题型五立体几何中的空间角问题

合集下载

高考专题:立体几何大题空间角求解

高考专题:立体几何大题空间角求解

立体几何大题空间角求解专题引言:由于高二学生在立体几何中对空间角的想象都不够(想象不来),所以在这个题目上绝大多数学生不好下手做。

那么几何法较为复杂,需要添加辅助线,而且辅助线的添加也颇有难度,没有固定的添线套路。

所以对绝大多数高中生而言,不擅长几何法来解空间角题目的;有极少数的优秀学生还是掌握的很好。

特此补充向量法在这个题目中的应用!向量法是利用向量的夹角公式,把空间角转化到向量角,从而利用公式直接或间接得出空间角的三角函数值。

从而确定角。

(其实考试的时候绝大多数题目考察的都是角的三角函数值,比如正余弦)那么向量法的模版我具体不展开来讲。

一道题如果建系都能建好,点的坐标都能找到,那么这个题目没什么好讲的。

万事开头难!向量法的核心在于建系!以往的套路都是在几何体中找三垂直建系,属于老套路。

我也不具体讲了。

我来讲一下折叠法。

(笔者自身喜欢把几何问题折叠处理。

)底侧面折叠法简称折叠法!此法的优势在于能够教学生有目标的去确定凌空顶点的坐标底侧面折叠法,法如其名。

首先把这个几何体还原成平面图。

其次在平面图上找出相应的底侧面;最后确定底侧面的夹角。

按照底侧面夹角进行侧面顶点的凌空投影。

前个版本我把空间立体几何中常见的底侧面构成做了个汇总;现在不展开来讲了。

根据近一年来做题的经验总结出一下一些规律。

1.底面的选取尽量从原题目的直观图中确定。

2.侧面的图形一定是规则的,其类型不逃脱直角三角形,等腰三角形,等腰直角三角形,等边三角形。

如果能在题设条件中很快能确定某某侧面是以上的规则图形,那么我们就把凌空的这个点放到对应的这一边外边。

3.能用底侧折叠来做的题目往往这个底侧面的夹角都是特殊角,比如30°,60°,45°等既然我们确定好了底面和侧面,接下来就是要确定这个底面和侧面的夹角了。

因为绝大多数题目都不会折成二面垂直来让我们学生做的,所以我们要找到这个二面角的大小,那么如何找这个二面角?在这里我们要确定这个二面角对应的线线角。

立体几何之空间夹角

立体几何之空间夹角

第26练“空间角”攻略[题型分析·高考展望]空间角包括异面直线所成的角, 线面角以及二面角, 在高考中频繁出现, 也是高考立体几何题目中的难点所在. 掌握好本节内容, 首先要理解这些角的概念, 其次要弄清这些角的范围, 最后再求解这些角. 在未来的高考中, 空间角将是高考考查的重点, 借助向量求空间角, 将是解决这类题目的主要方法.体验高考1. (2015·浙江)如图, 已知△ABC, D是AB的中点, 沿直线CD将△ACD翻折成△A′CD, 所成二面角A′—CD—B的平面角为α, 则()A. ∠A′DB≤αB. ∠A′DB≥αC. ∠A′CB≤αD. ∠A′CB≥α2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1的顶点A, α∥平面CB1D1, α∩平面ABCD=m, α∩平面ABB1A1=n, 则m, n所成角的正弦值为()A.32 B.22 C.33 D.133. (2016·课标全国丙)如图, 四棱锥P-ABCD中, PA⊥底面ABCD, AD∥BC, AB=AD=AC=3, PA=BC=4, M为线段AD上一点, AM=2MD, N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.高考必会题型题型一异面直线所成的角例1在棱长为a的正方体ABCD-A1B1C1D1中, 求异面直线BA1与AC所成的角.变式训练1(2015·浙江)如图, 三棱锥A—BCD中, AB=AC=BD=CD=3, AD=BC=2, 点M, N分别是AD, BC的中点, 则异面直线AN, CM所成的角的余弦值是________.题型二直线与平面所成的角例2如图, 已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD, AC⊥BD, 垂足为H, PH是四棱锥的高, E为AD的中点. (1)证明: PE⊥BC;(2)若∠APB=∠ADB=60°, 求直线PA与平面PEH所成角的正弦值.变式训练2如图, 平面ABDE⊥平面ABC, △ABC是等腰直角三角形, AB=BC=4, 四边形ABDE是直角梯形, BD∥AE, BD⊥BA, BD=AE=2, 点O、M分别为CE、AB的中点. (1)求证: OD∥平面ABC;(2)求直线CD和平面ODM所成角的正弦值;(3)能否在EM上找到一点N, 使得ON⊥平面ABDE?若能, 请指出点N的位置并加以证明;若不能, 请说明理由.题型三二面角例3(2016·浙江.如图, 在三棱台ABC—DEF中, 平面BCFE⊥平面ABC, ∠ACB=90°, BE =EF=FC=1, BC=2, AC=3..(1)求证: BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.变式训练3如图, 长方体ABCD-A1B1C1D1中, AA1=AD=1, AB=2, 点E是C1D1的中点.(1)求证: DE⊥平面BCE;(2)求二面角A-EB-C的大小.高考题型精练1. 在正方体ABCD-A1B1C1D1中, A1B与B1C所在直线所成角的大小是()A. 30°B. 45°C. 60°D. 90°2. 在正方体ABCD-A1B1C1D1中, A1B与平面BB1D1D所成的角的大小是()A. 90°B. 30°C. 45°D. 60°3. 如图所示, 将等腰直角△ABC沿斜边BC上的高AD折成一个二面角, 此时∠B′AC=60°, 那么这个二面角大小是()A. 90°B. 60°C. 45°D. 30°4.已知正三棱锥S-ABC中, E是侧棱SC的中点, 且SA⊥BE, 则SB与底面ABC所成角的余弦值为()A.63 B.33 C.23 D.365. 如图所示, 在正方体ABCD-A1B1C1D1中, E、F、G、H分别为AA1.AB.BB1.B1C1的中点, 则异面直线EF与GH所成的角等于()A. 45°B. 60°C. 90°D. 120°(5题)(6题)(8题)6如图, △ABC是等腰直角三角形, AB=AC, ∠BCD=90°, 且BC=CD=3, 将△ABC沿BC的边翻折, 设点A在平面BCD上的射影为点M, 若点M在△BCD内部(含边界), 则点M 的轨迹的最大长度等于______;在翻折过程中, 当点M位于线段BD上时, 直线AB和CD 所成角的余弦值等于______.7. 直三棱柱ABC-A1B1C1中, 若∠BAC=90°, 2AB=2AC=AA1, 则异面直线BA1与B1C 所成角的余弦值等于________.8.如图所示, 在四棱锥P-ABCD中, 已知PA⊥底面ABCD, PA=1, 底面ABCD是正方形, PC 与底面ABCD所成角的大小为, 则该四棱锥的体积是________.9. 以等腰直角三角形ABC斜边BC上的高AD为折痕, 使△AB′D和△ACD折成互相垂直的两个平面, 则∠B′AC=________.10. 如图, 在直三棱柱ABC-A1B1C1中, AB=1, AC=2, BC=, D.E分别是AC1和BB1的中点, 则直线DE与平面BB1C1C所成的角为________.(10题)(11题)11. (2016·四川)如图, 在四棱锥PABCD中, AD∥BC, ∠ADC=∠PAB=90°, BC=CD=AD.E为棱AD的中点, 异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M, 使得直线CM∥平面PBE, 并说明理由;(2)若二面角P—CD—A的大小为45°, 求直线PA与平面PCE所成角的正弦值.如图, 在四棱锥P-ABCD中, 底面ABCD为菱形, ∠BAD=60°, Q为AD的中点.(1)若PA=PD, 求证: 平面PQB⊥平面PAD;(2)点M在线段PC上, PM=PC, 若平面PAD⊥平面ABCD, 且PA=PD=AD=2, 求平面MBQ与平面CBQ夹角的大小.。

