立体几何证明题专项练习一
立体几何证明题专项练习
1.如图,正三棱柱ABC—A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1= 2.(1)求证:PA1⊥BC;(2)求证:PB1//平面AC1D.2.在正方体ABCD A BC D中,M,N分别是AB,BC中点.1111(Ⅰ)求证:平面B MN⊥平面BB D D;111(Ⅱ)若在棱DD上有一点P,使BD//平面PMN,求DP与PD的比.111A1D1C1B1D CA M BN3.在直三棱柱ABC-A B C中,AB=AC=AA=3a,B C=2a,D是BC的中点,F是1F B1111C C上一点,且CF=2a.1(1)求证:B F⊥平面ADF;1(2)求三棱锥D-AB F的体积;1(3)试在AA上找一点E,使得BE//平面ADF.1C1A1CDA B4.如图,在四棱锥P-ABCD中,侧面P AD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60︒,N是PB 中点,过A、N、D三点的平面交PC于M.(1)求证:DP//平面ANC P(2)求证:M是PC中点;M(3)求证:平面PBC⊥平面ADMN D CNABEF DC5.已知直角梯形 ABCD 中, AB // CD , AB ⊥ BC , AB = 1, BC = 2, C D = 1 + 3, 过 A 作AE ⊥ CD ,垂足为 E , G 、F 分别 为AD 、CE 的中点,现将 ∆ADE 沿 AE 折叠,使得 DE ⊥ EC .(Ⅰ) 求证: BC ⊥ 面CDE ;(5 分)(Ⅱ) 求证: FG // 面BCD ;(5 分)(Ⅲ)在线段 AE 上找一点 R ,使得面 BDR ⊥ 面 DCB ,并说明理由. (5 分)D·G ·ABGAEFBC6.已知等腰梯形 PDCB 中(如图 1),PB=3,DC=1,PB=BC =2 ,A 为 PB 边上一点,且 P A=1△,将 P AD 沿 AD 折起,使面 P AD ⊥面 ABCD (如图 2).(1)证明:平面 P AD ⊥PCD ;(2)试在棱 PB 上确定一点 M ,使截面 AMC把几何体分成的两部分VPDCMA: VMACB= 2 :1;(3)在 M 满足(2)的情况下,判断直线 PD是否平行面 AMC.7.如图,直三棱柱 ABC -A 1B 1C 1 中,∠ACB =90°,M ,N 分别为 A 1B ,B 1C 1 的中点.(1)求证 BC ∥平面 MNB 1;(2)求证平面 A 1CB ⊥平面 ACC 1A 1.A 1C 1NB 1MCAB8、如图,在四棱锥 P -ABCD 中,PD ⊥平面 ABCD ,四边形 ABCD 是菱形,AC =6,BD =8,E 是 PB 上任意一点,△AEC 面积的最小值是 3.(Ⅰ)求证:AC ⊥DE ;(Ⅱ)求四棱锥 P -ABCD 的体积.PEDFA BC9.如图所示,在直四棱柱 ABCD - A B C D 中,DB=BC, DB ⊥ AC ,点 M 是棱 BB 上一点.1 1 1 11(1)求证: B D // 面 A BD ; 1 11(2)求证: MD ⊥ AC ;(3)试确定点 M 的位置,使得平面 DMC ⊥ 平面 CC D D .111D 1 C 1A 1B 1DAMBC10.如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把∆ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上。
立体几何经典大题(各个类型的典型题目)
1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;F CBAEDA B C D EF 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]立体几何大题训练(3)C15. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ; (2)MN ⊥平面B 1BG .6. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.立体几何大题训练(4)7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G_ M _ D_1_ C_1_ B_1_ A_1_ N_ D _ C_ B _ ABA 1FE、E1分别是棱AD、AA1的中点(1)设F是棱AB的中点,证明:直线EE1∥面FCC1;(2)证明:平面D1AC⊥面BB1C1C。
立体几何证明练习及答案
立体几何证明2018.12.12一、解答题(本大题共8小题,共96.0分)1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.(Ⅰ)求证:OM∥平面PAB;(Ⅱ)平面PBD⊥平面PAC;(Ⅲ)当三棱锥C-PBD的体积等于时,求PA的长.2.如图,已知正方形ABCD和矩形BDFE所在的平面互相垂直,AC交BD于O点,M为EF的中点,BC=,BF=1(Ⅰ)求证:BC⊥AF:(Ⅱ)求证:BM∥平面ACE;(Ⅲ)求二面角B-AF-C的大小.3.如图,在三棱锥P-ABC中,PA⊥AC,PC⊥BC,M为PB的中点,D为AB的中点,且△AMB为正三角形(1)求证:BC⊥平面PAC(2)若PA=2BC,三棱锥P-ABC的体积为1,求点B到平面DCM的距离.4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB;(2)AM⊥平面PCD.5.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.6.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:(1)EF=BC;(2)平面EFD⊥平面ABC.7.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=60°,,PA⊥面ABCD,E为PD的中点.(Ⅰ)求证:AB⊥PC(Ⅱ)若PA=AB=,求三棱锥P-AEC的体积.8.如图,PC⊥平面ABC,DA∥PC,∠ACB=90°,E为PB的中点,AC=AD=BC=1,PC=2.(I)求证:DE∥平面ABC:(II)求证:PD⊥平面BCD;(III)设Q为PB上一点,=λ,试确定λ的值使得二面角Q-CD-B为45°.答案1.【答案】(Ⅰ)证明:在△PBD中,因为O,M分别是BD,PD的中点所以OM∥PB.又OM⊄平面PAB,PB⊂平面PAB,所以OM∥平面PAB.(Ⅱ)证明:因为底面ABCD是菱形,所以BD⊥AC.因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.又AC∩PA=A,所以BD⊥平面PAC.又BD⊂平面PBD,所以平面PBD⊥平面PAC.(Ⅲ)解:因为底面ABCD是菱形,且AB=2,∠BAD=60°,所以S△BCD=.又V C-PBD=V P-BCD,三棱锥P-BCD的高为PA,所以,解得.2.【答案】(Ⅰ)证明:∵正方形ABCD和矩形BDFE所在的平面互相垂直,∴FB⊥平面ABCD,∵BC⊂平面ABCD,∴FB⊥BC,∵ABCD是正方形,∴BC⊥AB,∵AB∩FB=B,∴BC⊥面ABF,∵AF⊂平面ABF,∴BC⊥AF.(Ⅱ)证明:连结EO,∵AC交BD于O点,M为EF的中点,∴BM BO,∴BMEO是平行四边形,∴OE∥BM,又BM不包含于平面ACE,OE⊂平面ACE,∴BM∥平面ACE.(Ⅲ)解:以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,B(,,0),A(,,),F(,,),C(0,,0),,,,,,,=(,,),设平面CAF的法向量,,,则,取x=,得,,,又平面ABF的法向量,,,∴cos<,>==,∴<,>=60°,∴二面角B-AF-C的平面角为60°.3.【答案】解:(1)证明:在正△AMB中,D是AB的中点,所以MD⊥AB. 因为M是PB的中点,D是AB的中点,所以MD∥PA,故PA⊥AB.又PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.因为BC⊂平面ABC,所以PA⊥BC.又PC⊥BC,PA∩PC=P,PA,PC⊂平面PAC,所以BC⊥平面PAC.(2)设AB=x,则,,三棱锥P-ABC的体积为,得x=2,设点B到平面DCM的距离为h.因为△AMB为正三角形,所以AB=MB=2.因为,⊥,所以AC=1.所以△ △ .因为,由(1)知MD∥PA,所以MD⊥DC.在△ABC中,,所以△ .因为V M-BCD=V B-MCD,所以△ △ ℎ,即ℎ.所以ℎ.故点B到平面DCM的距离为.4.【答案】证明:(1)因为M、N分别为PD、PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC.所以MN∥AB,又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,P为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AM⊂平面PAD,所以CD⊥AM.因为CD、PD⊂平面PCD,CD∩PD=D,∴AM⊥平面PCD.5.【答案】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.6.【答案】证明:(1)因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,…(4分)又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以EF=BC.…(7分)(2)因为AD=BD,由(1)知,E为AB的中点,所以AB⊥DE,又∠ABC=90°,即AB⊥BC,由(1)知,EF∥BC,所以AB⊥EF,又DE∩EF=E,DE,EF⊂平面EFD,所以AB⊥平面EFD,…(12分)又AB⊂平面ABC,故平面EFD⊥平面ABC.…(14分)7.【答案】证明:(1)因为PA⊥面ABCD,又AB⊂平面ABCD,所以AB⊥PA,又因为∠ABC=∠ADC=60°,,在△ABC中,由余弦定理有:AC2=AB2+BC2-2AB•BC•cos60°=BC2-AB2所以AB2+AC2=BC2,即:AB⊥AC,又因为PA∩AC=A,又PA⊂平面PAC,AC⊂平面PAC,所以AB⊥平面PAC,又PC⊂平面PAC,所以AB⊥PC.解:(2)由已知有:,所以PA=AB=2,AD=4,因为PA⊥面ABCD且E为PD的中点,所以E点到平面ADC的距离为,所以三棱锥P-AEC的体积:V P-AEC=V D-AEC=V E-ADC=△=×.8.【答案】(I)证明:建立如图所示的空间直角坐标系,则B(0,1,0),D(1,0,1),P(0,0,2),E,,,,,.可知,,为平面ABC的一个法向量,∵,∴⊥.∵DE⊄平面ABC,∴DE∥平面ABC.(II)证明:∵,,,=(0,1,0),=(1,0,1).∴=0,.∴PD⊥BC,PD⊥CD.∵BC∩DC=C,∴PD⊥平面BCD.(III)解:由(II)可知:=(1,0,-1)为平面BCD的法向量,∵,,,,,,λ∈(0,1).∴Q(0,λ,-2λ+2).设平面QCD的法向量为,,,由,得,令z=1,则x=-1,,∴,,,λ∈(0,1).∴cos45°===,解得.。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
