC 的顶点的坐标分别是A (5-,2),B (2-,4),C (1-,1).(1)在图中作出111A B C △,使111A B C △和ABC 关于x 轴对称;(2)画出将ABC 以点O 为旋转中心,顺时针旋转90︒对应的222A B C △; (3)直接写出点B 关于点C 对称点的坐标.24.如图,已知线段MN =4,点A 在线段MN 上,且AM =1,点B 为线段AN 上的一个动点.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,旋转角分别为α和β.若旋转后M 、N 两点重合成一点C (即构成△ABC ),设AB =x .(1)△ABC 的周长为 ;(2)若α+β=270°,求x 的值;(3)试探究△ABC 是否可能为等腰三角形?若可能,求出x 的值;若不可能,请说明理由.25.在如图所示的方格纸中,(1)作出ABC 关于MN 对称的111A B C △;(2)222A B C △是由111A B C △经过怎样的平移得到的?并求出111A B C △在平移过程中所扫过的面积.26.如图,Rt ABC △中,90C ∠=︒,AC BC =,ABC 绕点A 逆时针旋转45°得到ADE (B ,D 两点为对应点).(1)画出旋转后的图形;(2)连接BD ,求BDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由题意得:AB=AP ,CB=CP ,从而可判断①;根据等腰三角形的性质,可判断②;根据轴对称和中心对称图形的定义,可判断③;根据SSS ,可判断④.【详解】由题意得:AB=AP ,CB=CP ,∴点A 、C 在BP 的垂直平分线上,即:AC 垂直平分BP ,故①错误;∵AB=AP ,AC ⊥BP ,∴AC 平分BAP ∠,故②正确;∵AC 垂直平分BP ,∴点B 、P 关于直线AC 对称,即:四边形ABCP 是轴对称图形,但不是中心对称图形,故③错误;∵AB=AP ,CB=CP ,AC=AC ,∴ABC APC ≌△△,故④正确;故选D .【点睛】本题主要考查垂直平分线的判定定理。

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)考试范围:第三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,把图 ①中的⊙A经过平移得到⊙O(如图 ②),如果图 ①中⊙A上一点P的坐标为(m,n),那么平移后在图 ②中的对应点P′的坐标为.( )A. (m+2,n+1)B. (m−2,n−1)C. (m−2,n+1)D. (m+2,n−1)2. 如图,将周长为20的△ABC沿BC方向平移3个单位长度得到△DEF,则四边形ABFD的周长为.( )A. 22B. 24C. 26D. 283. 如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为( )A. 1.6B. 1.8C. 2D. 2.64. 如图,△ABC顺时针旋转角度α变成△A1B1C1,α的值是.( )A. 30∘B. 45∘C. 60∘D. 90∘5. 如图,这个图案是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是.( )A. 它是轴对称图形,但不是中心对称图形B. 它是中心对称图形,但不是轴对称图形C. 它既是轴对称图形,又是中心对称图形D. 它既不是轴对称图形,又不是中心对称图形6. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.7. 在俄罗斯方块游戏中,已拼好的图案如图所示,现又出现了一个小方格体正向下运动,为了使所有图案消失,你必须进行的操作是.( )A. 顺时针旋转90∘,向右平移B. 逆时针旋转90∘,向右平移C. 顺时针旋转90∘,向下平移D. 逆时针旋转90∘,向下平移8. 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是( )A. B. C. D.9. 如图,△ABC经过如下平移能得到△DEF的是.( )A. 把△ABC向左平移4个单位长度,再向下平移2个单位长度B. 把△ABC向右平移4个单位长度,再向下平移2个单位长度C. 把△ABC向右平移4个单位长度,再向上平移2个单位长度D. 把△ABC向左平移4个单位长度,再向上平移2个单位长度10. 将某图形各顶点的横坐标保持不变,纵坐标减2,可将该图形.( )A. 向左平移2个单位长度B. 向右平移2个单位长度C. 向上平移2个单位长度D. 向下平移2个单位长度11. 如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED 等于( )A. α2B. 23α C. α D. 180°−α12. 如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是( )A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 点P(−2,1)向右平移2个单位长度后到达点P1,则点P1关于x轴的对称点的坐标为.14. 如图,在△ABC中,∠BAC=105°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠AB′C′的度数为________.15. 如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别为16. 如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为______.三、解答题(本大题共9小题,共72.0分。

