相敏检波电路
相敏检波器电路工作原理
引言大气电场为一矢量,晴天时大气中存在着方向垂直向下的负电场,雷雨天时由于雷暴云的影响,大气中为方向垂直向上的正电场。
大气电场仪在进行地面大气电场监测时,不仅要测量出被测电场的强度,还要辨别出被测电场的极性。
电场的极性通常采用相敏检波的方法来区别,因此需要在电场仪的前置放大电路中加入相敏检波器。
常用的相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。
为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。
同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。
1 相敏检波电路设计大气电场仪传感器探头如图1所示,动片与小叶片形状相似,且上下位置对应一致,均固定在电机轴上,由无刷电机带动按一定的频率同时旋转。
感应片为分离的四片,相对的两片为一组,分为A,B两组,每组的形状与动片完全相同,动片和感应片均选用黄铜材料制成。
1.1 感应的微弱电压信号与同步脉冲信号当探头中的电机带动动片和小叶片转动时,感应片上产生了交流感应电流信号,该交流电流信号经I-V 转换电路后,得到交流感应电压信号V1(t),在一个周期T内其表达式为:式中:I为电场仪探头输出的感应电流信号的幅度;R,C分别为I-V转换电路的反馈电阻和反馈电容;T为动片暴露和遮挡感应片A或B一次的时间;VRC为t=T/2时感应电压信号的等效幅度;K为一常数,在动片转动的同时,小叶片按同样的频率ω周期,通过光电开关的凹槽,发光二极管的光路被周期切断或通过,使光电三极管处于导通和截止两种状态,因此,在第一个周期T内,同步脉冲信号为Vc(t),其表达式为:经对电路实验证明,此检波电路能很好地滤除谐波成分,同时,通过观察滤波之后直流电压的正负,可以辨别出被测电场极性。
一种相敏检波电路的研究与实验
Key words:phase-sensitive detection;integrated operational amplifier;analog switch
(责任编辑:李伟男 英文审译:李 笛)
万方数据
一种相敏检波电路的研究与实验
作者: 作者单位: 刊名:
英文刊名: 年,卷(期): 引用次数:
I塾兰;爿魏摆 超眦
nl
--)v
__l;。l
辩埒 £;;
磁 怿I。嬲3
1R8 L—
J lOK
图2 相敏检波器电路结构
收稿日期:2008—12—04 作者简介:胡仲秋(1970一),男,四川威远人,内江师范学院实验师.
万方数据
2009年2月
胡仲秋:一种相敏检波电路的研究与实验
· 51 ·
图中,TGl,TG2为双向模拟开关,运放U1A 为反相过零比较器.“,为检波信号,“:为基准参考 信号.
目前,相敏检波器电路种类不多,对该电路的分 析介绍也较少,本文就一种由通用集成电路构成的 新颖相敏检波电路作一介绍.
1 电路介绍
目前,常见的相敏检波电路有二极管桥形电路, 三极管相敏放大电路,模拟乘法器电路等.前两种电 路结构简单,但由于需要两个变压器,因此,使得体 积较大且成本较高,不适应现代技术的要求.模拟乘 法器应用电路较简单,对输入信号无特殊要求,其缺 点是模拟乘法器为非通用电路,因此价格偏高,且应 用时电路调试也比较麻烦.