立体几何综合复习——空间角(完整版)

立体几何综合复习——空间角(完整版)

立体几何专题复习-----空间角的求法(一)异面直线所成的角:定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上理解说明:(1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。

(2)异面直线所成的角的范围:]2,0(π(3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. (4)求异面直线所成的角的方法:法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线;法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求(5).向量法: CDAB CD AB →→=.cos θ(二)直线和平面所成的角1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、记作:θ;3、范围:[0,2π]; 当一条直线垂直于平面时,所成的角θ=2π,即直线与平面垂直;1.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角lαβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 (3)二面角的平面角的特点:1)角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。

2、作二面角的平面角的常用方法:①、点P 在棱上——作垂直于棱的直线(如图1) ;②、点P 在一个半平面——三垂线定理法;(如图2) ③、点P 在二面角内——垂面法。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

专题5:向量法做立体几何的线面角问题(解析版)

专题5:向量法做立体几何的线面角问题(解析版)

专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

立体几何角度的求法

立体几何角度的求法

3)角的边都要垂直于二面角的棱
l
B
A
此 图
×正
O
确 ?
B
10
二面角的平面角的作法:
1、定义法
A
根据定义作出来
O
l
B
2、垂面法 作与棱垂直的平面与
l
O
两半平面的交线得到
γ
A
B
3、三垂线定理法 借助三垂线定理或
其逆定理作出来
A
D
l
O
12
二面角的计算步骤:
1、找到或作出二面角的平面角 2、证明 (指出)1中的角就是所求的 角 3、计算出此角的大小
斜线和平面所成的角(或斜线和平面的夹角) • 直线和平面垂直<=>直线和平面所成的角是直角 • 直线和平面平行或在平面内<=>直线和平面所成的
角是0°
思考
• 直线与平面所成的角θ的取值范围
是: 0≤θ≤π/2

• 斜线与平面所成的角θ的取值范围
是: 0<θ<π/2

斜线和平面所成的角的求法
(1)射影法:在线上取一点作面的垂线,斜 足与垂足的连线与斜线所成的角即为所求。 问题2.正方体ABCD-A1B1C1D1中,E、F分别为BB1 、
这两个半平面叫做二面角的面。
二面角的范围
[00,1800]
3

二面角
图形
顶点
A 边
O
边B
从一点出发的两
定义 条射线所组成的
图形叫做角。
构成
边—点—边
(顶点)
表示法
∠AOB
A 棱a 面
B面
从一条直线出发的 两个半平面所组成 的图形叫做二面角。

课时作业5:§8.8 立体几何中的向量方法(二)——求空间角和距离

课时作业5:§8.8 立体几何中的向量方法(二)——求空间角和距离

§8.8 立体几何中的向量方法(二)——求空间角和距离1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.224.(2016·长春模拟)在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15 B.255 C.55 D.255.如图,△ABC 是等腰直角三角形,其中∠A =90°,且DB ⊥BC ,∠BCD =30°,现将△ABC 折起,使得二面角A -BC -D 为直角,则下列叙述正确的是( )①BD →·AC →=0;②平面BCD 的法向量与平面ACD 的法向量垂直;③异面直线BC 与AD 所成的角为60°;④直线DC 与平面ABC 所成的角为30°.A .①③B .①④C .①③④D .①②③④6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14 C.14 D .-527.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________.9.(2017·石家庄月考)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10.(1)求证:BD ⊥平面POA ;(2)求二面角B -AP -O 的正切值.11.(2016·四川)如图,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠P AB=90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角PCDA 的大小为45°,求直线P A 与平面PCE 所成角的正弦值.12.(2016·潍坊模拟)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;π(2)判断点M的位置,使得平面BDM与平面ABF所成的锐二面角为3.答案精析1.C 2.C 3.B 4.C 5.B 6.B 7.13 8.23 9.2310.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴EF ⊥AC ,∴EF ⊥AO ,EF ⊥PO .∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA .(2)解 设AO ∩BD =H ,连接BO .∵∠DAB =60°,∴△ABD 为等边三角形,∴BD =4,BH =2,HA =23,HO =PO =3,在Rt △BHO 中,BO =HB 2+HO 2=7.在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0),∴AP →=(0,33,3),AB →=(2,23,0).设平面P AB 的法向量为n =(x ,y ,z ),由n ⊥AP →,n ⊥AB →,得⎩⎨⎧ 33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面P AB 的一个法向量为n =(-3,1,-3).由(1)知平面P AO 的一个法向量为BH →=(-2,0,0),设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913, ∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303, ∴二面角B -AP -O 的正切值为303. 11.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED .所以四边形BCDE 是平行四边形,从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE ,所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD ,从而CD ⊥PD .所以∠PDA 是二面角PCDA 的平面角,所以∠PDA =45°,设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知P A ⊥平面ABCD ,从而P A ⊥CE ,且P A ∩AH =A ,于是CE ⊥平面P AH .又CE ⊂平面PCE ,所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE ,所以∠APH 是P A 与平面PCE 所成的角.在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322. 所以sin ∠APH =AH PH =13.方法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD .于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠P AB =90°,且P A 与CD 所成的角为90°,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0).所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2).设平面PCE 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2, 解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+(-2)2+12=13. 所以直线P A 与平面PCE 所成角的正弦值为13. 12.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2,又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,∴BD ⊥平面ADEF ,又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N ,∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD ,∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0),设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1),∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ),∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0, 又DM →=(0,λ,2(1-λ)),DB →=(1,1,0), ∴⎩⎨⎧ λy +2(1-λ)z =0,x +y =0, 令x =1,得y =-1,z =λ2(1-λ), 故n 1=(1,-1,λ2(1-λ))是平面BDM 的一个法向量. ∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos 〈n 1,DN →〉|= 11+1+λ22(1-λ)2=12,得λ=23, ∴M (0,23,23), ∴点M 在线段CE 的三等分点且靠近点C 处.。

