初中数学实数经典测试题及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】
根据实数比较大小的方法,可得
-2< <-1<0,
∴各数中,最小的数是-2.
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
3.规定用符号 表示一个实数的小数部分,例如: 按照此规定, 的值为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据3< <4,可得 的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.
【详解】
解:由3< <4,得
4< +1<5.
[ +1]= +1-4= ,
故选:B.
【点睛】
本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.
初中数学实数经典测试题及答案解析
一、选择题
1.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()
A. -1B.- +1C. D.-
【答案】A
【解析】
【分析】
先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.
【答案】D
【解析】
【分析】
先求出 的范围,再求出 的范围,即可得出答案.
【详解】
解:∵

∴表示 的点是Q点,
故选D.
【点睛】
本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.
6.在-3.5, ,0, ,- ,- ,0.161161116…(相邻两个6之间依次多一个1)中,无理数有()
A.1个B.2个C.3个D.4个
本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.
11.25的算数平方根是
A. B.±5C. D.5
【答案】D
【解析】
【分析】
一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.
【详解】

∴25的算术平方根是:5.
故答案为:5.
【点睛】
本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.
12.如图,已知x2=3,那么在数轴上与实数x对应的点可能是()
A.P1B.P4
C.P2或P3D.P1或P4
【答案】D
【解析】
试题解析:
∵x2=3,
∴x=± ,
根据实数在数轴上表示的方法可得
【详解】
由数轴得a<0<b,且 ,
∴a+b<0,a-b<0,
故A正确,B、C、D错误,
故选:A.
【点睛】
此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.
19.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是 和﹣1,则点C所对应的实数是( )
A.1+ B.2+ C.2 ﹣1D.2 +1
【答案】B
【解析】
【分析】
直接利用相反数以及绝对值、立方根的定义分别分析得出答案.
【详解】
解:A、5和 =5,两数相等,故此选项错误;
B、-|- |=- 和-(- )= 互为相反数,故此选项正确;
C、- =-2和 =-2,两数相等,故此选项错误;
D、-5和 ,不互为相反数,故此选项错误.
故选B.
【点睛】
【解析】
【分析】
首先根据勾股定理算出AC的长度,进而得到AE的长度,再根据A点表示的数是-1,可得E点表示的数.
【详解】


∴ =
∵ 点表示的数是
∴ 点表示的数是
【点睛】
掌握勾股定理;熟悉圆弧中半径不变性.
【详解】
数轴上正方形的对角线长为: ,由图中可知-1和A之间的距离为 .
∴点A表示的数是 -1.
故选A.
【点睛】
本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.
2.下列各数中最小的数是( )
A. B.0C. D.
【答案】D
【解析】
A.±1B.±3C.1或9D.1或3
【答案】D
【解析】
【分析】
根据平方根和算术平方根的定义求解即可.
【详解】
∵x216,
∴x=±4,
∴5x=1或5x=9,
∴5x的算术平方根是1或3,
故答案为:D.
【点睛】
本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.
16.实数 (相邻两个1之间依次多一个0),其中无理数是()个.
∴ ,- ,0.161161116…都是无理数,
∴无理数有3个: ,- ,0.161161116….
故选C.
【点睛】
此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.
7.在 ,﹣1,0, ,这四个数中,最小的实数是( )
B、a的立方根为 ,本B正确;
C、 =0.1,0.1的平方根为± ,故C错误;
D、 =|-3|=3,故D错误,
故选B.
18.实数 在数轴上对应点的位置如图所示,则下列结论正确的是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据数轴得a<0<b,且 ,再根据实数的加法法则,减法法则依次判断即可.
【答案】C
【解析】
分析:根据平方根的意义,由16<17<25估算出 的近似值进行判断.
详解:∵16<17<25
∴4< <5
∴3< -1<4
因此 -1在3到4之间.
故选:C.
点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键.
10.下列各组数中互为相反数的是( )
A.5和 B. 和 C. 和 D.﹣5和
对应的点为P1或P4.
故选D.
13.估算 在哪两个整数之间()
A.4和5B.5和6C.6和7D.7和8
【答案】C
【解析】
【分析】
由 ,先估算 ,即可解答.
【详解】
解:∵ , ,
∴ ,即介于6和7,
故选:C.
【点睛】
本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 .
14.估算 的值在( )
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.
17.下列说法正确的是()
A.a的平方根是±
B.a的立方根是
C. 的平方根是0.1
D.
【答案】B
【解析】
试题解析:A、当a≥0时,a的平方根为± ,故A错误;
4.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().
A.x+1B.x2+1C. D.
【答案】D
【解析】
一个自然数的算术平方根是x,则这个自然数是 则它后面一个数的算术平方根是 .
故选D.
5.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示 ﹣1的点是( )
A.点MB.点NC.点PD.点Q
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,
【详解】
∵ ,∴ ,0, , 是有理数.
∴无理数有:﹣π,0.1010010001….共有2个.
故选B.
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
【答案】C
【解析】
【分析】
根据被开方数越大算术平方根越大,可得答案.
【详解】
∵3 4,
∴4 1<5.
故选C.
【点睛】
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3 4是解题的关键,又利用了不等式的性质.
15.若x216,则5x的算术平方根是()
A.2a+bB.-2a+bC.bD.2a-b
【答案】C
【解析】
试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:
∵由数轴可知,b>0>a,且|a|>|b|,
∴ .
故选C.
考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.
9.估计 的值在( )
A.1到2之间B.2到3之间C.3到4之间D.4到5之间
A. B.﹣1C.0D.
【答案】B
【解析】
【分析】
将四个数按照从小到大顺序排列,找出最小的实数即可.
【ቤተ መጻሕፍቲ ባይዱ解】
四个数大小关系为: ,
则最小的实数为 ,
故选B.
【点睛】
此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.
8.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简 的结果为()
【答案】C
【解析】
【分析】
有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.
【详解】
∵-3.5是有限小数,− =-0.1,
∴-3.5、- 是有理数;
∵ =22÷7= 是循环小数,
∴ 是有理数;
∵0是整数,
∴0是有理数;
∵ ,- ,0.161161116…都是无限不循环小数,
【答案】D
【解析】
【分析】
【详解】
设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
,解得 .
故选D.
20.如图,长方形 的边 长为 , 长为 ,点 在数轴上对应的数是 ,以 点为圆心,对角线 长为半径画弧,交数轴于点 ,则这个点 表示的实数是()
A. B. C. D.
【答案】C
相关文档
最新文档