八年级数学下册第三章图形的平移与旋转知识总结北师大版

八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角.关键:a。

旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b。

图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。

)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

第三章 图形的平移与旋转

第三章 图形的平移与旋转

第三章图形的平移与旋转1.通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.认识并欣赏平移在自然界和现实生活中的应用.3.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.4.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.5.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.6.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.7.认识并欣赏自然界和现实生活中的中心对称图形.8.运用图形的平移、旋转、轴对称进行图案设计.1.经历有关平移与旋转的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.2.经历借助图形思考问题的过程,初步建立几何直观.3.通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转画图.4.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.5.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.6.了解中心对称、中心对称图形的概念,探索它的基本性质.1.在研究平移与旋转的过程中,进一步发展空间观念.2.认识并欣赏平移、旋转在自然界和现实生活中的应用,认识并欣赏自然界和现实生活中的中心对称图形.在前面的学习中学生已对诸如翻折、平移、旋转、轴对称等知识有了一定的认识与理解,只是平移和旋转的知识没有正式出现罢了,但这些变换的意识学生已经有了.学生学习了本章知识后对平移与旋转以及轴对称这三种常用的全等变换有了系统的认识,但学生把握这些全等变换的能力有待提升,特别是对组合图案的形成过程的分析是学生把握不好的地方,应加强训练.立足于学生已有的生活经验和初步的数学活动经验,首先从观察生活中的平移、旋转现象开始,直观的认识平移、旋转,并在此基础上,分析生活中的平移现象和旋转现象各自的规律,得到平移和旋转的基本性质;然后利用平移和旋转的基本性质进行简单的平移作图、旋转作图,通过分析简单平面图形的平移、旋转等变化关系,进一步体会平移、旋转的应用价值和丰富内涵;最后,通过简单的图案设计,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动中.具体地,教科书设计了4节内容:第1节“图形的平移”,立足于学生小学阶段的学习基础和已有的生活经验,通过分析各种平移现象的共性,直观地认识平移,探索平面图形平移的基本性质,利用平移的基本特征研究简单的平移画图.在此基础上,进一步研究沿坐标轴方向平移后的图形与原图形对应点坐标之间的关系,探索依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系.第2节“图形的旋转”,通过具体活动认识平面图形的旋转,探索平面图形旋转的基本性质,利用旋转的基本特征研究简单的旋转画图.第3节“中心对称”,认识中心对称,探索成中心对称的基本性质,利用中心对称的基本特征研究中心对称的画图,认识并欣赏自然界和现实生活中的中心对称图形.第4节“简单的图案设计”,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动之中.应当指出的是,本章不同于变换几何中的平移、旋转变换,而是先通过观察具体的平移、旋转现象,分析、归纳并概括出平移、旋转的整体规律和基本性质,然后在平移和旋转的图案设计、欣赏、简单应用中,进一步深化对图形的三种基本变换的理解和认识.【重点】1.平移的定义.2.平移的性质及应用.3.简单的平移作图.4.旋转的定义.5.旋转的性质及应用.6.简单的旋转作图.7.中心对称和中心对称图形.【难点】1.平移作图.2.旋转作图.3.中心对称和中心对称图形的区别和联系.4.利用平移、旋转、轴对称进行简单的图案设计.1.着眼于发展学生的空间观念.使学生具备良好的空间观念是义务教育阶段数学教育的一个重要目标,培养学生的空间观念必须使学生经历、体验图形运动变化的过程,本章所研究的平移、旋转及中心对称是反映空间观念的重要内容.为此,教科书设计了一系列的实验、探索活动,如“探索平移基本性质的实验活动”“探索旋转基本性质的实验活动”“探索中心对称基本性质的实验活动”及“图形平移与坐标变化的关系的探索活动”“简单的图案设计活动”等.在这些活动中,学生将会想象物体与物体之间的位置关系,描述图形的运动和变化,依据语言的描述画出图形等,所有这些都是空间观念的重要表现.因此,教师应想方设法鼓励学生积极参与这些活动,通过观察、操作、归纳、猜想、交流等获得结论,并运用自己的语言描述探索过程和所得到的结论,发展空间观念.需要指出的是,培养空间观念是一种个人体验,需要大量的实践活动,以被动听讲和练习为主的方式,是难以形成空间观念的.学生要有充分的时间和空间观察、动手操作,对周围环境和实物产生直接感知,这些都不仅需要自主探索、亲身实践,更离不开大家一起动手、共同参与.观察、操作、归纳、类比、猜想、直观思考等对形成空间观念具有重要作用,只有在学生共同探讨、合作解决问题的过程中才能不断生成和发展,并得到提升.2.重视学生的观察、操作、探索和交流活动.教师创设情境、设计问题,引导学生自主探索、合作交流,让学生经历观察、操作、探索和交流的过程,能有效地激发学生的思考,有助于真正落实学生在学习活动中的主体地位,有助于学生理解和掌握基本知识和基本技能,同时也有助于学生感悟数学思想,积累数学活动经验.本章有许多内容需要学生对图形进行观察、操作、探索和交流,教学时不宜用教师的课堂讲解和演示代替学生的动手操作、主动探究与讨论交流.例如,有关平移、旋转的性质,教科书都设计了相应的实验过程,力图让学生通过动手操作,配合直观的观察和理性的思考探索相关的结论.教学时可以让学生分组进行,每组选用的图形形状可以不同,每次变化的方式也可以不同.学生的这些实验结果为接下来进行的抽象概括提供了很好的素材.在此基础上,全班交流,概括出图形变化(平移、旋转)的基本性质.在这一过程中,学生的手、眼、脑等多种感官都能得到较为充分的运用,既有助于学生理解和掌握相关知识的内涵,也可以使学生在做的过程和思考的过程中积累一定的数学活动经验,并逐步感悟其中所蕴含的数学思想.3.创造性地利用与图形平移、旋转有关的资源进行教学.在教学中,教师应根据学生实际、教学实际和当地实际,充分挖掘和利用现实生活中大量存在的平移、旋转及中心对称现象,尤其是具有地方特色的素材(如北方地区的雪橇、辘轳,农村地区的水车、石碾、风车,城市里的缆车、电梯等),并引导学生对其中的一些共同特征加以分析、总结.4.合理运用现代信息技术,注重教学手段的多样化.本章主要研究图形的变化,对图形的动态展示的要求更为强烈.因此,在条件允许的情况下,教学中都应合理运用现代信息技术,注重信息技术与本章内容的整合,以便有效地改变教与学的方式,提高课堂教学的效率.需要说明的是,现代信息技术真正的价值在于实现原有的教学手段难以达到的甚至达不到的效果,它不应、也不可能完全替代常规的教学手段.例如,教师可以在学生动手实践的基础上,借助计算机、多媒体向学生展示更加丰富的几何图形的运动变化过程,这样不仅为学生理解和掌握相关知识提供形象的支持,有利于增强学生的空间观念,同时也可以让学生获得视觉上的愉悦,增强好奇心,激发学习兴趣.但不能用计算机、多媒体的演示完全取代学生的动手操作活动.5.关注学生情感态度的发展.教师要把落实情感态度的目标作为自己的责任和义务,努力把情感态度目标有机地融合在本章教学过程之中.例如,在设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:如何引导学生积极参与教学过程?如何组织学生观察、操作、探索、归纳?如何使学生愿意学、喜欢学,对本章内容感兴趣?如何让学生体验成功的喜悦,从而增强学好本章内容的自信心?如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?如何培养学生良好的学习习惯?1图形的平移3课时2图形的旋转2课时3中心对称1课时4简单的图案设计1课时回顾与思考1课时1图形的平移1.通过具体实例认识平移,理解平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.经历沿x轴、y轴方向和综合方向平移时位置和数量的关系,通过观察、分析以及抽象、概括等过程,发现平移时坐标变化的特点.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中图形平移的现象与学生自己设计的平移图案,使学生感受数学的美.【重点】探索和理解平移的基本性质.【难点】坐标变换和图形平移的关系.第课时1.认识平移,说出平移的定义,理解平移的基本内涵.2.理解并能说出平移的性质,即一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.感悟平移前后图形的变化,从点、线、角、位置、大小等不同角度说出平移前后图形的变化关系.通过探究,归纳平移的定义、特征、性质,积累数学活动经验,进一步发展空间观念,增强空间想象力.【重点】1.认识平移在现实生活中的广泛应用.2.探索和理解平移的基本性质.【难点】平移基本性质的探索和理解.【教师准备】实际生活中的平移图片.【学生准备】复习翻折、平移、旋转、轴对称等知识.导入一:1.同学们,你们小时候去过游乐园吗?在游乐园中你们玩过哪些游乐项目?在玩这些游乐项目时你们想过什么?你们想过它里面蕴含着数学知识吗?2.找一找这些项目中,哪些项目的运动形式是一样的,观看游乐园内的一些项目,引出第三章内容,并进行初步分类,引出本节课研究内容:板书课题——图形的平移.[设计意图]由学生喜闻乐见的游乐场引入课题,容易激发学生的学习兴趣.导入二:请你判断: 小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?[设计意图]较好地发挥了“情景导入”的作用,却又找不到足够的理由说服持有不同观点的同学.此情此景,在好奇心的驱动之下,学生欲罢不能,很容易就产生了继续学习、探索新知识的欲望.导入三:请大家仔细观察如图所示的图案,你觉得漂亮吗?这个图案的特点是由一个“基本图案”通过平移得到的,你能找到这个“基本图案”吗?这节内容我们就来研究一种几何变换——平移.一、平移的定义[过渡语](针对导入三)刚才我们看到的美丽图案,它是由12个完全一样的图形组成的,这个图案可以看成是由一个基本图形按照一定方式移动得到的.这样的图形运动称作什么呢?这就是我们本课时要研究的——图形的平移.思路一(1)我们再来感受一下平移.上面我们提到的游乐场中的滑梯等,你们在上面玩耍的时候,哪些方面是不变的?哪些方面是变化的?(2)什么是平移呢?引导学生探讨并在班内交流,达成共识后,得出平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.[设计意图]引导学生通过观察,发现图形间的变化规律,得出平移的定义.思路二教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程.(2)手扶电梯上人移动的过程.教师提问:①你能发现传送带上的箱子、手扶电梯上的人在移动前后什么没有改变,什么发生了改变吗?②在传送带上,如果箱子的某一部分向前移动了80 cm,那么箱子的其他部位向什么方向移动?移动了多少距离?学生自由发言,各抒己见.平移前后两个图形的形状和大小没有改变,位置发生了改变.根据上述分析,你能说明什么样的图形运动称为平移吗?平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.平移三要素: 基本图形,平移方向,平移距离.[设计意图]数学来源于实际生活,使学生感受到生活中处处有数学.利用课本上的两个实例,进一步感受平移的实质,渗透平移的三要素,即“基本图形、平移方向、平移距离”.如图所示,△ABC经过平移得到△A'B'C'.我们把点A与点A'叫做对应点,线段AB与线段A'B'叫做对应线段,∠A与∠A'叫做对应角.