导数压轴题训练

合集下载

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。

1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。

2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。

1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。

3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。

1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。

4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。

1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。

5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。

1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。

6.已知函数 $f(x)=e^x-x^2-ax-1$。

1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。

7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。

1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。

第14讲 导数解答压轴题(原卷版)

第14讲  导数解答压轴题(原卷版)

第14讲 导数解答压轴题1.(2021·山东临沂模拟)已知函数 (1)求函数的极值;(2)①当时,恒成立,求正整数的最大值 ②证明:2.(2021·江苏徐州二模)已知函数,为的导数.(1)设函数,求的单调区间;(2)若有两个极值点, ①求实数a 的取值范围; ②证明:当时,.3.(2021·广东汕头一模)已知函数有两个相异零点. (1)求a 的取值范围. (2)求证:.()()ln 111kxf x x x =+-++0x >()0f x >k ()()()32111212311n n n n e⎛⎫- ⎪+⎝⎭+⨯+⨯⋅⋅⋅++>⎡⎤⎣⎦()e (ln 1)()ax f x x a =+∈R ()'f x ()f x ()()e axf xg x '=()g x ()f x ()1212,x x x x <322a e <()()1212f x f x x x <()ln f x x x a =--()1212,x x x x <12423a x x ++<4.(2021·湖北七市三月联考)已知函数,其中为自然对数的底数.(1)求的单调区间;(2)若对恒成立,记,证明:.5.(2021·山东德州一模)已知函数,.定义新函数.(1)当时,讨论函数的单调性;(2)若新函数的值域为,求的取值范围.6.(2021·河南驻马店期末(理))已知函数. (1)若函数在处取得极值,求曲线在点处的切线方程; (2)已知,若方程有两个不相等的实数根,,且,证明:.()1x e f x x-= 2.71828e =()f x 2ln 10x e x x kx ---≥0x ∀>max k λ= 1.1λ>()()321ln 1xf x xe a x x =-++-()()2ln 2g x a x a x x=-+++()()()min ,d f g f x g x =-2a ≤-()g x (),d f g [)0,+∞a ()2a f x x x=+()fx x =()y f x =(1,(1))f ()(21)ln =-+g x a x b ()()f x g x =1x 2x 0122x x x =+()()00''>f x g x7.(2021·浙江杭州期末)已知函数,恰好有两个极值点. (Ⅰ)求证:存在实数,使; (Ⅰ)求证:.8.(2021·天津滨海新区·高三期末)已知函数.()(Ⅰ)令,讨论的单调性并求极值; (Ⅰ)令,若有两个零点;(i )求a 的取值范围;9.(2021·天津高三期末)已知函数,e 是自然对数的底数,若,且恰为的极值点. (1)证明:; (2)求在区间上零点的个数.10.(2021·天津和平区期末)已知函数,,.21()ln (1)2f x x x a x =-+a R ∈()1212,x x x x <1,12m ⎛⎫∈ ⎪⎝⎭0a m <<()1514f x e-<<-()22ln ln f x x x a x =---a R ∈()()g x xf x '=()g x ()()22ln h x f x x =++()h x ()ln sin xf x a xe a x -=⋅+0a >0x =()f x 112a <<()f x (,)π-∞()21xf x e ax =--()()2ln 1g x a x =+a R ∈(1)若在点处的切线倾斜角为,求的值; (2)求的单调区间;(3)若对于任意,恒成立,求的取值范围.11.(2021·陕西渭南一模(理))已知函数. (1)讨论的单调性.(2)当时,若无最小值,求实数的取值范围.12.(2021·陕西汉中一模(理))已知函数.(1)当时,求在[]2,2-上的最值;(2)设,若有两个零点,求的取值范围.13.(2021·广西梧州模拟(理))已知a >0,函数.(1)若f (x )为减函数,求实数a 的取值范围;()f x (0,(0))f 4πa ()f x [0,)x ∈+∞()()f x g x x +≥a 121()(1)e (0)2x f x x a x ax x -=---+>()f x 2a ≤()f x a ()2x f x xe ax a =-+()a R ∈0a =()f x 2()2x g x e ax =-()()()h x f x g x =-a 21()ln (1)2f x x x x a x =-+-(2)当x >1时,求证:.(e =2.718…)14.(2021·河南六市联考(理))已知函数.(1)求的单调区间;(2)证明:.15.(2021·江西五市九校联考)已知函数,其中. (1)当时,求函数在处的切线方程;(2)记函数的导函数是,若不等式对任意的实数恒成立,求实数的取值范围;(3)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数的取值范围.16.(2021·安徽六校二月联考(理))已知函数. (1)讨论的单调性;(2)若,证明:对任意的.2e ()e 2aa f x <-1()2ln x f x e x x -=-+()f x 3()(2)3(2)f x x x ---211()4ln 22f x x ax a x a =-+++a R ∈1a =()f x 1x =()f x ()'f x ()()f x xf x '<(1,)x ∈+∞a()()2g x f x a =+()'g x ()g x ()g x 1x 2x ()()()1212g x g x g x x '+≥a ()21,xx mx f x m R e++=∈()f x ()1,0m ∈-[]()1212,1,1,45x x m f x x ∈-+<17.(2021·江西新余期末(理))设函数,.(1)求函数的单调区间;(2)若函数有两个零点,; (i )求满足条件的最小正整数的值. (ii )求证:.18.(2021·海口市·海南中学高三月考)设函数2()ln (1)f x ax x b x =+-,曲线()y f x =过点2(,1)e e e -+,且在点(1,0)处的切线方程为0y =. (1)求,a b 的值;(2)证明:当1≥x 时,2()(1)f x x ≥-;(3)若当1≥x 时,2()(1)f x m x ≥-恒成立,求实数m 的取值范围.19.(2021·沈阳二模)已知函数()ln f x x x a =+,0a <. (1)证明:()f x 有且仅有一个零点; (2)当()22,0a e ∈-时,试判断函数()2211ln 24g x x x x ax =-+是否有最小值?若有,设最小值为()h a ,求()h a 的值域;若没有,请说明理由.()2ln f x x a x =-()()2g x a x =-()f x ()()()F x f x g x =-1x 2x a 12'02x x F +⎛⎫> ⎪⎝⎭20.(2021·浙江绍兴一模)已知函数(其中,e 为自然对数的底数).(1)求函数的单调区间;(2)设函数的极小值点为m ,极大值点为n ,证明:当时,.21.(2021·陕西西安月考(理))已知函数.(Ⅰ)求的极值;(Ⅰ)设求证:在上有两个零点.22.(2021·天一大联考(理))已知函数.(1)求的图象在点处的切线方程,并证明的图象上除点以外的所有点都在这条切线的上方;(2)若函数,,证明:.()(xf x ax e -=02a <<()f x ()f x (,)x m n ∈()1ln a f x x x e--<()2ln ln 2f x x x =()f x ()()ln ,h x f x x =-()h x [)1,+∞()ln f x x x =()f x ()()1,1A f ()f x A ()()()ln 1sin 22cos2g x x x f x x =+⋅-1,2x e π⎡⎫∈⎪⎢⎣⎭()22cos g x e e≥23.(2021·湖南衡阳一模)已知函数,,其中,.(1)当时,求函数的最大值;(2)是否存在实数,使得只有唯一的,当时,恒成立,若存在,试求出,的值;若不存在,请说明理由.24.(2021·天津和平区·高三一模)已知函数,.(1)当时,直线与相切于点,①求的极值,并写出直线的方程;②若对任意的都有,,求的最大值;(2)若函数有且只有两个不同的零点,,求证:.25.(2021·天津南开区·高三一模)已知曲线与轴交于点,曲线在点处的切线方程为,且.(1)求的解析式; (2)求函数的极值; ()axf x e =()g x kx a =+0a >k ∈R 1k a ==()()g x y f x =k a 0x >()()f x g x ≥k a ()ln f x ax x =a R ∈1a =l ()y f x =2233,e f e ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭()f x l x e ≥()mx m f x e x≥0m >m ()()2g x f x x =+1x 2x 212x x e >()ln y x m =+x P P ()y f x =()12f =()y f x =()()x f x g x e=(3)设,若存在实数,,使成立,求实数的取值范围.26.(2021·江西八校4月联考(理))已知函数,.(1)讨论函数的单调性; (2)若,求的值; (3)证明:.27.(2021·吉林吉林三模(理))已知函数,.(1)求函数的单调区间; (2)、,使得不等式成立,求的取值范围; (3)不等式在上恒成立,求整数的最大值.28.(2021·江苏常州一模)已知函数.(1)当时,一次函数对任意,恒成立,求的表达式; (2)讨论关于x 的方程解的个数.()()2ln 1ln 1x a x h x x+-+=[]11,x e ∈12e ,1x -⎡⎤∈⎣⎦()()21222222ln 1ln h x x x a x x x <+-+a ()ln f x x a x =+()ln 2xg x e x x -=--()f x ()00g x =00ln x x +2ln x x x x e x --≤+()2sin xf x e x x =-+()()sin cos xg x ex x a =-++()f x 1x ∃20,2x π⎡⎤∈⎢⎥⎣⎦()()12g x f x ≥a ()ln f x mx x'->()1,+∞m ()1ln ()f x m x m R -=+∈2m =()g x ()0x ∈+∞,()()2f xg x x ≤≤()g x 2()1f x x f x =⎛⎫ ⎪⎝⎭29.(2021·天津十二校联考)已知,(n 为正整数,)(Ⅰ)若在处的切线垂直于直线,求实数m 的值; (Ⅰ)当时,设函数,,证明:仅有1个零点. (Ⅰ)当时,证明:.30.(2021·山东烟台一模)已知函数为的导函数. (1)求函数的极值;(2)设函数,讨论的单调性;(3)当时,,求实数的取值范围.31.(2021·辽宁铁岭一模)已知函数,为自然对数的底数.(1)讨论的单调性;(2)当时,不等式恒成立,求实数的取值范围.()sin ,()ln n xf x xg x x me ==+m R ∈()y g x =1x =12y x =1n =2()12()h x x f x =--(0,)x π∈()h x 2n =()()()12x f x g x x m e <+'+-()()21cos ,2f x x x f x '=+()f x ()f x ()23sin cos 1sin 226,x x x xg x x e a x x x a R +=-+-+-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝∈⎭()g x 0x ≥()1xf x e bx '≤+-b ()22xf x xe ax ax =++e ()f x 0x >()()()21ln 1a x f x x x ≥+-+a32.(2021·浙江温州二模)已知函数. (1)若函数没有极值点,求实数的取值范围;(2)若对任意的恒成立,求实数和所满足的关系式,并求实数的取值范围.33.(2021·湖北十一校3月联考)已知函数在时取到极大值.(1)求实数a 、b 的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数t 的取值范围.221(),()21ekx x f x g x ax ax +==++()f x k ()()g x f x ≤x ∈R k a k 2()x ax bf x e +=2x =24e min{.,)m n ,m n 1()min (),(0)g x f x x x x ⎧⎫=->⎨⎬⎩⎭2 ()()h x g x tx =-。

导数压轴小题汇编(学生版)

导数压轴小题汇编(学生版)

导数压轴小题练习1. 【图像法】设函数f(a)=e²(2x-1)-ax+a,其中a<1,若存在唯一的整数ag使得f(x₀)<0,则a的取值范围是( )A.1)B.C.D.2. 【图像法】已知函数f(x)=xe²-mx+m,若f(a)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )A B. C. D.3. 【切线应用】若函数f(x)=w³+ax²+bx(a,b∈R)的图象与α轴相切于一点A(m,0)(m≠0),且f(a)的极大值为 ,则m 的值为34. 【导数的切线法】设函数f(x)= 2 x²-2ax(a>0)与g(a)=a²lnz+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为( )A. B. C. D.5. 【导数的切线法】若对于函数f(x)=ln(x+1)+a²图象上任意一点处的切线l,在函数g(x)=asinxcosx-a的图象上总存在一条切线L2,使得l工L,则实数a的取值范围为( )A. C.B.D.(-w,- 1)U[1,+w)6. 【导数的切线法】已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c- √5=0,则(a-c)2+(b-d)²的最小值为( )A.1B.2C.3D.±7. 【导数的切线法】若直线kx-y-k+1=0(x∈R)和曲线E: 的图像交于A(aj,y),B(xz,yz),C(xg,y3)(x₁<a₂<a3)三点时,曲线E在点A,点C处的切线总是平行,则过点(b, a)可作曲线E的( )条切线.A.0B.1C.2D.38. 【导数的直接应用】若是定义在R上的可导函数,且满足(x-1)f'(a)≥0,则必有( )A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)9. 【导数的直接应用】若函)上单调递增,则实数a的取值范围是()A.(-c1)B.(- 1)C.(1,+o)D.(1+c)10. 【利用对称中心破题】已知函则)的值为( )A.0B.504C.1008D.201611. 【利用对称中心破题】已知函则的值为( )A.2016B.1008C.504D.012. 【利用对称中心破题】已知函,且f(2017)= 2016,则f(-2017)=( )A.-2014B.-2015C.-2016D.-201713. 【利用对称中心破题】已知函)的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )A.(-o,1-ln2)B.(-w,1-ln2)C.(1-ln2,+o)D.(1-ln2,+c)14. 【通过构造函数破题】已知函数f(a)=e²+mlnx(m∈R,e为自然对数的底数),若对任意的正数ai,αz2,当ai>a2时,都有f(a₁)-f(a₂)>x-az恒成立,则实数m的取值范围为.15. 【通过构造函数破题】已知函数f(a)=aln(a+1) -q²,在区间(0,1)内任取两个实数p,g,且p<q,若不等式恒成立,则实数a的取值范围是( B )A. 15,+α)B.(15,+c)C.(-w,6)D.(-o,6)16. 【直接法】已知直线l与函数f(a)=ln( √e x)-ln(1-x)的图象交于A,B两点,若AB中点为则m的大小为( )A. B. C.1 D.217. 【函数性质+K法】已知函数f(a)=x+sinx(x ∈R),且f(y² - 2y+3)+f(x² - ±w+1)≤0,则当y≥1时,的取值范围是( )A. B.[0, C.. D.18. 【考查函数性质】已知函数f(a)=x²+(a+8)x+a²+a- 12(a<0),且f(a²-4)=f(2a-8),则的最小值为( )A. B. C. D.19【分离参数法+隐含零点】已知函数f(a)=x+alna,若k∈Z,并且h(x-1)<f(a)对任意的x>1恒成立,则k的最大值为( )A.2B.3C.4D.520. 【考查函数的零点+嵌套函数】已知函数,则方程,的实根个数不可能为( )A . 8个B . 7个C . 6个D . 5个21【考查函数的零点】定义在R上的偶函数f(a)满足f(2-a)=f(x),且当a∈[1,2]时,f(a) =lnx-a+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()B.D.22. 【考查函数的零点】设函 ),若存在唯二的αo.. 使得h(n)=min{f(x),g(x)}的最小值为h(xo). 则实数a的取值范围是( )A.a<-2B.a≤-2C.a<- 1D.a≤- 123. 【考查函数的零点】已知函数(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是( )A.(0,2)B.(0,C.(0,e)D.(0,+c)24. 【转化法+零点】已知函数f(a)=alnx+a²+(a-6)a在(0,3)上不是单调函数,则实数a的取值范围是25. 【图像法+转化法+零点】函的图象上存在关于y轴对称的点,则实数a的取值范围是( )A.(-w,3-2ln2)B.[3-2ln2,+c)C.(√e,+o)D.(-w,-Ve)26. 【多变量转化+等与不等转化】已知函数f(a)=lna,g(x)=(2m+3)x+n,若对任意的x∈(0,+o),总有f(a)≤g(x)恒成立,记(2m+3)n的最小值为f(m,n),则f(m,n)最大值为( )A.1B.C.D.27. 【多变量转化+等与不等转化】已知不等式e²- (a+2)x≥b-2恒成立,则的最大值为( )A.-ln3B.-ln2C.- 1-ln3D.- 1-ln228.【多变量转化+等与不等转化】对于任意b>0,a∈R,不等式[b-(a-2)]²+[Inb- (a- 1)]²≥m²-m恒成立,则实数m的最大值为()A.√eB.2C.eD.329.嵌套函数+零点图像法】函.若方程af²(a)+bf(a)+c=0有8个不同的实根,则此8个实根之和是( )A. B.4 C. D.230. 【嵌套函数法】已知函,则f(f(w))<2的解集为( )A.(1-ln2,+o)B.(+o,1-ln2)C.(1-ln2,1)D.(1,1+ln2)31. 【导数+嵌套函数法+分离参数】函数f(x)=-a²+3w+a,g(a)=2³-w²,若flg(w)]≥0对a∈[0,1]恒成立,则实数a的取值范围是( )A.(-e,+c)B.(-ln2,+o)C.(-2,+o)D.32. 【导数+嵌套函数法+定义域与值域的关系】已知函数f(x)=e²+a-e- ²+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x))的值域相同,则a的取值范围是()A.a<0 B . a≤- 1 C.O<a≤4 D . a < 0或O < a ≤ 433. 【导数+嵌套函数法+分离参数】已知函),其中e为自然对数的底数.若函数y=f(a)与y=flf(x)]有相同的值域,则实数a的最大值为( )A.. eB.. 2C.1D..34. 【导数+嵌套函数法+导函数零点】已知函有两个极值点ai,αz,若αi<f(x₁)<z2,则关于n方程(f(a))²-2af(a)-b=0的实根个数不可能为( )A.2B.3C.4D.535. 【导数+嵌套函数法+导函数零点】已知函数,有两个极值点ai,x2,若,则关于a方程(f(x))²-2af(a)-b=0的实根个数为( )A.. 2B.. 3C.4D.536. 【嵌套函数法+零点】已知偶函数f(a)满足f(x+4)=f(±-x),且当x∈(0,4)时,关于a的不等式f(a)+af(a)>0在[-200,200]上有且只有300个整数解,则实数a的取值范围是( )C. D.37. 【导数极值点常规处理手段-转化法】已知函数f(a)=xlnx-ae²(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )A. B.(0,e) C. D.(-c,e)38. 【分析法】已知函数f(x)=e²-ax- 1,g(x)=lnx-ax-a,若存在ap ∈(1,2),使得f(x₀)g(x₀)<0,则实数a的取值范围为( )A.(ln2,B.(ln2,e- 1)C.(1,e- 1)D.[1,39. 【导函数构造法】设f(x)定义在R上的可导函数,若f(3)=1,且3f(a)+af(n)>ln(x+1),则不等式(x-2017)f(α-2017)-27>0的解集为( )A.(2014,+o)B.(0,2014)C.(0,2020)D.(2020,+c)40. 【导函数2次构造法】已知f(x)是定义在R上的可导函数,且满足(x+2)f(a)+af'(a)>0,则( )A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(a)为增函数41. 【导函数2次构造法】定义在R上的函数f(x)满足:f"(a) -f(a)=w ·e²,且, 则的最大值为( )A.0B.C.1D.242. 【导函数构造法】设函数f(a)满足2x²f(x)+x³f'(x)=e²,,则w∈(2,+o)时,f(a)的最小值为( )A. B. C. D.43. 【导函数构造法】已知函数f(x)是定义在R上的奇函数,其导函数为f(x),若对任意的正实数z,都有af"(x)+2f(a)>0恒成立,且f( √②)=1,则使a²f(x)<2成立的实数α的集合为( )A.(-w,-√2)U(√2,+c)B.(-√2,√2)C.(-w,√2)D.(√2,+α)44.已知函数f(a)为R上的可导函数,其导函数为f(x),且满足f(x)+f(a)<1恒成立,f(0)=2018,则不等式f(x)<2017e-3+1的解集为( )A.f(a)=x-sinzB.f(a-2)+f(a²)≥0D.f(x)=x³+a45. 【导函数构造法】已知定义在f(x)=x³+a上的可导函数f(a-2)+f(a²)≥0的导函数为f'(a),对任意实数z均有(1-x)f(a)+af'(x)>0成立,且y=f(x+1)-e是奇函数,则不等式af(x)-e³>0的解集是( )A.(-w,e)B.(e,+c)C.(-α,1)D.(1,+o)46. 【导函数构造法】已知定义域为R的函数的导函数为f'(x),并且满足f"(a)>f(a)+1,则下列正确的是()A.f(2018)-ef(2017)>e- 1B.f(2018)-ef(2017)<e- 1C.f(2018)-ef(2017)>e+1D.f(2018)-ef(2017)<e+147.(50)16【导函数类极值零点最值】 .关于a的方有两个不等实根,则实数k的取值范围是48. 【导函数类极值零点最值】已知函数f(a)=x(lnx-ax)有极值,则实数a的取值范围是( )B. D.49. 【导函数类极值零点最值】已知函数f(x)=e²>-ax²+bw-1,其中a,b∈R,e为自然对数的底数.若f(1)=0.f'(a)是f(x)的导函数,函数f(a)在区间(0,1)内有两个零点,则a的取值范围是( )A.(e²-3,e²+1)B.(e²-3,+o)C.(-w,2e²+2)D.(2e²-6,2e²+2)50. 【导函数类极值零点最值】已知a∈R,若区间(0,1)上有且只有一个极值点,则a的取值范围是( )A.a<0B.a>0C.a≤1D.a≥051. 【分析结构+换元法】若存在正实数m,使得关于α的方程α+a(2x+2m-tex)[ln(x+m)-lna]=0有两个不同的根,其中e为自然对数的底数,则实数a的取值范围是( D )A.(-α,0)B.(0,D. 152. 【函数性质+单调性】定义在w∈R上的函数f(x)在(-w,-2)上单调递增,且f(α-2)是偶函数,若对一切实数α,不等式f(2sinx-2)>f(sinx-1-m)恒成立,则实数m的取值范围为53. 【函数性质法-单调性+奇偶性】已知函,若f( - a)+f(a)≤2f(w),则实数的取值范围是( )A.(-w1)U[1,+o)B.[- 1,0]C.[0,1]D.[- 1,1]54. 【函数性质法】已知函数f(x)是偶函数,f(x)是奇函数,且对于任意αi,Xz∈[0,1],且ai≠α2,都有(x₁-x2)[f(a₁)-f'(x2)]<0, 则下列结论正确的是( )A.a>b>CB.b>a>cC.b>c>aD.c>a>b55. 【函数性质-周期函数法】设函数fo(n)=sing,定义fa(m)=f[fo(n)],fo(n)=f[fa(z)], …, fn(a)=f[fn-y(a)],则fa(15°)+fg(15°)+fo(15°)+…+foom(15°)的值是()B. C.0 D.156. 【函数性质-周期函数法】若函数y=f(x),A∈M对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数α,都有af(a)=f(x+T)恒成立,此时T为f(a)的假周期,函数f(a)是M上的a 级假周期函数.若函数f(w)是定义在区间(0,+o)内的3级假周期且T=2,当a∈(0,2),有:,若3αi∈[6,8],3αz∈(0,+w)使g(a2)-f(a₁)≤0成立,则实数m的取值范围是( )A. B.(-c,12) C.(-c,39) D.(12,+c)57. 【图像法十零点】已 ,若函数f(a)有四个零点,则实数a 的取值范围是( )A. B . (一w, - e) C.(e,+c) D.58. 【图像法+零点】已知函,若函数y=f(f(a)-a)- 1有三个零点,则实数 a 的取值范围是( B ).. 59. 【导数十零点】若函岁有三个不同的零点,则实数a 的取值范围是( ) A.(1 B. C. D.60. 【零点】已知关于的方程x²e²+t -a=0,m∈[-1,1],若对任意的t∈[1,3],该方程总存在唯一的实数解,则实数a 的取值范围是( )B. C. D. 1,e]61. 【零点】已知当a∈(1,+α)时,关于a 的方程有唯一实数解,则k 的范围为 ( )A.3,4)B.(4,5)C.(5,6)D.(6,7)62. 【考查三次函数值域】已知函数f(x)=(w-a)³ -3m+a(a>0)在[- 1,b]上的值域为[-2-2a,0],则b的取值范围是( )A..[0,3]B.[0,2]C.[2,3]D.(- 1,3)63. (【外接球与内切球】 .如图,圆形纸片的圆心为○,半径为6cm,该纸片上的正方形ABCD 的中心为O . E,F,G,H 为圆O 上的点,△ABE, △BCF, △CDG,△ADH 分别是以AB,BC,CD,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA 为折痕折起△ABE, △BCF, △CDG, △ADH,使得E ,F ,G ,H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为64. 【导数法】设函数f(a)=e² -3w,则关于函数y=f(x)说法错误的是( )A. 在区间(0,1),(1,+o)内均有零点B. 与y=lng 的图象有两个交点C . Vx ₁ ∈R,3x ₂ ∈R 使得f(a)在x=xi,x=az 处的切线互相垂直D . f(a)≥ - 1恒成立65. 【极值点偏移】已知函数y=e² -ax 有两个零点ai,Zz ,α₁<x2,则下面说法正确的是( )A.Qi+α₂<2B.a<eC.αjα₂>1D.有极小值点xg,且aj+x ₂<2o66. 【恒成立-分离参数法】已知函数f(a)=ax+alnx (a∈R)的图像在点处的切线斜率为1,当k∈Z 时,不等式f(x)-kx+k 在x∈(1,+o)上恒成立,则k 的最大值是( C )A.1B. 2C.3D.4 D C67.已知函数f(a)=ax,g(x)=lnz,存在t∈(0,e),使得f(t)-g(t)最小值为3,则函数g(a)=lnx图象上一点P到函数发f(a)=ax图象上一点Q的最短距离为( )A. B..√5 C.2√2 D.368. 【存在与任意】设函数f(a)=a²-wlnx+2,若存在区间,使f(a)在[a,b]上的值域为[k(a+2),k(b+2)],则k的取值范围是( )A. B. C. D.69.【存在与任意】已知函,g(a)=-ex²+aa(e是自然对数的底数),对任意的x∈R,存在],有f(x₁)≤g(x2),则a的取值范围为70. 【导数综合】已知函数f(x)=sinα-xcosx,现有下列结论:①当x ∈[0,π]时,f(x)≥0;②当0<a<β<π时,a-sinB>β ·s ina;③若对)恒成立,则m-n的最小值等于④已知k∈[0,1],当x;∈(0,2π)时,满足的个数记为n,则n的所有可能取值构成的集合为{0,1,2,3}.其中正确的个数为( )A.1B.2C.3D.471.(105)12【导数+隐含零点】已知函2,ag是函数f(a)的极值点。