立体几何证明题精选
立体几何证明题精选1.在多面体中,矩形ABB1A1和ACC1A1,AC垂直于BC。
证明BC垂直于平面ACC1A1,同时在线XXX上存在一点M,使得DE与平面A1MC平行。
2.在三棱锥P-ABC中,D,E,F分别是棱PC,AC,AB 的中点。
已知PA垂直于AC,PA=6,BC=8,DF=5.证明PA 平行于平面DEF,同时平面BDE垂直于平面ABC。
3.在四棱锥P-ABCD中,AP垂直于平面PCD,AD平行于BC,AB和BC分别为线段AD和PC的中点。
证明AP平行于平面BEF,同时BE垂直于平面PAC。
4.在四棱锥P-ABCD中,底面ABCD是平行四边形,BA=BD=BC=1,AD=2,PA=PD=√5,E和F分别是棱AD和PC的中点。
证明EF平行于平面PAB,同时平面PBC垂直于平面ABCD。
5.在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB垂直于BC,AA1=AC=2,BC=1,E和F分别是A1C1和BC的中点。
证明平面ABE垂直于平面B1BCC1,C1F平行于平面ABE,同时求三棱锥E-ABC的体积。
6.在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,E为PD的中点。
证明PB平行于平面AEC,同时若AP=1,AD=3,则三棱锥P-ABD的体积为2/3,求A到平面PBC的距离。
7.在四棱锥中,平面ACD和平面ABD的交线为直线L,平面ABC和平面ACD的交线为直线M,平面ABC和平面ABD的交线为直线N,P为直线L上一点,Q为直线M上一点,R为直线N上一点,且PQR平行于平面ABCD,证明PR 平行于直线BD,同时求四面体PQRD的体积。
8.在长方体ABCD-A1B1C1D1中,底面A1B1C1D1为正方形,O为BD的中点,E为棱AA1上任意一点。
证明BD垂直于EC1,同时若AB=2,AE=2,OE垂直于EC1,则AA1的长度为2√2.。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
立体几何专题复习(自己精心整理)
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
高中立体几何证明题
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
立体几何练习题
立体几何题型一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明PA //平面EDB ;(2)证明PB ⊥平面EFD例2.四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB ==(Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. 变式:已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA =AD =DC =21AB =1,M 是PB 的中点.(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.ACDBCASOE A DCBNM EP题型二、空间角与距离例3.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的 菱形,4A B C π∠=, OA ABCD ⊥底面, 2O A =,M 为O A 的中点。
(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。
例4. 如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2 (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面的距离. 变式:如图,正三棱锥O A B C -的三条侧棱O A 、O B 、O C 两两垂直,且长度均为2.E 、F 分别是A B 、A C 的中点,H 是E F 的中点,过E F 的平面与侧棱O A 、O B 、O C 或其延长线分别相交于1A 、1B 、1C ,已知132O A =.(1)求证:11B C ⊥面O A H ; (2)求二面角111O A BC --的大小.1C 1A题型三、探索性问题例5.在四棱锥P-ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证://EF 平面PAD ;(2)当平面PCD 与平面ABCD 成多大二面角时,⊥EF 平面PCD ?变式:如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD ,BD =CD =1,另一个侧面是正三角形 (1)求证:AD ⊥BC(2)求二面角B -AC -D 的大小(3)在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由.DC题型四、折叠、展开问题例6.已知正方形A B C D E 、F 分别是A B 、C D 的中点,将AD E 沿D E 折起,如图所示,记二面角A D E C --的大小为(0)θθπ<< (1) 证明//B F 平面ADE ;(2)若A C D 为正三角形,试判断点A 在平面B C D E 内的射影G 是否在直线E F 上,证明你的结论,并求角θ的余弦值。
立体几何证明练习册必刷题练习册
立体几何证明练习册必刷题练习册立体几何是数学中的一个重要分支,它涉及到空间中物体的形状、大小和位置关系。
以下是一些立体几何证明的练习题,旨在帮助学生加深对立体几何概念的理解和应用。
练习一:证明长方体的对角线问题:在长方体ABCD-A'B'C'D'中,证明对角线AC'的长度等于\(\sqrt{AB^2 + BC^2 + AA'^2}\)。
证明:首先,我们设长方体的边长为AB=a, BC=b, AA'=c。
根据勾股定理,我们可以得到对角线AC的长度为\(\sqrt{a^2 + b^2}\),对角线AA'的长度为c。
由于AC'是AC和AA'的合成线,我们可以应用勾股定理,得出AC'的长度为\(\sqrt{(\sqrt{a^2 + b^2})^2 + c^2} =\sqrt{a^2 + b^2 + c^2}\)。
练习二:证明正四面体的体积问题:在正四面体ABCD中,已知边长为a,求四面体的体积。
证明:正四面体的底面是一个等边三角形,设其边长为a。
底面的高为\(h = \frac{\sqrt{3}}{2}a\)。
四面体的高是垂直于底面的线段,设其为h'。
由于正四面体的对称性,我们可以得出h' = h。
四面体的体积公式为V = \(\frac{1}{3} \times \text{底面积} \times\text{高}\)。
代入数值,得到V = \(\frac{1}{3} \times\frac{\sqrt{3}}{4}a^2 \times \frac{\sqrt{3}}{2}a =\frac{\sqrt{3}}{12}a^3\)。
练习三:证明球体的表面积和体积问题:给定一个半径为r的球体,证明其表面积为\(4\pi r^2\),体积为\(\frac{4}{3}\pi r^3\)。
证明:球体的表面积可以通过将球体切割成无数个微小的三角形面元来计算。
2019-2020年高考数学大题专题练习——立体几何(一)
2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。
立体几何证明题常见题型01
A B CDP EF立体几何证明题常见题型1、如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,1==DC PD ,E 是PC 的中点,作PB EF ⊥交PB 于点F .(I) 证明: PA ∥平面EDB ;(II) 证明:PB ⊥平面EFD ;(III) 求三棱锥DEF P -的体积.2、如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。
(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。
3、如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//;(Ⅲ)求三棱锥BGF C -的体积.4、如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
EF//AC ,AB=2,CE=EF=1 (Ⅰ)求证:AF//平面BDE ; (Ⅱ)求证:CF ⊥平面BDF;5、在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ) 求证:平面PDC EFG 平面⊥;ABCDHPABCDEFA BCDEFG(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.6、如图所示,矩形ABCD 中,AD ⊥平面ABE ,AE=EB=BC=2,F 为CE 上的点,且BF ⊥平面ACE (1)求证:AE ⊥平面BCE ;(2)求证:AE ∥平面BFD ; (3)求三棱锥C-BGF 的体积。
7、在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,且AC =BC =5,SB =55。
立体几何证明题练习