此时:点B的对应点是点B' ;点C的对应点是点C' ;线段AC的对应线段是线段A'C' ;线段BC的对应线段是线段B'C' ;∠B的对应角是∠B' ;∠C的对应角是∠C' .△ABC平移的方向就是由点B到点B'的方向,平移的距离就是线段BB'的长度.二、平移的性质[过渡语]一个图形和它经过平移所得到的图形中,对应点所连的线段有什么关系,对应线段和对应角有什么关系?同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化.教师提出问题:想一想,将左图的四边形硬纸片按某一方向平移一定的距离,右图画出了平移前的四边形ABCD和平移后的四边形EFGH.问题:(1)在上图中,线段AE,BF,CG,DH有怎样的关系?(2)图中每对对应线段之间有怎样的关系?(3)图中有哪些相等的线段、相等的角?学生分成四人一组,共同探讨平移的性质.讨论分析:①变换前后对应点所连线段平行(或在一条直线上)且相等.平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定距离,那么每一个点也沿着这个方向移动相同距离,所以对应点所连线段平行(或在一条直线上)且相等.②变换前后的图形全等.平移变换是由一个图形沿着某个方向移动一定距离,所以平移前后的图形是全等的.③变换前后对应角相等.④变换前后对应线段平行(或在一条直线上)且相等.学生归纳总结,教师板书平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.[设计意图]这个活动是探索平移的性质,对学生有点难度,通过设置问题的回答,使学生直接观察得出性质.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生能掌握得更好.三、例题讲解[过渡语]刚才我们了解了平移的相关概念和平移的基本性质,我们能用学到的知识解答一些问题吗?(1)指出平移的方向和平移的距离;(2)画出平移后的三角形;(3)请在图(2)中找出平行且相等的线段,以及相等的角(找出对应角即可).解:(1)如图(2)所示,连接AD,平移的方向是点A到点D的方向,平移的距离是线段AD的长度.(2)如图(2)所示,分别过点B,C按射线AD的方向作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形.(3)图中平行且相等的线段有:AB与DE,BC与EF,AC与DF,AD与BE,AD与CF,BE与CF;相等的角有:∠BAC与∠EDF, ∠ABC与∠DEF, ∠ACB与∠DFE.[设计意图]让学生进一步体会确定平移的两个要素:平移的方向和平移的距离,加深对平移性质的理解和应用.[知识拓展]平移作图.平移作图是平移基本性质的应用,利用平移可以得到许多美丽的图案.在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺序连接对应点.说明:平移作图实际上是平移基本性质的实际应用.注意:(1)平移作图的方法是由平移的性质而来,但必须注意两个条件,一是平移的方向,二是平移的距离.(2)平移的作图要抓住以下几个特征:①平移前后对应点连线平行(或共线)且相等.②对应线段平行(或共线)且相等.③对应角相等.1.平移是运动的一种形式,是图形变换的一种.2.图形的平移有两个要素:一是图形平移的方向;二是图形平移的距离.这两个要素是图形平移的依据.3.图形的平移是指图形整体的平移.经过平移后的图形与原图形相比,只改变了位置,而不改变图形的形状和大小,这个特征是得出图形平移的基本性质的依据.1.下列运动属于平移的是()A.急刹车时汽车在地面上的滑动B.冷水加热中,小气泡上升为大气泡C.随风飘动的风筝在空中的运动D.随手抛出的彩球的运动解析:A中汽车向前滑动,方向和大小都没有改变,属于平移;B中气泡大小发生了变化,不属于平移;C中风筝在空气中运动方向不断变化,不属于平移;D中彩球运动方向不能确定.故选A.2.如图所示,O是正六边形ABCDEF的中心,下列图形中可由三角形OBC平移得到的是 ()A.三角形OCDB.三角形OABC.三角形FAOD.以上都不对解析:根据平移的定义与特征知,平移后图形的形状、大小不改变,对应线段平行(或在一条直线上)且相等,对应角相等,三角形OBC是等边三角形,与其他五个三角形的形状、大小相同,关键是看其他三角形的对应边是否符合平移的特征.故选C.3.如图所示的四个小三角形都是等边三角形,边长都为1 cm,能通过平移三角形ABC得到三角形FAE 和三角形ECD吗?若能,请指出平移的方向和平移的距离.解析:三角形FAE与三角形ABC都是等边三角形,则有AF=BA=BC=AE=FE=AC,满足平移后图形的大小和形状不变.平移的方向为点A到点F的方向,平移的距离为AF的长度(1 cm).同理可得△ABC与△ECD 的关系.解:能.三角形ABC平移到三角形FAE的平移方向为点A到点F的方向,平移的距离为1 cm;三角形ABC平移到三角形ECD的平移方向为点A到点E的方向,平移的距离为1 cm.4.如图所示,图形ABCD平移到图形EFGH,试根据该图,回答下列问题.(1)在图中,线段AE与BF,CG与DH有怎样的位置关系?(2)图中线段AB与EF,AD与EH有怎样的位置关系?(3)说出图中相等的角(说出对应角即可).解析:AE,BF,CG,DH是对应点所连的线段,AB与EF,AD与EH是对应线段,由平移的特征可知它们的位置关系是平行.对应角相等.解:(1)平行.(2)平行.(3)∠BAD=∠FEH,∠ADC=∠EHG,∠DCB=∠HGF,∠ABC=∠EFG.5.经过平移,三角形ABC的边AB移到了A'B',作出平移后的三角形A'B'C'.解析:本题已知原图形和平移后的一条线段,就相当于已知原图形和平移的方向、平移的距离,所以根据平移前后两三角形全等可以作出平移后的三角形,具体的作法有很多种.解法1:如图(1)所示,分别过点A',B',作出与AC,BC平行且相等的线段A'C',B'C',两条线段相交于点C',三角形A'B'C'即为所求.解法2:如图(2)所示,分别以A',B'为圆心,以线段AC,BC的长为半径画弧,交于点C',连接A'C',B'C'即得△A'B'C'.解法3:如图(3)所示,连接AA',过点C按照射线AA'的方向作射线CC',使CC'∥AA'并截取CC'=AA',则连接A'C',B'C'所得的三角形A'B'C'即为所求作的三角形.第1课时一、平移的定义二、平移的性质三、例题讲解一、教材作业【必做题】教材第67页习题3.1的1,2题.【选做题】教材第68页习题3.1的3,4题.二、课后作业【基础巩固】1.下列说法正确的是()A.两个全等的图形可看做其中一个是由另一个平移得到的B.由平移得到的两个图形对应点连线互相平行(或共线)C.由平移得到的两个等腰三角形周长一定相等,但面积未必相等D.边长相等的两个正方形一定可以通过平移得到2.如图所示,下列每组图形中的两个三角形不是通过平移得到的是()3.下列现象:①电风扇的转动;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动.其中属于平移的是.【能力提升】4.如图所示,一张白色正方形纸片的边长是10 cm,被两张宽为2 cm的阴影纸条分为四个白色的长方形部分,请你利用平移的知识求出图中白色部分的面积.5.如图所示,AD∥BC,∠ABC=80°,∠BCD=50°,利用平移的知识讨论BC与AD+AB的数量关系.6.如图所示,将Rt△ABC沿直角边AB的方向向右平移2个单位长度得到△DEF,如果BG=CG,AB=4,∠ABC=90°,且△ABC的面积为6,求图中阴影部分的面积.7.如图所示,△ABC沿射线MN方向平移一定距离后成为△A'B'C'.找出图中相等的线段以及全等的三角形.8.A,B两点间有一条传输速度为每分钟5米的传送带,由A点向B点传送货物.一只蚂蚁不小心爬到了传送带上,它以每分钟1.5米的速度从A点爬向B点,3分钟后,蚂蚁爬到了B点,你能求出A,B两点间的距离吗? 【拓展探究】9.如图所示,∠BAC=30°,∠B'A'C'=45°,且AB∥A'B',直线AC与直线A'C'相交于点O,求∠COC''的度数.10.如图所示,有一条光滑曲线,画出将它沿数轴向左平移2个单位长度后的图形.。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在Rt ABC ∆中,,AC BC D E =、是斜边AB 上两点,且45DCE ∠=︒,将ACD ∆绕点C 顺时针旋转90︒后,得到BCF ∆,连接EF ,下列结论中:①45ECF ∠=︒;②ACD ∆≌BCE ∆;③CE 平分DCF ∠;④222AD BE DE +=;正确的有( )个A .1个B .2个C .3个D .4个4.如图,在△ABC 中,AB=3,BC=5.2,∠B=60°,将△ABC 绕点A 逆时针旋转△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .0.8B .2C .2.2D .2.85.下列图案中,是中心对称图形的是( )A .B .C .D . 6.下列四个图形是word 软件中的自选图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 7.如图,将ABC 绕点C 逆时针旋转得到DEC ,若点D 刚好落在边AB 上,CB 与DE 交于点F ,120,20ACB E ∠=︒∠=︒,则ADC ∠的度数为( )A .40︒B .50︒C .55︒D .60︒ 8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ) A . B . C . D .9.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .5 10.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1211.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等12.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.如图,点D 是等腰直角三角形 ABC 内一点,AB =AC ,若将△ABD 绕点A 逆时针旋转到△ACE 的位置,则∠AED 的度数为________________.15.如图,P 是等边△ABC 内一点,PA =4,PB =3PC =2,则ABC 的边长为________.16.在平面直角坐标系xoy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转90°得到OA′, 则点A′的坐标是____________.17.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.18.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD //BC ,则∠BAE =______°.19.如图,将△AOB 绕点O 按逆时针方向旋转50°后得到△COD ,如果∠AOB =15°,那么∠AOD 的度数为_____.20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.如图,在ABC 中,1AB =,45BAC ∠=︒,3AC =.将ABC 绕点B 逆时针旋转一个角α,得到A BC ''△,点A 恰好在A C ''边上.(1)求α的度数;(2)求AC '的长.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.如图,在边长为8的等边ABC 中,点D 是AB 的中点,点E 是平面上一点,且线段2DE =,将线段EB 绕点E 顺时针旋转60°得到线段EF ,连接AF .(1)如图1,当2BE =时,求线段AF 的长;(2)将线段BE 绕点B 旋转得到图2,求证:AF CE =.24.如图,ABC 在平面直角坐标系内,顶点的坐标分别为()4,4A -,()2,5B -,()2,1C -.(1)平移ABC ,使点C 移到点()12,4C --,画出平移后的111A B C △,并写出点1A ,1B 的坐标;(2)画出与ABC 关于原点对称的图形.25.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,1),B (-4,5),C (-5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2;(3)求△A 2B 2C 2的面积.26.在平面直角坐标系中,ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将ABC 绕着点A 顺时针旋转90°,画出旋转后得到的11AB C △,并直接写出点11,B C 的坐标.