导数压轴小题精选80题(含答案解析)

导数压轴小题精选80题(含答案解析)

专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。

高考必做导数压轴题

高考必做导数压轴题

祝愿各位考生获得成功!◇导数专题目录一、导数单调性、极值、最值的直接应用(1)二、交点与根的分布(23)三、不等式证明(31)(一)作差证明不等式(二)变形构造函数证明不等式(三)替换构造不等式证明不等式四、不等式恒成立求字母范围(51)(一)恒成立之最值的直接应用(二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用(70)六、导数应用题(84)七、导数结合三角函数(85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x . )(x g '的变化情况如下表:所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

第2讲 导数选择压轴题(解析版)

第2讲  导数选择压轴题(解析版)

第2讲 导数选择压轴题一、单选题:1.(2021·湖北B4联盟)已知大于1的正数a ,b 满足22ln a nb b e a ⎛⎫< ⎪⎝⎭,则正整数n 的最大值为( )A .7B .8C .9D .11【答案】C【分析】22ln n a n b b e a <等价于22ln a n n b e b a <,令()2ln n x f x x =,()2xn e g x x=,分别求()f x ,()g x 的导数,判断函数的单调性,可求得()f x 有最大值2222n n f e e ⎛⎫ ⎪⎛⎫⎝⎭= ⎪⎝⎭,()g x 有最小值22n nn e g n ⎛⎫= ⎪⎝⎭⎛⎫ ⎪⎝⎭,根据题意,即求()()maxmin f x g x ≤,代入为2222n n e n e n ⎛⎫⎪⎝⎭≤⎛⎫⎪⎝⎭,等价于2ln 22n n n +≥-,令()2ln 22x x x x ϕ+=--,即求()0x ϕ>的最大的正整数.对()x ϕ求导求单调性,可知()x ϕ单调递减,代入数值计算即可求出结果.【解析】由题干条件可知:22ln n a n b b e a <等价于22ln an n b e b a<,令()2ln n x f x x =,()1x >,则()121ln (2ln )ln (2ln )'n n n x x n x x n x f x x x-+⋅--== ()'0f x =,2n x e = ,当()'0f x >时,21,n x e ⎛⎫∈ ⎪⎝⎭,当()'0f x <时,2,n x e ⎛⎫∈+∞ ⎪⎝⎭∴()f x 在21,n e ⎛⎫⎪⎝⎭上单调递增,在2,n e ⎛⎫+∞ ⎪⎝⎭上单调递减,则()f x 有最大值2222n n f e e ⎛⎫⎪⎛⎫⎝⎭= ⎪⎝⎭.令()2xn e g x x =,()1x >,则()()222'x ne x n g x x-=,当12n ≤时,此题无解,∴12n >, 则()'0,2n g x x ==,当()'0,2n g x x >>,当()'0,12ng x x <<<, ∴()g x 在1,2n ⎛⎫ ⎪⎝⎭上单调递减,在,2n ⎛⎫+∞ ⎪⎝⎭上单调递增,则()g x 有最小值22n nn e g n ⎛⎫= ⎪⎝⎭⎛⎫ ⎪⎝⎭.若22ln a n n b e b a <成立,只需22n n f e g ⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭,即2222n n e n e n ⎛⎫⎪⎝⎭≤⎛⎫ ⎪⎝⎭,即222n n n e -+⎛⎫≥ ⎪⎝⎭, 两边取对数可得:22)ln 2(n n n +≥-.2n =时,等式成立,当3n ≥时,有2ln 22n nn +≥-, 令()2ln 22x xx x ϕ+=--,本题即求()0x ϕ>的最大的正整数. ()241'0(2)x x x ϕ-=-<-恒成立,则()x ϕ在[)3,+∞上单调递减,()58ln 403ϕ=->,()1199ln 1.5714 1.51072ϕ=-≈->,()310ln 502ϕ=-<,∴()0x ϕ>的最大正整数为9.故选C . 【点睛】本题考查构造函数法解决恒成立问题.方法点睛:双变元的恒成立问题,经常采用构造成两个函数,转化为()()12f x g x <,若()()12max min f x g x <,则复合恒成立的情况.2.(2021·湖北B4联盟)已知集合1ln 1x a e a x A x x x --⎧⎫+⎪⎪=-≤⎨⎬⎪⎪⎩⎭,集合{}2021ln 2021B x x x =+≥,若B A ⊆,则实数a 的取值范围为( )A .[],1e -B .[],e e -C .[]1,e -D .[]1,1-【答案】A【分析】先求出集合B ,再根据包含关系可得1ln 1x a e a xxx--+-≤在[)1,+∞上恒成立即()ln ln x a x a x x e e ---≤-在[)1,+∞上恒成立,就0,01,1a a a ≤<≤>分类讨论后可得正确的选项.【解析】先考虑不等式2021ln 2021x x +≥的解,∵2021,ln y x y x ==均为()0,∞+上的增函数,故()2021ln f x x x =+为()0,∞+上的增函数,故[)1,B =+∞. 故[)1,+∞为不等式1ln 1x a e a x x x --+-≤的解集的子集,即1ln 1x a e a x x x--+-≤在[)1,+∞上恒成立,故()ln ln x axax x ee ---≤-在[)1,+∞上恒成立.令()ln g t t t =-,则()111t g t tt'-=-=,故当01t <<时,()0g t '<,故()g t 在()0,1上为减函数; 当1t >时,()0g t '>,故()g t 在()1,+∞上为增函数; 当0a ≤时,∵1≥x ,故(]()10,1,0,axx ee --∈∈,故a x x e -≥在[)1,+∞上恒成立,即ln xa x≥-在[)1,+∞上恒成立,令()ln x S x x =-,故()2ln 1ln x S x x-'=-, 当1x e ≤<时,()0S x '>,当x e >时,()0S x '<,故()S x 在[]1,e 上为增函数,在[),e +∞上为减函数, 故()max ln eS x e e=-=-,故a e ≥-即0e a -≤≤. 若0a >,当01a <≤时,∵1≥x ,故1a x x ≤≤,∴ln ln a a x x x x x x e --≤-≤+(注意ln x e x -≥-恒成立),故01a <≤符合题意. 当1a >时,∵()ln ln x axax x e e ---≤-在[)1,+∞上恒成立,故()33333ln ln 3aa e e e ee e e e e ----≤-=+,即3333a e e e a e --≤+,设()33,1aa T e a a ->=,则()3330aT a e '->=,故()T a 在()1,+∞上为增函数,故()()33351011331231328T a T e e e e -⎛⎫>=->-=>>+>+ ⎪⎝⎭,故3333a e e e a e --≤+不成立,故1a >舍去,综上,1e a -≤≤.故选A .【点睛】思路点睛:导数背景下的不等式恒成立问题,应该根据不等式中解析式的特点合理转化,特别是对于指数与对数同时出现的形式,可利用同构的思想进行转化.3.(2021·浙江绍兴市·高三期末)已知a 、b R ∈,且0ab ≠,对任意0x >均有()()()ln 0x a x b x a b ----≥,则( )A .0a <,0b <B .0a <,0b >C .0a >,0b <D .0a >,0b >【答案】B【分析】推导出ln x a -与a x e -符号相同,构造函数()()()()af x x e x b x a b =----,然后对四个选项中的条件逐一验证,即可得出合适的选项.【解析】ln ln ln lna a x x a x e e -=-=,故ln x a -与ln axe的符号相同, 当ln 0ln1a x e >=时,a x e >;当ln 0ln1a xe<=时,a x e <.∴ln x a -与a x e -的符号相同.()()()()()()ln 00a x a x b x a b x e x b x a b ∴----≥⇔----≥,令()()()()af x x ex b x a b =----,∴当0x >时,()0f x ≥恒成立,令()0f x =,可得1ax e =,2x b =,3x a b =+.0ab ≠,分以下四种情况讨论:对于A 选项,当0a <,0b <时,则0a a b b e +<<<,当0a x e <<时,()0f x <,不合乎题意,A 选项错误;对于B 选项,当0a <,0b >时,则a b b +<, 若0a b +>,若+a b 、b 、a e 均为正数,①若a e b =,则()()()2f x x a b x b =---,当0x a b <<+时,()0f x <,不合乎题意;②若a e a b =+,则()()()2f x x a b x b =---,当0x a b <<+时,()0f x <,不合乎题意.③若+a b 、b 、a e 都不相等,记{}min ,,at b a b e=+,则当0x t <<时,()0f x <,不合乎题意.由上可知,0a b +≤,当0x >时,若使得()0f x ≥恒成立,则0aa b e b +≤⎧⎨=>⎩,如下图所示,∴当0a <,0b >时,且0a b +≤,0a b e =>时,当0x >时,()0f x ≥恒成立; 对于C 选项,当0a >,0b <时,则b a b <+,①若0a b +≤时,则当0a x e <<时,()0f x <,不合乎题意;②当0a b +>时,构造函数()ag a e a b =--,其中0a >,()10ag a e '=->,函数()g a 在()0,∞+上单调递增,则()()010g a g b >=->,a e a b ∴>+. 当a a b x e +<<时,由于0x b ->,则()0f x <,不合乎题意,C 选项错误; 对于D 选项,当0a >,0b >时,则b a b <+,此时b 、+a b 、a e 为正数. ①当b 、+a b 、a e 都不相等时,记{}min ,,at b a b e =+,当0x t <<时,()0f t <,不合乎题意;②若a b e =,则()()()2f x x b x a b =---,当0x b <<时,()0f x <,不合乎题意;③当a e a b =+时,()()()2f x x b x a b =---,当0x b <<时,()0f x <, 不合乎题意. ∴D 选项错误.故选B .【点睛】关键点点睛:解本题的关键在于以下两点: (1)分析ln x a -与a x e -同号;(2)对b 、+a b 、a e 的大小关系进行讨论,结合穿针引线法进行验证.4.(2021·江苏省天一中学高三二模)若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦ B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭ C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦ D .9,2ln 2⎛⎫+∞ ⎪⎝⎭【答案】C【分析】由题可知,设函数()ln(1)f x a x =+,32()2g x x x =-,根据导数求出()g x 的极值点,得出单调性,根据32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,转化为()()f x g x >在区间(0,)+∞内的解集中有且仅有三个整数,结合图象,可求出实数a 的取值范围.【解析】设函数()ln(1)f x a x =+,32()2g x x x =-,∵2()34g x x x '=-,∴()0g x '=,0x ∴=或43x =,∵403x <<时,()0g x '<,43x >或0x <时,()0g x '>,(0)(2)0g g ==,其图象如下:当0a 时,()()f x g x >至多一个整数根;当0a >时,()()f x g x >在(0,)+∞内的解集中仅有三个整数,只需(3)(3)(4)(4)f g f g >⎧⎨⎩,3232ln 4323ln 5424a a ⎧>-⨯∴⎨-⨯⎩,∴9322ln 2ln 5a <.故选C . 【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.5.(2021·江西八校4月联考)已知函数2ln 1()x mx f x x +-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫⎪⎝⎭【答案】B【分析】由题意可知2ln 1x m x +=,构造函数2ln 1()(0)x h x x x+=>,利用导数研究函数()h x 的单调性及极值,又1=x e时,()0h x =;当x →+∞时,()0h x →,作出函数()h x 的图像,利用数形结合思想即可求解.【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x -+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +==, ∵存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点,由图可知:(2)(1)h m h ≤<,即ln 214em ≤<,故选B . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6.(2021·河南焦作市·高三三模)已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :ln ()()a xg x a R x=∈在1x =处的切线平行,令()()()h x f x g x =,则()h x 在(0,)+∞上( ) A .有唯一零点 B .有两个零点C .没有零点D .不确定【答案】A【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数.【解析】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a xg x x =,∴()2ln a a xg x x-'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =,则()()()ln ln x x x h x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭,∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选A .【点睛】思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)7.(2021·陕西下学期质检)已知函数()()ln ,0,1,0x x x f x x x x ⎧>⎪=⎨+≤⎪⎩关于x 的方程()()210f x tf x ++=(t R ∈)有8个不同的实数根,则t 的取值范围是( ) A .1e,e ⎛⎫--+∞ ⎪⎝⎭B .211,,e e 2e ⎛⎫⎛⎫---∞-- ⎪ ⎪⎝⎭⎝⎭C .17,4⎛⎫-∞- ⎪⎝⎭D .()172,,4⎛⎫+∞-∞- ⎪⎝⎭【答案】C【分析】根据分段函数得解析式,利用导数研究函数()f x 的性质,作出函数()f x 的图象,将方程有8个不同的实数根转化为方程210m tm ++=在11,4e ⎛⎫⎪⎝⎭存在两个不同的实数根或在1,e ⎛⎫+∞ ⎪⎝⎭和10,4⎛⎫ ⎪⎝⎭上各有1个根,进而得到t 的取值范围.【解析】当0x >时,()ln f x x x =.令()ln F x x x =,则()ln 1F x x '=+. 令()0F x '=,则1e x =,e 1e 1F ⎛⎫=- ⎪⎝⎭,11e ef ⎛⎫= ⎪⎝⎭,故当0x >时,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,1e ⎛⎫ ⎪⎝⎭上单调递减,在1,单调递增;当0x <时,易知函数()f x 在(),1-∞-上单调递减,在11,2⎛⎫-- ⎪⎝⎭上单调递增,在1,02⎛⎫- ⎪⎝⎭单调递减.又1124f ⎛⎫-= ⎪⎝⎭,11e ef ⎛⎫= ⎪⎝⎭, 故可画出函数()f x 的大致图象如图所示,令()m f x =,则已知方程可化为210m tm ++=.观察图象可知,当1e m >时,只有2个交点;当1e m =时有3个交点;当114em <<时,有4个交点; 当14m =时有5个交点;当104m <<时,有6个交点.要想满足题意,则只需使得方程210m tm ++=在11,4e ⎛⎫⎪⎝⎭存在两个不同的实数根或在1,e ⎛⎫+∞ ⎪⎝⎭和10,4⎛⎫ ⎪⎝⎭上各有1个根.方程210m tm ++=的两根之积为1,令()21g m m tm =++,由题意只需()10,440,g g ⎧⎛⎫<⎪ ⎪⎝⎭⎨⎪<⎩解得174t <-,故选C .【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.8.(2021·天津十二区联考)已知定义在R 上的函数2ln ,1(),1x x f x x x x >⎧⎪=⎨-≤⎪⎩,若函数()()k x f x ax =+恰有2个零点,则实数a 的取值范围为( ) A .{}1,0(1,)e ⎛⎫-∞-⋃⋃+∞ ⎪⎝⎭B .{}11,0(1,)e ⎛⎫--⋃⋃+∞ ⎪⎝⎭C .111,{0},e e⎛⎫⎛⎫--⋃⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .1(,1){0},1e ⎛⎫-∞-⋃⋃ ⎪⎝⎭【答案】B【分析】函数()()k x f x ax =+恰有2个零点,转化为直线y ax =-与()y f x =的图象有两个交点,作出函数()f x 的图象及直线y ax =-观察它们交点个数,对函数()f x 要分类讨论,求在原点处或过原点的切线斜率.【解析】如图,数形结合,观察直线y ax =-与曲线()y f x =的位置关系.当2(,0],(),()21,(0)1x f x x x f x x f ''∈-∞=-=-=-,故在(0,0)处的切线方程为1y x =-.当2[0,1],()x f x x x ∈=-+,同理可得在(0,0)处的切线方程为2y x =.当1(1,),()ln ,()x f x x f x x'∈+∞==, 设切点为(,ln )t t ,其中1t >,则过该点的切线方程为1ln ()y t x t t-=-,代入(0,0),得t e =,故过(,1)e 的切线方程为31y x e=. 可得当1(,1){0},1a e ⎛⎫-∈-∞-⋃⋃ ⎪⎝⎭时,有两个交点,即函数()y k x =恰有两个零点.此时11,{0}(1,)a e ⎛⎫∈--⋃⋃∞ ⎪⎝⎭,故选B .【点睛】本题考查函数零点个数问题,解题关键是转化为直线与函数图象交点个数,通过数形结合思想求解.9.(2021·安徽江南十校3月联考)当x >1时,函数y =(ln x )2+a ln x +1的图象在直线y =x 的下方,则实数a 的取值范围是( ) A .(-∞,e )B .(-∞,252e -)C .(-∞,52) D .(-∞,e -2)【答案】D【分析】分离参数,构造函数,求导分析出单调性,求出该函数的最小值,即可得到a 的取值范围. 【解析】由题意知,1ln ,(1),ln x a x x x -<->构造函数()1ln ,(1)ln x F x x x x-=->, ()()()2ln 11ln ,ln x x x F x x x'---=⋅令()1ln ,g x x x =--则()()()110,10,g x g x g x=>'->=故当1x e <<时()(),0,F x F x <'单调递减;当x e >时()(),0,F x F x >'单调递增,∴()()2,F x F e e =- ∴2,a e <-故选D .10.(2021·浙江金华市·高三期末)已知函数()3f x x ax b =++,a 、b R ∈.1x 、()2,x m n ∈且满足()()1f x f n =,()()2f x f m =,对任意的[],x m n ∈恒有()()()f m f x f n ≤≤,则当a 、b 取不同的值时,( )A .12n x +与22m x -均为定值B .12n x -与22m x +均为定值C .12n x -与22m x -均为定值D .12n x +与22m x +均为定值【答案】D【分析】分析得出0a <,利用导数分析函数()f x 的单调性,可得知1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点,再由()()1f x f n =、()()2f x f m =结合因式分解可得出结论.【解析】当0a ≥时,()230f x x a '=+≥,此时,函数()f x 在R 上为增函数,当1x 、()2,x m n ∈时,()()1f x f n <,()()2f x f m >,不合乎题意,∴0a <.由()0f x '=可得x =, 当3a x或3ax 时,()0f x '>;当33a ax时,()0f x '<.∴函数()f x 的单调递增区间为,⎛-∞ ⎝,⎫+∞⎪⎪⎭,单调递减区间为⎛ ⎝. 对任意的[],x m n ∈恒有()()()f m f x f n ≤≤,()()min f x f m =,()()max f x f n =, 又当1x 、()2,x m n ∈且满足()()1f x f n =,()()2f x f m =,∴1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点,则1x =,2x =由()()1f x f n =可得3311x ax b n an b ++=++,可得()()33110x na x n -+-=,即()()221110x n x nx n a -+++=,∵1x n ≠,则22110x nx n a +++=,1x =--213a x =-,∴221120n nx x +-=,即()()1120n x n x -+=, ∴120n x +=,同理可得220m x +=,故选D . 【点睛】关键点点睛:解本题的关键在于以下两点: (1)利用已知条件分析出1x 、2x 为函数()f x 的极值点;(2)利用等式()()1f x f n =,()()2f x f m =结合因式化简得出结果. 11.(2021·河南驻马店市·高三期末)已知函数1ln ()e +=-x xf x x,则()f x 的最大值是( ) A .1- B .2-C .0D .1e -【答案】A【分析】构造函数()e 1=--xg x x 利用导数求出最小值,然后ln e (ln )1()1x x x x f x x+-+-=--可得答案.【解析】ln 1ln e e (ln )1()1(0)x x x x x x x f x x x x++--+-==-->,设()e 1=--x g x x ,()e 1x g x '=-,当0x >时,()0g x '>,()g x 是单调递增函数,当0x <时,()0g x '<,()g x 是单调递减函数,∴min ()(0)0g x g ==,∵ln 0x x +=时有解,∴()()ln maxe ln 11101x x x x f x x+-+-=--=--=-.故选A .【点睛】本题考查了利用导数求函数的最值问题,关键点是构造函数()e 1=--xg x x 利用导数求出最小值,考查了学生分析问题、解决问题的能力.12.(2021·浙江绍兴市·高三期末)已知函数21()(0)f x a x a=>+,若对任意x ∈R ,存在12,x x 使得()()()1212()f x f x f x x x -=-,则a 的最大值为( )A .18B .827C .2764D .64125【答案】C【分析】根据题意,()f x 的值域是222()()x f x x a '=-+的值域的子集,易知()f x 的值域10,a ⎛⎤ ⎥⎝⎦,对于()'f x ,只需考虑0x <时,max 1()f x a'≥,求解即可得出结果. 【解析】21()(0)f x a x a=>+,222()()x f x x a '∴=-+, 当12x x ≠时,()()()()()12121212()()=f x f x f x f x f x x x f x x x --=-⇔-,若对任意x ∈R ,存在12,x x 使得()()()1212()f x f x f x x x -=-,即存在()()0f x f x '=,()f x 的值域为10,a ⎛⎤ ⎥⎝⎦,()f x '∴的值域包含10,a ⎛⎤⎥⎝⎦,2224223+2222()=()2ax x xf x a x a x a x ax x'∴=--=-++++,根据函数性质,只需研究0x <的值域即可.令()232a g x x ax x =++,则()()()222222+332x a x a a g x x a x x -'=+-=,,x ⎛∈-∞ ⎝,()0g x '>,x ⎛⎫∈ ⎪ ⎪⎝⎭,()0g x '<,()g x g ⎛≤= ∴⎝0()f x '<≤1a≥,解得:6427a ≤,故a 的最大值为2764.