立体几何专题训练1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形,且∠ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点.(1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC .2.如图,等腰梯形ABEF 中,//AB EF ,AB =2,1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直.(Ⅰ)求证:AF ⊥平面CBF ;(Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ;(Ⅲ)求三棱锥C BEF -的体积.10如图所示,在直三棱柱111C B A ABC -中,⊥=11,AC BB AB 平面D BD A ,1为AC 的中点. (Ⅰ)求证://1C B 平面BD A 1;(Ⅱ)求证:⊥11C B 平面11A ABB ;(Ⅲ)设E 是1CC 上一点,试确定E 的位置使平面⊥BD A 1平面BDE ,并说明理由.12如图,在四棱锥P ABCD -中,PA ⊥底面A B C D ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(1)证明CD AE ⊥; (2)证明PD ⊥平面ABE ;14已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB =2,F 为CD 的中点.DAB CPEMBCDE FMO C 1B 1A 1DCBAACDPE(1)求证:AF ⊥平面CDE ; (2)求证:AF ∥平面BCE ;(3)求四棱锥C -ABED 的体积.15如图,菱形ABCD 所在平面与矩形ACEF 所在平面互相垂直,已知BD=2AF ,且点M 是线段EF 的中点.(1)求证:AM ∥平面BDE ; (2)求证:平面DEF ⊥平面BEF.18在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点,(1)求证:AC ⊥BC 1;(2)求证:AC 1//平面CDB 1; (3)求异面直线 AC 1与 B 1C 所成角的余弦值.BCDEFM19、如图所示,正方形与直角梯形所在平面互相垂直,,,.(1)求证:平面;(2)求四面体的体积.29、如图,平面平面,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,,.求证:(1)平面;(2)∥平面.33、已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点。
立体几何—解答题专项练习
立体几何—解答题专项练习一.解答题(共40小题)1.如图,在三棱锥P﹣ABC中,PA⊥PC,AB=PB,E,F分别是PA,AC的中点.求证:(1)EF∥平面PBC;(2)平面BEF⊥平面PAB.2.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E 是PC的中点.(1)证明:PA∥平面EDB;(2)证明:BC⊥DE.3.如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.4.如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求证:(1)平面BDD1⊥平面PAC;(2)直线PB1⊥平面PAC.5.如图,在正方体ABCD﹣A1B1C1D1中,E是AA1的中点,求证:(Ⅰ)A1C∥平面BDE;(Ⅱ)平面A1AC⊥平面BDE.6.如图,四棱锥P﹣ABCD,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点(1)证明:PB∥平面ACE(2)(文)证明:CD⊥平面PAD(3)(理)证明:平面PCD⊥平面PAD.7.如图所示,已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆O的圆周上异于A、B的任意一点,且PA=AC,点E是线段PC的中点.求证:AE⊥平面PBC.8.如图,ABCD是正方形,O是该正方体的中心,P是平面ABCD外一点,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥平面PAC.9.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在上,且OM∥AC.(Ⅰ)求证:平面MOE∥平面PAC;(Ⅱ)求证:平面PAC⊥平面PCB.10.如图,在直三棱柱ABC﹣A1B1C1中,点M、N分别为线段A1B、AC1的中点.(1)求证:MN∥平面BB1C1C;(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.11.如图,在正方体ABCD﹣A1B1C1D1中,AB1,BC1上分别有两点E,F,且= =,求证:EF∥平面ABCD.12.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.13.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.14.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.15.直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AC⊥BC.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)当BC的长为多少时,直线A1B与平面ABC1所成角的正弦值为.16.如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.17.已知△ABC中,AB⊥BC,BC=2,AB=4,分别取边AB,AC的中点D,E,将△ADE沿DE折起到△AD1E的位置,使A1D⊥BD,设点M为棱A1D的中点,点P为A1B的中点,棱BC上的点N满足BN=3NC.(Ⅰ)求证:MN∥平面A1EC;(Ⅱ)求三棱锥N﹣PCE的体积.18.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.19.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.20.如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.21.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.22.如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.23.已知等腰直角△S′AB,S′A=AB=4,S′A⊥AB,C,D分别为S′B,S′A的中点,将△S′CD沿CD折到△SCD的位置,SA=2,取线段SB的中点为E.(I)求证:CE∥平面SAD;(Ⅱ)求二面角A﹣EC﹣B的余弦值.24.直三棱柱ABC﹣A1B1C1中,AC=BC=AA1=4,AC⊥BC.(Ⅰ)证明:AC1⊥平面A1BC;(Ⅱ)设四边形AA1C1C对角线的交点为D,求三棱锥C1﹣A1BD的体积.25.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.26.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.27.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.28.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.29.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.30.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.31.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.32.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.33.如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC 内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.34.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.35.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.36.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.37.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.38.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.39.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.40.如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.立体几何—解答题专项练习参考答案一.解答题(共40小题)1-12.略;13.;14.;15.4;16.;17.V N﹣PEC=V P﹣NCE= =;18.;19.存在,中点;20.;21.1;22.;23.﹣;24.;25.;26.4;27.;28.6+2;29.1;30.;31.;32.;33.;34.﹣;35.3+2;36.;37.;38.;39.1;40.;sin∠DFE=。
几何证明练习题及答案
几何证明练习题及答案题目1:已知三角形ABC中,AB=AC,点D在BC上,且AD垂直于BC。
证明:三角形ABD与三角形ACD全等。
答案:由于AB=AC,所以三角形ABC是等腰三角形。
根据等腰三角形的性质,角BAD等于角CAD。
又因为AD垂直于BC,所以角ADB和角ADC都是直角。
因此,我们有:- AD=AD(公共边)- ∠BAD=∠CAD(等腰三角形的性质)- ∠ADB=∠ADC=90°(直角)根据SAS(边角边)全等条件,三角形ABD与三角形ACD全等。
题目2:已知三角形ABC中,AB=AC,点E在AB上,点F在AC上,且BE=CF。
证明:三角形AEF是等腰三角形。
答案:由于AB=AC,三角形ABC是等腰三角形。
根据等腰三角形的性质,角ABC等于角ACB。
又因为BE=CF,我们可以得出:- AB=AC(已知)- BE=CF(已知)- ∠ABC=∠ACB(等腰三角形的性质)根据SSS(边边边)全等条件,三角形BEC与三角形CFB全等。
因此,角BEC等于角CFB。
由于角AEF是三角形AEF的外角,根据外角定理,角AEF等于角BEC加角CFB。
因此:- ∠AEF=∠BEC+∠CFB- ∠AEF=2∠BEC(因为∠BEC=∠CFB)由于角AEF是三角形AEF的两个相等的角,所以三角形AEF是等腰三角形。
题目3:已知四边形ABCD中,AB平行于CD,BC平行于AD,且AB=CD。
证明:四边形ABCD是平行四边形。
答案:由于AB平行于CD且BC平行于AD,根据平行四边形的定义,我们可以推断出AD也平行于BC。
因此,四边形ABCD的对边都是平行的。
又因为AB=CD,根据平行四边形的判定条件,我们可以得出四边形ABCD是平行四边形。