差动变压器的转换电路——相敏检波电路
差动变压器的转换电路——相敏检波电路在动态测量时,假定位移是正弦波,即按x ≈xmSinωt运动。
那么次级输出电压的相位角与衔铁的位移有关。
因此为能确定衔铁的移动方向,还得判别输出电压的相位。
通过相敏检波电路,就能得到既能反映位移大小、又能反映位移方向(极性)的测量信号。
图4-22为相敏检波电路的原理图。
图中四个特性相同的二极管D1~D4串接成一个回路,四个节点1~4分别接到两个变压器A和B的次级线圈上。
变压器A的输入为放大了的差动变压器的输出信号而其输出为u=Ul + u2;变压器B的输人信号为u0,称为检波器的参考信号,它和差动变压器的激励电压共用一个电源。
通过适当的移相电路保证u和u。
同频同相或反相。
是作为辨别极性的标准(参照物)。
Rf为连接在两个变压器次级线圈的中点之间的负载电阻。
经相敏检波电路,当衔铁在零点以上移动时,不论载波在正半周还是负半周,在负载电阻只f 上得到的电压始终为正的信号。
当衔铁在零点以下移动时,负载电阻Rf 上得到的电压始终为负的信号。
即正位移输出正电压,负位移输出负电压;电压值的大小表明位移的大小,电压的正负表明位移的方向。
因此,原来呈V字形的输出特性曲线(见图4-18)就变成了过零点的一条直线,如图4 - 23所。
需要说明的是,经相敏检波和差动整流输出的信号,仍然含有高频分量,因而还需通过低通滤波器滤除高频分量,这样才能获得与衔铁一致的有用信号。
随着集成电路技术的发展,相继出现各种性能的集成电路相敏检波器,例如LZX1单片相敏检波电路。
LZX1为全波相敏检波放大器,它与差动变压器的连接如图4-24(a)所示。
相敏检波电路要求参考电压和差动变压器次级输出电压同频率、相位相同或相反,因此,需要在线路中接人移相电路。
如果位移量很小,在差动变压器的输出端还要接入放大器,将放大后的信号输入到LZX1的输入端。
通过LZX1输出的信号,还需经过低通滤波器,滤去调制时引人的高频信号,只允许与位移x对应的直流电压信号通过。
相敏检波电路
二极管相敏检波电路电路如图 4 - 15 所示。
VD1、VD2、VD3、 VD4 为四个性能相同的二极管, 以同一方向串联成一个闭合回路, 形成环形电桥。
输入信号u2(差动变压器式传感器输出的调幅波电压)通过变压器T1加到环形电桥的一个对角线。
参考信号u0通过变压器T2加入环形电桥的另一个对角线。
输出信号uL 从变压器T1与T2的中心抽头引出。
平衡电阻R 起限流作用, 避免二极管导通时变压器T2的次级电流过大。
RL 为负载电阻。
u0的幅值要远大于输入信号u2的幅值, 以便有效控制四个二极管的导通状态, 且u0和差动变压器式传感器激磁电压u1由同一振荡器供电, 保证二者同频、同相(或反相)。
由图 4 -16(a )、(c )、(d)可知, 当位移∆x > 0时, u2与u0同频同相, 当位移∆x< 0时, u2与u0 同频反相。
∆x> 0时, u2与u0为同频同相, 当u2与u0均为正半周时, 见图 4 - 15(a ), 环形电桥中二极管VD1、VD4截止, VD2、VD3导通, 则可得图 4 - 15(b )的等效电路。
2002012n u u u == 1222212n u u u == 根据变压器的工作原理, 考虑到O 、M 分别为变压器T1、 T2的中心抽头, 则有u01= u02=202n u (4 - 29) u21= u22=122n u −(4 - 30) 式中 n1#, n2为变压器T1、T2的变比。
采用电路分析的基本方法, 可求得图 4 - 15(b )所示电路的输出电压uL 的表达式:)2(112L L L R R n u R u += 同理当u2与u0均为负半周时, 二极管VD2、VD3截止, VD1、 VD4导通。
其等效电路如图 4 - 15(c )所示, 输出电压uL 表达式与式(4 -31)相同, 说明只要位移Δx>0, 不论u2与u0是正半周还是负半周,负载RL 两端得到的电压uL 始终为正。
相敏检波电路工作原理
相敏检波电路工作原理
相敏检波电路是一种用于检测并提取调制信号的电路。
它的工作原理如下:
1. 输入信号:相敏检波电路的输入通常是一个高频载波信号和一个调制信号。
2. 相移:通过一个相移电路将输入的高频信号相位进行调整,使得它与调制信号的相位保持一致。