(2)在(1)得到的图形中,1∠=BAC ______度,连结1B C ,作1AB C 的高CD ,求CD 长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A 、是中心对称图形,不是轴对称图形,故本选项不合题意;B 、不是中心对称图形,但是轴对称图形,故本选项不合题意;C 、是中心对称图形,又是轴对称图形,故本选项合题意;D 、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C .【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B解析:B【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、既是轴对称图形又是中心对称图形,故符合题意;C 、是轴对称图形不是中心对称图形,故不符合题意;D 、是轴对称图形不是中心对称图形,故不符合题意;故选:B .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.C解析:C【分析】①根据旋转的性质可得出∠BCF=∠ACD ,由∠ACB=90°,∠DCE=45°,可得出∠BCF+∠BCE=∠ECF=45°,即可判断①;②根据旋转的性质可得出△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,即可判断②; ③根据∠DCE=∠ECF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=EF ,求出∠EBF=90°,根据勾股定理推出即可.【详解】解:∵在Rt △ABC 中,BC=AC ,∴∠A=∠CBA=45°,①由旋转,可知:∠BCF=∠ACD ,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,∴∠BCF+∠BCE=∠ECF=45°,故①正确;②由旋转,可知:△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,故②错误;③∵∠DCE=∠ECF=45°,∴CE 平分∠DCF ,故③正确;④由旋转可知:AD=BF ,∠CBF=∠A=45°,∵∠CBA=45°,∴∠EBF=90°,由勾股定理得:BF 2+BE 2=EF 2,即AD 2+BE 2=EF 2,在△CDE 和△CFE 中,CE CE DCE ECF CD CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CFE (SAS ),∴DE=EF ,∴AD 2+BE 2=DE 2,故选:C .【点睛】本题考查了全等三角形的判定、相似三角形的判定、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.4.C解析:C【分析】根据旋转的性质得到△ABD 为等边三角形,得到BD=AB=3,再根据线段和差计算得到答案即可.【详解】∵△ABC 绕点A 逆时针旋转△ADE ,∴AB=AD ,∵∠B=60°,∴△ABD 为等边三角形,即BD=AB=3,∴CD=BC-BD=5.2-3=2.2;故选:C .【点睛】此题考查旋转的性质,等边三角形的判定及性质,线段的和差计算,掌握旋转的性质证得△ABD 为等边三角形是解题的关键.5.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.A解析:A【分析】先根据旋转的性质可得,20AC CD B E =∠=∠=︒,再根据三角形的内角和定理可得40A ∠=︒,然后根据等腰三角形的性质即可得.【详解】由旋转的性质得:,AC CD B E =∠=∠,120,20ACB E ∠=︒∠=︒,12041801800ACB B AC A B E ∠-∠=︒∠-∠∴∠==︒-=︒-︒,又AC CD =,40A ADC ∠∴=∠=︒,故选:A .【点睛】本题考查了旋转的性质、三角形的内角和定理、等腰三角形的性质,熟练掌握旋转的性质是解题关键.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项成文;故选:B .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.10.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.11.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.12.D解析:D【分析】由三角形内角和定理可得∠ACB =80°,由旋转的性质可得∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,由等腰三角形的性质得到∠AEC =50°,由角的和差即可求解.【详解】解:∵∠B =70°,∠BAC =30°,∴∠ACB =80°,∵将△ABC 绕点C 顺时针旋转得△EDC ,∴∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,∴∠CEA =50°,∴∠AED =∠AEC -∠CED =20°,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.【详解】设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.45°【分析】如图由题意可以判断为等腰直角三角形即可解决问题【详解】解:由旋转变换的性质知:;为直角三角形∴∴为等腰直角三角形故答案为【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换 解析:45°【分析】如图,由题意可以判断ADE 为等腰直角三角形,即可解决问题.【详解】解:由旋转变换的性质知:EAD CAB ∠=∠,AE AD =; ABC 为直角三角形,90CAB ∴∠=︒,∴90EAD ∠=︒,∴ADE 为等腰直角三角形,45AED ∴∠=︒,故答案为45︒.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.15.2【分析】作BH ⊥PC 于H 如图把△ABP 绕点B 顺时针旋转60°得到△CBD 连接PD 可判断△PBD 为等边三角形利用勾股定理的逆定理可证明△PCD 为直角三角形∠CPD=90°易得∠BPC=150°利用平解析:27【分析】作BH ⊥PC 于H ,如图,把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,可判断△PBD 为等边三角形,利用勾股定理的逆定理可证明△PCD 为直角三角形,∠CPD=90°,易得∠BPC=150°,利用平角等于有∠BPH=30°,在Rt △PBH 中,根据含30度的直角三角形三边的关系可计算出BH 和PH 的长,在Rt △BCH 中,根据勾股定理即可求解.【详解】解:作BH ⊥PC 于H ,如图,∵△ABC 为等边三角形,∴BA=BC ,∠ABC=60°,∴把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,如图,∴CD=AP=4,BD=BP=3∠PBD=60°,∴△PBD 为等边三角形,∴PD=PB=3∠BPD=60°,在△PDC 中,∵PC=2,PD=3CD=4,∴PC 2+PD 2=CD 2,∴△PCD 为直角三角形,∠CPD=90°,∴∠BPC=∠BPD+∠CPD=150°,∴∠BPH=30°,在Rt △PBH 中,∵∠BPH=30°,PB=23, ∴BH=12PB=3,PH=3BH=3, ∴CH=PC+PH=2+3=5, 在Rt △BCH 中,BC 2=BH 2+CH 2= (3)2+52=28,∴BC=27,∴ABC 的边长为27.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质与勾股定理的逆定理.16.【分析】先作出图形然后写出坐标即可【详解】解:如图:则A′的坐标是故答案是【点睛】本题主要考查了坐标与图形的旋转变换根据题意正确画出图形成为解答本题的关键解析:()3,2-【分析】先作出图形,然后写出坐标即可.【详解】解:如图:则A′的坐标是()3,2-.故答案是()3,2-.【点睛】本题主要考查了坐标与图形的旋转变换,根据题意正确画出图形成为解答本题的关键. 17.4【分析】观察图象发现平移前后BE 对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.18.38【分析】由旋转的性质可得∠DAB=∠EAC=26°由平行线的性质可得∠B=∠DAB=26°由直角三角形的性质可得∠BAC=64°即可求解【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED解析:38【分析】由旋转的性质可得∠DAB=∠EAC=26°,由平行线的性质可得∠B=∠DAB=26°,由直角三角形的性质可得∠BAC=64°,即可求解.【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED,∴∠DAB=∠EAC=26°,∵AD//BC,∴∠B=∠DAB=26°,∵∠C=90°,∴∠BAC=64°,∴∠BAE=∠BAC-∠EAC=64°-26°=38°,故答案为:38°.【点睛】本题考查了旋转的性质,平行线的性质,直角三角形,灵活运用这些性质进行推理是本题的关键.19.65°【分析】首先根据旋转变换的性质求出∠AOC的度数结合∠AOB=15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°∵∠AOB=15°∴∠AOD=50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°,∵∠AOB=15°,∴∠AOD=50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键. 20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 三、解答题21.(1)90°;(2)3【分析】(1)由旋转的性质求解即可;(2)根据勾股定理求出A A '【详解】解:(1)由旋转得到:ABC A BC ''∆≅∆∴45BA C BAC ''∠=∠=︒ ,1A B AB '==,3A C AC ''==∴45BAA BA A ''∠=∠=︒∴90ABA '∠=︒,即=90α︒(2)在Rt ABA '∆中,AA '===∴AC '=3A C A A '''-=【点睛】本题主要考查了旋转的性质及勾股定理,掌握旋转的性质是解答此题的关键.22.(1)-3,-2;(2)作图见解析;3,-1;(3)点P 的位置见解析;2AB =.【分析】(1)由与点A 关于点O 中心对称点的特征是横纵坐标符号改变点,(3,2)A ,,可得点A 关于点O 中心对称点的坐标为(-3,-2);(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,由点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,由()1,3B ,点B 1在第四象限,可得点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,由 ()1,3B .可求(1,3)B '-, 由PB=PB′可知PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短由勾股定理AB '==【详解】解:(1)∵与点A 关于点O 中心对称点的特征是横纵坐标符号改变,∵点(3,2)A ,∴点A 关于点O 中心对称点的坐标为(-3,-2),故答案为:-3,-2;(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,∵()1,3B ,点B 1在第四象限,∴点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,B 的坐标是()1,3B .则(1,3)B '-,PB=PB′,PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短,∵(3,2)A ,(1,3)B '-,∴AB '==【点睛】本题考查中心对称,三角形旋转,轴对称以及两点之间线段最短,掌握中心对称,三角形旋转,轴对称以及两点之间线段最短,关键是利用轴对称作点B关于y轴对称,两B′P。