题目4:已知三角形ABC中,角A等于角C,点D在BC上,且AD垂直于BC。
证明:三角形ABD与三角形CBD是等腰三角形。
答案:由于角A等于角C,根据三角形内角和定理,我们可以得出角A+角C+角B=180°。
(完整版)高考文科立体几何证明专题
立体几何专题1.如图 4,在边长为 1 的等边三角形 ABC 中, D , E 分别是 AB, AC 边上的点, AD AE ,F 是 BC 的中点, AF 与 DE 交于点G ,将 ABF 沿 AF 折起,获取如图5 所示的三棱锥A BCF ,其中 BC2 .2(1) 证明: DE // 平面 BCF ;(2) 证明: CF 平面 ABF ;(3) 2时,求三棱锥 FDEG 的体积 V F DEG .当 AD3ADGEBFC图 4【剖析】( 1)在等边三角形ABC 中, ADAEAD AE ,A BCF 中DB在折叠后的三棱锥EC也成立, DE / / BC ,Q DE平面 BCF ,BC 平面 BCF ,DE / / 平面 BCF ;AGEDFCB图 5(2 )在等边三角形ABC 中, F 是 BC 的中点,所以 AFBC 1 ①, BF CF.2Q 在三棱锥 ABCF 中, BC2, BC 2 BF 2 CF 2 CF BF ②2Q BF CF F CF 平面 ABF ;( )由( )可知 GE / /CF ,结合( 2)可得 GE平面 DFG.3 1VF DEGV E1 11 1 1 1 3 13 DFG3 DG FG GF2 3 3 2332423【剖析】 这个题是入门级的题,除了立体几何的内容, 还观察了平行线分线段成比率这个平面几何的内容 .2.如图 5 所示,在四棱锥P-ABCD 中,AB平面PAD,AB CD,PD=AD,E是PB的中点,F是 DC 上的点且 DF= 1AB,PH 为PAD 中 AD 边上的高.2(1)证明: PH 平面 ABCD ;(2)若PH=1,AD= 2 ,FC=1,求三棱锥E-BCF 的体积;(3)证明:EF平面PAB.解: (1)PH 为PAD中的高PH AD又 AB面PAD,PH平面PADPH ABAB AD A所以PH平面ABCD(2):过 B 点做 BG BG CD ,垂足为 G ;连接 HB, 取 HB 中点 M ,连接 EM ,则 EM 是BPH 的中位线由(1)知: PH平面ABCDEM平面 ABCDEM平面 BCF即 EM 为三棱锥E - BCF底面上的高EM=1PH1 22SBCF 1FC ? BG =11 22 222 1V E BCF? S BCF ? EM1 2 13 2 2212.(3):取 AB 中点 N, PA 中点 Q,连接 EN , FN ,EQ, DQ AB // CD , CD平面PADAB平面PAD,PA平面PADAB PA又EN 是 PAB 的中位线EN // PAAB EN1又DF AB四边形NADF是距形AB FNEN FN NAB平面NEF又 EF平面NEFEF AB四边形NADF是距形AB NF 3、如图,已知三棱锥 A —BPC 中,AP ⊥ PC , AC ⊥ BC ,M为 AB 中点, D 为 PB 中点,且△ PMB 为正三角形。
立体几何证明题目
立体几何证明题目一、直线与平面平行的证明题目1:在正方体ABCD - A_1B_1C_1D_1中,E为DD_1的中点,求证:BD_1∥平面AEC。
解析:1. 连接BD交AC于O点。
- 在正方体中,底面ABCD是正方形,根据正方形对角线的性质,对角线互相平分,所以O为BD的中点。
2. 连接OE。
- 因为E为DD_1的中点,在三角形BD_1D中,O是BD中点,E是DD_1中点,根据三角形中位线定理,中位线平行于第三边且等于第三边的一半,所以OE∥ BD_1。
3. 又因为OE⊂平面AEC,BD_1not⊂平面AEC。
- 根据直线与平面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,所以BD_1∥平面AEC。
二、平面与平面平行的证明题目2:已知四棱锥P - ABCD中,底面ABCD是平行四边形,点M,N分别在PA,BD上,且PM:MA = BN:ND。
求证:平面MNQ∥平面PBC(设AC∩ BD = Q,连接MQ、NQ)。
解析:1. 因为四边形ABCD是平行四边形,AC∩ BD = Q,所以AQ = QC,BQ=QD。
- 由于PM:MA = BN:ND,在三角形PAQ中,(PM)/(MA)=(BN)/(ND),可得MQ∥ PC。
- 理由是:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2. 在三角形ABD中,(BN)/(ND)=(PM)/(MA),可得NQ∥ AD。
- 又因为底面ABCD是平行四边形,AD∥ BC,所以NQ∥ BC。
3. 因为MQ∥ PC,MQnot⊂平面PBC,PC⊂平面PBC,根据直线与平面平行的判定定理,可得MQ∥平面PBC。
- 同理,NQ∥ BC,NQnot⊂平面PBC,BC⊂平面PBC,可得NQ∥平面PBC。
4. 又因为MQ∩ NQ = Q,MQ⊂平面MNQ,NQ⊂平面MNQ。
- 根据平面与平面平行的判定定理,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,所以平面MNQ∥平面PBC。
(完整)立体几何证明基础题
立体几何证明基础题一.解答题(共28小题)1.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.2.如图,在三棱锥P﹣ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.(1)求证DE∥PA(2)求证:DE∥平面PAC;(3)求证:AB⊥PB.3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.4.如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.(Ⅰ)证明:BC⊥平面AMN;(Ⅱ)求三棱锥N﹣AMC的体积;(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.5.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.(1)求四棱锥P﹣ABCD的体积;(2)如果E是PA的中点,求证:PC∥平面BDE;(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.6.已知四棱锥A ﹣BCDE ,其中AB=BC=AC=BE=1,CD=2,CD ⊥面ABC,BE ∥CD,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:平面ADE ⊥平面ACD ; (Ⅲ)求四棱锥A ﹣BCDE 的体积.7.如图,四棱柱ABCD ﹣A 1B 1C 1D 1中,平面A 1ABB 1⊥平面ABCD ,且∠ABC=.(1)求证:BC ∥平面AB 1C 1;(2)求证:平面A 1ABB 1⊥平面AB 1C 1.8.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.(Ⅰ)求证:GF∥底面ABC;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.10.已知直三棱柱ABC ﹣A 1B 1C 1的底面△ABC 中,∠C=90°,BC=,BB 1=2,O 是AB 1的中点,D是AC 的中点,M 是CC 1的中点, (1)证明:OD ∥平面BB 1C 1C ; (2)试证:BM ⊥AB 1.11.如图,在四棱锥P ﹣ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF ∥面PAD .12.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是AA 1的中点,求证: (Ⅰ)A 1C ∥平面BDE ; (Ⅱ)平面A 1AC ⊥平面BDE .13.如图,四棱锥P ﹣ABCD 中,底面ABCD 为矩形,E 为PD 的中点. (1)求证:PB ∥平面AEC ;(2)若PA ⊥平面ABCD ,PA=AD ,求证:平面AEC ⊥平面PCD .14.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证: (1)PA ∥平面BDE ; (2)BD ⊥平面PAC .15.如图,正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长AB=1,侧棱长AA 1=2. (Ⅰ)求正四棱柱ABCD ﹣A 1B 1C 1D 1的表面积; (Ⅱ)证明:AC ⊥平面BDD 1B 1.16.已知正方体ABCD ﹣A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证: (1)C 1O ∥面AB 1D 1; (2)A 1C ⊥面AB 1D 1.17.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,E,F,N 分别为A 1B 1,B 1C 1,C 1D 1,D 1A 1的中点,求证: (1)E ,F ,D ,B 四点共面; (2)面AMN ∥平面EFDB .18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 是DD 1的中点. 求证:(1)直线BD 1∥平面PAC(2)①求异面直线PC 与AA 1所成的角. ②平面PAC ⊥平面BDD 1.19.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.(Ⅰ)求证:AB1⊥平面A1CE;(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.20.如图,在正方体ABCD﹣A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点.求证:平面D1EF∥平面BDG.21.(文科)如图,正方体ABCD﹣A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.22.如图,在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.23.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PC.24.如图所示,在四棱锥P﹣ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=.(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD.25.