故选C . 【点睛】思路点睛:利用导数的方法研究函数的最值问题时,一般需要先对函数求导,根据导数的方法研究函数单调性,求出极值,结合题中条件即可求出最值(有时解析式中会含有参数,求解时,要讨论参数的不同取值范围,再判断函数的单调性,进行求解)13.(2021·天津部分区期末考试)已知函数()2xe f x x=(e 为自然对数的底数),关于x 的方程()()()2220af x a a R f x ⎡⎤⎣+-=⎦-∈恰有四个不同的实数根,则a 的取值范围为( )A .()1,+∞B .()2,+∞C .2,21e e ⎛⎫+∞ ⎪-⎝⎭ D .242,41e e ⎛⎫-+∞ ⎪-⎝⎭【答案】D【分析】令()u f x =,由()()()2220af x a a R f x ⎡⎤⎣+-=⎦-∈,可得2220u au a -+-=,利用导数分析函数()f x 的单调性与极值,作出函数()u f x =的图象,由图象可知,方程2220u au a -+-=有两根1u 、2u ,且满足12u e >,202u e <<,设()222g u u au a =-+-,利用二次函数的零点分布可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【解析】令()u f x =,由()()()2220af x a a R f x ⎡⎤⎣+-=⎦-∈,可得2220u au a -+-=,函数()f x 的定义域为{}0x x ≠,()222,0,0xx xe x e xf x x e x x⎧>⎪⎪==⎨⎪-<⎪⎩. 当0x >时,()()2221x e x f x x -'=,由()0f x '<可得102x <<,由()0f x '>可得12x >. ∴函数()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,在区间1,2⎛⎫+∞⎪⎝⎭上单调递增,()min 122f x f e ⎛⎫== ⎪⎝⎭;当0x <时,()()22120x e x f x x-'=>,此时函数()f x 单调递增,且()0f x >,作出函数()u f x =的图象如下图所示:由于关于x 的方程()()()2220af x a a R f x ⎡⎤⎣+-=⎦-∈恰有四个不同的实数根, 则关于u 的二次方程2220u au a -+-=恰有两个不同的实根1u 、()212u u u >,且直线1u u =与函数()u f x =的图象有三个交点,直线2u u =与函数()u f x =的图象有且只有一个交点,∴12u e >,202u e <<,设()222g u u au a =-+-,由二次函数的零点分布可得()()2020242220g a g e e a e a ⎧=->⎪⎨=-⨯+-<⎪⎩,解得24241e a e ->-.因此,实数a 的取值范围是242,41e e ⎛⎫-+∞ ⎪-⎝⎭.故选D . 【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素: (1)二次项系数的符号; (2)判别式; (3)对称轴的位置;(4)区间端点函数值的符号.结合图象得出关于参数的不等式组求解.14.(2021·江苏扬州市·高三月考)已知函数()ln ,024,0x x x f x x e x >⎧=⎨+≤⎩,若12x x ≠且()()12f x f x =,则12x x -的最大值为( )A .12e e-B .21e + CD .52e 【答案】D【分析】设点A 的横坐标为1x ,过点A 作y 轴的垂线交函数()y f x =于另一点B ,设点B 的横坐标为2x ,并过点B 作直线24y x e =+的平行线l ,设点A 到直线l 的距离为d ,计算出直线l 的倾斜角为4π,可得出12x x -=,于是当直线l 与曲线ln y x x =相切时,d 取最大值,从而12x x -取到最大值.【解析】当0x >时,()ln f x x x =,求导()ln 1f x x '=+,令()0f x '=,得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,e x ⎡⎫∈+∞⎪⎢⎣⎭时,()0f x '>,()f x 单调递增; 作分段函数图象如下所示:设点A 的横坐标为1x ,过点A 作y 轴的垂线交函数()y f x =于另一点B ,设点B 的横坐标为2x ,并过点B 作直线24y x e =+的平行线l ,设点A 到直线l 的距离为d ,12x x -=, 由图形可知,当直线l 与曲线ln y x x =相切时,d 取最大值,令()ln 12f x x '=+=,得x e =,切点坐标为(),e e ,此时,d ==,12max 522x x e ∴-==,故选D . 【点睛】关键点点睛:本题考查函数零点差的最值问题,解题的关键将问题转化为两平行直线的距离,考查学生的化归与转化思想以及数形结合思想,属于难题.15.(2021·天水市第一中学高三月考)函数()ln f x x ax =-在()0,∞+上有两个零点,则实数a 的取值范围是( )A .1,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .211,e e ⎛⎫⎪⎝⎭D .12,e e ⎛⎫⎪⎝⎭【答案】B【分析】分离参数a 后将函数零点个数转化为两个函数图像的交点个数. 【解析】函数定义域为()0,∞+,由()ln 0f x x ax =-=,得ln xa x=, 设()()2ln 1ln ,x xg x g x x x-'==,令()0g x '=得x e =, () 0,x e ∈时,()()0,g x g x '>单调递增; () ,x e ∈+∞时,()0g x '<,()g x 单调递减;x e =时,()g x 取极大值()1g e e=.()()0,0x x lim g x lim g x →→+∞→-∞→,∴要使函数()ln 0f x x ax =-=有两个零点即方程ln x a x=右有两个不同的根,即函数()g x 与y a =有两个不同交点即10,a e ⎛⎫∈ ⎪⎝⎭,故选 B .【点睛】思路点睛:涉及函数零点问题时,参数可以分离的情况下优先选择分离参数,然后构建新函数,将零点个数转化为两个函数图像的交点个数.16.(2021·江苏省滨海中学高三月考)已知关于x 方程(21)(1)0xe x m x -+-=有两个不等实根,则实数m的取值范围是( )A .()324,11,e ⎡⎫---+∞⎪⎢⎣⎭ B .32,4e ⎛⎤-∞- ⎥⎝⎦C .()324,11,0e ⎛⎫--- ⎪⎝⎭D .()32,41,0e ⎛⎫-∞-- ⎪⎝⎭【答案】D【分析】将问题转化为“方程()211x e x m x --=-有两个不等实根”,构造新函数()()211x e x f x x -=-,利用导数分析其单调性以及取值情况,由此确定出方程有两个不等实根时m 的取值范围. 【解析】当1x =时,()()2110xex m x e -+-=≠,∴1x =不是方程的解,当1x ≠时,()()2110xe x m x -+-=有两个不等实根⇔()211x e x m x --=-有两个不等实根,即()211x e x y x -=-与y m =-的图象有两个交点,令()()()2111x e x f x x x -=≠-,()()()2231x x x e f x x -'=-,令()0f x '=,∴0x =或32x =, 当(),0x ∈-∞时,()0f x '>,()f x 单调递增,当()0,1x ∈时,()0f x '<,()f x 单调递减, 当31,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减,当3,2x ⎛⎫∈+∞⎪⎝⎭时,()0f x '>,()f x 单调递增,()33223201,4122ef f e ⎛⎫=== ⎪⎝⎭,()()()()11lim 0,lim ,lim ,lim x x x x f x f x f x f x -+→-∞→+∞→→==-∞=+∞=+∞,∴要使()211x e x y x -=-与y m=-的图象有两个交点,则01m <-<或324m e ->,解得10m -<<或324m e <-,∴m 的取值范围是()32,41,0e ⎛⎫-∞-- ⎪⎝⎭,故选D .【点睛】本题考查利用导数研究方程根的问题,主要考查学生的转化、分析与计算能力,难度较难.方程根的数目问题可以转化为函数图象的交点个数问题,也可转化为函数的零点个数问题. 17.(2021·辽宁辽南协作区期末)已知函数()()213142x f x k x e x ⎡⎤=-+-⎢⎥⎣⎦,若函数()f x 的单调递减区间(理解为闭区间)中包含且仅包含两个正整数,则实数k 的取值范围为( ) A .323131,128e e ⎡⎫--⎪⎢⎣⎭B .23131,84e e ⎡⎫--⎪⎢⎣⎭ C .323131,128e e ⎛⎤--⎥⎝⎦D .23131,84e e ⎛⎤--⎥⎝⎦【答案】C【分析】函数()f x 的单调递减区间(理解为闭区间)中包含且仅包含两个正整数,转化为1()e 304x f x kx x ⎛⎫'=+-≤ ⎪⎝⎭解集中恰有两个正整数,利用数形结合建立不等式求解即可.【解析】∵()()213142x f x k x e x ⎡⎤=-+-⎢⎥⎣⎦的单调递减区间(理解为闭区间)中包含且仅包含两个正整数, ∴1()e 304x f x kx x ⎛⎫'=+-≤ ⎪⎝⎭的解集中恰有两个正整数,由1e 304x kx x ⎛⎫+-≤ ⎪⎝⎭可得,134e x x kx +≤ , 令3()e x x g x =,则3(1)(),(,1)e xx g x x -=∈-∞',()0g x '>,()g x 单调递增,(1,),()0x g x +'∈∞<,()g x 单调递减,作出函数()g x 与14y kx =+的图象如图,当()0f x '≤恰有两个正整数解时,即为1和2,∴232316231314e19e 12e 834e k k k ⎧+≤⎪⎪⇒-<≤-⎨⎪+>⎪⎩,故选 C . 【点睛】本题以解不等式为载体,要求考生抓住函数图象和性质的本质,建立数与形之间的联系,体现了直观想象、逻辑推理、数学运算核心素养,属于难题.18.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为( ) A .(6,)+∞ B .(,6)-∞ C .(0,6) D .(3,)+∞【答案】A【分析】首先根据题中所给的条件,判断出“先享点”的特征,之后根据()f x 存在5个“先享点”,等价于函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,构造函数利用导数求得结果.【解析】依题意,()f x 存在5个“先享点”,原点是一个,其余还有两对,即函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点, 而函数32()6(0)f x x x x =-≤关于原点对称的函数为32()6(0)f x x x x =-≥,即3166ax x x -=-有两个正根,32166166x x a x x x-+==+-,令()2166(0)h x x x x =+->,322162(8)'()2x h x x x x-=-=, ∴当02x <<时,'()0h x <,当2x >时,'()0h x >,∴()h x 在(0,2)上单调递减,在(2,)+∞上单调递增,且(2)4866h =+-=,并且当0x →和x →+∞时,()f x →+∞,∴实数a 的取值范围为(6,)+∞,故选A .【点睛】该题考查的是有关新定义问题,结合题意,分析问题,利用等价结果,利用导数研究函数的性质,属于较难题目.19.(2021·安徽合肥市·高三二模)函数()()221sin 1x xf x x ++=+的图象大致是( )A .B .C .D .【答案】B【分析】先把()f x 化为()22sin 11x x f x x +=++,利用()22sin 1+=+x xg x x 为奇函数可排除C ,再结合函数值的符号可排除A D ,从而可得正确的选项. 【解析】()()2221sin 2sin 111x x x x f x x x +++==+++,令()22sin 1+=+x x g x x ,则()()22sin 1x xg x g x x ---==-+,故()g x 为R 上的奇函数,故()f x 的图象关于()0,1对称,故排除C . 又当0x >时,令()2sin h x x x =+,则()2cos 0h x x '=+>,故()()00h x h >=,故当0x >时,()1f x >,故排除D .而()sin1102f -=-<,故排除A ,故选B . 【点睛】方法点睛:已知函数解析式判断函数图象时,往往需要根据函数的奇偶性、单调性等来判断图象的性质,有时也需要根据函数值的正负来判断.20.(2021·陕西下学期质检)已知函数()e 1xa f x =-+在点()0,0O 处的切线与函数()2ln 1ax ax g x x x =--+的图象相切于点A ,则点A 的坐标为( )A .151,ln 2482⎛⎫+ ⎪⎝⎭ B .111,ln 2222⎛⎫+ ⎪⎝⎭C .()1,1D .()2,52ln 2-【答案】C 【分析】根据点()0,0O 在函数()f x 的图象上,可得2a =,再由导数的几何意义可得函数()f x 的切线l 的方程,再设(),A m n ,利用导数的几何意义列出方程即可求解. 【解析】由题意可知,点()0,0O 在函数()f x 的图象上,2a ∴=,()e xf x ∴'=,()01f '=,∴函数()f x 在点O 处的切线方程为0x y -=.()222ln 1x x g x x x =--+,则()43ln g x x x '=--.令点(),A m n ,则()43ln 1g m m m =--=',()222ln 1n m m g m m m ==--+.点A 在直线0x y -=上,243ln 1,22ln 1,m m m m m m n m --=⎧∴⎨--+==⎩解得1m n ==, ∴点()1,1A ,故选C . 【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.21.(2021·漠河市高级中学高三月考)已知()f x 是定义在R 上的奇函数,()'f x 是函数()f x 的导函数且在[)0,+∞上()1f x '<,若(2020)()20202f m f m m --≥-,则实数m 的取值范围为( )A .[]1010,1010-B .[)1010,+∞C .(],1010-∞-D .(][),10101010,-∞-+∞【答案】B 【分析】构造函数()()g x f x x =-,由已知得()g x 在R 上的奇函数且单调递减,即可将不等式变形为(2020)()g m g m -≥,利用函数的单调性求解即可.【解析】设()()g x f x x =-,则()()1g x f x ''=-又[)0,x ∈+∞上,()1f x '<,则()0g x '<,即函数()g x 在[)0,x ∈+∞上单调递减,又()f x 是定义在R 上的奇函数,则函数()g x 为R 上的奇函数,故()g x 在R 上单调递减, 又(2020)()20202f m f m m --≥-()(2020)2020()f m m f m m ∴---≥-,即(2020)()g m g m -≥可得:2020m m -≤,解得:1010m ≥ 故选B . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,解题的关键是根据题目条件构造与之对应的函数,再利用函数求导,结合函数的单调性来转化解决问题,考查学生的转化能力与运算求解能力,属于一般题. 22.(2021·江苏徐州市·高三二模)若ln ln ln 1a a b b c c >>=,则( ) A .ln ln ln b c c a a b e a e b e c +++>> B .ln ln ln c a b c a b e b e a e c +++>> C .ln ln ln a b c a b c e c e b e a +++>> D .ln ln ln a b b c c a e c e a e b +++>>【答案】C【分析】构造函数()ln f x x x =,利用导数得出1a b c >>>,构造函数ln ()xxg x e =,利用导数证明ln ln ln a b c a b ce e e<<,从而得出ln ln ln a b c a b c e c e b e a +++>>. 【解析】令()ln f x x x =,则()1ln f x x '=+,当10x e <<时,()0f x '<,当1x e >时,()0f x '>,即函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,()()()1f a f b f c >>=,由图象易知,1a b c >>>,令ln ()x x g x e=,则1ln ()x xx g x e-'=,由于函数1ln y x x=-在(0,)+∞上单调递减,1ln c c =,111ln 0c c c c -=-=,则1ln 0x x-=在(0,)+∞上有唯一解c ,故在上有唯一解, 即当时,,则函数在上单调递减, 即,即,, ,故选C .【点睛】关键点睛:解决本题的关键在于构造函数,利用导数得出函数的单调性,进而得出函数值的大小关系.23.(2021·四川遂宁市·高三二模)若,则的最大值为( )A .B .C .D .【答案】C 【分析】首先对进行变形,即,由于同构, 可构造函数,知在上单调递增,原不等式转化为,根据单调性的性质可得,再进行参变分离,求出函数()0g x '=(0,)+∞c x c >()0g x '<()g x (,)c +∞()()()g a g b g c <<ln ln ln a b c a b ce e e<<ln ln ,ln ln b a c b e a e b e b e c ∴<<ln ln ,ln ln ln ln ln b c a c a c b c b c a c b c e a e b e b e c e a e b e c +++++++∴<<⇒<<()()e 1ln 0,0xa x ax a x ≥-+>>a e4e 2e 2e e ln x x ax ax +≥+e ln e ln x x ax ax +≥+()()ln 0f x x x x =+>()f x ()0,∞+()()e xf f ax ≥e xax ≥e x a x ≤ex x最值, 即可得解. 【解析】原不等式化为,即, 令,知在上单调递增, 原不等式转化为,∴,即,设,则, 当时,,单调递减;当时,,单调递增,故当时取得最小值, ∴的最大值为. 故选C . 【点睛】本题考查了利用函数单调性解不等式相关问题,考查了转化思想,有一定的计算量,属于中档题.本题关键有:(1)找到所给不等式的同构特征,同构特征是解题的关键; (2)构造函数,并求所构造函数的单调性; (3)参变分离,转为恒成立问题.24.(2021·山西名校模拟)已知函数,对于任意实数,,且,都有,则的取值范围为( )A .B .C .D .【答案】C 【分析】e ln x x ax ax +≥+e ln e ln x x ax ax +≥+()()ln 0f x x x x =+>()f x ()0,∞+()()exf f ax ≥e xax ≥e xa x≤()e x u x x =()()2e 1x x u x x -'=01x <<()0u x '<()u x 1x >()0u x '>()u x 1x =()u x ()1e u =a e e 1()e 1x x f x ax -=-+1x 2x 12x x ≠()()12120f x f x x x -<-a 12a >1a >12a ≥1a ≥根据题意得在上恒成立,再由求函数最大值即可. 【解析】由对于任意实数,,且,都有,可得在定义域上为减函数,∴在上恒成立, 即,又∵, ∴. 故选C . 【点睛】关键点点睛:本题的解题关键是由分析得函数为单调递减,进而转化为在上恒成立,利用参变分离求参是解题的关键,属于中档题.25.(2021·河南新乡市·高三二模)已知函数的图象过点,若关于的方程有3个不同的实数根,则的取值范围是( )A .B .C .D . 【答案】C 【分析】2e ()0(e 1)2xx f x a '=-≤+R 2212e 2(e 1)e e x x x xa +≥=++1x 2x 12x x ≠()()1212f x f x x x -<-e 1()e 1x x f x ax -=-+2e ()0(e 1)2xxf x a '=-≤+R 2212e 2(e 1)e e x x x xa +≥=++212e 2e 1x x++≤=12a ≥()()12120f x f x x x -<-()0f x '≤R()2xx x mf x e++=11,e ⎛⎫ ⎪⎝⎭x ()()0f x a a +=∈R a (),0e -()0,e 25,0e ⎛⎫-⎪⎝⎭25,e e ⎛⎫-⎪⎝⎭利用导数可确定的单调性和极值,由此得到的图象,将问题转化为与有个不同交点,利用数形结合的方式可求得结果. 【解析】,,. ,当和时,;当时,;在上单调递增,在,上单调递减,的极大值为,极小值为,且当时,,当时,,由此可得大致图象如下图:有个不同实数根等价于与有个不同的交点,由图象可知:,的取值范围为.故选C . 【点睛】方法点睛:已知方程根的个数求参数值或取值范围常用的方法有: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解26.(2021·河南金太阳3月联考)已知函数是定义在上的偶函数,当时,()f x ()f x ()f x y a =-3()211m f e e +==1m ∴=-()21xx x f x e +-∴=()()()()()2221121x x xxx e e x x x x f x e e +-+--+'∴==-(),1x ∈-∞-()2,+∞()0f x '<()1,2x ∈-()0f x '>()f x ∴()1,2-(),1-∞-()2,+∞∴()f x ()252f e=()1f e -=-x →-∞()f x →+∞x →+∞()0f x →()f x ()0f x a +=3()f x y a =-3250a e<-<∴a 25,0e ⎛⎫-⎪⎝⎭(1)f x +R 1≥x ()cos xf x e x =+若,,,则( )A .B .C .D .【答案】D 【分析】利用当时,,得到在上单调递增,根据函数是定义在上的偶函数,得到函数的图象关于直线对称,之后利用函数单调性和对称性之间的关系进行比较即可得到结果. 【解析】当时,, ∴在上单调递增.又∵函数是定义在上的偶函数, ∴函数的图象关于直线对称. ∴在上单调递减.∵,,,∴. 故选D . 【点睛】关键点点睛:该题考查的是有关函数奇偶性和单调性的应用,根据条件求出函数的对称性是解决该题的关键.27.(2021·浙江宁波市·高三月考)已知函数,则函数的零点个数是( ) A .3B .4C .5D .60.513a f -⎫⎛⎫⎛=⎪ ⎪ ⎪⎝⎭⎝⎭12log 3b f ⎛⎫= ⎪⎝⎭ln 2()c f e =a b c >>c b a >>b a c >>b c a >>1≥x ()e sin 0xf x x '=->()f x [1,)+∞(1)f x +R ()y f x =1x =1≥x ()e sin 0xf x x '=->()f x [1,)+∞(1)f x +R ()y f x =1x =()f x (,1)-∞()ln 2e(2)c f f ==0.51(2)3a f f f -⎫⎛⎫⎛==<⎪ ⎪ ⎪⎝⎭⎝⎭()122log 3log 3b f f ⎫⎛==-⎪ ⎝⎭(1)(3)(2)f f f >-=>b c a >>24,0()1,0x x x x f x e x x ⎧+≤⎪=⎨->⎪⎩()()5g x f f x =-⎡⎤⎣⎦【答案】D 【分析】首先求出函数的导函数,分析函数的单调性,即可画出函数的草图,从而得到的零点,则,转化为或或,数形结合即可判断;【解析】解:∵,∴,令,解得,∴在上单调递减,令,解得或,∴在和上单调递增,函数图象如下所示:当时,令,得或;又时;时,,∴使得;要使,即或,或 即或,或由函数图象易知,,与都有两个交点,()f x ()()5g x f f x =-⎡⎤⎣⎦()50f x -=()54f x -=-()05f x x -=24,0()1,0x x x x f x e x x ⎧+≤⎪=⎨->⎪⎩224,0()1,0x x x f x e x x +≤⎧⎪=⎨+>'⎪⎩()0f x '<2x <-()f x (),2-∞-()0f x '>20x -<<0x >()f x ()2,0-()0,∞+0x ≤()0f x =0x =4x =-0x +→()f x →-∞x →+∞()f x →+∞()110f e =->()00,1x ∃∈()00f x =()()50g x f f x =-=⎡⎤⎣⎦()50f x -=()54f x -=-()05f x x -=()5f x =()1f x =()05f x x =+5y =1y =05y x =+()y f x =。