3. 相乘:将相位调整后的高频信号与原始的高频信号进行相乘。
这样做的目的是通过相乘操作将高频信号中的频率成分与调制信号的频率成分相乘,并将其他频率成分滤除。
4. 低通滤波:通过一个低通滤波器将相乘后的信号中的高频成分滤除,只保留与调制信号频率相近的低频成分。
5. 输出信号:经过滤波后,只剩下调制信号的低频成分,即提取出了调制信号。
这个输出信号可以用于后续的处理或者直接作为调制信号的提取结果。
相敏检波电路的工作原理依赖于相位调整、相乘和滤波等基本操作,通过这些操作可以有效提取出调制信号。
相敏检波电路简介
相 敏 检 波 电 路
将调制信号ux乘以幅值为1的载波信 号就可以得到双边带调幅信号us,将 双边带调幅信号us再乘以载波信号, 经低通滤波后就可以得到调制信号ux。 这就是相敏检波电路在结构上与调制 电路相似的原因。二者主要区别是调 幅电路实现低频调制信号与高频载波 信号相乘,输出为高频调幅信号;而 相敏检波器实现高频调幅信号与高频 载波信号相乘,经滤波后输出低频解 调信号。这使它们的输入、输出耦合 回路与滤波器的结构和参数不同。
相敏检波电路的应用
大气电场中
其他领域中
在电场仪设计中,电 压信号的极性与被测 电场的极性相反。全 波检波后为单一正方 向脉动直流电压信号 ,即保证了微弱感应 电压信号与同步脉冲 信号的同相。因此, 经低通滤波器后输出 一负极性直流电压信 号,即可判断出被测 电场为负电场,从而 实现了被测电场极性 的准确鉴别。
Hale Waihona Puke 数字相敏检波器以及其他多种 测量器具中,相敏检波因其独 特的精确性和稳定性而被广泛 应用于这些器具的制作和使用 中,根据相敏检波的原理,在 LabVIEW环境实现了数字相敏 检波算法,并分析了算法性能。 实验结果表明,整周期采样时, 信噪比低至-20dB时的幅度误 差小于0.2%,相位误差小于 0.7%。为进一步验证,还利用 NI公司的波形生成卡和数据采 集卡模拟了数字相敏检波在实 际中的应用效果。
调 幅 电 路
常用的导磁材料检测方法
磁粉检测
优点:灵敏度高 缺点:不易实现检 测自动化 优点:探头上无零 电势 缺点:灵敏度不够 精准
涡流检测
g
A D2 Xm(t)
e
c
uf
b
D1
a
Rf
D3
d
D4
开关式全波相敏检波电路
实验1 开关式全波相敏检波电路一、实验目的1.熟悉和掌握相敏检波器的工作原理。
2.验证相敏检波器的检幅特性和鉴相特性。
二、实验设备及参考电路图1.实验台中部件:相敏检波器、音频振荡器、移相器、直流稳压电源、低通滤波器、电压表(毫伏表)2.双踪示波器3.实验参考电路图三、实验步骤将音频振荡器的输出信号(00 )接至相敏检波器的输入端(1)。
1.参考信号为直流电压⑴将直流稳压电源+2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。
⑵将直流稳压电源-2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。
2.参考信号为交流电压⑴将音频信号00接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。
⑵将音频信号1800 接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。
3.相敏检波器检幅特性将相敏检波器的输出端(3)接低通滤波器的输入端,将低通滤波器的输出端接数字电压表。
⑴相敏检波器的输入信号(接(1))和参考信号(接(2))同相,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。
⑵相敏检波器的输入信号(接(1))与参考信号(接(2))反相时,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。
4.相敏检波器的鉴相特性将音频信号接移相器的输入端,移相器电路输出接相敏检波器参考输入端(2),旋转移相器的电位器旋钮,改变参考电压的相位,音频振荡器输出幅值不变,用示波器观察(1) ~(6)波形,并读出对应的电压表值。
四、实验报告要求1.画出该相敏检波器的电路图,并说明该电路的工作原理。
2.画出该实验第三步骤和第四步骤的原理框图。