专题五 立体几何专题复习

专题五 立体几何专题复习

专题五、立体几何1、线面平行的证法:面∥线面线面线线∥线⇒⎪⎭⎪⎬⎫⊄⊂①关键是在平面内找(用直尺平移到平面内)一条直线与已知直线平行②在证线线平行时,常用到三角形中位线定理或平行四边形对边平行2、线面垂直的证法:αα面线面线线线线线线线⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⊥l b a b a b l al ,关键是在平面内找两条相交直线与已知直线垂直 3、面面垂直的证法βαβα面面面线面线⊥⇒⎭⎬⎫⊂⊥l l4、面面垂直的作用(证明线面垂直)αββαβα面线线线面线线面面面面⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⊥l m l l m注:在条件中寻找线线垂直时,常用结论有①勾股定理逆定理 ②等腰三角形三线合一 ③直径所对圆周角是直角一、考点分析:(理科)考点一:三视图与表面积、体积的结合三视图的识别,多以考查组合体为主,大部分是已知部分(或全部)三视图,进而考查立体图形直观图的还原及计算问题。

几何体的表面积和体积的综合,往往以球为载体,结合棱柱、棱锥。

近三年高考题2011年(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。

2012年(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B )9 (C )12 (D )18(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 (A )26 (B )36 (C )23 (D )222013年(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为考点二:空间线面关系的判断该部分的基础是平面的性质、空间直线与直线的位置关系,重点是空间线面平行和垂直关系的判定和性质,面面平行和垂直关系的判定和性质.在复习中要牢牢掌握四个公理和八个定理及其应用,重点掌握好平行关系和垂直关系的证明方法. 考点三:求空间角考查空间角的计算为主,解决这类问题往往有两种方法:传统几何法和向量法,这两种方法各有所长,传统几何法的主要思想是把立体问题转化为平面问题,难点在逻辑推理、空间想象能力;向量法在建立空间坐标系后把问题转化成坐标运算,其难点在代数运算。

立体几何中的向量方法(空间角与距离问题)

立体几何中的向量方法(空间角与距离问题)
的方向和速度 大小,研究速度的合成与分解。
速度和加速度的研究
加速度
表示物体运动速度变化的快慢和方向, 通过向量表示加速度,研究其合成与分 解。
解决实际问题的应用
物理问题
向量方法广泛应用于解决物理中的力学、电磁学和振动等问题。
工程问题
在机械、航空、航海和建筑等领域,向量方法用于解决各种实际工 程问题。
数学建模
向量方法在数学建模中用于描述和分析复杂系统的动态行为。
THANKS
感谢您的观看
添加副标题
平行线间的距离
定义 平行线间的距离是指两条平行线之间的最短距离。
向量表示 平行线间的距离可以表示为两条平行线方向向量 的模长差。
求解方法 利用向量模长的性质,通过向量的模长运算求解。
04
1
向量方法的应用
2
力的合成与分解
力的合成
通过向量加法,将多个力合成一个合力,计算合力的方向和大小。
力的分解
将一个力分解为两个或多个分力,通过向量分解确定分力的方向和大小。
点到平面的距离可以表示为点与平面内任意一点向量的模长。
求解方法
利用向量投影和模长的关系,通过向量的数量积和点积运算求解。
点到直线的距离
定义
点到直线的距离是指一个点到直线上任意一点的 最短距离。
向量表示
点到直线的距离可以表示为点与直线上一动点向 量的模长。
求解方法
利用向量投影和模长的关系,通过向量的数量积 和点积运算求解。
立体几何中的向量方法
CLICK HERE TO ADD TITLE 添 加 副 标 题
CONTENTS
目录
CON TEN
TS
WORKREVIEW

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

第5讲 立体几何

第5讲 立体几何

,m⊥AB, A m, B n ,且AB与α所成的角为 4 n与AB所成的角为 ,那么m与n所成的角大小为 3
A. 3
B. 4
C. 6
D.

8
答案:B.
问题7:四面体的一个顶点的三个角分别为90˚,60˚, arctan2,求60˚的面和arctan2的面 Nhomakorabea成的二面角。
1 8 3 可知,当 x 时,tan(α+β) 取得最小值 . 2 13
问题3:(09年清华大学自主招生)四面体A-BCD中, AB=CD,AC=BD,AD=BC。 (1)求证:这个四面体的四个面都是锐角三角形; (2)设底面为BCD,另外三个侧面与面BCD所成的二面角为 α,β, .求证:cosα+cosβ+cos =1.
d1 的距离为d2,且 k .求立方体图形ABEFGH d2
与四面体ABCD体积之比.
问题10:四面体的二面角的平分面分对棱所成的比 等于形成这个二面角的两个界面的面积之比。
问题11:设O是正三棱锥P-ABC底面ABC的中心, 过O的动平面与PC交于S,与PA,PB的延长线分
1 1 1 别交于Q,R,则和式 PQ PR PS
分析:如图,过P作A1B1的垂线,垂足为P1,再过
P1分别作A1C1、B1C1的垂线,垂足分别为E、D,连
结PE、EP1、PD、DP1,则PEP1=α,PDP1=β.
设B1P1=x(0<x<1),
3 3 则 PD x ,P 1 x . 1 1E 2 2
2 3 2 3 可得 tan , tan . 3x 3 1 x 2 3 于是 tan 3x 1 x 4