高中数学导数大题压轴高考题选

高中数学导数大题压轴高考题选

函数与导数高考压轴题选一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.62.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b224.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.25.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.函数与导数高考压轴题选参考答案与试题解析一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.6解答解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取0<x1<x2,fx1>0.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选:A.2.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④解答解:在①中,反例:fx=在1,3上满足性质P,但fx在1,3上不是连续函数,故①不成立;在②中,反例:fx=﹣x在1,3上满足性质P,但fx2=﹣x2在1,上不满足性质P,故②不成立;在③中:在1,3上,f2=f≤,∴,故fx=1,∴对任意的x1,x2∈1,3,fx=1,故③成立;在④中,对任意x1,x2,x3,x4∈1,3,有=≤≤=fx1+fx2+fx3+fx4,∴fx1+fx2+fx3+fx4,故④成立.故选D.二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=2.解答解:函数可化为fx==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数fx=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.解答解:Ⅰ当m=e时,fx=lnx+,∴f′x=;∴当x∈0,e时,f′x<0,fx在0,e上是减函数;当x∈e,+∞时,f′x>0,fx在e,+∞上是增函数;∴x=e时,fx取得极小值为fe=lne+=2;Ⅱ∵函数gx=f′x﹣=﹣﹣x>0,令gx=0,得m=﹣x3+xx>0;设φx=﹣x3+xx>0,∴φ′x=﹣x2+1=﹣x﹣1x+1;当x∈0,1时,φ′x>0,φx在0,1上是增函数,当x∈1,+∞时,φ′x<0,φx在1,+∞上是减函数;∴x=1是φx的极值点,且是极大值点,∴x=1是φx的最大值点,∴φx的最大值为φ1=;又φ0=0,结合y=φx的图象,如图;可知:①当m>时,函数gx无零点;②当m=时,函数gx有且只有一个零点;③当0<m<时,函数gx有两个零点;④当m≤0时,函数gx有且只有一个零点;综上,当m>时,函数gx无零点;当m=或m≤0时,函数gx有且只有一个零点;当0<m<时,函数gx有两个零点;Ⅲ对任意b>a>0,<1恒成立,等价于fb﹣b<fa﹣a恒成立;设hx=fx﹣x=lnx+﹣xx>0,则hb<ha.∴hx在0,+∞上单调递减;∵h′x=﹣﹣1≤0在0,+∞上恒成立,∴m≥﹣x2+x=﹣+x>0,∴m≥;对于m=,h′x=0仅在x=时成立;∴m的取值范围是,+∞.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.解答Ⅰ解:∵,x=0是fx的极值点,∴,解得m=1.所以函数fx=e x﹣lnx+1,其定义域为﹣1,+∞.∵.设gx=e x x+1﹣1,则g′x=e x x+1+e x>0,所以gx在﹣1,+∞上为增函数,又∵g0=0,所以当x>0时,gx>0,即f′x>0;当﹣1<x<0时,gx<0,f′x<0.所以fx在﹣1,0上为减函数;在0,+∞上为增函数;Ⅱ证明:当m≤2,x∈﹣m,+∞时,lnx+m≤lnx+2,故只需证明当m=2时fx>0.当m=2时,函数在﹣2,+∞上为增函数,且f′﹣1<0,f′0>0.故f′x=0在﹣2,+∞上有唯一实数根x0,且x0∈﹣1,0.当x∈﹣2,x0时,f′x<0,当x∈x0,+∞时,f′x>0,从而当x=x0时,fx取得最小值.由f′x0=0,得,lnx0+2=﹣x0.故fx≥=>0.综上,当m≤2时,fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.解答解:I当x<0时,fx=x+12+a,∴fx在﹣∞,﹣1上单调递减,在﹣1,0上单调递增;当x>0时,fx=lnx,在0,+∞单调递增.II∵x1<x2<0,∴fx=x2+2x+a,∴f′x=2x+2,∴函数fx在点A,B处的切线的斜率分别为f′x1,f′x2,∵函数fx的图象在点A,B处的切线互相垂直,∴,∴2x1+22x2+2=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣2x1+2=2x2+2=1,即,时等号成立.∴函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.III当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数fx在点Ax1,fx1,处的切线方程为,即.当x2>0时,函数fx在点Bx2,fx2处的切线方程为,即.函数fx的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln2x1+2在区间﹣1,0上单调递减,∴ax1=在﹣1,0上单调递减,且x1→﹣1时,ln2x1+2→﹣∞,即﹣ln2x1+2→+∞,也即ax1→+∞.x1→0,ax1→﹣1﹣ln2.∴a的取值范围是﹣1﹣ln2,+∞.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.解答解:Ⅰ易知函数的定义域为R.==,当x<0时,f′x>0;当x>0时,f′x<0.∴函数fx的单调递增区间为﹣∞,0,单调递减区间为0,+∞.Ⅱ当x<1时,由于,e x>0,得到fx>0;同理,当x>1时,fx<0.当fx1=fx2x1≠x2时,不妨设x1<x2.由Ⅰ可知:x1∈﹣∞,0,x2∈0,1.下面证明:x∈0,1,fx<f﹣x,即证<.此不等式等价于.令gx=,则g′x=﹣xe﹣x e2x﹣1.当x∈0,1时,g′x<0,gx单调递减,∴gx<g0=0.即.∴x∈0,1,fx<f﹣x.而x2∈0,1,∴fx2<f﹣x2.从而,fx1<f﹣x2.由于x1,﹣x2∈﹣∞,0,fx在﹣∞,0上单调递增,∴x1<﹣x2,即x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.解答I证明:①当x∈0,1时,1+xe﹣2x≥1﹣x1+xe﹣x≥1﹣xe x,令hx=1+xe﹣x﹣1﹣xe x,则h′x=xe x﹣e﹣x.当x∈0,1时,h′x≥0,∴hx在0,1上是增函数,∴hx≥h0=0,即fx≥1﹣x.②当x∈0,1时,e x≥1+x,令ux=e x﹣1﹣x,则u′x=e x﹣1.当x∈0,1时,u′x≥0,∴ux在0,1单调递增,∴ux≥u0=0,∴fx.综上可知:.II解:设Gx=fx﹣gx=≥=.令Hx=,则H′x=x﹣2sinx,令Kx=x﹣2sinx,则K′x=1﹣2cosx.当x∈0,1时,K′x<0,可得H′x是0,1上的减函数,∴H′x≤H′0=0,故Hx在0,1单调递减,∴Hx≤H0=2.∴a+1+Hx≤a+3.∴当a≤﹣3时,fx≥gx在0,1上恒成立.下面证明当a>﹣3时,fx≥gx在0,1上不恒成立.fx﹣gx≤==﹣x.令vx==,则v′x=.当x∈0,1时,v′x≤0,故vx在0,1上是减函数,∴vx∈a+1+2cos1,a+3.当a>﹣3时,a+3>0.∴存在x0∈0,1,使得vx0>0,此时,fx0<gx0.即fx≥gx在0,1不恒成立.综上实数a的取值范围是﹣∞,﹣3.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.解答解:I函数fx=e x的反函数为gx=lnx,∴.设直线y=kx+1与gx的图象相切于点Px0,y0,则,解得,k=e﹣2, ∴k=e﹣2.II当x>0,m>0时,令fx=mx2,化为m=,令hx=,则,则x∈0,2时,h′x<0,hx单调递减;x∈2,+∞时,h′x>0,hx单调递增.∴当x=2时,hx取得极小值即最小值,.∴当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为0;当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为1;当时,曲线y=f x 与曲线y=mx2m>0公共点个数为2.Ⅲ===,令gx=x+2+x﹣2e x x>0,则g′x=1+x﹣1e x.g′′x=xe x>0,∴g′x在0,+∞上单调递增,且g′0=0,∴g′x>0,∴gx在0,+∞上单调递增,而g0=0,∴在0,+∞上,有gx>g0=0.∵当x>0时,gx=x+2+x﹣2e x>0,且a<b,∴,即当a<b时,.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.解答解;Ⅰ由题意得f'x=r+11+x r﹣r+1=r+11+x r﹣1,令f'x=0,解得x=0.当﹣1<x<0时,f'x<0,∴fx在﹣1,0内是减函数;当x>0时,f'x>0,∴fx在0,+∞内是增函数.故函数fx在x=0处,取得最小值为f0=0.Ⅱ由Ⅰ,当x∈﹣1,+∞时,有fx≥f0=0,即1+x r+1≥1+r+1x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有1+x r+1>1+r+1x,①在①中,令这时x>﹣1且x≠0,得.上式两边同乘n r+1,得n+1r+1>n r+1+n r r+1,即,②当n>1时,在①中令这时x>﹣1且x≠0,类似可得,③且当n=1时,③也成立.综合②,③得,④Ⅲ在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由S的定义,得S=211.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.解答I解:由y=fx过0,0,∴f0=0,∴b=﹣1∵曲线y=fx与直线在0,0点相切.∴y′|x=0=∴a=0;II证明:由I知fx=lnx+1+由均值不等式,当x>0时,,∴①令kx=lnx+1﹣x,则k0=0,k′x=,∴kx<0∴lnx+1<x,②由①②得,当x>0时,fx<记hx=x+6fx﹣9x,则当0<x<2时,h′x=fx+x+6f′x﹣9<<=∴hx在0,2内单调递减,又h0=0,∴hx<0∴当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.解答解:I由已知得f′x=asinx+xcosx,对于任意的x∈0,,有sinx+xcosx>0,当a=0时,fx=﹣,不合题意;当a<0时,x∈0,,f′x<0,从而fx在0,单调递减,又函数在上图象是连续不断的,故函数在上上的最大值为f0=﹣,不合题意;当a>0时,x∈0,,f′x>0,从而fx在0,单调递增,又函数在上图象是连续不断的,故函数在上上的最大值为f==,解得a=1,综上所述,得II函数fx在0,π内有且仅有两个零点.证明如下:由I知,,从而有f0=﹣<0,f=>0,又函数在上图象是连续不断的,所以函数fx在0,内至少存在一个零点,又由I知fx在0,单调递增,故函数fx在0,内仅有一个零点.当x∈,π时,令gx=f′x=sinx+xcosx,由g=1>0,gπ=﹣π<0,且gx在,π上的图象是连续不断的,故存在m∈,π,使得gm=0.由g′x=2cosx﹣xsinx,知x∈,π时,有g′x<0,从而gx在,π上单调递减.当x∈,m,gx>gm=0,即f′x>0,从而fx在,m内单调递增故当x∈,m时,fx>f=>0,从而x在,m内无零点;当x∈m,π时,有gx<gm=0,即f′x<0,从而fx在,m内单调递减.又fm>0,fπ<0且fx在m,π上的图象是连续不断的,从而fx在m,π内有且仅有一个零点.综上所述,函数fx在0,π内有且仅有两个零点.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.解答解:Ⅰ因为f1=b,由点1,b在x+y=1上,可得1+b=1,即b=0.因为f′x=anx n﹣1﹣an+1x n,所以f′1=﹣a.又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.Ⅱ由Ⅰ知,fx=x n1﹣x,则有f′x=n+1x n﹣1﹣x,令f′x=0,解得x=在0,上,导数为正,故函数fx是增函数;在,+∞上导数为负,故函数fx是减函数;故函数fx在0,+∞上的最大值为f=n1﹣=,Ⅲ令φt=lnt﹣1+,则φ′t=﹣=t>0在0,1上,φ′t<0,故φt单调减;在1,+∞,φ′t>0,故φt单调增;故φt在0,+∞上的最小值为φ1=0,所以φt>0t>1则lnt>1﹣,t>1,令t=1+,得ln1+>,即ln1+n+1>lne所以1+n+1>e,即<由Ⅱ知,fx≤<,故所证不等式成立.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.解答解:1f′x=e x﹣a,令f′x=0,解可得x=lna;当x<lna,f′x<0,fx单调递减,当x>lna,f′x>0,fx单调递增,故当x=lna时,fx取最小值,flna=a﹣alna,对一切x∈R,fx≥1恒成立,当且仅当a﹣alna≥1,①令gt=t﹣tlnt,则g′t=﹣lnt,当0<t<1时,g′t>0,gt单调递增,当t>1时,g′t<0,gt单调递减,故当t=1时,gt取得最大值,且g1=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.2根据题意,k==﹣a,令φx=f′x﹣k=e x﹣,则φx1=﹣﹣x2﹣x1﹣1,φx2=﹣x1﹣x2﹣1,令Ft=e t﹣t﹣1,则F′t=e t﹣1,当t<0时,F′t<0,Ft单调递减;当t>0时,F′t>0,Ft单调递增,则Ft的最小值为F0=0,故当t≠0时,Ft>F0=0,即e t﹣t﹣1>0,从而﹣x2﹣x1﹣1>0,且>0,则φx1<0,﹣x1﹣x2﹣1>0,>0,则φx2>0,因为函数y=φx在区间x1,x2上的图象是连续不断的一条曲线,所以存在x0∈x1,x2,使φx0=0, 即f′x0=K成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.解答解:Ⅰ∵抛物线与x轴正半轴相交于点A,∴A对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵fn为该抛物线在点A处的切线在y轴上的截距,∴fn=a n;Ⅱ由Ⅰ知fn=a n,则成立的充要条件是a n≥2n3+1即知,a n≥2n3+1对所有n成立,特别的,取n=2得到a≥当a=,n≥3时,a n>4n=1+3n≥1+=1+2n3+>2n3+1当n=0,1,2时,∴a=时,对所有n都有成立∴a的最小值为;Ⅲ由Ⅰ知fk=a k,下面证明:首先证明:当0<x<1时,设函数gx=xx2﹣x+1,0<x<1,则g′x=xx﹣当0<x<时,g′x<0;当时,g′x>0故函数gx在区间0,1上的最小值gx min=g=0∴当0<x<1时,gx≥0,∴由0<a<1知0<a k<1,因此,从而=≥=>=16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.解答解:Ⅰ由Fx=fx﹣hx=x+﹣x≥0知,F′x=,令F′x=0,得x=.当x∈0,时,F′x<0;当x∈,+∞时,F′x>0.故x∈0,时,Fx是减函数;故x∈,+∞时,Fx是增函数.Fx在x=处有极小值且F=.Ⅱ原方程可化为log4x﹣1+log2 h4﹣x=log2ha﹣x,即log2x﹣1+log2=log2,①当1<a≤4时,原方程有一解x=3﹣;②当4<a<5时,原方程有两解x=3;③当a=5时,原方程有一解x=3;④当a≤1或a>5时,原方程无解.Ⅲ设数列{a n}的前n项和为s n,且s n=fngn﹣从而有a1=s1=1.当2<k≤100时,a k=s k﹣s k﹣1=,a k﹣=4k﹣3﹣4k﹣1==>0.即对任意的2<k≤100,都有a k>.又因为a1=s1=1,所以a1+a2+a3+…+a100>=h1+h2+…+h100.故f100h100﹣>.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.解答解:Ⅰ由题设易知fx=lnx,gx=lnx+,∴g′x=,令g′x=0,得x=1,当x∈0,1时,g′x<0,故gx的单调递减区间是0,1,当x∈1,+∞时,g′x>0,故gx的单调递增区间是1,+∞,因此x=1是gx的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g1=1;Ⅱ=﹣lnx+x,设hx=gx﹣=2lnx﹣x+,则h′x=,当x=1时,h1=0,即gx=,当x∈0,1∪1,+∞时,h′x<0,h′1=0,因此,hx在0,+∞内单调递减,当0<x<1,时,hx>h1=0,即gx>,当x>1,时,hx<h1=0,即gx<,Ⅲ满足条件的x0 不存在.证明如下:证法一假设存在x0>0, 使|gx﹣gx0|<成立,即对任意x>0,有,但对上述x0,取时, 有Inx1=gx0,这与左边不等式矛盾,因此,不存在x0>0,使|gx﹣gx0|<成立.证法二假设存在x0>0,使|gx﹣gx0|成<立.由Ⅰ知,的最小值为gx=1.又>Inx,而x>1 时,Inx 的值域为0,+∞,∴x≥1 时,gx 的值域为1,+∞,从而可取一个x1>1,使gx1≥gx0+1,即gx1﹣gx0≥1,故|gx1﹣gx0|≥1>,与假设矛盾.∴不存在x0>0,使|gx﹣gx0|<成立.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.解答解:ⅠFx=18fx﹣x2hx2=﹣x3+12x+9x≥0所以F′x=﹣3x2+12=0,x=±2且x∈0,2时,F′x>0,当x∈2,+∞时,F′x<0所以Fx在0,2上单调递增,在2,+∞上单调递减.故x=2时,Fx有极大值,且F2=﹣8+24+9=25.Ⅱ原方程变形为lgx﹣1+2lg=2lg,,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.Ⅲ由已知得h1+h2+…+hn=,fnhn﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h1+h2+…+hn,故原不等式成立.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.解答解:1由题意,得a x=>0故gx=,x∈﹣∞,﹣1∪1,+∞由得t=x﹣127﹣x,x∈2,6则t′=﹣3x2+18x﹣15=﹣3x﹣1x﹣5列表如下:x 2 2,5 5 5,6 6t' + ﹣t 5 递增极大值32 递减25所以t最小值=5,t最大值=32所以t的取值范围为5,325分Ⅱ=ln=﹣ln令uz=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′z=﹣=1﹣2≥0所以uz在0,+∞上是增函数又因为>1>0,所以u>u1=0即ln>0即9分3设a=,则p≥1,1<f1=≤3,当n=1时,|f1﹣1|=≤2<4,当n≥2时,设k≥2,k∈N时,则fk=,=1+所以1<fk≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f1+n+1≤n+4,综上所述,总有|﹣n|<4.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.解答解:1当x>﹣1时,fx≥当且仅当e x≥1+x令gx=e x﹣x﹣1,则g'x=e x﹣1当x≥0时g'x≥0,gx在0,+∞是增函数当x≤0时g'x≤0,gx在﹣∞,0是减函数于是gx在x=0处达到最小值,因而当x∈R时,gx≥g0时,即e x≥1+x 所以当x>﹣1时,fx≥2由题意x≥0,此时fx≥0当a<0时,若x>﹣,则<0,fx≤不成立;当a≥0时,令hx=axfx+fx﹣x,则fx≤当且仅当hx≤0因为fx=1﹣e﹣x,所以h'x=afx+axf'x+f'x﹣1=afx﹣axfx+ax﹣fxi当0≤a≤时,由1知x≤x+1fxh'x≤afx﹣axfx+ax+1fx﹣fx=2a﹣1fx≤0,hx在0,+∞是减函数,hx≤h0=0,即fx≤ii当a>时,由i知x≥fxh'x=afx﹣axfx+ax﹣fx≥afx﹣axfx+afx﹣fx=2a﹣1﹣axfx当0<x<时,h'x>0,所以h'x>0,所以hx>h0=0,即fx>综上,a的取值范围是0,21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.解答解:Ⅰf'x=,g'x=有已知得解得:a=,x=e2∴两条曲线的交点坐标为e2,e切线的斜率为k=f'e2=∴切线的方程为y﹣e=x﹣e2Ⅱ由条件知hx=﹣alnxx>0,∴h′x=﹣=,①当a>0时,令h′x=0,解得x=4a2.∴当0<x<4a2时,h′x<0,hx在0,4a2上单调递减;当x>4a2时,h′x>0,hx在4a2,+∞上单调递增.∴x=4a2是hx在0,+∞上的惟一极值点,且是极小值点,从而也是hx的最小值点.∴最小值φa=h4a2=2a﹣aln4a2=2a1﹣ln 2a.②当a≤0时,h′x=>0,hx在0,+∞上单调递增,无最小值.故hx的最小值φa的解析式为φa=2a1﹣ln 2aa>0.Ⅲ证明:由Ⅱ知φ′a=﹣2ln2a对任意的a>0,b>0=﹣=﹣ln4ab,①φ′=﹣2ln2×=﹣lna+b2≤﹣ln4ab,②φ′=﹣2ln2×=﹣2ln=﹣ln4ab,③故由①②③得φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.解答解:I令gx=2x2+2x+a,其对称轴为.由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设hx=x2﹣2x2+2xln1+x,﹣<x<0则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b2解答解:①依题意,解得或.若,,′x=﹣x2+2x﹣1=﹣x﹣12≤0fx在R上单调递减,在x=1处无极值;若,,f′x=﹣x2﹣2x+3=﹣x﹣1x+3,直接讨论知,fx在x=1处有极大值,所以为所求.②解f′t=c得t=0或t=2b,切点分别为0,bc、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有0,0,b≠0时,斜率为c的切线有两条,与曲线的公共点分别为0,bc、3b,4bc和、.③gx=|﹣x﹣b2+b2+c|.若|b|>1,则f′x在﹣1,1是单调函数,M=max{|f′﹣1|,|f′1|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′1与f′﹣1之差的绝对值|f′1﹣f′﹣1|=|4b|>4,所以M>2.若|b|≤1,f′x在x=b∈﹣1,1取极值,则M=max{|f′﹣1|,|f′1|,|f′b|},f′b﹣f′±1=b12.若﹣1≤b<0,f′1≤f′﹣1≤f′b;若0≤b≤1,f′﹣1≤f′1≤f′b,M=max{|f′﹣1|,|f′b|}=.当b=0,时,在﹣1,1上的最大值.所以,k的取值范围是.24.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.解答Ⅰ解:∵f'x=﹣x2+2bx+c,由fx在x=1处有极值可得解得,或若b=1,c=﹣1,则f'x=﹣x2+2x﹣1=﹣x﹣12≤0,此时fx没有极值;若b=﹣1,c=3,则f'x=﹣x2﹣2x+3=﹣x+3x﹣1当x变化时,fx,f'x的变化情况如下表:x ﹣∞,﹣3 ﹣3 ﹣3,1 11,+∞f'x ﹣0 + 0 ﹣↘fx ↘极小值﹣12 ↗极大值∴当x=1时,fx有极大值,故b=﹣1,c=3即为所求.Ⅱ证法1:gx=|f'x|=|﹣x﹣b2+b2+c|当|b|>1时,函数y=f'x的对称轴x=b位于区间﹣之外.∴f'x在﹣1,1上的最值在两端点处取得故M应是g﹣1和g1中较大的一个,∴2M≥g1+g﹣1=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2反证法:因为|b|>1,所以函数y=f'x的对称轴x=b位于区间﹣1,1之外,∴f'x在﹣1,1上的最值在两端点处取得.故M应是g﹣1和g1中较大的一个假设M≤2,则M=maxg{﹣1,g1,gb}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2Ⅲ解法1:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知f'b﹣f'±1=b12≥0;2当|b|≤1时,函数y=f'x的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}由f'1﹣f'﹣1=4b,有f'b﹣f'±1=b12≥0①若﹣1≤b≤0,则f'1≤f'﹣1≤f'b,∴g﹣1≤max{g1,gb},于是②若0<b≤1,则f'﹣1≤f'1≤f'b,∴g1≤maxg﹣1,gb于是综上,对任意的b、c都有而当时,在区间﹣1,1上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知M>22当|b|≤1y=f'x时,函数的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}4M≥g﹣1+g1+2gb=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+﹣1+2b+c﹣2b2+c|=|2b2+2|≥2, 即下同解法125.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.解答证明:1在等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边对x求导得n1+x n﹣1=C n1+2C n2x+…+n ﹣1C n n﹣1x n﹣2+nC n n x n﹣1移项得2i在式中,令x=﹣1,整理得所以ii由1知n1+x n﹣1=C n1+2C n2x+…+n﹣1C n n﹣1x n﹣2+nC n n x n﹣1,n≥3两边对x求导,得nn﹣11+x n﹣2=2C n2+32C n3x+…+nn﹣1C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+32C n3﹣1+…+nn﹣1C n2﹣1n﹣2即,亦即 1又由i知 2由1+2得iii将等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边在0,1上对x积分由微积分基本定理,得所以26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.解答解:Ⅰf'x=4x3+3ax2+4x=x4x2+3ax+4.当时,f'x=x4x2﹣10x+4=2x2x﹣1x﹣2.令f'x=0,解得x1=0,,x3=2.当x变化时,f'x,fx的变化情况如下表:x ﹣∞,0 02 2,+∞0,,2f′x ﹣0 + 0 ﹣0 +fx ↘极小值↗极大值↘极小值↗所以fx在,2,+∞内是增函数,在﹣∞,0,内是减函数.Ⅱf'x=x4x2+3ax+4,显然x=0不是方程4x2+3ax+4=0的根.为使fx仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f0=b是唯一极值.因此满足条件的a的取值范围是.Ⅲ由条件a∈﹣2,2,可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'x<0;当x>0时,f'x>0.因此函数fx在﹣1,1上的最大值是f1与f﹣1两者中的较大者.为使对任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,当且仅当,即,在a∈﹣2,2上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是﹣∞,﹣4.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.解答解:1因为fx=ln1+x﹣x,所以函数定义域为﹣1,+∞,且f′x=﹣1=.由f′x>0得﹣1<x<0,fx的单调递增区间为﹣1,0;由f’x<0得x>0,fx的单调递减区间为0,+∞.2因为fx在0,n上是减函数,所以b n=fn=ln1+n﹣n,则a n=ln1+n﹣b n=ln1+n﹣ln1+n+n=n.i因为对n∈N恒成立.所以对n∈N恒成立.则对n∈N恒成立.设,n∈N,则c<gn对n∈N恒成立.考虑.因为=0,所以gx在1,+∞内是减函数;则当n∈N时,gn随n的增大而减小,又因为=1.所以对一切n∈N,gn>1因此c≤1,即实数c的取值范围是﹣∞,1.ⅱ由ⅰ知.下面用数学归纳法证明不等式n∈N+①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.解答解:Ⅰ由k=e得fx=e x﹣ex,所以f'x=e x﹣e.由f'x>0得x>1,故fx的单调递增区间是1,+∞,由f'x<0得x<1,故fx的单调递减区间是﹣∞,1.Ⅱ由f|﹣x|=f|x|可知f|x|是偶函数.于是f|x|>0对任意x∈R成立等价于fx>0对任意x≥0成立.由f'x=e x﹣k=0得x=lnk.①当k∈0,1时,f'x=e x﹣k>1﹣k≥0x>0.此时fx在0,+∞上单调递增.故fx≥f0=1>0,符合题意.②当k∈1,+∞时,lnk>0.当x变化时f'x,fx的变化情况如下表:x 0,lnk lnk lnk,+∞f′x ﹣0 +fx 单调递减极小值单调递增由此可得,在0,+∞上,fx≥flnk=k﹣klnk.依题意,k﹣klnk>0,又k>1,∴1<k<e.综合①,②得,实数k的取值范围是0<k<e.Ⅲ∵Fx=fx+f﹣x=e x+e﹣x,∴Fx1Fx2=,∴F1Fn>e n+1+2,F2Fn﹣1>e n+1+2,FnF1>e n+1+2.由此得,F1F2Fn2=F1FnF2Fn﹣1FnF1>e n+1+2n故,n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.解答解:证明:Ⅰ由得=而①又x1+x22=x12+x22+2x1x2>4x1x2∴②∵∴∵a≤0,aln≥aln③由①、②、③得x12+x22++aln>2++aln, 即.Ⅱ证法一:由,得∴=下面证明对任意两个不相等的正数x1,x2,有恒成立即证成立∵设,则,令u′x=0得,列表如下:tu′t ﹣0 +□ut □极小值∴∴对任意两个不相等的正数x1,x2,恒有|f'x1﹣f'x2|>|x1﹣x2|证法二:由,得∴=∵x1,x2是两个不相等的正数∴设,ut=2+4t3﹣4t2t>0则u′t=4t3t﹣2,列表:tu′t ﹣0 +□ut □极小值∴即∴即对任意两个不相等的正数x1,x2,恒有|f′x1﹣f′x2|>|x1﹣x2|30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.解答解:1由已知推得f k x=n﹣k+1x n﹣k,从而有f k1=n﹣k+12证法1:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数,所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F1﹣F0F1﹣F0=C n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1=nc n n﹣1+n﹣1c n n﹣2+…+n﹣k+1c n n﹣k+…+2c n1+c n0∵n﹣k+1c n n﹣k=n﹣kc n n﹣k+c n k=nc n﹣1k+c n k k=1,2,3,…,n﹣1F﹣F0=nc n﹣11+c n﹣12+…+c n﹣1k﹣1+c n1+c n2+…+c n n﹣1+c n0=n2n﹣1﹣1+2n﹣1=2n﹣1n+2﹣n﹣1因此结论成立.证法2:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1又因F1﹣F0=2c n1+3c n2+…+kc n k﹣1+…+nc n n﹣1+c n0所以2F1﹣F0=n+2c n1+c n2+…+c n k﹣1+…+c n n﹣1+2c n0F1﹣F0=c n1+c n2+…+c n k﹣1+…+c n n﹣1+c n0=因此结论成立.证法3:当﹣1≤x≤1时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1由x1+x n﹣x n=xc n1x n﹣1+c n2x n﹣2+…+c n k x n﹣k+…+c n n﹣1+1=c n1x n+c n2x n﹣1+…+c n k x n﹣k+1+…+c n n﹣1x2+x对上式两边求导得1+x n﹣x n+nx1+x n﹣1﹣nx n=nc n1x n﹣1+n﹣1c n2x n﹣2+…+n﹣k+1c n k x n﹣k+…+2c n n﹣1x+1Fx=1+x2n+nx21+x2n﹣1﹣nx2n∴F1﹣F0=2n+n2n﹣1﹣n﹣1=n+22n﹣1﹣n﹣1.因此结论成立.。