3.分别画出参考电压与相敏检波器的输入信号同相、反相时(1) ~ (6)点的波形图及低通滤波器的输出波形。
4.画出参考电压通过移相器后(差900 时),相敏检波器(1) ~ (6)点及低通滤波器的输出波形。
相敏检波电路工作原理及工作过程
相敏检波电路工作原理及工作过程相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。
为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。
同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。
1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
相敏检波电路的应用
相敏检波电路的应用
大气电场中
其他领域中
在电场仪设计中,电 压信号的极性与被测 电场的极性相反。全 波检波后为单一正方 向脉动直流电压信号 ,即保证了微弱感应 电压信号与同步脉冲 信号的同相。因此, 经低通滤波器后输出 一负极性直流电压信 号,即可判断出被测 电场为负电场,从而 实现了被测电场极性 的准确鉴别。
调 幅 电 路
常用的导磁材料检测方法
磁粉检测
优点:灵敏度高 缺点:不易实现检 测自动化 优点:探头上无零 电势 缺点:灵敏度不够 精准
涡流检测
g
A D2 Xm(t)
e
c
uf
b
D1
a
Rf
D3
d
D4
f
B V(t)
图中,相敏检波电路与滤波器配合 可以将调幅波还原成原信号波形, 起解调作用;并具有鉴别信号相位 的能力。下面给出典型的二极管相 敏检波电路及其输入输出关系图。 它由四个特性相同的二极管D1~ D4沿同一方向串联成一个桥式回路 ,桥臂上有附加电阻,用于桥路平 衡。四个端点分别接在变压器A和B 的次级线圈上,变压器A的输入为 调幅波xm(t),B的输入信号为载波 y(t),uf为输出。二极管的导通与 截止完全由B的次级的输出决定, 因此要求B的次级的输出大于A的次 级输出。
相敏检波电路电路的应用在日常生活中随处可见 ,其中以测量类的工具为主,此类技术的应用由 于其准确,稳定的特性,而倍受青睐,在今后的 发展中,相敏检波电路的发展也会更加迅速,同 时其应用范围也会越来越广。
数字相敏检波器以及其他多种 测量器具中,相敏检波因其独 特的精确性和稳定性而被广泛 应用于这些器具的制作和使用 中,根据相敏检波的原理,在 LabVIEW环境实现了数字相敏 检波算法,并分析了算法性能。 实验结果表明,整周期采样时, 信噪比低至-20dB时的幅度误 差小于0.2%,相位误差小于 0.7%。为进一步验证,还利用 NI公司的波形生成卡和数据采 集卡模拟了数字相敏检波在实 际中的应用效果。
实验十三开关式全波相敏检波实验(测控电路实验指导书)
实验十三 开关式全波相敏检波实验一、实验目的1、了解双边带调幅信号的形成及解调原理;2、掌握开关式全波相敏检波电路的构成及工作原理;3、掌握开关式全波相敏检波电路的特性。
二、实验原理调制信号、载波信号、双边带调幅信号分别如图所示,当调制信号0U X >时,双边带调幅波的相位极性与载波的相位极性相同,当调制信号0U X <时,双边带调幅波的相位极性与载波的相位极性相反,调制信号X U 改变符号时,其调幅波信号相位改变0180。
要使原信号得到解调,检波电路就必须具有判别信号相位和选频的能力。
包络检波电路是不能满足这一要求的,必须采用相敏检波电路,相敏检波电路又称同步检波电路 (一)实验电路框图如图13-1所示高频载波信号(正弦波)经移相器进行相位调整,然后经开关式全波相敏整流电路进行全波整流,再经低通滤波器取出低频成分,信号经放大电路放大从而获得解调信号。
低通滤波器放大电路双边带调幅(DSB)信号输入开关式全波整流电路解调输出载波信号输入移相器图13-1 实验电路框图(二)实验电路分析 电路原理图如图13-2所示i U 为高频载波信号输入端,1R ,2R ,1N 构成过零比较器,对高频载波信号整形,1N 输出开关控制信号(方波)如图13-6所示,控制开关场效应管的通断。
s U 为双边带调幅波输入端,3R ,4R ,5R ,2N 构成放大倍数受开关管Q 控制的放大器,当c U 为高电平时,放大器的放大倍数为 -1;当c U 为低电平时,放大器的放大倍数为 +1。