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB ⊥BC,D 为AC 的中点,A 1A=AB=2. (1)求证:AB 1∥平面BC 1D ;(2)过点B 作BE ⊥AC 于点E,求证:直线BE ⊥平面AA 1C 1C (3)若四棱锥B ﹣AA 1C 1D 的体积为3,求BC 的长度.26.如图,已知四棱锥P ﹣ABCD 的底面ABCD 是菱形,PA ⊥平面ABCD ,点F 为PC 的中点. (1)求证:PA ∥平面BDF ; (2)求证:PC ⊥BD .27.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是CC 1的中点. (1)求证:AC 1⊥BD . (2)求证:AC 1∥平面BDE .28.已知空间四边形ABCD (如图所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的(完整)立体几何证明基础题点,且CG=BC,CH=DC.求证:①E、F、G、H四点共面;②三直线FH、EG、AC共点.立体几何证明基础题参考答案与试题解析一.解答题(共28小题)1.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.【分析】(1)推导出GF∥PB,由此能证明PB∥平面EFG.(2)推导出EF⊥BC,GF⊥BC,从而BC⊥平面EFG,由此能证明BC⊥EG.【解答】证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.2.如图,在三棱锥P﹣ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.(1)求证DE∥PA(2)求证:DE∥平面PAC;(3)求证:AB⊥PB.【分析】(1)由D,E分别是AB,PB的中点,能证明DE∥PA.(2)由PA⊂平面PAC,DE∥PA,且DE⊄平面PAC,能证明DE∥平面PAC.(3)推导出AB⊥PC,AB⊥BC,得AB⊥平面PBC,由此能证明AB⊥PB.【解答】证明:(1)因为D,E分别是AB,PB的中点,所以DE∥PA.(2)因为PA⊂平面PAC,DE∥PA,且DE⊄平面PAC,所以DE∥平面PAC.(3)因为PC⊥平面ABC,且AB⊂平面ABC,所以AB⊥PC.又因为AB⊥BC,且PC∩BC=C.所以AB⊥平面PBC.又因为PB⊂平面PBC,所以AB⊥PB.【点评】本题考查线线平行、线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.【分析】AE中点为M,取AC中点为N,通过证明四边形MNBD是平行四边形得出DM∥BN,从而可得DM∥平面ABC.【解答】解:取AE中点为M,取AC中点为N,连结MD,MN,NB,在△ABC中,∵M,N分别是边AC,AE的中点,∴CE=2MN且MN∥CE,又∵CE=2BD且BD∥CE,∴MN∥BD且MN=BD,∴四边形BDMN是平行四边形.∴DM∥BN,又∵BN⊂平面ABC,DM⊄平面ABC,∴DM∥平面ABC.故M为AE的中点时,DM∥平面ABC.【点评】本题考查了线面平行的判定,属于基础题.4.如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.(Ⅰ)证明:BC⊥平面AMN;(Ⅱ)求三棱锥N﹣AMC的体积;(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.【分析】(I)要证线与面垂直,只要证明线与面上的两条相交线垂直,找面上的两条线,根据四边形是一个菱形,从菱形出发找到一条,再从PA⊥平面ABCD,得到结论.(II)要求三棱锥的体积,首先根据所给的体积确定用哪一个面做底面,会使得计算简单一些,选择三角形AMC,做出底面面积,利用体积公式得到结果.(III)对于这种是否存在的问题,首先要观察出结论,再进行证明,根据线面平行的判定定理,利用中位线确定线与线平行,得到结论.【解答】解:(Ⅰ)证明:∵ABCD为菱形,∴AB=BC又∠ABC=60°,∴AB=BC=AC,又M为BC中点,∴BC⊥AM而PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC 又PA∩AM=A,∴BC⊥平面AMN(II)∵又PA⊥底面ABCD,PA=2,∴AN=1•AN∴三棱锥N﹣AMC的体积S△AMC=(III)存在点E,取PD中点E,连接NE,EC,AE,∵N,E分别为PA,PD中点,∴又在菱形ABCD中,∴,即MCEN是平行四边形∴NM∥EC,又EC⊂平面ACE,NM⊄平面ACE∴MN∥平面ACE,即在PD上存在一点E,使得NM∥平面ACE,此时.【点评】本题考查空间中直线与平面之间的位置关系,是一个非常适合作为高考题目出现的问题,题目包含的知识点比较全面,重点突出,是一个好题.5.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.(1)求四棱锥P﹣ABCD的体积;(2)如果E是PA的中点,求证:PC∥平面BDE;(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.【分析】(1)利用四棱锥的体积计算公式即可;(2)利用三角形的中位线定理和线面平行的判定定理即可证明;(3)利用线面垂直的判定和性质即可证明.【解答】解:(1)∵PA⊥底面ABCD,∴PA为此四棱锥底面上的高.∴V==.四棱锥P﹣ABCD(2)连接AC交BD于O,连接OE.∵四边形ABCD是正方形,∴AO=OC,又∵AE=EP,∴OE∥PC.又∵PC⊄平面BDE,OE⊂平面BDE.∴PC∥平面BDE.(3)不论点E在侧棱PA的任何位置,都有BD⊥CE.证明:∵四边形ABCD是正方形,∴BD⊥AC.∵PA⊥底面ABCD,∴PA⊥BD.又∵PA∩AC=A,∴BD⊥平面PAC.∵CE⊂平面PAC.∴BD⊥CE.【点评】熟练掌握线面平行、垂直的判定和性质定理及四棱锥的体积计算公式是解题的关键.6.已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.(Ⅰ)求证:EF∥面ABC;(Ⅱ)求证:平面ADE⊥平面ACD;(Ⅲ)求四棱锥A﹣BCDE的体积.【分析】(Ⅰ)取AC中点G,连接FG、BG,根据三角形中位线定理,得到四边形FGBE为平行四边形,进而得到EF∥BG,再结合线面平行的判定定理得到EF∥面ABC;(Ⅱ)根据已知中△ABC为等边三角形,G为AC的中点,DC⊥面ABC得到BG⊥AC,DC⊥BG,根据线面垂直的判定定理得到BG⊥面ADC,则EF⊥面ADC,再由面面垂直的判定定理,可得面ADE⊥面ACD;(Ⅲ)方法一:四棱锥四棱锥A﹣BCDE分为两个三棱锥E﹣ABC和E﹣ADC,分别求出三棱锥E﹣ABC和E﹣ADC的体积,即可得到四棱锥A﹣BCDE的体积.的高,求出底面面积和方法二:取BC的中点为O,连接AO,可证AO⊥平面BCDE,即AO为VA﹣BCDE高代入棱锥体积公式即可求出四棱锥A﹣BCDE的体积.【解答】证明:(Ⅰ)取AC中点G,连接FG、BG,∵F,G分别是AD,AC的中点∴FG∥CD,且FG=DC=1.∵BE∥CD∴FG与BE平行且相等∴EF∥BG.EF⊄面ABC,BG⊂面ABC∴EF∥面ABC…(4分)(Ⅱ)∵△ABC为等边三角形∴BG⊥AC又∵DC ⊥面ABC ,BG ⊂面ABC ∴DC ⊥BG ∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …(6分) ∵EF ∥BG ∴EF ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …(8分) 解:(Ⅲ)方法一:连接EC ,该四棱锥分为两个三棱锥E ﹣ABC 和E ﹣ADC ..…(12分)方法二:取BC 的中点为O ,连接AO,则AO ⊥BC ,又CD ⊥平面ABC , ∴CD ⊥AO ,BC ∩CD=C ,∴AO ⊥平面BCDE , ∴AO 为V A ﹣BCDE 的高,,∴.【点评】本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,棱锥的体积,其中熟练掌握空间线面平行或垂直的判定、性质、定义、几何特征是解答此类问题的关键.7.如图,四棱柱ABCD ﹣A 1B 1C 1D 1中,平面A 1ABB 1⊥平面ABCD,且∠ABC=.(1)求证:BC ∥平面AB 1C 1;(2)求证:平面A 1ABB 1⊥平面AB 1C 1.【分析】(1)根据BC ∥B 1C 1,且B 1C 1⊂平面AB 1C 1,BC ⊄平面AB 1C 1,依据线面平行的判定定理推断出BC ∥平面AB 1C 1.(2)平面A 1ABB 1⊥平面ABCD ,平面ABCD ∥平面A 1B 1C 1D 1,推断出平面A 1ABB 1⊥平面A 1B 1C 1D 1,又平面A 1ABB 1∩平面A 1B 1C 1D 1=A 1B 1,A 1B 1⊥C 1B 1,C 1B 1⊂平面AB 1C 1,根据面面垂直的性质推断出平面A 1ABB 1⊥平面AB 1C 1.【解答】证明:(1)∵BC ∥B 1C 1,且B 1C 1⊂平面AB 1C 1,BC ⊄平面AB 1C 1, ∴BC ∥平面AB 1C 1.(2)∵平面A 1ABB 1⊥平面ABCD ,平面ABCD ∥平面A 1B 1C 1D 1, ∴平面A 1ABB 1⊥平面A 1B 1C 1D 1,∵平面A 1ABB 1∩平面A 1B 1C 1D 1=A 1B 1,A 1B 1⊥C 1B 1, ∴C 1B 1⊂平面AB 1C 1,∴平面A 1ABB 1⊥平面AB 1C 1.【点评】本题主要考查了线面平行和面面垂直的判定定理.注重了对基础知识的考查.8.如图,三角形ABC 中,AC=BC=,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G 、F 分别是EC 、BD 的中点. (Ⅰ)求证:GF ∥底面ABC ;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.【分析】(1)证法一:证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如取BE的中点H,连接HF、GH,根据中位线定理易证得:平面HGF∥平面ABC,进一步可得:GF∥平面ABC.证法二:根据直线与平面平行的判定定理可知:如果不在一个平面内的一条直线和平面内的一条直线平行,那么直线和这个平面平行.故只需在平面ABC中找到与GF平行的直线即可.因为G、F分别是EC、BD的中点,故平移是可以通过构造特殊的四边形、三角形来实现.证法三:根据直线与平面平行的判定定理可知:如果不在一个平面内的一条直线和平面内的一条直线平行,那么直线和这个平面平行.故只需在平面ABC中找到与GF平行的直线即可.因为G、F分别是EC、BD的中点,所以构造中位线是常用的找到平行直线的方法.(2)证明直线与平面垂直,关键要找到两条相交直线与之都垂直.