高中数学导数压轴题专题训练

高中数学导数压轴题专题训练

高中数学导数尖子生辅导填选压轴一.选择题共30小题1.2013文昌模拟如图是fx=x3+bx2+cx+d的图象,则x12+x22的值是A.B.C.D.考点:利用导数研究函数的极值;函数的图象与图象变化.专题:计算题;压轴题;数形结合.分析:先利用图象得:fx=xx+1x﹣2=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论.解答:解:由图得:fx=xx+1x﹣2=x3﹣x2﹣2x,∴f'x=3x2﹣2x﹣2∵x1,x2是原函数的极值点所以有x1+x2=,,故x12+x22=x1+x22﹣2x1x2==.故选D.点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题.2.2013乐山二模定义方程fx=f′x的实数根x0叫做函数fx的“新驻点”,若函数gx=x,hx=lnx+1,φx=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α考点:导数的运算.专题:压轴题;新定义.分析:分别对gx,hx,φx求导,令g′x=gx,h′x=hx,φ′x=φx,则它们的根分别为α,β,γ,即α=1,lnβ+1=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可.解答:解:∵g′x=1,h′x=,φ′x=3x2,由题意得:α=1,lnβ+1=,γ3﹣1=3γ2,①∵lnβ+1=,∴β+1β+1=e,当β≥1时,β+1≥2,∴β+1≤<2,∴β<1,这与β≥1矛盾,∴0<β<1;②∵γ3﹣1=3γ2,且γ=0时等式不成立,∴3γ2>0∴γ3>1,∴γ>1.∴γ>α>β.故选C.点评:函数、导数、不等式密不可分,此题就是一个典型的代表,其中对对数方程和三次方程根的范围的讨论是一个难点.3.2013山东抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=A.B.C.D.考点:利用导数研究曲线上某点切线方程;双曲线的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由,得x2=2pyp>0,所以抛物线的焦点坐标为F.由,得,.所以双曲线的右焦点为2,0.则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M,则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M把M点代入①得:.解得p=.故选D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3B.4C.5D.6考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:压轴题;导数的综合应用.分析:由函数fx=x3+ax2+bx+c有两个极值点x1,x2,可得f′x=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b >0.而方程3fx2+2afx+b=0的△1=△>0,可知此方程有两解且fx=x1或x2.再分别讨论利用平移变换即可解出方程fx=x1或fx=x2解得个数.解答:解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取0<x1<x2,fx1>0.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选A.点评:本题综合考查了利用导数研究函数得单调性、极值及方程解得个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.5.2013湖北已知a为常数,函数fx=xlnx﹣ax有两个极值点x1,x2x1<x2A.B.C.D.考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′x,令f′x=0,由题意可得lnx=2ax﹣1有两个解x1,x2函数gx=lnx+1﹣2ax有且只有两个零点g′x在0,+∞上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,x>0令f′x=0,由题意可得lnx=2ax﹣1有两个解x1,x2函数gx=lnx+1﹣2ax有且只有两个零点g′x在0,+∞上的唯一的极值不等于0..①当a≤0时,g′x>0,f′x单调递增,因此gx=f′x至多有一个零点,不符合题意,应舍去.②当a>0时,令g′x=0,解得x=,∵x,g′x>0,函数gx单调递增;时,g′x<0,函数gx单调递减.∴x=是函数gx的极大值点,则>0,即>0,∴ln2a<0,∴0<2a<1,即.∵,f′x1=lnx1+1﹣2ax1=0,f′x2=lnx2+1﹣2ax2=0.且fx1=x1lnx1﹣ax1=x12ax1﹣1﹣ax1=x1ax1﹣1<x1﹣ax1=<0,fx2=x2lnx2﹣ax2=x2ax2﹣1>=﹣..故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.6.2013辽宁设函数fx满足x2f′x+2xfx=,f2=,则x>0时,fxA.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值考点:函数在某点取得极值的条件;导数的运算.专题:压轴题;导数的综合应用.分析:先利用导数的运算法则,确定fx的解析式,再构造新函数,确定函数的单调性,即可求得结论.解答:解:∵函数fx满足,∴∴x>0时,dx∴∴令gx=,则令g′x=0,则x=2,∴x∈0,2时,g′x<0,函数单调递减,x∈2,+∞时,g′x>0,函数单调递增∴gx在x=2时取得最小值∵f2=,∴g2==0∴gx≥g2=0∴≥0即x>0时,fx单调递增∴fx既无极大值也无极小值故选D.点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,难度较大.7.2013安徽若函数fx=x3+ax2+bx+c有极值点x1,x2,且fx1=x1,则关于x的方程3fx2+2afx+b=0的不同实根个数是A.3B.4C.5D.6考点:函数在某点取得极值的条件;根的存在性及根的个数判断.专题:综合题;压轴题;导数的综合应用.分析:求导数f′x,由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于fx的方程3fx2+2afx+b=0有两个根,作出草图,由图象可得答案.解答:解:f′x=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,不妨设x2>x1,由3fx2+2afx+b=0,则有两个fx使等式成立,x1=fx1,x2>x1=fx1,如下示意图象:如图有三个交点,故选A.点评:考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.8.2014海口二模设fx是定义在R上的奇函数,且f2=0,当x>0时,有恒成立,则不等式x2fx>0的解集是A.﹣2,0∪2,+∞B.﹣2,0∪0,2 C.﹣∞,﹣2∪2,+∞D.﹣∞,﹣2∪0,2考点:函数的单调性与导数的关系;奇偶函数图象的对称性;其他不等式的解法.专题:综合题;压轴题.分析:首先根据商函数求导法则,把化为′<0;然后利用导函数的正负性,可判断函数y=在0,+∞内单调递减;再由f2=0,易得fx在0,+∞内的正负性;最后结合奇函数的图象特征,可得fx在﹣∞,0内的正负性.则x2fx>0fx>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即′<0恒成立,所以在0,+∞内单调递减.因为f2=0,所以在0,2内恒有fx>0;在2,+∞内恒有fx<0.又因为fx是定义在R上的奇函数,所以在﹣∞,﹣2内恒有fx>0;在﹣2,0内恒有fx<0.又不等式x2fx>0的解集,即不等式fx>0的解集.所以答案为﹣∞,﹣2∪0,2.故选D.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.9.2014重庆三模对于三次函数fx=ax3+bx2+cx+da≠0,给出定义:设f′x是函数y=fx的导数,f″x是f′x的导数,若方程f′′x=0有实数解x0,则称点x0,fx0为函数y=fx的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数gx=,则g+=A.2011 B.2012 C.2013 D.2014考点:导数的运算;函数的值;数列的求和.专题:压轴题;导数的概念及应用.分析:正确求出对称中心,利用对称中心的性质即可求出.解答:解:由题意,g′x=x2﹣x+3,∴g″x=2x﹣1,令g″x=0,解得,又,∴函数gx的对称中心为.∴,,…∴g+=2012.故选B.点评:正确求出对称中心并掌握对称中心的性质是解题的关键.10.2014上海二模已知fx=alnx+x2a>0,若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是A.0,1 B.1,+∞C.0,1 D.1,+∞考点:导数的几何意义;利用导数研究函数的单调性.专题:计算题;压轴题.分析:先将条件“对任意两个不等的正实数x1,x2,都有>2恒成立”转换成当x>0时,f'x≥2恒成立,然后利用参变量分离的方法求出a的范围即可.解答:解:对任意两个不等的正实数x1,x2,都有>2恒成立则当x>0时,f'x≥2恒成立f'x=+x≥2在0,+∞上恒成立则a≥2x﹣x2max=1故选D.点评:本题主要考查了导数的几何意义,以及函数恒成立问题,同时考查了转化与划归的数学思想,属于基础题.11.2012桂林模拟已知在﹣∞,+∞上是增函数,则实数a的取值范围是A.﹣∞,1 B.﹣1,4 C.﹣1,1 D.﹣∞,1考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:要是一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要满足递增,当x小于0时,要使的函数是一个减函数,求导以后导函数横小于0,注意两个端点处的大小关系.解答:解:∵要是一个分段函数在实数上是一个增函数.需要两段都是增函数且两个函数的交点处要满足递增,当x<0时,y′=3x2﹣a﹣1>0恒成立,∴a﹣1<3x2∴a﹣1≤0∴a≤1,当x=0时,a2﹣3a﹣4≤0∴﹣1≤a≤4,综上可知﹣1≤a≤1故选C.点评:本题考查函数的单调性,分段函数的单调性,解题的关键是在两个函数的分界处,两个函数的大小关系一定要写清楚.12.2012河北模拟定义在1,+∞上的函数fx满足:①f2x=cfxc为正常数;②当2≤x≤4时,fx=1﹣x﹣32,若函数fx的图象上所有极大值对应的点均落在同一条直线上,则c等于A.1B.2C.1或2 D.4或2考点:利用导数研究函数的极值;抽象函数及其应用.专题:计算题;压轴题.分析:由已知可得分段函数fx的解析式,进而求出三个函数的极值点坐标,根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.解答:解:∵当2≤x≤4时,fx=1﹣x﹣32当1≤x<2时,2≤2x<4,则fx=f2x=1﹣2x﹣32此时当x=时,函数取极大值当2≤x≤4时,fx=1﹣x﹣32此时当x=3时,函数取极大值1当4<x≤8时,2<x≤4则fx=cf x=c1﹣x﹣32,此时当x=6时,函数取极大值c∵函数的所有极大值点均落在同一条直线上,即点,,3,1,6,c共线,∴解得c=1或2.故选C点评:本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数fx的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.13.2012桂林模拟设a∈R,函数fx=e x+ae﹣x的导函数是f′x,且f′x是奇函数.若曲线y=fx的一条切线的斜率是,则切点的横坐标为A.l n2 B.﹣ln2 C.D.考点:简单复合函数的导数.专题:压轴题.分析:已知切线的斜率,要求切点的横坐标必须先求出切线的方程,我们可从奇函数入手求出切线的方程.解答:解:对fx=e x+ae﹣x求导得f′x=e x﹣ae﹣x又f′x是奇函数,故f′0=1﹣a=0解得a=1,故有f′x=e x﹣e﹣x,设切点为x0,y0,则,得或舍去,得x0=ln2.点评:熟悉奇函数的性质是求解此题的关键,奇函数定义域若包含x=0,则一定过原点.14.2012太原模拟已知定义在R上的函数y=fx﹣1的图象关于点1,0对称,且x∈﹣∞,0时,fx+xf′x<0成立,其中f′x是fx的导函数,a=f,b=logπ3.flogπ3,则a,b,c的大小关系是A.a>b>c B.c>b>a C.c>a>b D.a>c>b考点:利用导数研究函数的单调性;函数单调性的性质;导数的乘法与除法法则.专题:计算题;压轴题.分析:由“当x∈﹣∞,0时不等式fx+xf′x<0成立”知xfx是减函数,要得到a,b,c的大小关系,只要比较的大小即可.解答:解:∵当x∈﹣∞,0时不等式fx+xf′x<0成立即:xfx′<0,∴xfx在﹣∞,0上是减函数.又∵函数y=fx﹣1的图象关于点1,0对称,∴函数y=fx的图象关于点0,0对称,∴函数y=fx是定义在R上的奇函数∴xfx是定义在R上的偶函数∴xfx在0,+∞上是增函数.又∵=﹣2,2=.∴>f>logπ3flogπ3即>f>logπ3flogπ3即:c>a>b故选C.点评:本题考查的考点与方法有:1所有的基本函数的奇偶性;2抽象问题具体化的思想方法,构造函数的思想;3导数的运算法则:uv′=u′v+uv′;4指对数函数的图象;5奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.本题结合已知构造出hx是正确解答的关键所在.15.2012广东模拟已知fx为定义在﹣∞,+∞上的可导函数,且fx<f′x对于x∈R恒成立,且e为自然对数的底,则A.f1>ef0,f2012>e2012f0 B.f1<ef0,f2012>e2012f0C.f1>ef0,f2012<e2012f0 D.f1<ef0,f2012<e2012f0考点:导数的运算.专题:计算题;压轴题.分析:构造函数y=的导数形式,并判断增减性,从而得到答案.解答:解:∵fx<f'x 从而f'x﹣fx>0 从而>0即>0,所以函数y=单调递增,故当x>0时,=f0,整理得出fx>e x f0当x=1时f1>ef0,当x=2012时f2012>e2012f0.故选A.点评:本题主要考查函数的单调性与其导函数的关系,函数单调性的关系,考查转化、构造、计算能力.16.2012无为县模拟已知定义在R上的函数fx、gx满足,且f′xgx<fxg′x,,若有穷数列n∈N的前n项和等于,则n等于A.4B.5C.6D.7考点:导数的运算;数列的求和.专题:压轴题.分析:利用导数研究函数的单调性得到a的范围,再利用等比数列前n项和公式即可得出.解答:解:∵=,f′xgx<fxg′x,∴=<0,即函数单调递减,∴0<a<1.又,即,即,解得a=2舍去或.∴,即数列是首项为,公比的等比数列,∴==,由解得n=5,故选B.点评:熟练掌握导数研究函数的单调性、等比数列前n项和公式是解题的关键.17.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④考点:利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题:压轴题;新定义.分析:根据题设条件,分别举出反例,说明①和②都是错误的;同时证明③和④是正确的.解答:解:在①中,反例:fx=在1,3上满足性质P,但fx在1,3上不是连续函数,故①不成立;在②中,反例:fx=﹣x在1,3上满足性质P,但fx2=﹣x2在1,上不满足性质P,故②不成立;在③中:在1,3上,f2=f≤,∴,故fx=1,∴对任意的x1,x2∈1,3,fx=1,故③成立;在④中,对任意x1,x2,x3,x4∈1,3,有=≤≤=fx1+fx2+fx3+fx4,∴fx1+fx2+fx3+fx4,故④成立.故选D.点评:本题考查的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对所有的情况都成立.18.2013文昌模拟设动直线x=m与函数fx=x3,gx=lnx的图象分别交于点M、N,则|MN|的最小值为A.B.C.D.l n3﹣1考点:利用导数求闭区间上函数的最值.专题:计算题;压轴题.分析:构造函数Fx=fx﹣gx,求出导函数,令导函数大于0求出函数的单调递增区间,令导函数小于0求出函数的单调递减区间,求出函数的极小值即最小值.解答:解:画图可以看到|MN|就是两条曲线间的垂直距离.设Fx=fx﹣gx=x3﹣lnx,求导得:F'x=.令F′x>0得x>;令F′x<0得0<x<,所以当x=时,Fx有最小值为F=+ln3=1+ln3,故选A点评:求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.2011枣庄二模设f′x是函数fx的导函数,有下列命题:①存在函数fx,使函数y=fx﹣f′x为偶函数;②存在函数fxf′x≠0,使y=fx与y=f′x的图象相同;③存在函数fxf′x≠0使得y=fx与y=f′x的图象关于x轴对称.其中真命题的个数为A.0B.1C.2D.3考点:导数的运算;函数奇偶性的判断.专题:计算题;压轴题.分析:对于三个命题分别寻找满足条件的函数,三个函数分别是fx=0,fx=e x,fx=e﹣x,从而得到结论.解答:解:存在函数fx=0,使函数y=fx﹣f′x=0为偶函数,故①正确存在函数fx=e x,使y=fx与y=f′x的图象相同,故②正确存在函数fx=e﹣x使得y=fx与y=f′x的图象关于x轴对称,故③正确.故选D.点评:本题主要考查了函数的奇偶性以及函数图象的对称性,解题的关键就是寻找满足条件的函数,属于基础题.20.2011武昌区模拟已知fx是定义域为R的奇函数,f﹣4=﹣1,fx的导函数f′x的图象如图所示.若两正数a,b满足fa+2b<1,则的取值范围是A.B.C.﹣1,10 D.﹣∞,﹣1考点:函数的单调性与导数的关系;斜率的计算公式.专题:计算题;压轴题;数形结合.分析:先由导函数f′x是过原点的二次函数入手,再结合fx是定义域为R的奇函数求出fx;然后根据a、b的约束条件画出可行域,最后利用的几何意义解决问题.解答:解:由fx的导函数f′x的图象,设f′x=mx2,则fx=+n.∵fx是定义域为R的奇函数,∴f0=0,即n=0.又f﹣4=m×﹣64=﹣1,∴fx=x3=.且fa+2b=<1,∴<1,即a+2b<4.又a>0,b>0,则画出点b,a的可行域如下图所示.而可视为可行域内的点b,a与点M﹣2,﹣2连线的斜率.又因为k AM=3,k BM=,所以<<3.故选B.点评:数形结合是数学的基本思想方法:遇到二元一次不定式组要考虑线性规划,遇到的代数式要考虑点x,y 与点a,b连线的斜率.这都是由数到形的转化策略.21.2011雅安三模下列命题中:①函数,fx=sinx+x∈0,π的最小值是2;②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形;③如果正实数a,b,c满足a + b>c则+>;④如果y=fx是可导函数,则f′x0=0是函数y=fx在x=x0处取到极值的必要不充分条件.其中正确的命题是A.①②③④B.①④C.②③④D.②③考点:函数在某点取得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:常规题型;压轴题.分析:根据基本不等式和三角函数的有界性可知真假,利用题设等式,根据和差化积公式整理求得cosA+B=0或sinA ﹣B=0,推断出A+B=或A=B,则三角形形状可判断出.构造函数y=,根据函数的单调性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:①fx=sinx+≥2,当sinx=时取等号,而sinx的最大值是1,故不正确;②∵sin2A=sin2B∴sin2A﹣sin2B=cosA+BsinA﹣B=0∴cosA+B=0或sinA﹣B=0∴A+B=或A=B∴三角形为直角三角形或等腰三角形,故正确;③可构造函数y=,该函数在0.+∞上单调递增,a+b>c则+>,故正确;④∵fx是定义在R上的可导函数,当f′x0=0时,x0可能fx极值点,也可能不是fx极值点,当x0为fx极值点时,f′x0=0一定成立,故f′x0=0是x0为fx极值点的必要不充分条件,故④正确;故选C.点评:考查学生会利用基本不等式解题,注意等号成立的条件,同时考查了极值的有关问题,属于综合题.22.2011万州区一模已知fx=2x3﹣6x2+mm为常数在﹣2,2上有最大值3,那么此函数在﹣2,2上的最小值是A.﹣37 B.﹣29 C.﹣5 D.以上都不对考点:利用导数求闭区间上函数的最值.专题:常规题型;压轴题.分析:先求导数,根据单调性研究函数的极值点,在开区间﹣2,2上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.解答:解:∵f′x=6x2﹣12x=6xx﹣2,∵fx在﹣2,0上为增函数,在0,2上为减函数,∴当x=0时,fx=m最大,∴m=3,从而f﹣2=﹣37,f2=﹣5.∴最小值为﹣37.故选:A点评:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间a,b上的最大值与最小值是通过比较函数在a,b 内所有极值与端点函数fa,fb 比较而得到的,属于基础题.23.2010河东区一模已知定义在R上的函数fx是奇函数,且f2=0,当x>0时有,则不等式x2fx>0的解集是A.﹣2,0∪2,+∞B.﹣∞,﹣2∪0,2 C.﹣2,0∪0,2 D.﹣2,2∪2,+∞考点:函数的单调性与导数的关系;函数单调性的性质.专题:计算题;压轴题.分析:首先根据商函数求导法则,把化为′<0;然后利用导函数的正负性,可判断函数y=在0,+∞内单调递减;再由f2=0,易得fx在0,+∞内的正负性;最后结合奇函数的图象特征,可得fx在﹣∞,0内的正负性.则x2fx>0fx>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即′<0恒成立,所以在0,+∞内单调递减.因为f2=0,所以在0,2内恒有fx>0;在2,+∞内恒有fx<0.又因为fx是定义在R上的奇函数,所以在﹣∞,﹣2内恒有fx>0;在﹣2,0内恒有fx<0.又不等式x2fx>0的解集,即不等式fx>0的解集.所以答案为﹣∞,﹣2∪0,2.故选B.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.24.2010惠州模拟给出定义:若函数fx在D上可导,即f′x存在,且导函数f′x在D上也可导,则称fx在D上存在二阶导函数,记f″x=f′x′,若f″x<0在D上恒成立,则称fx在D上为凸函数.以下四个函数在上不是凸函数的是A.f x=sinx+cosx B.f x=lnx﹣2x C.f x=﹣x3+2x﹣1 D.f x=﹣xe﹣x考点:利用导数研究函数的单调性.专题:压轴题.分析:对ABCD分别求二次导数,逐一排除可得答案.解答:解:对于fx=sinx+cosx,f′x=cosx﹣sinx,f″x=﹣sinx﹣cosx,当x∈时,f″x<0,故为凸函数,排除A;对于fx=lnx﹣2x,f′x=,f″x=﹣,当x∈时,f″x<0,故为凸函数,排除B;对于fx=﹣x3+2x﹣1,f′x=﹣3x2+2,f″x=﹣6x,当x∈时,f″x<0,故为凸函数,排除C;故选D.点评:本题主要考查函数的求导公式.属基础题.25.2010黄冈模拟已知fx为定义在﹣∞,+∞上的可导函数,且fx<f′x对于x∈R恒成立,则A.f2>e2f0,f2010>e2010f0 B.f2<e2f0,f2010>e2010f0C.f2>e2f0,f2010<e2010f0 D.f2<e2f0,f2010<e2010f0考点:利用导数研究函数的单调性.专题:压轴题.分析:先转化为函数y=的导数形式,再判断增减性,从而得到答案.解答:解:∵fx<f'x 从而f'x﹣fx>0 从而>0从而>0 从而函数y=单调递增,故x=2时函数的值大于x=0时函数的值,即所以f2>e2f0.同理f2010>e2010f0;故选A.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.26.2010龙岩二模已知fx、gx都是定义在R上的函数,f′xgx+fxg′x<0,fxgx=a x,f1g1+f﹣1g﹣1=.在区间﹣3,0上随机取一个数x,fxgx的值介于4到8之间的概率是A.B.C.D.考点:利用导数研究函数的单调性;几何概型.专题:计算题;压轴题.分析:根据函数积的导数公式,可知函数fxgx在R上是减函数,根据fxgx=a x,f1g1+f﹣1g﹣1=.我们可以求出函数解析式,从而可求出fxgx的值介于4到8之间时,变量的范围,利用几何概型的概率公式即可求得.解答:解:由题意,∵f'xgx+fxg'x<0,∴fxgx'<0,∴函数fxgx在R上是减函数∵fxgx=a x,∴0<a<1∵f1g1+f﹣1g﹣1=.∴∴∵fxgx的值介于4到8∴x∈﹣3,﹣2∴在区间﹣3,0上随机取一个数x,fxgx的值介于4到8之间的概率是故选A.点评:本题的考点是利用导数确定函数的单调性,主要考查积的导数的运算公式,考查几何概型,解题的关键是确定函数的解析式,利用几何概型求解.27.2010成都一模已知函数在区间1,2内是增函数,则实数m的取值范围是A.B.C.0,1 D.考点:利用导数研究函数的单调性.专题:压轴题.分析:首先求出函数的导数,然后根据导数与函数增减性的关系求出m的范围.解答:解:由题得f′x=x2﹣2mx﹣3m2=x﹣3mx+m,∵函数在区间1,2内是增函数,∴f′x>0,当m≥0时,3m≤1,∴0≤m≤,当m<0时,﹣m≤1,∴﹣1≤m<0,∴m∈﹣1,.故选D.点评:掌握函数的导数与单调性的关系.28.2009安徽设函数fx=x3+x2+tanθ,其中θ∈0,,则导数f′1的取值范围是A.﹣2,2 B.,C.,2 D.,2考点:导数的运算.专题:压轴题.分析:利用基本求导公式先求出f′x,然后令x=1,求出f′1的表达式,从而转化为三角函数求值域问题,求解即可.解答:解:∵f′x=sinθx2+cosθx,∴f′1=sinθ+cosθ=2sinθ+.∵θ∈0,,∴θ+∈,.∴sinθ+∈,1.∴2sinθ+∈,2.故选D.点评:本题综合考查了导数的运算和三角函数求值域问题,熟记公式是解题的关键.29.2009天津设函数fx在R上的导函数为f′x,且2fx+xf′x>x2,下面的不等式在R内恒成立的是A.f x>0 B.f x<0 C.f x>x D.f x<x考点:导数的运算.专题:压轴题.分析:对于这类参数取值问题,针对这些没有固定套路解决的选择题,最好的办法就是排除法.解答:解:∵2fx+xf′x>x2,令x=0,则fx>0,故可排除B,D.如果fx=x2+,时已知条件2fx+xf′x>x2成立,但fx>x 未必成立,所以C也是错的,故选A故选A.点评:本题考查了运用导数来解决函数单调性的问题.通过分析解析式的特点,考查了分析问题和解决问题的能力.30.2009陕西设曲线y=x n+1n∈N在点1,1处的切线与x轴的交点的横坐标为x n,则x1x2…x n的值为A.B.C.D.1考点:利用导数研究曲线上某点切线方程;直线的斜率.专题:计算题;压轴题.分析:欲判x1x2…x n的值,只须求出切线与x轴的交点的横坐标即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.解答:解:对y=x n+1n∈N求导得y′=n+1x n,令x=1得在点1,1处的切线的斜率k=n+1,在点1,1处的切线方程为y﹣1=kx n﹣1=n+1x n﹣1,不妨设y=0,则x1x2x3…x n=××,故选B.点评:本小题主要考查直线的斜率、利用导数研究曲线上某点切线方程、数列等基础知识,考查运算求解能力、化归与转化思想.属于基础题.高中数学导数尖子生辅导解答题一.解答题共30小题1.2014遵义二模设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.考点:利用导数研究函数的极值;利用导数研究函数的单调性;不等式的证明.专题:计算题;证明题;压轴题.分析:1先确定函数的定义域然后求导数fˊx,令gx=2x2+2x+a,由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊx>0和fˊx<0,求出单调区间;2x2是方程gx=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.解答:解:I令gx=2x2+2x+a,其对称轴为.由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设,则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.点评:本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于基础题.2.2014武汉模拟己知函数fx=x2e﹣xⅠ求fx的极小值和极大值;Ⅱ当曲线y=fx的切线l的斜率为负数时,求l在x轴上截距的取值范围.考点:利用导数研究函数的极值;根据实际问题选择函数类型;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转化思想;导数的综合应用.分析:Ⅰ利用导数的运算法则即可得出f′x,利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;Ⅱ利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.解答:解:Ⅰ∵fx=x2e﹣x,∴f′x=2xe﹣x﹣x2e﹣x=e﹣x2x﹣x2,令f′x=0,解得x=0或x=2,令f′x>0,可解得0<x<2;令f′x<0,可解得x<0或x>2,故函数在区间﹣∞,0与2,+∞上是减函数,在区间0,2上是增函数.∴x=0是极小值点,x=2极大值点,又f0=0,f2=.故fx的极小值和极大值分别为0,.II设切点为,则切线方程为y﹣=x﹣x0,令y=0,解得x==,因为曲线y=fx的切线l的斜率为负数,∴<0,∴x0<0或x0>2,。

高中数学导数压轴题

高中数学导数压轴题

2.设函数 f(x)=x3﹣ax﹣b,x∈R,其中 a,b∈R. (1)求 f(x)的单调区间; (2)若 f(x)存在极值点 x0,且 f(x1)=f(x0 ) ,其中 x1≠x0,求证:x1+2x0=0; (3)设 a>0,函数 g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值 不小于 .
在区间
8.已知函数 f(x)=alnx﹣ax﹣3(a≠0) . (Ⅰ)讨论 f(x)的单调性; (Ⅱ)若 f(x)+(a+1)x+4﹣e≤0 对任意 x∈[e,e2]恒成立,求实数 a 的取值范 围(e 为自然常数) ; (Ⅲ)求证 ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2, n∈N*) (n!=1×2×3×…×n) . 9.已知函数 f(x)=lnx﹣a(x﹣1) ,a∈R (Ⅰ)讨论函数 f(x)的单调性; (Ⅱ)当 x≥1 时,f(x)≤ 恒成立,求 a 的取值范围.
6.已知函数,f(x)=alnx﹣ax﹣3(a∈R) . (1 )当 a=1 时,求函数 f(x)的单调区间; (2)若函数 y=f(x)的图象在点(2,f(2) )处的切线的倾斜角为 45° ,问:m 在什么范围取值时,对于任意的 t[1,2],函数 (t,3)上总存在极值?
7.已知函数 f(x)=x3+ x2+ax+b(a,b 为常数) ,其图象是曲线 C. (1)当 a=﹣2 时,求函数 f(x)的单调减区间; (2)设函数 f(x)的导函数为 f′(x) ,若存在唯一的实数 x0,使得 f(x0)=x0 与 f′(x0)=0 同时成立,求实数 b 的取值范围; (3)已知点 A 为曲线 C 上的动点,在点 A 处作曲线 C 的切线 l1 与曲线 C 交于 另一点 B, 在点 B 处作曲线 C 的切线 l2, 设切线 l1, l2 的斜率分别为 k1, k2. 问: 是否存在常数 λ,使得 k2=λk1?若存在,求出 λ 的值;若不存在,请说明理由.