立体几何复习空间角的求法

立体几何复习空间角的求法
2
(1)证明:DE∥平面 BCF; (2)证明:CF⊥平面 ABF; (3)当 AD=23时,求三棱锥 F-DEG 的体积 V . 的大 90.0 小为
(结论)B
O
D
作(找)---证(指出)---算---结论
C
练:正方体ABCD—A1B1C1D1中,
D1
求:
A1
(1) 二面角A-BD-A1的正切值;
(2) 二面角A1-AD-B的大小.
D
解由:正连方结体A的C,性交质BD可于知O,,连BD结⊥OOAA1 ,BD⊥AAA1
作(找)---证---指出---算---结论
在三角形中计算
(一)异面直线所成的角:范围是(0,π/2]. 平移直线成相交直线: (1)利用中位线,平行四边形; (2)补形法.
作(找)---证---指出---算---结论
关键
在三角形中计算
例1.正四面体S-ABC中,如
s
果E、F分别是SC、AB的
中点,那么异面直线EF和 E
• [例1] (2013年高考新课标全国卷Ⅱ)如图
所示,直三棱柱ABC-A1B1C1中,D,E分别是 AB,BB1的中点.
(1)证明:BC1∥平面 A1CD; (2)设 AA1=AC=CB=2,AB=2 2,求三棱锥 C-A1DE 的体积.
题型二 立体几何中的折叠问题
[例 3] (2013 年高考广东卷)如图(1),在边长为 1 的等边三角形 ABC 中,D,E 分别是 AB,AC 边上的 点,AD=AE,F 是 BC 的中点,AF 与 DE 交于点 G, 将△ABF 沿 AF 折起,得到如图(2)所示的三棱锥 A- BCF,其中 BC= 2.
SA所成的角=_______.

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D ­B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等. (2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力. 【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

高中数学立体几何---用空间向量求空间角专题训练(解析版)

高中数学立体几何---用空间向量求空间角专题训练(解析版)