有时候题目中没有现成的直线与直线垂直,需要我们先通过直线与平面垂直或者平面与平面垂直去转化一下.由第一问可知:GF∥平面ABC,而平面ABED⊥平面ABC,所以BE⊥平面ABC,所以BE⊥AC;又由勾股定理可以证明:AC⊥BC.(3)解决棱锥、棱柱求体积的问题,关键在于找到合适的高与对应的底面,切忌不审图形,盲目求解;根据平面与平面垂直的性质定理可知:CN⊥平面ABED,而ABED是边长为1的正方形,进一步即可以求得体积.【解答】解:(I)证法一:取BE的中点H,连接HF、GH,(如图)∵G、F分别是EC和BD的中点∴HG∥BC,HF∥DE,(2分)又∵ADEB为正方形∴DE∥AB,从而HF∥AB∴HF∥平面ABC,HG∥平面ABC,HF∩HG=H,∴平面HGF∥平面ABC∴GF∥平面ABC(5分)证法二:取BC的中点M,AB的中点N连接GM、FN、MN(如图)∵G、F分别是EC和BD的中点∴(2分)又∵ADEB为正方形∴BE∥AD,BE=AD∴GM∥NF且GM=NF∴MNFG为平行四边形∴GF∥MN,又MN⊂平面ABC,∴GF∥平面ABC(5分)证法三:连接AE,∵ADEB为正方形,∴AE∩BD=F,且F是AE中点,(2分)∴GF∥AC,又AC⊂平面ABC,∴GF∥平面ABC(5分)(Ⅱ)∵ADEB为正方形,∴EB⊥AB,∴GF∥平面ABC(5分)又∵平面ABED⊥平面ABC,∴BE⊥平面ABC(7分)∴BE⊥AC又∵CA2+CB2=AB2∴AC⊥BC,∵BC∩BE=B,∴AC⊥平面BCE(9分)(Ⅲ)连接CN,因为AC=BC,∴CN⊥AB,(10分)又平面ABED⊥平面ABC,CN⊂平面ABC,∴CN⊥平面ABED.(11分)∵三角形ABC是等腰直角三角形,∴,(12分)∵C﹣ABED是四棱锥,==(14分)∴VC﹣ABED【点评】本小题主要考查空间线面关系、面面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以VP﹣BMQ =VA﹣BMQ=VM﹣ABQ,取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以VP﹣BMQ =VA﹣BMQ=VM﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.10.已知直三棱柱ABC ﹣A 1B 1C 1的底面△ABC 中,∠C=90°,BC=,BB 1=2,O 是AB 1的中点,D 是AC 的中点,M 是CC 1的中点, (1)证明:OD ∥平面BB 1C 1C ; (2)试证:BM ⊥AB 1.【分析】(1)连B 1C 利用中位线的性质推断出OD ∥B 1C ,进而根据线面平行的判定定理证明出OD ∥平面BB 1C 1C .(2)先利用线面垂直的性质判断出CC 1⊥AC ,进而根据线面垂直的判定定理证明出AC ⊥平面BB 1C 1C ,进而可知AC ⊥MB .利用证明△BCD ∽△B 1BC,推断出∠CBM=∠BB 1C ,推断出BM ⊥B 1C ,最后利用线面垂直的判定定理证明出BM ⊥平面AB 1C ,进而可知BM ⊥AB 1. 【解答】证明:(1)连B 1C ,∵O 为AB 1中点,D 为AC 中点, ∴OD ∥B 1C ,又B 1C ⊂平面BB 1C 1C,OD ⊄平面BB 1C 1C,∴OD ∥平面BB 1C 1C . (2)连接B 1C ,∵直三棱柱ABC ﹣A 1B 1C 1,∴CC 1⊥平面ABC AC ⊂平面ABC, ∴CC 1⊥AC,又AC ⊥BC ,CC 1,BC ⊂平面BB 1C 1C , ∴AC ⊥平面BB 1C 1C ,BM ⊂平面BB 1C 1C , ∴AC ⊥MB .在Rt △BCM 与Rt △B 1BC 中,==,∴△BMC ∽△B 1BC, ∴∠CBM=∠BB 1C,∴∠BB 1C+∠B 1BM=∠CBM+∠B 1BM=90°, ∴BM ⊥B 1C ,AC ,B 1C ⊂平面AB 1C , ∴BM ⊥AB 1C , ∵AB 1⊂平面AB 1C , ∴BM ⊥AB 1.【点评】本题主要考查了线面平行和线面垂直的判定定理的应用.证明线线平行和线线垂直是解题的关键.11.如图,在四棱锥P ﹣ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF ∥面PAD .【分析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.证得四边形EFGA是平行四边形,所以EF∥AG,由线面平行的判定定理即可得证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.所以FG∥AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF∥AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF∥平面PAD.【点评】本题考查直线与平面平行的证明,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.12.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是AA 1的中点,求证: (Ⅰ)A 1C ∥平面BDE ; (Ⅱ)平面A 1AC ⊥平面BDE .【分析】(Ⅰ)连接AC 交BD 于O,连接EO ,△A 1AC 中利用中位线,得EO ∥A 1C .再结合线面平行的判定定理,可得A 1C ∥平面BDE;(II )根据正方体的侧棱垂直于底面,结合线面垂直的定义,得到AA 1⊥BD .再结合正方形的对角线互相垂直,得到AC ⊥BD ,从而得到BD ⊥平面A 1AC,最后利用面面垂直的判定定理,可以证出平面A 1AC ⊥平面BDE .【解答】证明:(Ⅰ)连接AC 交BD 于O ,连接EO , ∵E 为AA 1的中点,O 为AC 的中点 ∴EO 为△A 1AC 的中位线 ∴EO ∥A 1C又∵EO ⊂平面BDE ,A 1C ⊄平面BDE ∴A 1C ∥平面BDE ;…(6分)(Ⅱ)∵AA 1⊥平面ABCD,BD ⊂平面ABCD ∴AA 1⊥BD又∵四边形ABCD 是正方形 ∴AC ⊥BD ,∵AA1∩AC=A,AA1、AC⊂平面A1AC∴BD⊥平面A1AC又∵BD⊂平面BDE∴平面A1AC⊥平面BDE.…(12分)【点评】本题以正方体为例,要求我们证明线面平行和面面垂直,着重考查了空间直线与平面的位置关系和平面与平面位置关系等知识点,属于基础题.13.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,E为PD的中点.(1)求证:PB∥平面AEC;(2)若PA⊥平面ABCD,PA=AD,求证:平面AEC⊥平面PCD.【分析】(1)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(2)要证平面PDC⊥平面AEC,需要证明CD⊥AE,AE⊥PD,即垂直平面AEC内的两条相交直线.【解答】证明:(1)连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,又AD⊥CD,且AD∩PA=A,∴CD⊥平面PAD,又AE⊂平面PAD,∴CD⊥AE.∵PA=AD,E为PD中点,∴AE⊥PD.又CD∩PD=D,∴AE⊥平面PDC,又AE⊂平面PAD,∴平面PDC⊥平面AEC.【点评】本题考查了线面平行,面面垂直的判定定理,属于基础题.14.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(1)PA∥平面BDE;(2)BD⊥平面PAC.【分析】(1)连接OE,根据三角形中位线定理,可得PA∥EO,进而根据线面平行的判定定理,得到PA∥平面BDE.(2)根据线面垂直的定义,可由PO⊥底面ABCD得到BD⊥PO,结合四边形ABCD是正方形及线面垂直的判定定理可得BD⊥平面PAC【解答】证明(1)连接OE,在△CAP中,CO=OA,CE=EP,∴PA∥EO,又∵PA⊄平面BDE,EO⊂平面BDE,∴PA∥平面BDE.(2)∵PO⊥底面ABCD,BD⊂平面ABCD,∴BD⊥PO又∵四边形ABCD是正方形,∴BD⊥AC∵AC∩PO=O,AC,PO⊂平面PAC∴BD⊥平面PAC【点评】本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间线面关系的判定定理是解答的关键.15.如图,正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长AB=1,侧棱长AA 1=2. (Ⅰ)求正四棱柱ABCD ﹣A 1B 1C 1D 1的表面积; (Ⅱ)证明:AC ⊥平面BDD 1B 1.【分析】(I)求出各面的面积即可得出表面积;(II )根据BB 1⊥平面ABCD 可得AC ⊥BB 1,根据正方形ABCD 的性质可得AC ⊥BD ,从而有AC ⊥平面BDD 1B 1.【解答】解:(I)正四棱柱的表面积为1×1×2+1×2×4=10. (II )连接AC,BD,B 1D 1,∵BB 1⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥BB 1,∵四边形ABCD 是正方形, ∴AC ⊥BD,又BD ⊂平面BDD 1B 1,BB 1⊂平面BDD 1B 1,BD ∩BB 1=B , ∴AC ⊥平面BDD 1B 1.【点评】本题考查了直棱柱的结构特征,线面垂直的判定,属于基础题.16.已知正方体ABCD ﹣A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证: (1)C 1O ∥面AB 1D 1; (2)A 1C ⊥面AB 1D 1.【分析】(1)欲证C 1O ∥面AB 1D 1,根据直线与平面平行的判定定理可知只需证C 1O 与面AB 1D 1内一直线平行,连接A 1C 1,设A 1C 1∩B 1D 1=O 1,连接AO 1,易得C 1O ∥AO 1,AO 1⊂面AB 1D 1,C 1O ⊄面AB 1D 1,满足定理所需条件;(2)欲证A 1C ⊥面AB 1D 1,根据直线与平面垂直的判定定理可知只需证A 1C 与面AB 1D 1内两相交直线垂直根据线面垂直的性质可知A 1C ⊥B 1D 1,同理可证A 1C ⊥AB 1,又D 1B 1∩AB 1=B 1,满足定理所需条件.【解答】证明:(1)连接A 1C 1,设A 1C 1∩B 1D 1=O 1,连接AO 1, ∵ABCD ﹣A 1B 1C 1D 1是正方体, ∴A 1ACC 1是平行四边形,∴A1C1∥AC且A1C1=AC,又O1,O分别是A1C1,AC的中点,∴O1C1∥AO且O1C1=AO,∴AOC1O1是平行四边形,∴C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,∴C1O∥面AB1D1;(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!,又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1,∵A1B⊥AB1,BC⊥AB1,又A1B∩BC=B,AB1⊥平面A1BC,又A1C⊂平面A1BC,∴A1C⊥AB1,又D1B1∩AB1=B1,∴A1C⊥面AB1D1【点评】本题主要考查了线面平行、线面垂直的判定定理,考查对基础知识的综合应用能力和基本定理的掌握能力.17.