导数压轴题

导数压轴题

导数压轴题(1)一.解答题(共21小题)1.(2011•黑龙江一模)巳知函数f(x)=x2﹣2ax﹣2alnx(x>0,a∈R,g(x)=ln2x+2a2+.(1)证明:当a>0时,对于任意不相等的两个正实数x1、x2,均有>f()成立;(2)记h(x)=,(i)若y=h′(x)在[1,+∞)上单调递增,求实数a的取值范围;(ii)证明:h(x)≥.2.设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.3.已知函数f(x)=(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设g(x)=x2+2x+3,证明:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2).4.已知函数f(x)=ax2﹣(2a+1)x+lnx,a∈R,(I)讨论函数f(x)的单调性;(II)设a<﹣1,证明:对任意x1,x2∈(2,+∞),|f (x1)﹣f(x2)|≥2|x1﹣x2|.5.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).6.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.7.(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.(Ⅰ)当a>0时,求函数f(x)的单调区间;(Ⅱ)函数F(x)=f(x)﹣xlnx在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;(Ⅲ)若f(x)≥0对任意x≥0恒成立,求a的取值范围.9.(2014•重庆一模)已知函数f(x)=tx﹣t﹣lnx(t>0).(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数t 的取值范围;(Ⅱ)当n≥2且n∈N*时,证明:.10.(2014•钟祥市模拟)已知函数f(x)=e x﹣1﹣ax,(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)试探究函数F(x)=f(x)﹣xlnx在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,且f(g(x))<f (x)在x∈(0,+∞)上恒成立,求实数a的取值范围.11.(2014•资阳二模)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数).(Ⅰ)若k<0,试判断函数f(x)在区间(0,+∞)上的单调性;(Ⅱ)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明0<f(x1)<1.12.(2014•张掖一模)已知函数f(x)=lnx,g(x)=+bx﹣1,(1)当a=0且b=1时,证明:对∀x>0,f(x)≤g(x);(2)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;(3)数列{a n},若存在常数M>0,∀n∈N*,都有a n<M,则称数列{a n}有上界.已知b n=1++…+,试判断数列{b n}是否有上界.13.(2014•张掖模拟)已知函数f(x)=[ax2+(a﹣1)2x﹣a2+3a﹣1]e x(a∈R).(Ⅰ)若函数f(x)在(2,3)上单调递增,求实数a 的取值范围;(Ⅱ)若a=0,设g(x)=+lnx﹣x,斜率为k的直线与曲线y=g(x)交于A(x1,y1),B(x2,y2)(其中x1<x2)两点,证明:(x1+x2)k>2.14.(2014•宜昌二模)已知函数f(x)=.(1)当a=1,求函数y=f(x)的图象在x=0处的切线方程;(2)若函数f(x)在(0,1)上单调递增,求实数a(3)已知x,y,z均为正实数,且x+y+z=1,求证:++≤0.15.(2014•阳泉二模)已知函数f(x)=21nx+ax2﹣1 (a∈R)(I)求函数f(x)的单调区间;(Ⅱ)若a=1,试解答下列两小题.(i)若不等式f(1+x)+f(1﹣x)<m对任意的0<x<l恒成立,求实数m的取值范围;(ii)若x1,x2是两个不相等的正数,且以f(x1)+f (x2)=0,求证:x1+x2>2.16.(2014•信阳一模)已知m∈R,函数f(x)=(x2+mx+m)•e x.(Ⅰ)当m<2时,求函数f(x)的极大值;(Ⅱ)当m=0时,求证:f(x)≥x2+x3.17.(2014•乌鲁木齐一模)已知函数f(x)=e x﹣e﹣x(xϵR)(Ⅰ)求证:当x≥0时,;(Ⅱ)试讨论函数H(x)=f(x)﹣ax(x∈R)的零点个数.18.(2014•文登市二模)已知函数f(x)=ax2﹣(2a+1)x+2lnx(a>0).(Ⅰ)若a=,求f(x)在[1,3]上的最大值;(Ⅱ)若a≠,求函数f(x)的单调区间;(Ⅲ)当<a<1时,判断函数f(x)在区间[1,2]上有无零点?写出推理过程.19.(2014•潍坊模拟)已知函数f(x)=ax+lnx,函数g (x)的导函数g′(x)=e x,且g(0)g′(1)=e,其中e为自然对数的底数.(Ⅰ)求f(x)的极值;(Ⅱ)若∃x∈(0,+∞),使得不等式成立,试求实数m的取值范围;(Ⅲ)当a=0时,对于∀x∈(0,+∞),求证:f(x)<g (x)﹣2.20.(2014•太原二模)设函数f(x)=x2+aln(x+1)(a 为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单凋递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.21.(2014•深圳一模)已知函数.(1)求f(x)在上的最大值;(2)若直线y=﹣x+2a为曲线y=f(x)的切线,求实数a的值;(3)当a=2时,设,且x1+x2+…+x14=14,若不等式f(x1)+f(x2)+…+f(x14)≤λ恒成立,求实数λ的最小值.参考答案与试题解析(1)首先分别求出与f();然后通过作差法或基本不等式等知识比较两代数式中部分的大小;最后得出两代数式整体的大小.(2)(i)首先求出h(x)及其导函数h′(x);然后根据y=h′(x)在[1,+∞)上单调递增,得y=h′(x)的导函数大于等于0恒成立,则利用分离参数的方法可得关于a的不等式a≥﹣x2+lnx﹣1(x≥1)恒成立;再运用导数法求出﹣x2+lnx﹣1的最大值,此时a≥[﹣x2+lnx﹣1]max即可.(ii)首先把h(x)表示成a为主元的函数h(x)=a2﹣(x+lnx)a+(x2+ln2x)+;然后利用配方法得P(a)=a2﹣(x+lnx)a+(x2+ln2x)=(a﹣)2+≥;再通过构造函数Q(x)=x﹣lnx,并由导数法求其最小值进而得P(a)的最小值;最后得h(x)的最小值,即问题得证.解答:(1)证明:由题意得,=﹣a(x1+x2)﹣aln(x1x2),f()=﹣a(x1+x2)﹣2aln=﹣a(x1+x2)﹣aln∵﹣=>0(x1≠x2),∴>①又∵0<x1x2<∴lnx1x2<ln∵a>0∴﹣alnx1x2>﹣aln②由①②知>f().(2)(i)解:h(x)==x2﹣ax ﹣alnx+ln2x+a2+.∴h′(x)=x﹣a﹣+令F(x)=h′(x)=x﹣a﹣+,则y=F(x)在[1,+∞)上单调递增.∴F′(x)=,则当x≥1时,x2﹣lnx+a+1≥0恒成立.即x≥1时,a≥﹣x2+lnx﹣1恒成立.令G(x)=﹣x2+lnx﹣1,则当x≥1时,G′(x)=<0.∴G(x)=﹣x2+lnx﹣1在[1,+∞)上单调递减,从而G(x)max=G(1)=﹣2.故a≥G(x)max=﹣2.即a的取值范围是[﹣2,+∞).(ii)证明::h(x)=x2﹣ax﹣alnx+ln2x+a2+=a2﹣(x+lnx)a+(x2+ln2x)+.令P(a)=a2﹣(x+lnx)a+(x2+ln2x),则P(a)=(a﹣)2+≥.令Q(x)=x﹣lnx,则Q′(x)=1﹣=.显然Q(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则Q(x)min=Q(1)=1,则P(a)≥.故h(x)≥+=.解:(Ⅰ).(2分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g(x)=ax﹣f(x),则==.故当时,g'(x)≥0.又g(0)=0,所以当x≥0时,g(x)≥g(0)=0,即f(x)≤ax.(9分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0时,有.因此,a的取值范围是.(12分)法二:(Ⅱ)应用洛必达法则和导数sin()2cosxf x axx=≤+若0x=,则a R∈;若0x>,则sin2cosxaxx≤+等价于sin(2cos)xax x≥+,即sin()(2cos)xg xx x=+则222cos2sin sin cos'()(2cos)x x x x x xg xx x--+=+.记()2cos2sin sin cosh x x x x x x x=--+,2'()2cos2sin2cos cos212sin cos212sin2sin2sin(sin) h x x x x x xx x x x x x x x x=---+=--+=-=-】因此,当(0,)xπ∈时,'()0h x<,()h x在(0,)π上单调递减,且(0)0h=,故'()0g x<,所以()g x在(0,)π上单调递减,而000sin cos1lim()lim lim(2cos)2+cos sin3x x xx xg xx x x x x→→→===+-.另一方面,当[,)xπ∈+∞时,sin111()(2cos)3xg xx x xπ=≤≤<+,因此13a≥.解答:解:(Ⅰ)∵f′(x)==设,则>0,∴h(x)在(1,+∞)是增函数,又h(2)=0,∴当x∈(1,2)时,h(x)<0,则f′(x)<0,f(x)是单调递减函数;当x∈(2,+∞)时,h(x)>0,则f′(x)>0,f(x)是单调递增函数.综上知:f(x)在(1,2)单调递减函数,f(x)在(2,+∞)单调递增函数.(Ⅱ)对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)恒成立,等价于f(x)>g(x)min恒成立,而g(x)min=2,即证f(x)>2恒成立.等价于﹣2>0,也就是证[ln(x﹣1)+﹣2]>0设G(x)=ln(x﹣1)+﹣2,G′(x)=﹣=≥0∴G(x)在(1,+∞)单调递增函数,又G(2)=0∴当x∈(1,2)时,G(x)<0,则[ln(x﹣1)+﹣2]>0当x∈(2,+∞)时,G(x)>0,则[ln(x﹣1)+﹣2]>0综上可得:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)分(Ⅰ)求出函数定义域及导数f′(x)=,分①a=0,②0<a<,③a=,④a>,⑤a<0五种情况进行讨论解不等式f′(x)>0,f′(x)<0,解出不等式即为单调区间;(Ⅱ)证明不等式|f(x1)﹣f(x2)|≥2|x1﹣x2|,即≥2,可证明|f′(x)|≥2,利用导数可转化为函数的最值问题证明;解答:解:(Ⅰ)函数的定义域为(0,+∞).f′(x)=2ax﹣(2a+1)+==,①若a=0,则f′(x)=,当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减;②若0<a<,令f′(x)>0,得0<x<1或x>,令f′(x)<0,得1<x<,所以f(x)在(0,1),(,+∞)上递增,在(1,)上递减;③若a=,f′(x)=≥0,f(x)在(0,+∞)上单调递增;令f′(x)>0,得0<x<,或x>1,令f′(x)<0,得<x<1,所以f(x)在(0,),(1,+∞)上单调递增,在(,1)上单调递减;⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,所以f(x)在(0,1)上递增,在(1,+∞)上递减;综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<时,f(x)在(0,1),(,+∞)上递增,在(1,)上递减;a=时,f(x)在(0,+∞)上单调递增;a>时,f(x)在(0,),(1,+∞)上单调递增,在(,1)上单调递减;a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;(Ⅱ)|f(x1)﹣f(x2)|≥2|x1﹣x2|,即≥2,所以有|f′(x)|≥2.所以证明对任意x1,x2∈(2,+∞),|f(x1)﹣f (x2)|≥2|x1﹣x2|,≥2对任意x∈(2,+∞)成立,也即证明2a≤(x>2),令g(x)=(x>2),则g′(x)=,当x>2时,g′(x)>0,所以g(x)在(2,+∞)上单调递增,g(x)>g(2)=﹣,而a<﹣1时,2a<﹣2,所以2a<﹣<g(x),即2a≤(x>2)成立.故a<﹣1时,对任意x1,x2∈(2,+∞),|f(x1)﹣f(x2)|≥2|x1﹣x2|.分析:(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′(x)=0,可得x1=0,,分类讨论:①当k≥时,,g(x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得,由此可证结论.(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n∈N*).试题分为三问,题面比较简单,给出的函数比较常分(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.解答:解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x≥0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).7.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.分(Ⅰ)直接对f(x)求导,当a>0时,f′(x)=e x ﹣a的正负即可确定函数f(x)单调区间;(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=(x>0),研究函数h(x)的单调性和最小值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)求f(x)的导数,利用导数研究函数f(x)确定f(x)的最值,即可确定实数a的取值范围.解答:解:(Ⅰ)由f(x)=e x﹣ax﹣1,则f′(x)=e x﹣a.由f′(x)>0,得x>lna;由f′(x)<0,得x<lna,所以函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna);(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得(x>0)令h(x)=(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故h(x)≥h(1)=e﹣1.又由(Ⅰ)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即,当a>e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1时,函数F(x)有且仅有一个零点;当a<e﹣1时,函数F(x)没有零点.(Ⅲ)由f(x)=e x﹣ax﹣1,则f′(x)=e x﹣a.①当a≤1时,对∀x≥0,有f′(x)>0,所以函数f(x)在区间(0,+∞)上单调递增,又f(0)=0,即f(x)≥f(0)=0对∀x≥0恒成立.②当a>1时,由(Ⅰ),f(x)单调递增区间为(lna,+∞),单调递减区间为(﹣∞,lna),若f(x)≥0对任意x≥0恒成立,只需f(x)min=f(lna)=a﹣alna﹣1≥0,令g(a)=a﹣alna﹣1(a>1),g′(a)=1﹣lna﹣1=﹣lna<0,即g(a)在区间(1,+∞)上单调递减,又g(1)=0,故g(a)<0在(1,+∞)上恒成立,故当a>1时,满足a﹣alna﹣1≥0的a不存在.综上所述,a的取值范围是(﹣∞,1].(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数t 的取值范围;(Ⅱ)当n≥2且n∈N*时,证明:.分析:(Ⅰ)由f(x)在[1,+∞)上为增函数,得在x∈[1,+∞)上恒成立,分离参数t后化为函数最值解决;(Ⅱ)由(I)可知当t=1,x≥1时,f(x)≥f(1)=0,从而可得x﹣1≥lnx(当x=1时,等号成立),可证x∈(0,1]时,也有x﹣1≥lnx在(0,1]恒成立,从而有x∈(0,+∞)时,x﹣1≥lnx…①恒成立,(当且仅当x=1时,等号成立),用x代替x﹣1,得x≥ln(x+1)…②恒成立(当且仅当x=0时,等号成立),则k≥2时,k∈N*,由①得k﹣1>lnk,即,由②得.进而可得当k≥2,k∈N*时,,即.令k=2,3,…n,然后把各式累加可得结论;解答:解:(I)函数f(x)=tx﹣t﹣lnx的定义域为(0,+∞).∵f(x)在[1,+∞)上为增函数,∴在x∈[1,+∞)上恒成立,即在x∈[1,+∞)上恒成立,∵,∴t≥1,∴t的取值范围为[1,+∞).(Ⅱ)由(I)当t=1,x≥1时,f(x)≥f(1),又f(1)=0,∴x﹣1﹣lnx≥0(当x=1时,等号成立),即x﹣1≥lnx.又当x∈(0,1]时,设g(x)=x﹣1﹣lnx,则,∴g(x)在(0,1]上递减,∴g(x)≥g(1)=0,即x﹣1≥lnx在(0,1]恒成立,∴x∈(0,+∞)时,x﹣1≥lnx…①恒成立,(当且仅当x=1时,等号成立),用x代替x﹣1,则x≥ln(x+1)…②恒成立(当且仅当x=0时,等号成立),∴当k≥2时,k∈N*,由①得k﹣1>lnk,即,当k≥2时,k∈N*,,由②得.∴当k≥2,k∈N*时,,即.∴,,,….∴.