其对s U 双边带调幅波的整流后的信号波形如图13-7所示。
图13-2 全波相敏整流电路图三、实验设备 1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器四、实验内容及步骤 1、把5V ±、12V ±直流电源接入“测控电路二”实验挂箱2、在“1U 幅度调制单元”的“调制信号输入”端及“载波输入”端分别加入调制信号(正弦波),载波信号(正弦波),调制信号为Z 3KH .1,P P 1V -左右的正弦波(把本挂箱的U12单元的电源开关拨到“开”方向,利用“U12信号产生单元”产生此正弦波,U12单元的电位器W1用来调节信号幅度,电位器W2用来调节信号频率);载波信号为Z 20.5KH 左右,P P 4.0V -的正弦波(从实验屏上的函数信号发生器接入)。
相敏检波器电路工作原理
相敏检波器电路工作原理相敏检波器电路工作原理相敏检波器(Phase Sensitive Detector,简称PSD)是一种能够从输入信号中提取出与参考信号相位相关的信息的电子器件。
它在通信、雷达、声纳、测量、生物医学等领域有着广泛的应用。
本文将从以下几个方面详细介绍相敏检波器的工作原理。
一、基本组成和工作原理相敏检波器通常由乘法器、低通滤波器和参考信号源组成。
乘法器是相敏检波器的核心部件,它将输入信号和参考信号相乘,产生一个与两个信号相位差相关的输出信号。
低通滤波器用于滤除乘法器输出中的高频分量,提取出所需的直流或低频信号。
参考信号源用于产生与输入信号具有相同频率和一定相位差的参考信号。
相敏检波器的工作过程可以分为以下几步:1.输入信号与参考信号相乘:乘法器的输出信号是与输入信号和参考信号的乘积成正比的,即:Vo = Vin × Vref其中,Vo为乘法器的输出信号,Vin为输入信号,Vref为参考信号。
2.提取所需频率分量:乘法器的输出信号包含多种频率分量,其中包括直流分量、输入信号频率、参考信号频率以及它们的组合频率。
低通滤波器用于提取所需的直流或低频分量,抑制高频分量。
3.相位检测:通过调整参考信号的相位,可以得到与输入信号相位差相关的输出信号。
当参考信号与输入信号的相位差为0或π时,乘法器的输出最大;当相位差为π/2或3π/2时,输出最小。
因此,相敏检波器能够检测输入信号的相位信息。
二、主要特点和应用领域相敏检波器的主要特点包括:1.高灵敏度:相敏检波器能够检测到非常微弱的输入信号,具有较高的灵敏度。
2.良好的选择性:相敏检波器对输入信号的频率和相位具有选择性,能够抑制不需要的频率分量和噪声。
3.线性度高:相敏检波器的输出与输入信号的幅度成正比,具有良好的线性度。
4.响应速度快:相敏检波器的响应速度快,能够处理高速变化的输入信号。
相敏检波器在通信、雷达、声纳、测量、生物医学等领域有着广泛的应用。
相敏检波器的工作原理
相敏检波器的工作原理
相敏检波器是一种基于相位差的电路,用于检测和测量高频信号的强度。
它可以将高频信号转换为直流信号,使其易于测量和分析。
相敏检波器工作的基本原理是利用电容和电阻构成的相位移网络。
进入相敏检波器的高频信号首先通过一个电容,根据电容的阻抗特性,电流与电压之间存在相位差。
接下来,信号经过一个电阻,电阻的阻值和电容的耦合决定了信号的相位差量。
经过电容和电阻后,信号被分成两个组成部分,一个是与电流相位一致的直流分量,另一个是与电压相位一致的交流分量。
然后,通过一个低通滤波器,只保留交流分量而滤除直流分量。
经过滤波后的交流分量与原始信号相位差90度,并且其幅度
与原始信号的强度成正比。
最后,经过交流放大器放大后的信号被转换为直流信号,并由直流放大器进行放大和输出。
这样,相敏检波器就能够将原始高频信号转换为直流信号,并且其直流输出的幅度与原始信号的强度成正比。
总而言之,相敏检波器利用相位差电路,将高频信号转换为直流信号,并通过滤波和放大等处理,得到与信号强度成正比的输出。
其工作原理主要是基于相位差和滤波放大的原理。
差动整流电路和相敏检波电路
L L0 0
(4-14)
灵敏度为
L
K0
L0
1
0
(4-15)
可见:变气隙电感式传感器的测量范围与灵敏度及线性度相 矛盾,因此变气隙电感式传感器适用于测量微小位移的场合。
与K 0 L
• 衔铁上移
– 切线斜率变大
L0+L
– 灵敏度增加