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
D.图形的平移由平移的方向和距离决定
2.如图,大长方形的长是10 cm,宽是8 cm,阴影部分的宽均为2 cm,则空白部
分的面积是( D )
A.36cm2 B.40cm2
C.32cm2
D.48cm2
课堂检测,巩固新知
3.如果△ABC沿着北偏东30°的方向移动了2 cm,那么△ABC的边AB上的一点P
课堂检测,巩固新知
5.如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置. (1)写出图中所有平行的直线; (2)写出图中与AD相等的线段,并直接写出其长度; (3)若∠ABC=65°,求∠EFC的度数.
解:(1)AE∥CF,AC∥DF,BC∥EF (2)AD=CF=BE=2 cm (3)∵AE∥CF,∠ABC=65° ∴∠BCF=∠ABC=65° ∵BC∥EF ∴∠EFC+∠BCF=180° ∴∠EFC=115°
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习难点
探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件

横坐标减4,纵坐标减4,
所以点P的对应点P′的坐标是(m-4,n-4).
(3)△ABC的面积为
3×5-1×1×5- 1×2×2- 1×3×3=6
2
2
2
例3、如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0), 现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度, 得到A,B的对应点C,D.连接AC,BD,CD. (1)点C的坐标为______,点D的坐标为______, 四边形ABDC的面积为________;
图形的平移
学习目标
1.掌握平面直角坐标系中图形的两次平移与一次平移的转 化,以及平移引起的点的坐标的变化规律; 2.了解平面直角坐标系是数与形之间的桥梁,感受代数与 几何的相互转化,初步建立空间观念.
新课导入
在坐标系中,将坐标作如下变化时,图形将怎样变化?
1. (x,y)(x,y+4) 2. (x,y)(x,y -2)
(1)分别写出下列各点的坐标:A′_______;B′______;C′_______;
(2)若点P(m,n)是△ABC内一点,求平移后△A′B′C′内的对应点P′的坐标;
(3)求△ABC的面积.
解:(1)由题图可知A′(-3,-4),B′(0,-1),C′(2,-3).
(2)点A(1,0)的对应点A′的坐标是(-3,-4),
,-1),则a,b的值为(A
)
A.a=-2,b=-3 C.a=2,b=-3
B.a=-2,b=3 D.a=2,b=3
3.在平面直角坐标系中,点A′(2,-3)可以由点A(-2,3)通过两次平移得到 ,正确的是(D )
A.先向左平移4个单位长度,再向上平移6个单位长度 B.先向右平移4个单位长度,再向上平移6个单位长度 C.先向左平移4个单位长度,再向下平移6个单位长度 D.先向右平移4个单位长度,再向下平移6个单位长度