如图所示,在正方体ABCD﹣A1B1C1D1中,M,E,F,N分别为A1B1,B1C1,C1D1,D1A1的中点,求证:(1)E,F,D,B四点共面;(2)面AMN∥平面EFDB.【分析】(1)由E,E分别是B1C1,C1D1的中点,知EF∥B1D1,从而得到EF∥BD,由此能证明E,F,B,D,四点共面.(2)由题设条件推导出MN∥EF,AN∥CF,由此能够证明面MAN∥面EFDB.【解答】证明:(1)∵E,E分别是B1C1,C1D1的中点,∴EF∥B1D1 ,∵B1D1∥BD,∴EF∥BD,∴E,F,B,D,四点共面.(2)∵M,N分别是A1B1,D1A1的中点,∴MN∥B1D1,∵EF∥B1D1,∴MN∥EF,∵F,N分别是D1C1、A1B1的中点,∴NF A1D1,∵,∴NF AC,∴四边形NFCA是平行四边形,∴AN∥CF,∵MN∩AN=N,EF∩DF=F,∴面MAN∥面EFDB.【点评】本题考查四点共面的证明,考查两个平面平行的证明.解题时要认真审题,注意中位线定理和平行公理的合理运用.18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 是DD 1的中点. 求证:(1)直线BD 1∥平面PAC(2)①求异面直线PC 与AA 1所成的角. ②平面PAC ⊥平面BDD 1.【分析】(1)连接BD ,交AC 于O,连接PO ,由三角形的中位线定理和线面平行的判定定理,即可得证;(2)①连接PC 1,AA 1∥CC 1,∠C 1CP 即为异面直线PC 与AA 1所成的角,分别求出△C 1CP 的三边,由解三角形即可得到所求角;②运用正方形的对角线垂直和线面垂直的性质定理,可得AC ⊥平面BDD 1B 1,再由面面垂直的判定定理,即可得证.【解答】(1)证明:连接BD ,交AC 于O ,连接PO , 在△BDD1中,OP 为中位线,可得OP∥BD1,又OP⊂平面PAC,BD1⊄平面PAC,则直线BD1∥平面PAC;(2)①连接PC1,AA1∥CC1,∠C1CP即为异面直线PC与AA1所成的角,在△C1CP中,C1C=2,PC===,PC1===,由PC2+PC12=CC12,可得△C1CP为等腰直角三角形,则异面直线PC与AA1所成的角为45°;②证明:在底面ABCD中,AB=AD,即有四边形ABCD为正方形,可得AC⊥BD,D1D⊥平面ABCD,AC⊂平面ABCD,即有D1D⊥AC,D1D∩BD=D,可得AC⊥平面BDD1B1,AC⊂平面PAC,则平面PAC⊥平面BDD1.【点评】本题考查线面平行的判定,注意运用中位线定理和线面平行的判定定理,考查异面直线所成角的求法,注意运用平移法,考查面面垂直的判定,注意运用线面垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.19.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ;(Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值.【分析】(Ⅰ)由ABC ﹣A 1B 1C 1是直三棱柱,可知CC 1⊥AC ,CC 1⊥BC ,∠ACB=90°,AC⊥BC .建立空间直角坐标系C ﹣xyz .则A ,B 1,E ,A 1,可得,,,可知,根据,,推断出AB 1⊥CE ,AB 1⊥CA 1,根据线面垂直的判定定理可知AB 1⊥平面A 1CE . (Ⅱ)由(Ⅰ)知是平面A 1CE 的法向量,,进而利用向量数量积求得直线A 1C 1与平面A 1CE 所成角的正弦值【解答】(Ⅰ)证明:∵ABC ﹣A 1B 1C 1是直三棱柱, ∴CC 1⊥AC,CC 1⊥BC, 又∠ACB=90°, 即AC ⊥BC .如图所示,建立空间直角坐标系C ﹣xyz .A (2,0,0),B 1(0,2,2),E(1,1,0),A 1(2,0,2), ∴,,.又因为 ,,∴AB 1⊥CE ,AB 1⊥CA 1,AB 1⊥平面A 1CE . (Ⅱ)解:由(Ⅰ)知,是平面A 1CE 的法向量,,∴|cos <,>|==.设直线A 1C 1与平面A 1CE 所成的角为θ,则sinθ=|cos <,>|=.所以直线A 1C 1与平面A 1CE 所成角的正弦值为.【点评】本题主要考查了线面垂直的判定定理,向量的数量积的运用,法向量的运用.综合考查了学生所学知识的灵活运用.20.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 、G 分别是AB 、AD 、C 1D 1的中点.求证:平面D 1EF ∥平面BDG .【分析】欲证平面D 1EF ∥平面BDG,根据面面平行的判定定理可知只需在一个平面内找两相交直线与另一平面平行,EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG 根据线面平行的性质可知EF ∥平面BDG ,同理可证D 1E ∥平面BDG ,EF ∩D 1E=E ,满足定理条件. 【解答】证明:∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG ∴EF ∥平面BDG ∵D 1G EB ∴四边形D 1GBE 为平行四边形,D 1E ∥GB 又D 1E ⊄平面BDG,GB ⊂平面BDG∴D 1E ∥平面BDG,EF ∩D 1E=E , ∴平面D 1EF ∥平面BDG【点评】本小题主要考查空间中的线面关系,考查线面平行的判定,考查识图能力和逻辑思维能力与推理论证能力,考查转化思想,属于基础题.21.(文科)如图,正方体ABCD ﹣A 1B 1C 1D 1中,M ,N,E ,F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点, 求证:平面AMN ∥平面EFDB .【分析】连接B 1D 1,NE ,分别在△A 1B 1D 1中和△B 1C 1D 1中利用中位线定理,得到MN ∥B 1D 1,EF ∥B 1D 1,从而MN ∥EF,然后用直线与平面平行的判定定理得到MN ∥面BDEF .接下来利用正方形的性质和平行线的传递性,得到四边形ABEN 是平行四边形,得到AN ∥BE ,直线与平面平行的判定定理得到AN ∥面BDEF,最后可用平面与平面平行的判定定理,得到平面AMN ∥平面EFDB ,问题得到解决.【解答】证明:如图所示,连接B 1D 1,NE∵M,N ,E ,F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点 ∴MN ∥B 1D 1,EF ∥B 1D 1 ∴MN ∥EF又∵MN ⊄面BDEF ,EF ⊂面BDEF ∴MN ∥面BDEF∵在正方形A 1B 1C 1D 1中,M ,E ,分别是棱 A 1B 1,B 1C 1的中点∴NE∥A1B1且NE=A1B1又∵A1B1∥AB且A1B1=AB∴NE∥AB且NE=AB∴四边形ABEN是平行四边形∴AN∥BE又∵AN⊄面BDEF,BE⊂面BDEF∴AN∥面BDEF∵AN⊂面AMN,MN⊂面AMN,且AN∩MN=N∴平面AMN∥平面EFDB【点评】本题借助于正方体模型中的一个面面平行位置关系的证明,着重考查了三角形的中位线定理、线面平行的判定定理和面面平行的判定定理等知识点,属于基础题.22.如图,在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.【分析】(1)先证明AD∥MN由N是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形得EN∥DM,DM⊂平面PDC,可得EN∥平面PDC;(2)由侧面PAD是正三角形,且与底面ABCD垂直,E为AD的中点,得PE⊥AD,PE⊥EB,PE⊥BC,由∠BAD=60°,AB=2,AE=1,由余弦定理可得BE=,由正弦定理可得:BE⊥AD,有由AD∥BC可得BE⊥BC,可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB,EN⊂平面PEB可得PB⊥MN,由AP=AB=2,N是PB的中点,得PB ⊥AN,有MN∩AN=N.PB⊥平面ADMN,可证平面PBC⊥平面ADMN.【解答】解:(1)∵AD∥BC,AD⊂平面ADMN,BC⊄平面ADMN,∴BC∥平面ADMN,∵MN=平面ADMN∩平面PBC,BC⊂平面PBC,∴BC∥MN.又∵AD∥BC,∴AD∥MN.∴ED∥MN∵N是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形,∴ED=MN=1∴四边形ADMN是平行四边形.∴EN∥DM,DM⊂平面PDC,∴EN∥平面PDC;(2)∵侧面PAD是正三角形,且与底面ABCD垂直,E为AD的中点,∴PE⊥AD,PE⊥EB,PE⊥BC∵∠BAD=60°,AB=2,AE=1,由余弦定理可得BE=,由正弦定理可得:BE⊥AD∴由AD∥BC可得BE⊥BC,∵BE∩PE=E∴BC⊥平面PEB;(3)∵由(2)知BC⊥平面PEB,EN⊂平面PEB∴BC⊥EN∵PB⊥BC,PB⊥AD∴PB⊥MN∵AP=AB=2,N是PB的中点,∴PB⊥AN,∴MN∩AN=N.PB⊥平面ADMN,∵PB⊂平面PBC∴平面PBC⊥平面ADMN.【点评】本题主要考察了平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,属于基本知识的考查.23.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PC.【分析】(1)推导出DE∥AC,由此能证明DE∥平面PAC.(2)连结PD,CD,则PD⊥AB,CD⊥AB,从而AB⊥平面PDC,由此能证明AB⊥PC.【解答】证明:(1)∵在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.∴DE∥AC,∵DE⊄平面PAC,AC⊂平面PAC,∴DE∥平面PAC.(2)连结PD,CD,∵正三棱锥P﹣ABC中,D是AB的中点,∴PD⊥AB,CD⊥AB,∵PD∩CD=D,∴AB⊥平面PDC,∵PC⊂平面PDC,∴AB⊥PC.【点评】本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.24.如图所示,在四棱锥P﹣ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=.(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD.【分析】(1)由勾股定理逆定理可证明AD⊥PD,PD⊥CD即可得出PD⊥平面ABCD;(2)由(1)可得PD⊥AC,结合AC⊥BD,得出AC⊥平面PBD,从而平面PAC⊥平面PBD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1如图,四棱椎P —ABCD 的底面为直角梯形,∠ABC=90°,AD ∥BC ,BA=BC=1,AD=2,PA ⊥平面ABCD 。