K0 LL0 10 10 L0-LL00 2
• 衔铁下移
电感测微仪是用于测量微小尺寸变化很普遍的一种工具,常用于测量 位移、零件的尺寸等,也用于产品的分选和自动检测。
测量杆与衔铁连接,工作的尺寸变化或微小位移经测量杆带动衔铁移 动,使两线圈内的电感量发生差动变化,其交流阻抗发生相应的变化,电 桥失去平衡,输出一个幅值与位移成正比、频率与振荡器频率相同、相位 与位移方向对应的调制信号。如果再对该信号进行放大、相敏检波,将得 到一个与衔铁位移相对应的直流电压信号。
当衔铁上移时: 当衔铁下移时:
U0
U 2
0
U U0 2 0
2. 变压器式交流电桥
C +U
U
-2
+U
-2 D
Z1
+A Z2 U o
- B
变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗,另外两桥臂为交 流变压器次级线圈的1/2阻抗。 当负载阻抗为无穷大时, 桥路输出电压
U oZ1Z 2Z2U1 2UZ Z1 2 Z Z2 1U 2
L2a
U o
RL
U i
Mb
r2b
-
E 2b
L1b
L2b
-
r1b
变隙差动变压器电感式传感器的等 效电路
当r1a<<ωL1a,r1b<<ωL1b时,如果不考虑铁芯与衔铁中
相敏检波电路
数字相敏检波器以及其他多种 测量器具中,相敏检波因其独 特的精确性和稳定性而被广泛 应用于这些器具的制作和使用 中,根据相敏检波的原理,在 LabVIEW环境实现了数字相敏 检波算法,并分析了算法性能。 实验结果表明,整周期采样时, 信噪比低至-20dB时的幅度误 差小于0.2%,相位误差小于 0.7%。为进一步验证,还利用 NI公司的波形生成卡和数据采 集卡模拟了数字相敏检波在实 际中的应用效果。
相 敏 检 波 电 路
将调制信号ux乘以幅值为1的载波信 号就可以得到双边带调幅信号us,将 双边带调幅信号us再乘以载波信号, 经低通滤波后就可以得到调制信号ux。 这就是相敏检波电路在结构上与调制 电路相似的原因。二者主要区别是调 幅电路实现低频调制信号与高频载波 信号相乘,输出为高频调幅信号;而 相敏检波器实现高频调幅信号与高频 载波信号相乘,经滤波后输出低频解 调信号。这使它们的输入、输出耦合 回路与滤波器的结构和参数不同。
调 幅 电 路
常用的导磁材料检测方法
磁粉检测
优点:灵敏度高 缺点:不易实现检 测自动化 优点:探头上无零 电势 缺点:灵敏度不够 精准
涡流检测
g
A D2 Xm(t)
e
c
uf
b
D1
a
Rf
D3
d
D4
f
B V(t)
图中,相敏检波电路与滤波器配合 可以将调幅波还原成原信号波形, 起解调作用;并具有鉴别信号相位 的能力。下面给出典型的二极管相 敏检波电路及其输入输出关系图。 它由四个特性相同的二极管D1~ D4沿同一方向串联成一个桥式回路 ,桥臂上有附加电阻,用于桥路平 衡。四个端点分别接在变压器A和B 的次级线圈上,变压器A的输入为 调幅波xm(t),B的输入信号为载波 y(t),uf为输出。二极管的导通与 截止完全由B的次级的输出决定, 因此要求B的次级的输出大于A的次 级输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子与信息工程学院控制科学与工程系 在理想情况下(忽略线圈寄生电容及衔 铁损耗),差动变压器的等效电路如图。 初级线圈的复数电流值为
R21
R1 e M1 ~ 21 L21 L1 L22 M2 ~ e22 R22 e2
I 1
e1 R1 jL1
I1
e1
~
ω—激励电压的角频率; e1—激励电压的复数值; 由于Il的存在,在次级线圈中产 生磁通
e1 e2 e21 e22 j M1 M1 R1 jL1
其幅数 输出阻抗 或
M 1 M 2 e1 e2 2 2 R1 L1
R R j L L Z 21 22 21 22
Z
R21 R22 2 L21 L22 2
2.选用合适的测量线路
采用相敏检波电路不仅可鉴别衔铁移动 方向,而且把衔铁在中间位置时,因高 次谐波引起的零点残余电压消除掉。如 图,采用相敏检波后衔铁反行程时的特 性曲线由1变到2,从而消除了零点残余 电压。
1 -x 2 +x 0
相敏检波后的输出特性
电子与信息工程学院控制科学与工程系
3.采用补偿线路
N1I 1 21 Rm1
22
N1 I 1 Rm 2