分(Ⅰ)直接对f(x)求导,讨论a≤0和a>0时,f′(x)=e x﹣a的正负即可确定函数f(x)单调区间;(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=,研究函数h(x)的单调性和最小值,从而画出h(x)的简图,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)构造函数H(x)=xe x﹣e x+1,(x>0),求其导数,利用导数研究函数H(x)的单调性,从而确定H(x)的最值,可得到H(x)>H(0)=0,然后讨论a的取值即可确定实数a的取值范围.解答:解:(Ⅰ)∵f(x)=e x﹣1﹣ax,(x∈R,a∈R),∴f′(x)=e x﹣a,①当a≤0时,则∀x∈R有f′(x)>0,∴函数f(x)在区间(﹣∞,+∞)单调递增;②当a>0时,f′(x)>0⇒x>lna,f′(x)<0⇒x<lna∴函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).综合①②的当a≤0时,函数f(x)的单调增区间为(﹣∞,+∞);当a>0时,函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).(Ⅱ)函数F(x)=f(x)﹣xlnx定义域为(0,+∞),又,令h(x)=,则h′(x)=,∴h′(x)>0⇒x>1,h′(x)<0⇒0<x<1,∴函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∴h(x)≥h(1)=e﹣1由(1)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即∴当x>0且x趋向0时,h(x)趋向+∞随着x>0的增长,y=e x﹣1的增长速度越来越快,会超过并远远大于y=x2的增长速度,而y=lnx的增长速度则会越来越慢.故当x>0且x趋向+∞时,h(x)趋向+∞.得到函数h(x)的草图如图所示故①当a>e﹣1时,函数F(x)有两个不同的零点;②当a=e﹣1时,函数F(x)有且仅有一个零点;③当a<e﹣1时,函数F(x)无零点;(Ⅲ)由(2)知当x>0时,e x﹣1>x,故对∀x >0,g(x)>0,先分析法证明:∀x>0,g(x)<x要证∀x>0,g(x)<x只需证即证∀x>0,xe x﹣e x+1>0构造函数H(x)=xe x﹣e x+1,(x>0)∴H′(x)=xe x>0,∀x>0故函数H(x)=xe x﹣e x+1在(0,+∞)单调递增,∴H(x)>H(0)=0,则∀x>0,xe x﹣e x+1>0成立.①当a≤1时,由(1)知,函数f(x)在(0,+∞)单调递增,则f(g(x))<f(x)在x∈(0,+∞)上恒成立.②当a>1时,由(1)知,函数f(x)在(lna,+∞)单调递增,在(0,lna)单调递减,故当0<x<lna时,0<g(x)<x<lna,∴f(g(x))>f(x),则不满足题意.综合①②得,满足题意的实数a的取值范围(﹣∞,1].11解答:解:(Ⅰ)由f′(x)=ke x﹣2x可知,当k<0时,由于x∈(0,+∞),f′(x)=ke x﹣2x<0,故函数f(x)在区间(0,+∞)上是单调递减函数.(Ⅱ)当k=2时,f(x)=2e x﹣x2,则f′(x)=2e x﹣2x,令h(x)=2e x﹣2x,h′(x)=2e x﹣2,由于x∈(0,+∞),故h′(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f′(x)=2e x ﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(Ⅲ)函数f(x)有两个极值点x1,x2,则x1,x2是f′(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ′(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ′(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ′(x)<0,函数φ(x)单调递减且φ(x)>0.要使有两个根,只需.故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由,得,∴,由于x1∈(0,1),故,(1)把f(x)和g(x)作差后构造辅助函数,然后利用导数求函数的最值,由最值的符号得到要证明的结论;(2)由h(x)=f(x)﹣g(x)存在单调递减区间,得其导函数小于0在定义域内有解,由导函数分离变量a后换元,然后利用配方法求得分离变量后的代数式的值域,则实数a的范围可求;(3)令,则,由(1)得到不等式,累加后可证明数列{b n}无上界.(1)证明:当a=0且b=1时,设g(x)=f(x)﹣g(x)=lnx﹣(x﹣1)=lnx﹣x+1,对∀x>0,,解g′(x)=0,得x=1.当0<x<1时,,g(x)单调递增;当x>1时,,g(x)单调递减,∴g(x)在x=1处取最大值,即∀x>0,g(x)≤g(1)=ln1﹣1+1=0,lnx≤x ﹣1,即f(x)≤g(x);(2)解:当b=2时,h(x)=f(x)﹣g(x)=,∴,∵函数h(x)存在单调递减区间,∴h'(x)<0在(0,+∞)上有解,∴ax2+2x﹣1>0在(0,+∞)上有解,∴在(0,+∞)上有解,即∃x∈(0,+∞),使得,令,则t>0,则y=t2﹣2t=(t﹣1)2﹣1,t>0,当t=1时,ymin=﹣1∴a>﹣1;(3)解:数列{b n}无上界∀n∈N*.设,,由(1)得,,,∴=ln(n+1),∀M>0,取n为任意一个不小于e M的自然数,则,∴数列{b n}无上界.本题考查利用导数研究函数的最值,主要用导函数构造法和数学转化思想方法,解答(3)的关键是借助于(1)的结论得到含有自然数n的不等式,是难度较大的题目.分(Ⅰ)首先求出函数f(x)的导数f'(x),对a讨论,分a≥0,a<0①﹣1<a<0,②a=﹣1,③a<﹣1,分别求出单调区间,再求并集;(Ⅱ)化简a=0时的g(x),由两点的斜率公式写出k,运用分析法证(x1+x2)k>2,注意运用对数的运算法则和同时除以x1的变形,再令,构造函数h(x)=lnx﹣(x>1),求出导数,求出单调区间,运用单调性说明h(x)>0成立即可.解答:解:(Ⅰ)函数f(x)的导数f'(x)=[2ax+(a﹣1)2]•e x+[ax2+(a﹣1)2x+a﹣(a﹣1)2]•e x=[ax2+(a2+1)x+a]•e x,当a≥0时,∵x∈(2,3),∴f'(x)>0,∴f(x)在(2,3)上单调递增,当a<0时,∵f(x)在(2,3)上单调递增,∴f'(x)=a(x+a)(x+)•e x≥0,①当﹣1<a<0时,解得﹣a≤x≤﹣,由题意知(2,3)⊆[﹣a,﹣],得≤a<0,②当a=﹣1时,f'(x)=﹣(x﹣1)2•e x≤0,不合题意,舍去,③当a<﹣1时,解得≤x≤﹣a,则由题意知(2,3)⊆[﹣,﹣a],得a≤﹣3,综上可得,实数a的取值范围是(﹣∞,﹣3]∪[﹣,+∞);(Ⅱ)a=0时,g(x)=+lnx﹣x=lnx﹣1,k=,∵x2﹣x1>0,要证(x2+x1)k>2,即证(x1+x2)>2,即证ln﹣>0(>1),设h(x)=lnx﹣(x>1),h'(x)=﹣=>0,∴h(x)在(1,+∞)上单调递增,h(x)>h(1)=0,∴ln﹣>0(>1)成立,即(x1+x2)k>2成立.14.析:(1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1)上恒成立,构造h(x)=(x+1)ln(x+1)﹣x,证明h (x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,f(x)=在(0,1)上单调递增,证明(3x﹣1)f(x)≥(3x﹣1)•,即≤(3x﹣1)•,从而可得结论.答:(1)解:当a=1时,f(x)=,则f(0)=0,f′(x)=,∴f′(0)=1,∴函数y=f(x)的图象在x=0处的切线方程为y=x;(3分)(2)解:∵函数f(x)在(0,1)上单调递增,∴ax+1=0在(0,1)上无解当a≥0时,ax+1=0在(0,1)上无解满足当a<0时,只需1+a≥0,∴﹣1≤a<0 ①(5分)f′(x)=∵函数f(x)在(0,1)上单调递增,∴f′(x)≥0在(0,1)上恒成立即a[(x+1)ln(x+1)﹣x]≤1在(0,1)上恒成立设h(x)=(x+1)ln(x+1)﹣x,则h′(x)=ln(x+1),∵x∈(0,1),∴h′(x)>0,∴h(x)在(0,1)上单调递增∴h(x)在(0,1)上的值域为(0,2ln2﹣1)(7分)∴a≤在(0,1)上恒成立,∴a≤②综合①②得实数a的取值范围为[﹣1,](9分)(3)证明:由(2)知,当a=﹣1时,f(x)=在(0,1)上单调递增(10分)于是当0<x≤时,f(x)=≤f()=当≤x<1时,f(x)=≥f()=(12分)∴(3x﹣1)f(x)≥(3x﹣1)•,即≤(3x﹣1)•,同理有≤(3y﹣1)•,≤(3z﹣1)•,三式相加得:++≤0.(14分).(分,令f′(x)>0,分类讨论可得函数的单调区求出g(t)min,即可证得结论.(I)解:函数f(x)的定义域为(0,+∞),f′(x)=令f′(x)>0,∵x>0,∴2ax2+2>0①当a≥0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)递增区间是(0,+∞);②当a<0时,由2ax2+2>0可得<x<x>0,∴f(x)递增区间是(0,),递减区间为;(Ⅱ)(i)解:设F(x)=f(1+x)+f(1﹣x)=2ln(1+x)+2ln(1﹣x)+2x2,则F′(x)=∵0<x<l,∴F′(x)<0在(0,1)上恒成立,∴F(x)在(0,1)上为减函数∴F(x)<F(0)=0,∴m≥0,∴实数m的取值范围为[0,+∞);(ii)证明:∵f(x1)+f(x2)=0,∴21nx1+x12﹣1+21nx2+x22﹣1=0∴2lnx1x2+(x1+x2)2﹣2x1x2﹣2=0∴(x1+x2)2=2x1x2﹣2lnx1x2+2设t=x1x2,则t>0,g(t)=2t﹣2lnt+2,∴g′(t)=令g′(t)>0,得t>1,∴g(t)在(0,1)上单调递减,在(1,+∞)上单调递增∴g(t)min=g(1)=4,∴(x1+x2)2>4,∴x1+x2奇偶性和单调性,研究函数零点的个数.答:解:(Ⅰ)令则g'(x)=f'(x)﹣2﹣x2=e x+e﹣x﹣2﹣x2,g''(x)=f(x)﹣2x,∵g'''(x)=f'(x)﹣2=e x+e﹣x﹣2当x≥0时,e x>0,e﹣x>0,∴∴g'''(x)≥0,∴函数y=g''(x)(x≥0)为增函数,∴g''(x)≥g''(0)=0,即f(x)﹣2x≥0∴函数y=g'(x)(x≥0)为增函数,∴g'(x)≥g'(0)=0,即e x+e﹣x≥2+x2∴函数y=g(x)(x≥0)为增函数,∴g(x)≥g(0)=0,即当x≥0时,成立;(Ⅱ)(1)当a≤2时,∵H(x)=f(x)﹣ax∴∴函数y=H(x)(x∈R)为增函数,当x>0时,H(x)>H(0)=0,当x<0时,H (x)<H(0)=0,∴当a≤2时,函数y=H(x)的零点为x=0,其零点个数为1个(2)当a>2时,∵对∀x∈R,H(﹣x)=﹣H(x)∴函数y=H(x)为奇函数,且H(0)=0下面讨论函数y=H(x)在x>0时的零点个数:由(Ⅰ)知,当x0>0时,,令∴则,H''(x)=f''(x)=e x﹣e﹣x当x>0时,e x>1,0<e﹣x<1,∴e x﹣e﹣x>0,∴H''(x)>0∴函数y=H'(x)(x>0)为增函数∴当0<x≤x0时,H'(x)≤H'(x0)=0;当x>x0时,H'(x)≥H'(x0)=0∴函数y=H(x)(x>0)的减区间为(0,x0],增区间为(x0,+∞)∴当0<x<x0时,H(x)<H(0)=0即对∀x0∈(0,x0]时,H(x)<0又由(Ⅰ)知,=当x0>0时,由③知,∴故,当时,∴,即H(x)>0由函数y=H(x)(x≥x0)为增函数和⑥⑦及函数零点定理知,存在唯一实数使得H(x*)=0,又函数y=H(x),x∈R为奇函数∴函数y=H(x),x∈R,有且仅有三个零点.本题(Ⅰ)通过三阶导数的研究,逐步通过导函数性研究零点,对学生计算能力和表达能力要求高.分(Ⅰ)求出a=的函数f(x)的导数,分别令f'(x)≥0,f'(x)≤0,求出f(x)在[1,3]上的单调性,从而确定极大值点2,也是最大值点,写出最大值;(Ⅱ)先求导数,并分解因式,讨论与2的大小,注意a>0,分别求出函数f(x)的单调区间;(Ⅲ)根据(Ⅱ)求出函数f(x)在区间[1,2]上的极大值,也是最大值且为f(),根据条件,说明最大值小于0即可.解答:解:(Ⅰ)当,,,当x∈[1,2]时f'(x)≥0,f(x)在[1,2]是增函数,当x∈[2,3]时f'(x)≤0,f(x)在[2,3]是减函数,∴f(x)的极大值也是最大值,且为;(Ⅱ)∵f'(x)=ax﹣(2a+1)+(x>0),即f'(x)=(x>0),当>2时,即0<a<时,由f'(x)>0得x>或x<2,由f'(x)<0,得2<x<,∴当0<a<,f(x)的单调增区间是(0,2]和[,+∞),单调减区间是[2,],同理当a>,f(x)的单调增区间是(0,]和[2,+∞),单调减区间是[,2];(Ⅲ)由(Ⅱ)知,当<a<1时,f(x)在[1,]上单调递增,在[,2]上单调递减,∴f(x)的极大值为f(),也是最大值f(x)max=f()=﹣2﹣﹣2lna,由<a<1,可知﹣2﹣2lna<0,f(x)max<0,∴在区间[1,2]上,f(x)<0恒成立,∴当a>时,函数f(x)在区间[1,2]上没有零点.点评:本题是导数在函数中的综合运用,考查运用导数则一定为最值的结论的运用..析:(Ⅰ)求出函数f(x)的定义域,求出导数f'(x)=a+,分a≥0,a<0两种情况进行讨论,a≥0时由单调性易判断;当a<0时可得极值;(Ⅱ)由g'(x)=e x,可设g(x)=e x+c,再由g(0)g'(1)=e可得g(x成立,分离出参数m后可得,令,则问题可转化为:m<h(x)max,利用导数可求得h(x)max;(Ⅲ)a=0时,f(x)=lnx,令φ(x)=g(x)﹣f (x)﹣2,则φ(x)=e x﹣lnx﹣2,,且φ'(x)在(0,+∞)上为增函数,设φ'(x)=0的根为x=t,则,即t=e﹣t,易知φ(x)的最小值为φ(t),通过放缩可判断φ(t)>0,从而可得结论;答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),(x>0).当a≥0时,f'(x)>0,∴f(x)在(0,+∞)上为增函数,f(x)没有极值;当a<0时,,若时,f'(x)>0;若时,f'(x)<0,∴f(x)存在极大值,且当时,;综上可知:当a≥0时,f(x)没有极值;当a<0时,f(x)存在极大值,且当时,;(Ⅱ)∵函数g(x)的导函数g'(x)=e x,∴g(x)=e x+c,又∵g(0)g'(1)=e,∴(1+c)e=e⇒c=0,∴g(x)=e x,∵∃x∈(0,+∞),使得不等式成立,∴∃x∈(0,+∞),使得成立,令,则问题可转化为:m<h(x)max,对于,x∈(0,+∞),由于,当x∈(0,+∞)时,∵e x>1,,∴,∴h'(x)<0,从而h(x)在(0,+∞)上为减函数,∴h(x)<h(0)=3,∴m<3;(Ⅲ)当a=0时,f(x)=lnx,令φ(x)=g(x)﹣f(x)﹣2,则φ(x)=e x﹣lnx﹣2,∴,且φ'(x)在(0,+∞)上为增函数,设φ'(x)=0的根为x=t,则,即t=e﹣t,∵当x∈(0,t)时,φ'(x)<0,φ(x)在(0,t)上为减函数;当x∈(t,+∞)时,φ'(x)>0,φ(x)在(t,+∞)上为增函数,∴,∵φ'(1)=e﹣1>0,,∴,由于φ(t)=e t+t﹣2在上为增函数,∴,∴f(x)<g(x)﹣2..解:(Ⅰ)根据题意知:f′(x)=在[1,+∞)上恒成立.即a≥﹣x2﹣2x在区间[1,+∞)上恒成立.∵﹣2x2﹣2x在区间[1,+∞)上的最大值为﹣4,∴a≥﹣4;经检验:当a=﹣4时,,x∈[1,+∞).∴a的取值范围是[﹣4,+∞).(Ⅱ)在区间(﹣1,+∞)上有两个不相等的实数根,即方程2x2+2x+a=0在区间(﹣1,+∞)上有两个不相等的实数根.记g(x)=2x2+2x+a,则有,解得.∴,.∴令.,.∴,.在使得p′(x0)=0.当,p′(x)<0;当x∈(x0,0)时,p′(x)>0.而k′(x)在单调递减,在(x0,0)单调递增,∵,∴当,∴k(x)在单调递减,即.本题考查的是导数知识,重点是利用导数法研究函即二次求导,本题还用到消元的方法,难度较大.21析:(1)先求f'(x),令f'(x)=0,可得极值点,分极值点在区间[,2]内、外进行讨论可得函数的最大值;(2)设切点为(t,f(t)),则,解出方程组可求;(3)f(x1)+f(x2)+…+f(x14)≤λ恒成立,等价于f(x1)+f(x2)+…+f(x14)的最大值小于等件.解:(1),令f'(x)=0,解得x=(负值舍去),由,解得.(ⅰ)当0<a时,得f'(x)≥0,∴f(x)在[,2]上的最大值为.(ⅱ)当a≥4时,由,得f'(x)≤0,∴f (x)在[,2]上的最大值为f()=.(ⅲ)当时,∵在时,f'(x)>0,在<x<2时,f'(x)<0,∴f(x)在[,2]上的最大值为f()=.(2)设切点为(t,f(t)),则,由f'(t)=﹣1,有=﹣1,化简得a2t4﹣7at2+10=0,即at2=2或at2=5,①由f(t)=﹣t+2a,有=2a﹣t,②由①、②解得a=2或a=.(3)当a=2时,f(x)=,由(2)的结论直线y=4﹣x为曲线y=f(x)的切线,∵f(2)=2,∴点(2,f(2))在直线y=4﹣x上,根据图象分析,曲线y=f(x)在直线y=4﹣x下方.下面给出证明:当x∈[,2]时,f(x)≤4﹣x.∵f(x)﹣(4﹣x)=﹣4+x==,∴当x∈[,2]时,f(x)﹣(4﹣x)≤0,即f(x)≤4﹣x.∴f(x1)+f(x2)+…+f(x14)≤4×14﹣(x1+x2+…+x14),∵x1+x2+…+x14=14,∴f(x1)+f(x2)+…+f(x14)≤56﹣14=42.∴要使不等式f(x1)+f(x2)+…+f(x14)≤λ恒成立,必须λ≥42.又当x1=x2=…=x14=1时,满足条件x1+x2+…+x14=14,且f(x1)+f(x2)+…+f(x14)=42,因此,λ的最小值为42.。