立体几何---用空间向量求空间角专题训练(解析版)【题组一 线线角】1.如图,在等腰三角形ABC 与ABD 中,90DAB ABC ∠=∠=︒,平面ABD ⊥平面ABC ,E ,F 分别为BD ,AC 的中点,则异面直线AE 与BF 所成的角为( )A .2πB .3πC .4πD .6π 【答案】B【解析】由于在等腰三角形ABC 与ABD 中,90DAB ABC ∠=∠=︒,平面ABD ⊥平面ABC ,根据面面垂直的性质定理可知AD ⊥平面ABC ,BC ⊥平面ABD ,所以AD BC ⊥.依题意设DA AB BC x ===,由于,E F是等腰直角三角形斜边的中点,所以2AE BF x ==.设异面直线AE 与BF 所成的角为θ,则cos cos ,AE BF θ=AE BF AE BF ⋅=⋅()()12AB AD AF AB AE BF +⋅-=⋅()()1122AB AD AB BC AB AE BF ⎡⎤+⋅+-⎢⎥⎣⎦=⋅()111222AB AD BC AB AE BF ⎛⎫+⋅- ⎪⎝⎭=⋅()214AB BC AD BC AB AB AD AE BF ⋅+⋅--⋅=⋅22111422AB x AE BF -⋅===⋅,由于π0,2θ⎛⎤∈ ⎥⎝⎦,所以π3θ=.故选:B 2.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,E 为BB ′的中点,异面直线CE 与C A '所成角的余弦值是( )A B .C .D 【答案】D【解析】直三棱柱ABC A B C -'''中,AC BC AA ==',90ACB ∠=︒,E 为BB '的中点.以C 为原点,CA 为x 轴,CB 为y 轴,CC '为z 轴,建立空间直角坐标系,设2AC BC AA =='=,则(0C ,0,0),(0E ,2,1),(0C ',0,2),(2A ,0,0),(0CE =,2,1),(2C A '=,0,2)-,设异面直线CE 与C A '所成角为θ, 则||210cos 10||||58CE C A CE C A θ'==='∴异面直线CE 与C A '所成角的余弦值为10. 故选:D .3.已知直三棱柱111ABC A B C -,90ABC ∠=︒,12AB BC AA ===,1BB 和11B C 的中点分别为E 、F ,则AE 与CF 夹角的余弦值为( )A B .25 C .45 D 【答案】B【解析】如图所示:分别以1,,BA BC BB 为,,x y z 轴建立空间直角坐标系.故()0,2,0A ,()2,0,0C ,()0,0,1E ,()1,0,2F ,故()0,2,1AE =-,()1,0,2CF =-. 2cos ,5AE CFAE CF AE CF ⋅==⋅,即AE 与CF 夹角的余弦值为25. 故选:B .4.如图所示,四棱锥P ABCD -中,PB PD AD AB ===,60BAD ∠=︒,1CD CB ==,120BCD ∠=︒,点M N 、分别为PA AB 、的中点.(1)证明:平面DMN ∥平面PBC ;(2)若2PA =PA 与BC 所成角的余弦值.【答案】(1)证明见解析;(2)4 【解析】(1)如图,因为M N 、分别为PA AB 、的中点,所以//MN PB ,MN ⊄平面PBC ,∴//MN 平面PBC ;又AB AD =,60BAD ∠=︒,所以ABD △为正三角形,又CD BC =,120BCD ∠=︒,所以30CBD ∠=︒,BC AB ⊥,又DN AB ⊥,所以BC DN ,∴DN 平面PBC因为MN DN N ⋂=,所以平面DMN 平面PBC . (2)如图,取BD 中点O ,连结,,AO CO PO ,因为AD AB =,60DAB ∠=︒,所以ABD △为正三角形,所以AO BD ⊥,又因为BCD 为等腰三角形,所以CO BD ⊥,所以A O C 、、三点共线,所以AC BD ⊥,因为PB PD =,所以PO BD ⊥,1CD BC ==,120BCD ∠=︒,所以BD =,所以PB PD AD AB ====,32AO PO ==,又2PA =,所以222AO PO PA +=, 所以AO PO ⊥,又AOPO O =,所以PO ⊥平面ABCD . 以O 为坐标原点,,,OA OB OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,3,0,02A ⎛⎫ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,B ⎛⎫ ⎪ ⎪⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭, 33,0,22PA ⎛⎫=- ⎪⎝⎭,1,2BC ⎛⎫=- ⎪ ⎪⎝⎭, 设异面直线PA 与BC 所成角为α,所以cos ,||||3PA BC PA BC PA BC⋅〈〉===⋅ 所以异面直线PA 与BC【题组二 线面角】1.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,如下图.(Ⅰ)求证:A 1O ⊥BD ;(Ⅱ)求直线A 1C 和平面A 1BD 所成角的正弦值;【解析】(Ⅰ)因为AB AC =,,D E 分别为,AB AC 中点,故可得AD AE =,故1A DE 为等腰三角形,又O 为DE 中点,故可得1AO DE ⊥,又因为平面A 1DE ⊥平面BCED ,且交线为DE , 又1AO ⊂平面1A DE ,故1AO ⊥平面BCED ,又BD ⊂平面BCDED , 故1AO BD ⊥.即证. (Ⅱ)过O 作OH BC ⊥,由(Ⅰ)可知1AO ⊥平面BCED , 又,OH OE ⊂平面BCED ,故可得11,AO OH AO OE ⊥⊥, 又因为,OH BC BC ⊥//DE ,故可得OH OE ⊥.综上所述:1,,OH OE OA 两两垂直,故以O 为坐标原点,1,,OH OE OA 分别为,,x y z 轴建立空间直角坐标系, 如下图所示:故可得()()()()10,0,2,2,2,0,0,1,0,2,2,0A C D B --, 则()()10,1,2,2,1,0A D BD =--=-设平面1A BD 的法向量为(),,n x y z =,故可得100n A D n BD ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y --=⎧⎨-+=⎩, 取1x =,可得2,1y z ==-.故()1,2,1n =-.又()12,2,2AC =-, 故可得11122,?3n AC cos n AC n AC ⋅==. 设直线A 1C 和平面A 1BD 所成角为θ,故可得12,3sin cos n AC θ==.则直线A 1C 和平面A 1BD 所成角的正弦值为3.2.如图1,在ABC 中, D , E 分别为AB , AC 的中点,O 为DE 的中点,AB AC ==4BC =.将ABC 沿DE 折起到1A DE △的位置,使得平面1A DE ⊥平面BCED ,如图2.(1)求证:1AO BD ⊥; (2)求直线1AC 和平面1ABD 所成角的正弦值.【答案】(1)证明见解析;(2)3. 【解析】(1)连接1AO .图1中,AB AC =,D , E 分别为AB , AC 的中点,AD AE ∴=, 即11A D A E =,又O 为DE 的中点,1AO DE ∴⊥. 又平面1A DE ⊥平面BCED ,且平面1A DE 平面BCED DE =,1AO ⊂平面1ADE , 1AO ∴⊥平面BCED ,又BD ⊂平面BCED , 1AO BD ∴⊥. (2)取BC 中点G ,连接OG ,则OG DE ⊥.由(1)可知1AO ⊥平面BCED ,OG ⊂平面BCED 11,AO DE AO OG ∴⊥⊥. 以O 为原点,分别以1,,OG OE OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示AB AC ==4BC =,112,1,2A D DE OD A O ∴==∴=∴==.()()()()10,0,2,2,2,0,2,2,0,0,1,0A B C D ∴--, ()()()11112,2,2,0,1,2,2,2,223A B A D AC AC ∴=--=--=-=,. 设平面1A BD 的法向量为(),,n x y z =,则11·0·0n A B n A D ⎧=⎪⎨=⎪⎩,即222020x y z y z --=⎧⎨--=⎩,令1z =,则2,1y x =-=-,()1,2,16n n ∴=--=,. 