e1初级线圈激励电压 L1,R1初级线圈电感和电阻 M1,M1 分别为初级与次级线圈 1,2 间的互感 L21,L22两个次级线圈的电感 R21,R22两个次级线圈的电阻
Rm1及Rm2分别为磁通通过初级线圈及两个次级线圈的磁阻, N1为初级线圈匝数。
~220V 稳压电源
振荡器 V
差动变压器
相敏检波电路
这种变送器可分档测量(–5×105~6×105)N/m2压力,输出信号电 压为(0~50)mV,精度为1.5级。
电子与信息工程学院控制科学与工程系
电子与信息工程学院控制科学与工程系
电子与信息工程学院控制科学与工程系
电子与信息工程学院控制科学与工程系
同济大学电子与信息工程学院控制科学与工程系
传感器与检测技术
主讲教师:苏永清
1
电子与信息工程学院控制科学与工程系
二、 差动变压器 (一)结构原理与等效电路
分气隙型和差动变压器两种。目前多采用螺管型差 1 动变压器。
2 1 3
其基本元件有衔铁、初级线 圈、次级线圈和线圈框架等。 初级线圈作为差动变压器激 励用,相当于变压器的原边, 而次级线圈由结构尺寸和参 数相同的两个线圈反相串接 而成,相当于变压器的副边。 螺管形差动变压器根据初、 次级排列不同有二节式、三 节式、四节式和五节式等形 式。
③ 接 入 R0( 几 百 kΩ) 或 ~ 补偿线圈 L0(几百匝)。 绕在差动变压器的初级 线圈上以减小负载电压, 避免负载不是纯电阻而 引起较大的零点残余电 压。电路如图。 e1 ~
R0 W e2
(a) L0
W
e2
(b) R或L补偿电路
电子与信息工程学院控制科学与工程系
(三)测量电路
差动变压器的输出电压为交流,它与衔铁位移成正比。用交流 电压表测量其输出值只能反映衔铁位移的大小,不能反映移动的 方向,因此常采用差动整流电路和相敏检波电路进行测量。
主要由一个安置在框架上的扁平圆形线圈构成。此线圈可以粘贴 于框架上,或在框架上开一条槽沟,将导线绕在槽内。下图为 CZF1型涡流传感器的结构原理,它采取将导线绕在聚四氟乙烯框 架窄槽内,形成线圈的结构方式。
1 2 3 4 1 线圈 2 框架 3 衬套 4 支架 5 电缆 6 插头
6
5
电子与信息工程学院控制科学与工程系 传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当 被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此 磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外 磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗 (当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等 效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器 的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电 量。这便是电涡流传感器的基本原理。
电子与信息工程学院控制科学与工程系
副Ⅰ 原线圈 副Ⅱ
差动变压器输 出电势e2与衔 铁位移x的关系。 其中x表示衔铁 偏离中心位置 的距离。
e21
e2 e22 e2
0
x
电子与信息工程学院控制科学与工程系
(二) 误差因素分析 1、激励电压幅值与频率的影响
激励电源电压幅值的波动,会使线圈激励磁场的磁通发生变化, 直接影响输出电势。而频率的波动,只要适当地选择频率,其影 响不大。
1、差动整流电路
根据半导体二级管单向导通原理进行解调的。如传感器的一个次 级线圈的输出瞬时电压极性,在f点为“+”,e 点为“–”,则电 流路径是fgdche(参看图a)。反之,如f点为“–”,e点为“+”, 则电流路径是 ehdcgf。可见,无论次级线圈的输出瞬时电压极性 如何,通过电阻R的电流总是从 d 到 c 。同理可分析另一个次级线 圈的输出情况。输出的电压波形见图(b),其值为USC=eab+ecd。
①由于两个次级线圈感应电压相位不同,并联电容可改变其一的 相位,也可将电容C改为电阻,如图(a)。由于R的分流作用将使 流入传感器线圈的电流发生变化,从而改变磁化曲线的工作点, 减小高次谐波所产生的残余电压。图 (b) 中串联电阻 R 可以调整 次级线圈的电阻分量。