(1)若E 是线段PA 的中点,证明BE ∥平面PCD 。
(2)证明:CD ⊥CP ;2.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AD//BC ,BC=2AD ,PB ⊥AC ,Q 是线段PB 的中点.(I )求证:AQ//平面PCD. (II )求证:AB ⊥平面PAC ;3.如图:已知四棱锥P ABCD -中,,PD ABCD ABCD ⊥平面是正方形,E是PA 的中点,求证:(1)//PC 平面EBD ;(2) B C ⊥P C 。
4. 如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2. (1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由。
5. 如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3。
(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离。
E6、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.7.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .E DCBAPNMA BDCOCBAD1B 1A 1C (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.8.四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC ==2.(Ⅰ)证明:AD CE ⊥;(Ⅱ)求二面角C AD E --的余弦值大小. 9.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --正弦值的大小; (Ⅲ)求点C 到平面APB 的距离.为1的菱形,4ABC π∠=,10如图,在四棱锥O ABCD -中,底面ABCD 四边长OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
11如图,底面ABC 为正三角形,⊥EA 面ABC , ⊥DC 面ABC ,a DC AB EA 22===,设F 为EB 的中点.(1)求证://DF 平面ABC ;(2)求直线AD 与平面AEB 所成角的正弦值.12.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==.(Ⅰ)求证:1//AC 平面1AB D ;(Ⅱ)求点A 1 到平面1AB D 的距离.C DE AB ACBDP5.(1)因为四边形ABCD 为长方形,所以BC ∥AD 。
又BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA 。
(2)因为BC ⊥CD ,PDC ⊥平面ABCD 且PDC ABCD=CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC 。
因为PD ⊂平面PDC ,所以BC ⊥PD 。
(3)取CD 的中点E ,连接PE ,AC 。
因为PD=PC ,所以PE ⊥CD 所以PE=7342222=-=-CE PC 。
因为PDC ⊥平面ABCD 且PDC ABCD=CD ,PE ⊂平面PDC ,所以PE ⊥平面ABCD 。
由(2)知BC ⊥平面PDC 。
又AD ∥BC ,所以AD ⊥平面PDC 。
又PD ⊂平面PDC , 所以AD ⊥PD 。
设点C 到平面PDA 的距离为h ,则V C-PDA =V P-ACD ,所以31S △PDA ·h=31S △ACD ·PE ,所以h=PDA ACD S PE S ∆∆·=432176321⨯⨯⨯⨯⨯=273,故点C 到平面PDA 的距离为273。
6.在ADE ∆中,222AD AE DE =+,∴AE DE ⊥……3分PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥……6分又PA AE A =,∴DE ⊥平面PAE ……7分(2)DPE ∠为DP 与平面PAE 所成的角……10分在Rt PAD ∆,42PD =,在Rt DCE ∆中,22DE =……12分 在Rt DEP ∆中,2PD DE =,∴030DPE ∠=……13分7.(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥……2分 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD ……4分(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥……6分 且AD BG ⊥,PG BG G =,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥……8分(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥……9分 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥……10分∴PBG ∠为二面角A BC P --的平面角……12分在Rt PBG ∆中,PG BG =,∴045PBG ∠=……13分 8.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥.2tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥, 则CGE ∠即为所求二面角的平面角.233AC CD CG AD==,3DG=,3EG==,CE =222cos 2CG GE CE CGE CG GE +-∠==,9.(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =,PD AB ∴⊥. AC BC =,CD AB ∴⊥.PD CD D =,AB ∴⊥平面PCD . PC ⊂平面PCD ,PC AB ∴⊥. (Ⅱ)AC BC =,AP BP =, APC BPC ∴△≌△.又PC AC ⊥,PC BC ∴⊥. 又90ACB ∠=,即AC BC ⊥,且ACPC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影,CE AP ∴⊥. BEC ∴∠是二面角B AP C --的平面角. 在BCE △中,90BCE ∠=,2BC=,BE AB ==sin BC BEC BE ∴∠==. (Ⅲ)由(Ⅰ)知AB ⊥平面PCD ,∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H .平面APB 平面PCD PD =,CH ∴⊥平面APB . CH ∴的长即为点C 到平面APB 的距离.由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =, PC ∴⊥平面ABC . CD ⊂平面ABC , PC CD ∴⊥.在Rt PCD △中,12CD AB ==PD == 2PC ∴==. 332=⨯=PD CD PC CH .∴点C 到平面APB . 10.(1)取OB 中点E ,连接ME ,NE ME CD ME CD ∴,‖AB,AB ‖‖ 又,NE OC MNE OCD ∴平面平面‖‖MN OCD ∴平面‖(2)CD ‖AB, MDC ∠∴为异面直线AB 与MD 所成的角(或其补角)作,AP CD P ⊥于连接MP ⊥⊥平面A B C D ,∵OA ∴CD MP ACBDPACBE P2,42ADP π∠=∵∴DP =222MD MA AD =+=,1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴ 所以 AB 与MD 所成角的大小为3π(3)AB 平面∵∴‖OCD,点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作 AQ OP ⊥ 于点Q ,,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴又 ,AQ OP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离222221324122OP OD DP OA AD DP =-=+-=+-=∵,22AP DP ==22223322OA AP AQ OP ===∴,所以点B 到平面OCD 的距离为23 11证明:过F 作//FH EA 交AB 于H ,连结HC ,因为ABC DC ABC EA ⊥⊥平面,平面,所以EA//DC,FH//EA,FH//DC ∴又,而F 是EB 的中点,12FH AE DC ∴==,所以四边形CDFH 是平行四边形,所以DF//HC,又ABC DF ABC HC ⊂⊄平面,平面,所以DF//ABC 平面. (2)ABC 为正三角形,H 为AB 中点,CH AB ∴⊥EA ABC CH ABC CH EA EA AB=A⊥⊂⊥⋂面,面,,EA AB EAB CH EAB DF//CH DF EAB ⊂∴⊥∴⊥、面,面,面∴AF 为DA 在面EAB 上的射影,所以DAF ∠为直线AD 与平面AEB 所成角,在RT AFD 中15AF=2,5,DF 3,sin 5a AD a a FAD ==∠=所以直线AD 与平面AEB 所成角的正弦值为15512证明:(Ⅰ)连接1A B 交1AB 于O ,连接OD ,在1BAC ∆中,O 为1BA 中点,D 为BC 中点1//OD AC ∴ 111,OD AB D AC AB D ⊂⊄面面 11//AC AB D ∴平面1DH BB ∴⊥11DH A B BA ∴⊥面且3sin 302DH AD =⋅=1111A AB D D AA B V V --=即1151323232h =解得255h =解法二:由①可知11//AC AB D 平面∴点1A 到平面1AB D 的距离等于点C 到平面1AB D 的距离…………8分1AD B ∆为Rt ∆1152ADB S ∆∴=1322ADC ABC S S ∆∆==分 设点C 到面1AB D 的距离为h 11C AB DB ADC V V --=即1151323232h =⨯解得255h=。