设直线1AC和平面1A BD 所成的角为θ,则 111sin cos ,323AC n ACn AC n θ-=〈〉===, 所以直线1AC 和平面1A BD 所成角的正弦值为3. 3.在矩形ABCD 中,3AB =,2AD =,点E 是线段CD 上靠近点D 的一个三等分点,点F 是线段AD 上的一个动点,且()01DF DA λλ=≤≤.如图,将BCE ∆沿BE 折起至BEG ∆,使得平面BEG ⊥平面ABED .(1)当12λ=时,求证:EF BG ⊥; (2)是否存在λ,使得FG 与平面DEG 所成的角的正弦值为13?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)见解析(2) 12λ= 【解析】(1)当12λ=时,点F 是AD 的中点. ∴112DF AD ==,113DE CD ==. ∵90ADC ∠=︒,∴45DEF ∠=︒. ∵223CE CD ==,2BC =,90BCD ∠=︒, ∴45BEC ∠=︒.∴BE EF ⊥.又平面GBE ⊥平面ABED ,平面GBE ⋂平面ABED BE =,EF ⊂平面ABED ,∴EF ⊥平面BEG .∵BG ⊂平面BEG ,∴EF BG ⊥.(2)以C 为原点,,CD CB 的方向为x 轴,y 轴的正方向建立如图所示空间直角坐标系Cxyz .则()2,0,0E ,()3,0,0D ,()3,2,0F λ.取BE 的中点O ,∵2GE BG ==,∴GO BE ⊥,∴ 易证得OG ⊥平面BCE ,∵BE =OG(G .∴(2,12FG λ=--,(EG =-,(DG =-.设平面DEG 的一个法向量为(),,n x y z =,则20,0,n DG x y n EG x y ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩令z =(0,n =-. 设FG 与平面DEG 所成的角为θ, 则sin cos ,FG n θ=13==, 解得12λ=或710λ=-(舍去)∴存在实数λ,使得DG 与平面DEG 所成的角的正弦值为13,此时12λ=. 4.如图,在直三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为6的等边三角形,D ,E 分别为AA 1,BC 的中点.(1)证明:AE //平面BDC 1;(2)若异面直线BC 1与AC DE 与平面BDC 1所成角的正弦值.【答案】(1)详见解析;(2 【解析】(1)证明:取BC 1的中点F ,连接DF ,EF ,∵E 为BC 中点,∴EF ∥1CC ,112EF CC = 又∵D 为AA 1的中点,DA ∥1CC ,112DA CC =, ∴EF ∥DA ,EF DA =∴四边形ADFE 为平行四边形,∴AE ∥DF ,∵AE ⊄平面BDC 1,DF ⊂平面BDC 1,∴AE ∥平面BDC 1;(2)由(1)及题设可知,BC ,EA ,EF 两两互相垂直,则以点E 为坐标原点,EC ,EA ,EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AA 1=2t (t >0),则1(3,0,0),(3,0,2),(3,0,0),)B C t A C D t -,所以1(3,33,),(6,0,2),(3,BD t BC t AC ===-,故111|cos ,|4||||6BC AC BC AC BC AC ⋅<>===⋅解得t =,设平面BDC 1的法向量为(,,)m x y z =由100m BD m BC ⎧⋅=⎪⎨⋅=⎪⎩,得3060x x⎧+=⎪⎨+=⎪⎩, 令1x =,则(1,0,m =,又D ED ∴=, 所以cos ,||||(3ED m ED m ED m ⋅<>===, 设DE 与平面BDC 1所成角为θ,则sin θ=30|cos ,|20ED m <>=, ∴DE 与平面BDC 15.如图,四棱锥P ABCD -中,AP ⊥平面PCD ,AD BC ∥,2DAB π∠=,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求直线AB 与平面PBD 所成角的正弦值.. 【解析】Ⅰ)由已知AP ⊥平面PCD ,可得AP PC ⊥,AP CD ⊥,由题意得,ABCD 为直角梯形,如图所示,BC DE ,所以BCDE 为平行四边形,所以BE CD ∥,所以AP BE ⊥.又因为BEAC ⊥,且AC AP A =, 所以BE ⊥面APC ,故BE PO ⊥.在直角梯形中,AC ==,因为AP ⊥面PCD ,所以AP PC ⊥,所以PAC 为等腰直角三角形,O 为斜边AC 上的中点,所以PO AC ⊥.且ACBE O =,所以PO ⊥平面ABCD(Ⅱ)法一:以O 为原点,分别以,,OB OC OP 为x 轴,y 轴,z 轴的建立直角坐标系.不妨设1BO = 0(0)1A -,,,()100B ,,,()001P ,,,0()21D -,,,设(,,)n x y z =是平面PBD 的法向量.满足00n PB n BD ⎧⋅=⎨⋅=⎩, 所以030x z x y -+=⎧⎨-+=⎩, 则令1x = ,解得(1,3,1)n =sin cos ,AB n θ=22211AB nAB n ⋅==⋅ 法二:(等体积法求A 到平面PBD 的距离)A PBD P ABD V V--=设AB=1,计算可得1PF =,PD= ,BD ,4PBD S =△ 1133PBD ABD S hS PO ⨯⨯=⨯⨯△△,解得h = sin h AB θ==【题组三 二面角】1.如图,平行四边形ABCD 所在平面与直角梯形ABEF 所在平面互相垂直,且11,//2AB BE AF BE AF ===,,,2,3AB AF CBA BC P π⊥∠==为DF 中点.(1)求异面直线DA 与PE 所成的角;(2)求平面DEF 与平面ABCD 所成的二面角(锐角)的余弦值.【答案】(1)6π(2【解析】在ABC ∆中,1,,23AB CBA BC π=∠==,所以2222cos 3AC BA BC BA BC CBA =+-⨯∠=所以222AC BA BC +=,所以AB AC ⊥又因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,AC ⊂平面ABCD ,所以AC ⊥平面ABEF如图,建立空间直角坐标系{},,AB AF AC ,则1(0,0,0),(1,0,0),((1,1,0),(0,2,0),(22A B C D E F P--(1)3(1,0,3),(,0,2DA PE=-=设异面直线DA与PE所成的角为α,则3cos2DA PEDA PEα⋅===⨯⨯所以异面直线DA与PE所成的角为6π;(2)(0,2,0)AF=是平面ABCD的一个法向量,设平面DEF的一个法向量(,,)n x y z=,(2,1,3),(1,2,DE DF=-=则(,,)(2,1,20{(,,)(1,2,20n DE x y z x yn DF x y z x y⋅=⋅=+-=⋅=⋅=+-=,得z==,取1x=,则1,y z==故(1,1,3)n=是平面DEF的一个法向量,设平面DEF与平面ABCD 所成的二面角(锐角)为β,则2cos525AF nAF nβ⋅===⨯⨯.2.如图,梯形ABCS中,//AS BC,AB BC⊥,122AB BC AS===,D、E分别是SA,SC的中点,现将SCD∆沿CD翻折到PCD∆位置,使PB=(1)证明:PD ⊥面ABCD ;(2)求二面角E BD C --的平面角的正切值;(3)求AB 与平面BDE 所成的角的正弦值.【答案】(1)证明见解析;(23)3【解析】(1)梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,2DA =,四边形ABCD 为平行四边形,AB BC ⊥,2AB DA ==,BD =所以四边形ABCD 为正方形,CD DS ⊥,折叠后,CD DP ⊥,2PD =,PB =PBD 中,2224812PD BD PB +=+==,所以BD DP ⊥,,CD DB 是平面ABCD 内两条相交直线,所以PD ⊥面ABCD ;(2),,DA DC DP 两两互相垂直,以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,如图所示:则(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(0,1,1)D A B C P E (2,2,0),(0,1,1)DB DE ==,设平面BDE 的法向量为(,,)n x y z = 则2200DB n x y DE n y z ⎧⋅=+=⎨⋅=+=⎩,解得y z x z =-⎧⎨=⎩,令1z =,取(1,1,1)n =- 由(1)可知,PD ⊥面ABCD ,取平面ABCD 的法向量(0,0,2)DP =cos ,3DP n ==,根据图形,二面角E BD C --所以二面角E BD C --(3)(0,2,0)AB =,由(2)可得平面BDE 的法向量(1,1,1)n =- 设直线AB 与平面BDE 所成的角为θ,sin cos ,AB n θ-===.