初二数学图形的平移和旋转教案

初二数学图形的平移和旋转教案

一、复习预习(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变? 哪些发生了变化?这种运动就叫做什么?为解决这一问题,我们讲今天的内容。

二、知识讲解知识点1 平移、旋转和轴对称的区别和联系(1)区别。

①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。

如果它能够与另一个图形重合,那么这两个图形成轴对称。

②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。

旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。

③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。

轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。

旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。

④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。

(2)联系。

①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。

③都要借助尺规作图及全等三角形的知识作图。

知识点2 组合图案的形成(1)确定图案中的“基本图案”。

(2)发现该图案各组成部分之间的内在联系。

(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。

要用运动的观点、整体的思想分析“组合图案”的形成过程。

运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。

第三章 图形的平移与旋转(回顾与思考)(课件)-八年级数学下册(北师大版)

第三章 图形的平移与旋转(回顾与思考)(课件)-八年级数学下册(北师大版)
考点一:平移的性质 例1. 如图,已知△ABC的周长为20 cm,现将△ABC沿AB方向平移
2 cm至△A′B′C′的位置,连接CC′,则四边形AB′C′C的周长为( C )
A.20 cm B.22 cm C.24 cm D.26 cm
二、考点精讲
考点一:平移的性质 例2. 如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC平移到 △DCE的位置,连接BD,求△ABC平移的距离和BD的长.
解:(1)如图,△A′B′C′即为所求 (3)△ABC 的面积=2×3-12 ×1×3-12 ×1×1-12 ×2×2=6-1.5-0.5-2=2
二、考点精讲
考点四:旋转作图
例8. 如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O 均为格点(每个小正方形的顶点叫做格点).
(1)作点A关于点O的对称点A1; (2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线 段A1B1; (3)连接AB1,求出四边形ABA1B1的面积.
三、课堂练习
8.如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移, 使B点与C点重合,得到△DCE,连接BD,交AC于点F. (1)猜想AC与BD的位置关系,并证明你的结论; (2)求线段BD的长.
三、课堂练习
解:(1)AC与BD互相垂直.证明如下: ∵△DCE由等边三角形ABC平移得到, ∴BC=CD. ∵∠ACB=∠ACD=180°-60°-60°=60°, ∴CF是等腰△BCD的角平分线. ∴CF垂直平分BD,即AC⊥BD.
解:∵△DCE 由△ABC 平移而成, ∴△ABC 平移的距离为:BC=2, ∴CD=CB=CE=2, ∴∠BDE=90°,∴△BED 是直角三角形, ∵BE=BC+CE=4,DE=CE=2, ∴BD= BE2-DE2 =2 3