R e1 ~ R C e2 e1 ~ C e2
电子与信息工程学院控制科学与工程系
消除零点残余电压方法: 1.从设计和工艺上保证结构对称性
为保证线圈和磁路的对称性,首先,要求提高加工精度,线圈 选配成对,采用磁路可调节结构。其次,应选高磁导率、低矫顽 力、低剩磁感应的导磁材料。并应经过热处理,消除残余应力, 以提高磁性能的均匀性和稳定性。由高次谐波产生的因素可知, e2 磁路工作点应选在磁化曲线的线性段。
2
振荡器 检 波 器 滤 波 器
输出
稳压电源 a ~220V 1 (a) 加速度a方向 (b) 1 弹性支承 2 差动变压器
电子与信息工程学院控制科学与工程系
电子与信息工程学院控制科学与工程系
2. 微压力变送器
电子与信息工程学院控制科学与工程系
将差动变压器和弹性敏感元件(膜片、膜盒和弹簧管等)相结合, 可以组成各种形式的压力传感器。
e2
-x
e20
0
x
电子与信息工程学院控制科学与工程系 图中e1为差动变压器初级的激励电压,e20包含基波同相成分、基 波正交成分,二次及三次谐波和幅值较小的电磁干扰等。 e
e1 e20 t
e20
1
(a)残余电压的波形
2 3 4 5 t
(b)波形分析
1 基波正交分量 2 基波同相分量 3 二次谐波 4 三次谐波 5 电磁干扰
电子与信息工程学院控制科学与工程系
零点残余电压产生原因:
①基波分量。由于差动变压器两个次级绕组不可能完全一致, 因此它的等效电路参数(互感M、自感L及损耗电阻R)不可 能相同,从而使两个次级绕组的感应电势数值不等。又因初 级线圈中铜损电阻及导磁材料的铁损和材质的不均匀,线圈 匝间电容的存在等因素,使激励电流与所产生的磁通相位不 同。 ②高次谐波。高次谐波分量主要由导磁材料磁化曲线的非线 性引起。由于磁滞损耗和铁磁饱和的影响,使得激励电流与 磁通波形不一致产生了非正弦 ( 主要是三次谐波 ) 磁通,从而 在次级绕组感应出非正弦电势。另外,激励电流波形失真, 因其内含高次谐波分量,这样也将导致零点残余电压中有高 次谐波成分。
A
er
D
B
电子与信息工程学院控制科学与工程系
(四)应用
测量振动、厚度、应变、压力、加速度等各种物理量。 1. 差动变压器式加速度传感器 用于测定振动物体的频率和振幅时其激磁频率必须是振动频率的 十倍以上,才能得到精确的测量结果。可测量的振幅为 (0.1 ~ 5)mm,振动频率为 (0~150)Hz。 1
电子与信息工程学院控制科学与工程系
第一节
电涡流传感器工作原理
当电涡流线 圈与金属板的距 离x 减小时,电 涡流线圈的等效 电感L 减小,等 效电阻R 增大。 感抗XL 的变化比 R 的变化 大 得 多,流过电涡流 线圈的电流 i1 增 大。
电涡流效应演示
电子与信息工程学院控制科学与工程系
(一) 结构和工作原理
(a)
(b)
调相位式残余电压补偿电路
电子与信息工程学院控制科学与工程系 ②并联电位器W用于电气调零,改变两次级线圈输出电压的相 位,如图所示。电容 C(0.02μF) 可防止调整电位器时使零点移 动。
e1
R1
C ~
W R2 e2
电位器调零点残余电压补偿电路
电子与信息工程学院控制科学与工程系 e1
电子与信息工程学院控制科学与工程系 在次级线圈中感应出电压e21和e22,其值分别为
e21 jM 1I 1 e22 jM 2 I1
M1 N221 I1 N2 N1 Rm1
N2为次级线圈匝数。
因此空载输出电压
M 2 N222 I1 N2 N1 Rm2
电子与信息工程学院控制科学与工程系
电子与信息工程学院控制科学与工程系
电子与信息工程学院控制科学与工程系
三、 电涡流式传感器
当导体置于交变磁场或在磁场中运动时,导体上引起感生电 流ie,此电流在导体内闭合,称为涡流。涡流大小与导体电阻率ρ、 磁导率 μ 以及产生交变磁场的线圈与被测体之间距离 x ,线圈激 励电流的频率f有关。显然磁场变化频率愈高,涡流的集肤效应愈 显著。即涡流穿透深度愈小,其穿透深度h可表示 ρ—导体电阻率(Ω·cm); h 5030 μr—导体相对磁导率; r f f—交变磁场频率(Hz)。 可见,涡流穿透深度h和激励电流频率f有关,所以涡流传感器根 据激励频率:高频反射式或低频透射式两类。 目前高频反射式电涡流传感器应用广泛。