所以AB 与平面BDE3.如图四棱柱1111ABCD A BC D -中,//AD BC ,AB AD ⊥,2AD AB BC ==,M 为1A D 的中点.(1)证明://CM 平面11AA B B ;(2)若四边形11AA B B 是菱形,且面11AA B B ⊥面ABCD ,13B BA π∠=,求二面角1A CM A --的余弦值. 【答案】(1)证明见解析;(2)25. 【解析】(1)取1AA 的中点N ,连接MN ,BN ,∵M 为1A D 的中点,∴//MN AD 且12MN AD = 又//BC AD ,12BC AD = ,所以//BC MN 且MN BC =, 所以四边形MNBC 是平行四边形,从而//CM BN ,又BN ⊂平面11AA B B ,CM ⊄平面11AA B B ,所以//CM 平面11AA B B .(2)取11A B 的中点P ,连接AP ,1AB ,∵四边形11AA B B 为菱形,又13B BA π∠=,易知AP AB ⊥.又面11AA B B ⊥面ABCD ,面11AA B B 面ABCD AB =,AD AB ⊥∴AD ⊥平面11AA B B ,AD AP ⊥故AB ,AD ,AP 两两垂直以A 为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系A xyz -(如图所示),不妨设4AB =.则()0,0,0A ,()0,4,0D ,()4,2,0C,,(1A -,(1,M -,(11,2,A M =,(CM =-,()4,2,0AC =设平面1ACM 的法向量为(),,m x y z =, 由100m A M m CM ⎧⋅=⎨⋅=⎩,得2050x y x ⎧+=⎪⎨-=⎪⎩,可得平面1ACM的一个法向量1,m ⎛= ⎝⎭, 设平面ACM 的法向量为()111,,n x y z =,由00n AC n CM ⎧⋅=⎨⋅=⎩,得111142050x y x +=⎧⎪⎨-+=⎪⎩, 可得平面ACM的一个法向量1,n ⎛=- ⎝⎭. ∴25142cos ,51m nm n m n -+⋅===⋅+ 所以二面角1A CM A --的余弦值为25. 4.已知平行四边形ABCD 中60A ∠=︒,22AB AD ==,平面AED ⊥平面ABCD ,三角形AED 为等边三角形,EF AB ∥.(Ⅰ)求证:平面⊥BDF平面AED ;(Ⅱ)若BC ⊥平面BDF①求异面直线BF 与ED所成角的余弦值;②求二面角B DF C --的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)①45.【解析】(Ⅰ)平行四边形ABCD 中∵60A ∠=︒,22AB AD ==,由余弦定理可得BD ,由勾股定理可得BD AD ⊥,如图,以D 为原点建立空间直角坐标系O xyz -∴()0,0,0D ,()1,0,0A ,()B ,12E ⎛ ⎝⎭,()C -∴()=DB ,()1,0,0DA =,1,0,22DE ⎛= ⎝⎭∴0DB DA ⋅=,0DB DE ⋅=,∴DB DA ⊥,DB DE ⊥.又DA DE D ⋂=,∴DB ⊥平面AED .又∵DB ⊂平面BDF ,∴平面⊥BDF 平面AED .(Ⅱ)∵EF AB ∥,∴设()(),0EF AB λλλ==-=-∴12F λ⎛- ⎝⎭,()1,0,0BC =-. ∵BC ⊥平面BDF ,∴BC DF ⊥,∴102BC DF λ⋅=-=,∴12λ=.∴F ⎛⎝⎭.①0,BF ⎛= ⎝⎭,1,0,2ED ⎛=- ⎝⎭∴34cos cos ,BF ED θ=== ∴异面直线BF 与ED ②设(),,n x y z =为平面BDF 的法向量,则303022n DB y n DF y z ⎧⋅==⎪⎨⋅=+=⎪⎩可得()1,0,0n=,设(),,m x y z =为平面CDF 的法向量,则0302m DC x m DF y z ⎧⋅=-=⎪⎨⋅=+=⎪⎩可得()3,1,1m =-,∴3cos ,5m n ==sin θ= ∴二面角B DF C --. 5.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)求平面PAB 与平面PCD 所成锐二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.【答案】 【解析】以为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为()()()()1,0,0,1,1,0,0,2,0,0,0,2B C D P .(1) 因为AD ⊥平面PAB ,所以是平面PAB 的一个法向量,.因为(1,1,2),(0,2,2)PC PD =-=-.设平面PCD 的法向量为(),,m x y z =,则0,0m PC m PD ⋅=⋅=,即20{220x y z y z +-=-=,令1y =,解得1,1z x ==. 所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,3||||AD m AD m AD m ⋅〈〉==,所以平面PAB 与平面PCD所成二面角的余弦值为3. (2) 因为(1,0,2)BP =-,设(,0,2)(01)BQ BP λλλλ==-≤≤,又(0,1,0)CB =-,则(,1,2)CQ CB BQ λλ=+=--,又(0,2,2)DP =-, 从而1cos ,||||10CQ DP CQ DP CQ DP ⋅〈〉==, 设[]12,1,3t t λ+=∈,则2222229cos ,5109101520999t CQ DP t t t 〈〉==≤-+⎛⎫-+ ⎪⎝⎭,当且仅当95t =,即25λ=时,|cos ,|CQ DP 〈〉因为cos y x=在0,2π⎛⎫ ⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP ==25BQ BP ==.6.如图,在三棱锥S 一ABC 中,SA =AB =AC =BC ,O为BC 的中点(1)求证:SO ⊥平面ABC(2)在线段AB 上是否存在一点E ,使二面角B —SC -E ?若存在,求B E BA 的值,若不存在,试说明理由【答案】(1)见解析(2)23【解析】(1)∵SB SC =,O 为BC 的中点,∴SO BC ⊥,设SB a =,则SO =,AO a =,SA =, ∴222SO OA SA +=,∴SO OA ⊥,又∵BC OA O ⋂=,∴SO ⊥平面ABC .(2)以O 为原点,以OA 所在射线为x 轴正半轴,以OB 所在射线为y 轴正半轴,以OS 所在射线为z 轴正半轴建立空间直角坐标系.则有()0,0,0O ,0,0,2S ⎛⎫ ⎪ ⎪⎝⎭,0,,02C a ⎛⎫- ⎪ ⎪⎝⎭,,0,02A a ⎛⎫ ⎪ ⎪⎝⎭,0,,02B a ⎛⎫ ⎪ ⎪⎝⎭. 假设存在点E 满足条件,设()01BE BA λλ=≤≤,则(),1,02E a a λ⎫-⎪⎪⎝⎭,则()62,02CE a λ⎛⎫=- ⎪ ⎪⎝⎭. 设平面SCE 的法向量为(),,n x y z =,由00n CE n SC ⎧⋅=⎨⋅=⎩,得()200x y y z λ+-=+=⎪⎩,故可取()2,n λ=-.易得平面SBC 的一个法向量为()1,0,0m =.所以,cos 5m nm n θ⋅===⋅,解得23λ=或2λ=-(舍). 所以,当23BE BA =时,二面角B SC E --. 7.在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ;(Ⅱ)求二面角C PB Q --的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB所成角的余弦值为15,求线段DH 的长. 