新北师大版八年级数学下册《三章 图形的平移与旋转 1. 直角坐标系中图形的平移与坐标的变化》教案_12

新北师大版八年级数学下册《三章 图形的平移与旋转  1. 直角坐标系中图形的平移与坐标的变化》教案_12

第三章图形的平移与旋转3.1图形的平移第1课时平移的认识1.通过具体实例理解平移的概念,掌握平移的基本性质(重点).2.通过观察、分析、操作、欣赏以及抽象、概括等过程,体会平移来源于生活.自学指导:阅读教材P65~66内容,完成下列问题.知识探究1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫平移.平移不改变图形的形状和大小,改变的是位置.2.平移的性质:(1)平移前后的两个图形大小、形状一样;(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.自学反馈1.下列现象中,属于平移的是(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)人随电梯上升;(4)钟摆的摆动;(5)飞机起飞前在直线跑道上滑动.2.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是平行且相等.活动1小组讨论例1如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.解:如图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连接DE,DF,EF,则△DEF就是△ABC平移后的图形.设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.例2如图,点A,B,C,D分别平移到了点E,F,G,H;点A与点E,点B与点F,点C与点G,点D与点H 分别是一对对应点,AB与EF是一对对应线段,∠BAD与∠FEH是一对对应角.(1)在下图中,线段AE、BF、CG、DH有怎样的位置关系?(2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)(2)两个问题,你能归纳出什么结论?解:(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.图中相等的角:∠ABC=∠EFG、∠BAD=∠FEH、∠ADC=∠EHG、∠BCD=∠FGH.(3)平移的基本性质:经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.活动2跟踪训练如图,四边形ABCD平移后得到四边形EFGH.填空:(1)CD=GH;(2)∠F=∠B;(3)HE=DA;(4)∠D=∠H.活动3课堂小结1.通过本节课的学习,我们明白了什么叫平移.(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.)2.总结出了平移的性质.(平移不改变图形的形状和大小.经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.)第2课时沿x轴或y轴方向平移的坐标变化探究横向或纵向平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.(重点)自学指导:阅读教材P68~69内容,完成下列问题.知识探究在平面直角坐标系中,一个图形沿x轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标加上(减去)a,纵坐标不变;图形沿y轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标不变,纵坐标加上(减去)a.自学反馈1.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.将点M(-1,-5)向左平移3个单位长度得到点N,则点N所处的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例1在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A(C) A.向右平移2个单位长度B.向左平移2个单位长度C.向右平移4个单位长度D.向左平移4个单位长度解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,∴点A(-2,3)平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.例2点P(-2,1)向下平移2个单位长度后,关于x轴对称的点P′的坐标为(C)A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)沿x轴或y轴方向平移的坐标变化可简记为“横坐标,右移加,左移减;纵坐标,上移加,下移减”.活动2跟踪训练1.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC(B) A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的2.将点P(2m+3,m-2)向上平移1个单位长度得到P′,且P′在x轴上,则m=1.3.线段AB是由线段CD平移得到,点A(-2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).活动3课堂小结1.图形沿x轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.第3课时沿x轴,y轴方向两次平移的坐标变化探究一次平移既有横向又有纵向时坐标的变化特点.(重点)自学指导:阅读教材P71~73内容,完成下列问题.知识探究一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.自学反馈1.将点A(3,2)沿x轴向左平移4个单位长度,再沿y轴向下平移4个单位长度后得到点A′,则点A′的坐标是(D) A.(1,2)B.(1,-2)C.(-1,2) D.(-1,-2)2.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D) A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例如图所示,四边形ABCD各顶点的坐标为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3,A′(1,8),B′(0,6),C′(3,4),D′(3,7).(2)连接AA′,由图可知,AA′=32+42=5,四边形A′B′C′D′可认为是由四边形ABCD沿着由A到A′的方向,平移5个单位长度得到的.一个图形一次沿x轴方向,y轴方向平移后所得的图形,可以看成是由原来图形经过一次平移得到的.活动2跟踪训练1.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C) A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度2.在平面直角坐标系中,将点(3,-1)向下平移3个单位长度,可以得到对应点(3,-4);将得到的点向右平移2个单位长度,可以得到对应点(5,-4).3.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,且点A1的坐标为(3,1),请分别写出点B1,C1的坐标.解:B1(1,-3),C1(7,-2).活动3课堂小结学生试述:这节课你学到了些什么?3.2图形的旋转第1课时旋转的认识掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.(重点)自学指导:阅读教材P75~76内容,完成下列问题.知识探究1.在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所组成的角都等于旋转角;对应线段相等,对应角相等.自学反馈1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.线段MN绕点P进行旋转后,得到线段M1N1,则点M与点P距离=点M1与点P的距离.(填“>”“<”或“=”)活动1小组讨论例1如图,点A,B,C,D都在方格纸的点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.例2如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.正确的理解旋转的定义和性质.活动2跟踪训练如图,已知P是等边△ABC内的一点,连接AP,BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,△BPP′是什么三角形?解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.又∵将△ABP旋转后能与△CBP′重合,∴AB与CB重合.∴旋转中心是点B.(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,∴旋转角等于∠ABC=60°.(3)△BPP′是等边三角形.理由如下:∵旋转角为60°,即∠PBP′=60°,BP=BP′,∴△BPP′是等边三角形.活动3课堂小结1.旋转的概念:将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.第2课时旋转作图能画出简单图形旋转后的对应图形.(重点)自学指导:阅读教材P78~79内容,完成下列问题.知识探究旋转作图的步骤:(1)确定旋转中心,旋转方向,旋转角;(2)找出图形的关键点;(3)作出关键点经旋转后的对应点;(4)按图形的顺序连接对应点,得到旋转后的图形.自学反馈1.如图,将左边叶片图案旋转180°后,得到的图形是(D)2.把如图所示的图形绕着O点顺时针旋转90°后,得到的图形是(C)活动1小组讨论例如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.解:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC就是线段AB绕点A按顺时针方向旋转60°后的线段.解决这类作图题,紧扣旋转的特征即可.活动2跟踪训练1.对如图所示的图形,下列说法错误的是(C)A.图1绕点“O”顺时针旋转270°到图4B.图1绕点“O”逆时针旋转180°到图3C.图3绕点“O”顺时针旋转90°到图2D.图4绕点“O”顺时针旋转90°到图12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(C)A.(1,4)B.(4,1)C.(4,-1)D.(2,3)3.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1,请用直尺和圆规作出旋转中心O.(不写作法,保留作图痕迹)解:如图所示,点O为所作.4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),将△ABC 绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.解:如图所示,△A′BC′即为所求.活动3课堂小结根据旋转的性质,掌握旋转作图的步骤.3.3中心对称1.理解中心对称、对称中心、中心对称图形等概念,能识别中心对称图形.(重点)2.通过作图探索成中心对称的两个图形的性质.(重点)3.能运用中心对称的性质作出一个图形关于某点对称的图形,并确定对称中心的位置.(重点)自学指导:阅读教材P81~82内容,完成下列问题.知识探究1.如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.3.把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.自学反馈1.下列手机软件图标中,属于中心对称图形的是(D)2.关于中心对称的两个图形中,对应线段的关系是(D)A.相等B.平行C.相等且平行D.相等且平行或相等且在同一直线上活动1小组讨论例1如图,在中心对称的两个图形中,对称点A,A′和对称中心O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有B,O,B′和C,O,C′,并且BO=B′O,CO=C′O.在成中心对称的两个图形中,连接对称点的连线都经过对称中心,并且被对称中心平分.也就是:(1)对称中心在任意两个对称点的连线上.(2)对称中心到一对对称点的距离相等.根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连接中心对称图形上的一对对应点,所得线段的中点就是对称中心,同时在证明线段相等时也有应用.例2如图,四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称.解:(1)连接AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′.(2)同样画出点B、点C和点D的对称点B′,C′和D′.(3)顺次连接A′B′,B′C′,C′D′,D′A′.四边形A′B′C′D′即为所求的四边形.活动2跟踪训练1.下列图形中,是中心对称图形但不是轴对称图形的是(B)2.如图,四边形ABCD与四边形FGHE关于点O成中心对称,则AD=EF,∠ABC=∠FGH.3.如图,已知六边形ABCDEF是以点O为对称中心的中心对称图形,画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.4.下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.活动3课堂小结1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心.2.识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3.4简单的图案设计1.能利用平移、旋转或轴对称以及它们的组合解决一些简单的图案设计问题,并会利用它们分析图案.(重点) 2.通过观察、交流、创作,培养学生的动手操作能力和创新能力.(难点)自学指导:阅读教材P85的内容,完成下列问题.自学反馈1.平移、旋转、对称的联系:都是平面内的变换,都不改变图形的形状和大小,只改变图形的位置.2.如图所示的图案由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?解:可以.归纳:图形的平移、旋转、对称是图形变换中最基本的三种变换方式.活动1小组讨论例欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到的;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.活动2跟踪训练1.国旗上的四个小五角星,通过怎样的移动可以相互得到(D)A.轴对称B.平移C.旋转D.平移和旋转2.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(C)A.30°B.45°C.60°D.90°3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和旋转等.活动3课堂小结充分运用平移、旋转或轴对称,按照所要表达的意思,对基本图案进行操作,设计出相应图案.。

北师大版八年级下册第三章教案

北师大版八年级下册第三章教案

北师大版八年级下册《第三章图形的平移与旋转》3.1 图形的平移(第一课时)一.教学目标1、知识与技能目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