【答案】(1)证明见解析;(2)56π;(3)32. 【解析】(1)平面ADPQ ⊥平面ABCD ,平面ADPQ ⋂平面ABCD AD =,PD ADPQ ⊂平面,PD AD ⊥,∴直线PD ⊥平面ABCD .由题意,以点D 为原点,分别以,,DA DC DP 的方向为x 轴,y 轴,z 轴的正向建立如图空间直角坐标系,则可得:()()()0,0,0,2,2,0,0,2,0D B C ,()()()2,0,0,2,0,1,0,0,2A Q P .依题意,易证:()2,0,0AD =-是平面PDC 的一个法向量, 又()0,2,1QB =-,∴ 0QB AD ⋅=, 又直线QB ⊄平面PDC ,∴ //QB PDC 平面.(2) ()()2,2,2,=0,22PB PC =--,. 设()1111,,n x y z =为平面PBC 的法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111112220220x y z y z +-=⎧⎨-=⎩. 不妨设11z =,可得()10,1,1n =.设()2222,,n x y z =为平面PBQ 的法向量,又()()2,2,2,2,0,1PB PQ =-=-, 则2200n PB n PQ ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x z x y z -=⎧⎨+-=⎩. 不妨设22z =,可得()21,1,2n =,∴ 1212123cos<,2n n n n n n ⋅>==⋅, 又二面角C PB Q --为钝二面角,∴二面角C PB Q --的大小为56π. (3)设()()0,0,02H h h ≤≤,则()2,0,AH h =-,又()2,2,2PB =-, 又7cos<,15PB AH >=15=, ∴ 2625240h h -+=,解得32h =或83h =(舍去). 故所求线段DH 的长为32.8.已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC 是边长为2的等边三角形,1AE =,M 为AB 的中点.(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.【答案】(1)证明见解析;(2)90.【解析】(1)证明:ABC为等边三角形,M为AB的中点,∴CM AB⊥,又DB⊥平面ABC,CM⊂平面ABC,∴DB CM⊥,DB AB B=,DB,AB平面ABDE,∴CM⊥平面ABDE,又EM⊂平面ABDE,∴CM EM⊥.(2)过点M作//Mz BD,易知Mz、MB、MC两两垂直;以M为原点,分别以MC、MB、Mz作为x轴、y轴、z轴建立空间直角坐标系,如图;DB⊥平面ABC,∴DMB∠直线DM与平面ABC所成角,∴tan2BDDMBBM∠==,∴22BD BM==,∴()0,1,0B,)C,()0,1,2D,()0,1,1E-,∴()3,1,0BC=-,()CD=-,()1,1CE=--,设平面BCD的一个法向量为()111,,m x y z=,则m BCm CD⎧⋅=⎨⋅=⎩即1111120yy z-=++=⎪⎩,令11x=,则()1,3,0m=,设平面CDE的一个法向量为()222,,n x y z=,则n CEn CD⎧⋅=⎨⋅=⎩即22222220y zy z⎧-+=⎪⎨++=⎪⎩,令2x=,则()3,1,2n=-,∴cos,0m nm nm n⋅==⋅,∴二面角B CD E--的大小为90.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型五立体几何中的空间角问题
1.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
2.(2011·湖南)如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,C是AB的中点,D为AC的中点.
(1)证明:平面POD⊥平面P AC;
(2)求二面角B—P A—C的余弦值.
答案
1.(1)证明
设AD =DE =2AB =2a ,以A 为原点,AC 为x 轴,AB 为z 轴,建立如图所示的直角坐
标系A —xyz ,
则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ). 因为F 为CD 的中点,
所以F ⎝⎛⎭
⎫32a ,32a ,0. AF →=⎝⎛⎭
⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a,0,-a ). 因为AF →=12
(BE →+BC →),AF ⊄平面BCE , 所以AF ∥平面BCE .
(2)证明 因为AF →=⎝⎛⎭
⎫32a ,32a ,0,CD →=(-a ,3a,0), ED →=(0,0,-2a ),故AF →·CD →=0,
AF →·ED →=0,所以AF →⊥CD →,AF →⊥ED →.
所以AF →⊥平面CDE .
又AF ∥平面BCE ,所以平面BCE ⊥平面CDE .
(3)解 设平面BCE 的法向量为n =(x ,y ,z ).
由n ·BE →=0,n ·BC →=0,
可得x +3y +z =0,2x -z =0,取n =(1,-3,2).
又BF →=⎝⎛⎭
⎫32a ,32a ,-a ,设BF 和平面BCE 所成的角为θ, 则sin θ=|BF →·n ||BF →||n |=2a 2a ·
22=24. 所以直线BF 和平面BCE 所成角的正弦值为24
. 2.方法一 (1)证明 如图,连接OC ,因为OA =OC ,D 是AC 的中点,所以AC ⊥OD .
又PO ⊥底面⊙O ,AC ⊂底面⊙O ,
所以AC ⊥PO .
因为OD ,PO 是平面POD 内的两条相交直线,
所以AC ⊥平面POD ,
而AC ⊂平面P AC ,
所以平面POD ⊥平面P AC .
(2)解 在平面POD 中,过O 作OH ⊥PD 于H ,由(1)知,平面POD ⊥平面P AC , 所以OH ⊥平面P AC .
又P A ⊂平面P AC ,所以P A ⊥OH .
在平面P AO 中,过O 作OG ⊥P A 于G ,连结HG ,
则有P A ⊥平面OGH ,从而P A ⊥HG ,
故∠OGH 为二面角B —P A —C 的平面角. 在Rt △ODA 中,OD =
OA ·sin 45°=22
. 在Rt △POD 中,OH =PO ·OD PO 2+OD 2=2×2
22+12
=105. 在Rt △POA 中,OG =PO ·OA PO 2+OA 2=2×12+1
=63. 在Rt △OHG 中,sin ∠OGH =OH OG =10563
=155. 所以cos ∠OGH =1-sin 2∠OGH =1-1525=105
. 故二面角B —P A —C 的余弦值为105
. 方法二
(1)证明 如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),
D ⎝⎛⎭
⎫-12,12,0. 设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,
则由n 1·OD →=0,n ·OP →=0,
得⎩⎪⎨⎪⎧
-12x 1+12y 1=0,2z 1=0.
所以z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).
设n 2=(x 2,y 2,z 2)是平面P AC 的一个法向量,
则由n 2·P A →=0,n 2·PC →=0,得⎩
⎪⎨⎪⎧
-x 2-2z 2=0,y 2-2z 2=0. 所以x 2=-2z 2,y 2=2z 2.取z 2=1,得n 2=(-2,2,1). 因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2. 从而平面POD ⊥平面P AC .
(2)解 因为y 轴⊥平面P AB ,
所以平面P AB 的一个法向量为n 3=(0,1,0). 由(1)知,平面P AC 的一个法向量为n 2=(-2,2,1). 设向量n 2和n 3的夹角为θ,
则cos θ=n 2·n 3|n 2|·|n 3|=25=105. 由图可知,二面角B —P A —C 的平面角与θ相等, 所以二面角B —P A —C 的余弦值为
105.。

相关文档
最新文档