2、过程与方法目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。

通过知识的拓展,培养学生的分析问题与解决问题的能力。

②让学生经历观察、分析、操作、欣赏以与抽象概括等过程;经历探索图形平移性质的过程,以与与他人合作交流的过程,进一步发展空间观念,增强审美意识。

3、情感与价值观目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想。

②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。

有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力与审美意识的发展。

③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。

通过同学间的合作交流,培养学生的协作能力与学习的自主性。

二.教学重点平移的基本性质三.教学难点平移的基本内涵的理解.四.教学过程一.情景问题,引入课题情境问题引入同学们,还记得游乐园内的一些项目吗?如:旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?(也走了200米.)其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳;还是刚刚耸立起的高楼大厦里的电梯,无论是微观世界里的粒子运动,还是浩翰宇宙中的行星运转.其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!从今天开始,我们就来探索第三章:图形的平移和旋转.二. 探究——经历新知形成过程,体验探究方法探究问题过程(一)自主学习:的图3—1,然后回答书下面我们来看第一节:图形的平移(同学们仔细观擦:P58上提出的问题)(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?传送带上的电视机的形状、大小在运动前后没有发生改变.手扶电梯上的人也没有变化.(2)在传送带上,如果电视机的某一按键向前移动了80 cm,那么电视机的其他部位向什么方向移动?移动了多少距离?(电视机的其他部位也向前移动,也移动了80 cm).(3)如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?(四边形ABCD与四边形EFGH的形状、大小相同)(二)展示交流:1、传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?(学生讨论、发现、归纳结论)(在传送电视机的过程中,电视机的形状、大小没有变化,它的位置发生了变化.手扶电梯上的人也是位置发生了变化,人没有变化.)在电视机生产车间传输带运送电视机的过程中,对同一台电视机而言,不同时间的位置之间是相互平移的关系;人在电梯上两个不同时刻之间的位置关系也是平移那么,什么是平移呢?在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(translation).注意:“将一个图形沿某个方向移动一定的距离”,意味着“图形上的每个点都沿.....同一个方向移动了相同的距离.............”.那大家想一想:平移有什么特征呢?(1.平移不改变图形的形状和大小............2平移改变图形的位置).2、想一想,议一议: (1)在下图中,线段AE、BF、CG、DH有怎样的位置关系? (2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)、(2)两个问题,你能归纳出什么结论?(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.∠ABC=∠EFG、∠BCD=∠FGH∠BAD=∠FEH、∠ADC=∠EHG∠ABC=∠ADC、∠BAD=∠BCD、∠HEF=HGF、∠EFG=∠EHG(3)图形经过平移后,只是位置发生变化,即图形上的每个点都沿同一个方向移动了相同的距离,而线段的长短、角的大小没有发生变化.;经过平移,对应线段,对应角分别相等,对应点的连线是平行的,并且相等.平移的基本性质:1.经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.注意:平移三要素:几何图形——运动方向——运动距离三、应用——经历应用领悟构想,学会思考方法搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)①出示问题[例1](课本59页例1)如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《图形的平移与旋转》期末复习 一.选择题(共16小题)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( )A.1个B.2个C.3个D.4个2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)3.如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC 的面积为2,则△ACE的面积为( )A.2B.4C.8D.164.如下图所示,将△ABC沿着X→Y方向平移一定距离后得到△MNL,则下列结论: ①AM∥BN;②AM=BN;③BC=NL;④∠ACB=∠NML.其中正确的有( )A.1个B.2个C.3个D.4个5.如右上图,线段AB=CD,AB与CD相交于O,且∠AOC=60°,CE是由AB平移所得,则AC+BD 与AB的大小关系是( )A.AC+BD>AB B.AC+BD=AB C.AC+BD≥AB D.无法确定6.下列说法中错误的是( )A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合7.若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点与旋转中心的连线所成的角都是旋转角;④一定存在某条直线,沿该直线折叠后的两个图形能互相重合.正确的是( )A.①②③B.①③④C.①②④D.①②③④8. 已知正方形ABCD的边长为6,E在BC边上运动,G是DE的中点,EG绕E顺时针旋转90°得EF,当点A,C,F在一条直线上时,CE的长为()A. 3B. 2.4C. 2D. 2.39.下列几何图形中,①一条线段;②平面上的两条直线;③等边三角形;④平行四边形;⑤等腰三角形,其中一定是中心对称图形的有( )A.2个B.3个C.4个D.5个10.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为( )A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)11.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )A.35°B.40°C.50°D.65°12.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S 四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是( )A.①②③⑤B.①②③④C.①②③④⑤D.①②③13.如图,Rt△ABC中,∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC 沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为( )A.4B.8C.16D.814.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )A.B.C.D.﹣115.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为( )A.3B.1.5C.2D.16.如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D 旋转,分别交AC于点E,交BC于点F,则下列说法正确的有( )①AE=CF;②EC+CF=;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值.A.①②B.①③C.①②③D.①②③④ 二.填空题(共11小题)17.已知点M(a﹣1,5),现在将平面直角坐标系先向左平移3个单位,之后又向下平移4个单位,得到点N(2,b﹣1),则a= ,b= .18.在如图所示的单位正方形网格中,将△ABC向右平移3个单位后得到△A′B′C′(其中A、B、C的对应点分别为A′、B′、C′),则∠BA′A的度数是 度.19.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B 落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为 .20.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为 .21.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为 m2.22.如图所示,将直角三角形ACB,∠C=90°,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=,阴影部分面积为 .23.直角坐标系中,直线y=2x+3关于原点对称的解析式为 .24.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 .25.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为 .26.若点P(a+b,﹣5)与(1,3a﹣b)关于原点对称,则关于x的二次三项式x2﹣2ax﹣可以分解为 .27.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC 绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 .三.解答题(共7小题)28.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.29.如图1,在△ABC中,∠B=90°,∠A=30°,AC=2.(1)将△ABC绕点C顺时针旋转120°得△A′B′C.①求点B旋转经过的路径长;②求线段BB′的长;(2)如图2,过点C作AC的垂线与AB的延长线交于点D,将△ACD绕点C顺时针旋转90°得△A′CD′.在图2中画出线段AD绕点C旋转所形成的图形(用阴影表示),并求出该图形的面积.30.如图1,在△ABC中,∠BAC=90°,AB=AC,AO⊥BC于点O,F是线段AO上的点(与A、O不重合),∠EAF=90°,AE=AF,连接FE,FC,BF.(1)求证:BE=BF;(2)如图2,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF交AB于点G,交BE 于点K.①判断线段CF与BE的数量关系,并说明理由.②当△BEF为等腰直角三角形时,请直接写出AB:BF的值.31.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转得到△A1B1C,设A1B1与BC相交于点D.(1)如图1,当AB∥CB1时,说明△A1CD是等边三角形;(2)如图2,当点A1正好在边AB上时,判别A1B1与BC的位置关系,并说明理由.32.如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D 点按逆时针方向旋转.(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.33.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP 是矩形;(2)将点B绕点E逆时针旋转.①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形;②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积.34.某数学兴趣小组开展了一次活动,过程如下:如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决;小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2)小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);请你从中任选一种方法进行证明;(3)小敏继续旋转三角板,在探究中得出当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,先请你继续研究:当135°<α<180°时(如图4)等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.。

相关文档
最新文档