妙用洛必达法则-2023年新高考数学导数压轴题(解析版)

妙用洛必达法则-2023年新高考数学导数压轴题(解析版)

妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。

高中数学《导数》压轴小题精练100(含答案)

高中数学《导数》压轴小题精练100(含答案)

A. 22-1 , 1
C.
-
∞,
1-2 2

2-1 2

+

B.
-1

1-2 2
D. - ∞ , -1 ∪ 1, + ∞


答案 D
-1 -2 + 22
≤∃
kl2
<
0
试题6.12 【 导 数 的 切 线 法 】 已 知 实 数 ,则
满足
,实数
的 最 小 值 为(
满足 )
A. 1
B. 2
C. 3
试题25.11 【图像法 + 转化法 + 零点】函数 f x
= l-nx- xx>x0≤ 0
与 gx
=
1 2
x
+
a
+1
的图象
上存在关于 y 轴对称的点,则实数 a 的取值范围是
A. - ∞ , 3 - 2ln2 B. 3 - 2ln2, + ∞ C. e , + ∞
D. - ∞ , -e


B
画出
D. 0
B
试题12.12 【利用对称中心破题】已知函数 f x
=
x+12+ln1+9x2 -3xcosx x2+ 1
,且
f
2017
=
2016,则 f -2017 =
(2015
C. -2016
D. -2017
A
试题13.12 【利用对称中心破题】已知函数 f x
= lnx - x2与 gx
D. 4
A 【距离模型 + 转化法】

第10讲 导数压轴大题14种题型(1)(原卷版)

第10讲 导数压轴大题14种题型(1)(原卷版)

第10讲 导数压轴大题14类(1)【题型一】 求参1:端点值讨论型【典例分析】设函数f(x)=lnx -p(x -1),p ∈R (1)当p=1时,求函数f (x)的单调区间;(2)设函数g(x)=xf(x)+p(2x 2-x -1)对任意x ≥1都有g(x)≤0成立,求p 的取值范围。

【变式演练】1.试卷若函数()f x 的反函数记为()1f x -,已知函数()x f x e =.(1)设函数()()()1F x f x f x -=-,试判断函数()F x 的极值点个数; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x kx ≥,求实数k 的取值范围.2.设函数22()(2)ln ,,f x x ax x bx a b R =-+∈.(1)当1,1a b ==-时,设2()(1)ln g x x x x =-+,求证:对任意的1x >,22()()g x f x x x e e ->++-; (2)当2b =时,若对任意[1,)x ∈+∞,不等式22()3f x x a >+恒成立,求实数a 的取值范围.【题型二】 求参2:“存在”型【典例分析】 设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01af x a <-,求a 的取值范围。

【变式演练】1.已知函数10)(23+-=ax x x f .(Ⅰ)当1=a 时,求曲线)(x f y =在点))2(,2(f 处的切线方程;(Ⅱ)在区间]2,1[内至少存在一个实数x ,使得0)(<x f 成立,求实数a 的取值范围.2.记},max{n m 表示n m ,中的最大值,如10}10,3max {=.已知函数}ln 2,1max {)(2x x x f -=,}42)21(,ln max{)(222a a x a x x x x g ++-+-+=.(1)设2)1)(21(3)()(---=x x x f x h ,求函数)(x h 在]1,0(上零点的个数; (2)试探究是否存在实数),2(+∞-∈a ,使得a x x g 423)(+<对),2(+∞+∈a x 恒成立?若存在,求a 的取值范围;若不存在,说明理由.【题型三】 求参3:“恒成立”型【典例分析】已知函数f(x)=(2−a )lnx +1x +2ax .(1)当a =0时,求函数的极值; (2)当a <0时,讨论函数的单调性;(3)若对任意的a ∈(−∞,−2),x 1,x 2∈[1,3],恒有(t +ln3)a −2ln3>|f (x 1)−f (x 2)|成立,求实数t 的取值范围.【变式演练】1.已知函数f (x )=x 3+bx 2+2x −1,b ∈R , (1)设g (x )=f (x )+1x 2,若函数g (x )在(0,+∞)上没有零点,求实数b 的取值范围;(2)若对∀x ∈[1,2],均∃t ∈[1,2],使得et −lnt −4≤f (x )−2x ,求实数b 的取值范围.2.已知函数f (x )=x 2+2mlnx −(m +4)x +lnm +2.(1)当m =4时,求函数f (x )在区间[1,4]上的值域; (2)当m >0时,试讨论函数f (x )的单调性;(3)若对任意m ∈(1,√2),存在x ∈(3,4],使得不等式f (x )>a (m −m 2)+2m (ln4−1)成立,求实数a 的取值范围.【题型四】 求参4:分离参数之“洛必达法则”【典例分析】 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.【变式演练】 1.设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式a x f ≥)(的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.2.已知函数f(x)=e x ,曲线y=f(x)在点(x 0,y 0)处的切线为y=g(x).(1)证明:对于x R ∀∈,f(x)≥g(x); (2)当x ≥0时,f(x) ≥1+a 1xx+,恒成立,求实数a 的取值范围。

高中数学导数压轴题专题拔高训练 (二)

高中数学导数压轴题专题拔高训练 (二)

高中数学导数压轴题专题拔高训练一.选择题(共15小题)1.已知可导函数f(x)(x∈R)满足f′(x)>f(x),则当a>0时,f(a)和e a f(0)大小关系为()A.f(a)<e a f(0)B.f(a)>e a f(0)C.f(a)=e a f(0)D.f(a)≤e a f(0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),由f(a)=e2a,e a f(0)=e a,比较得出结论.解答:解:由题意知,可设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),f(a)=e2a,e a f(0)=e a,当a>0时,显然e2a>e a ,即f(a)>e a f(0),故选B.点评:本题考查求复合函数的导数的方法,以及指数函数的单调性,利用构造法求解是我们选择题常用的方法.2.已知函数f(x)=x3+bx2+cx+d在区间[﹣1,2]上是减函数,那么b+c()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣考点:利用导数研究函数的单调性.专题:压轴题.分析:先对函数f(x)求导,然后令导数在[﹣1,2]小于等于0即可求出b+c的关系,得到答案.解答:解:由f(x)在[﹣1,2]上是减函数,知f′(x)=3x2+2bx+c≤0,x∈[﹣1,2],则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.3.对任意的实数a,b,记若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值﹣2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示则下列关于函数y=F(x)的说法中,正确的是()A.y=F(x)为奇函数B.y=F(x)有极大值F(1)且有极小值F(﹣1)C.y=F(x)的最小值为﹣2且最大值为2 D.y=F(x)在(﹣3,0)上不是单调函数考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;压轴题.分析:在同一个坐标系中作出两函数的图象,横坐标一样时取函数值较大的那一个,如图,由图象可以看出选项的正确与否.解答:解:∵f(x)*g(x)=max{f(x),g(x)},∴f(x)*g(x)=max{f(x),g(x)}的定义域为R,f(x)*g(x)=max{f(x),g(x)},画出其图象如图中实线部分,由图象可知:y=F(x)的图象不关于原点对称,不为奇函数;故A不正确y=F(x)有极大值F(﹣1)且有极小值F(0);故B不正确y=F(x)的没有最小值和最大值为,故C不正确y=F(x)在(﹣3,0)上不为单调函数;故D正确故选D.点评:本题考点是函数的最值及其几何意义,本题考查新定义,需要根据题目中所给的新定义作出相应的图象由图象直观观察出函数的最值,对于一些分段类的函数,其最值往往借助图象来解决.本题的关键是读懂函数的图象,属于基础题.4.已知函数f(x)=x3+ax2﹣bx+1(a、b∈R)在区间[﹣1,3]上是减函数,则a+b的最小值是()A.B.C.2D.3考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:求出f′(x),因为函数在区间[﹣1,3]上是减函数得到f(﹣1)和f(3)都小于0分别列出关于a与b的两个不等式,联立即可解出a的取值范围得到a的最小值,把a的最小值当然①即可求出b的最小值,求出a+b的值即可.解答:解:f′(x)=x2+2ax﹣b,因为函数f(x)在区间[﹣1,3]上是减函数即在区间[﹣1,3]上,f′(x)≤0,得到f′(﹣1)≤0,且f′(3)≤0,代入得1﹣2a﹣b≤0①,且9+6a﹣b≤0②,由①得2a+b≥1③,由②得b﹣6a≥9④,设u=2a+b≥1,v=b﹣6a≤9,假设a+b=mu+nv=m(2a+b)+n(﹣6a+b)=(2m﹣6n)a+(m+n)b,对照系数得:2m﹣6n=1,m+n=1,解得:m=,n=,∴a+b=u+v≥2,则a+b的最小值是2.故选C点评:此题考查学生会利用导数研究函数的单调性,灵活运用不等式的范围求未知数的最值,是一道综合题.5.定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f(2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a考点:利用导数研究函数的单调性.专题:综合题;压轴题;导数的概念及应用.分析:根据x∈(1,+∞)时,f(x)+f′(x)<xf′(x),可得g(x)=在(1,+∞)上单调增,由于,即可求得结论.解答:解:∵x∈(1,+∞)时,f(x)+f′(x)<xf′(x)∴f′(x)(x﹣1)﹣f(x)>0∴[]′>0∴g(x)=在(1,+∞)上单调增∵∴g()<g(2)<g(3)∴∴∴c<a<b故选A.点评:本题考查导数知识的运用,考查函数的单调性,确定函数的单调性是关键.6.设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是()A.f(a)<e a f(0)B.f(a)>e a f(0)C.D.考点:利用导数研究函数的单调性;导数的运算.专题:压轴题;导数的概念及应用.分析:根据选项令f(x)=,可以对其进行求导,根据已知条件f′(x)>f(x),可以证明f(x)为增函数,可以推出f(a)>f(0),在对选项进行判断;解答:解:∵f(x)是定义在R上的可导函数,∴可以令f(x)=,∴f′(x)==,∵f′(x)>f(x),e x>0,∴f′(x)>0,∴f(x)为增函数,∵正数a>0,∴f(a)>f(0),∴>=f(0),∴f(a)>e a f(0),故选B.点评:此题主要考查利用导数研究函数单调性,此题要根据已知选项令特殊函数,是一道好题;7.若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是()A.1个B.2个C.3个D.5个考点:利用导数研究函数的单调性.专题:证明题;压轴题.分析:先令a=0,即可排除A,再将函数化为分段函数,并分段求其导函数,得f′(x),最后利用分类讨论,通过画导函数f′(x)的图象判断函数f(x)的单调区间的个数,排除法得正确判断解答:解:依题意:(1)当a=0时,f(x)=x3,在(﹣∞,+∞)上为增函数,有一个单调区间①当a≠0时,∵f(x)=x3+a|x2﹣1|a∈R∴f(x)=∴f′(x)=(2)当0<a<时,∵﹣<﹣<0,0<<,∴导函数的图象如图1:(其中m为图象与x轴交点的横坐标)∴x∈(﹣∞,0]时,f′(x)>0,x∈(0,m)时,f′(x)<0,x∈[m,+∞)时,f′(x)>0,∴f(x)在x∈(﹣∞,0]时,单调递增,x∈(0,m)时,单调递减,x∈[m,+∞)时,单调递增,有3个单调区间②(3)当a≥3时,∵﹣<﹣1,>1,∴导函数的图象如图2:(其中n为x≤﹣1时图象与x轴交点的横坐标)∴x∈(﹣∞,n]时,f′(x)>0,x∈(n,﹣1]时,f′(x)<0,x∈(﹣1,0)时,f′(x)>0,x∈[0,1)时,f′(x)<0,x∈[1,+∞)时,f′(x)>0∴函数f(x)在x∈(﹣∞,n]时,单调递增,x∈(n,﹣1]时,单调递减,x∈(﹣1,0)时,单调递增,x∈[0,1)时,单调递减,x∈[1,+∞)时,单调递增,有5个单调区间③由①②③排除A、C、D,故选B点评:本题考查了含绝对值函数的单调区间的判断方法,利用导数研究三次函数单调区间的方法,函数与其导函数图象间的关系,排除法解选择题8.已知函数,那么下面结论正确的是()A.f(x)在[0,x0]上是减函数B.f(x)在[x0,π]上是减函数C.∃x∈[0,π],f(x)>f(x0)D.∀x∈[0,π],f(x)≥f(x0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:由函数的解析式f(x)=sinx﹣x可求其导数f′(x)=cosx﹣,又余弦函数在[0,π]上单调递减,判断导数在[x0,π]上的正负,再根据导数跟单调性的关系判断函数的单调性.解答:解:∵f(x)=sinx﹣x∴f′(x)=cosx﹣∵cosx0=,x0∈[0,π]又∵余弦函数y=cosx在区间[0,π]上单调递减∴当x>x0时,cosx<cosx0 即cosx<∴当x>x0时,f′(x)=cosx﹣<0∴f(x)=sinx﹣x在[x0,π]上是减函数.故选B.点评:利用导数判断函数的单调性,一定要注意其方法及步骤.(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)写出f(x)的单调区间.9.设,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则实数a的取值范围是()A.B.C.[1,4]D.考点:利用导数研究函数的单调性.专题:计算题;综合题;压轴题;转化思想.分析:根据对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,得到函数f(X)在[0,1]上值域是g(X)在[0,1]上值域的子集,下面利用导数求函数f(x)、g(x)在[0,1]上值域,并列出不等式,解此不等式组即可求得实数a的取值范围解答:解:∵,∴f′(x)=,当x∈[0,1],f′(x)≥0.∴f(x)在[0,1]上是增函数,∴f(x)的值域A=[0,1];又∵g(x)=ax+5﹣2a(a>0)在[0,1]上是增函数,∴g(X)的值域B=[5﹣2a,5﹣a];根据题意,有A⊆B∴,即.故选A.点评:此题是个中档题.考查利用导数研究函数在闭区间上的最值问题,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,10.设函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,则k的取值范围()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数f'(x),函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数转化成f'(x)≤0在区间(0,4)上恒成立,讨论k的符号,从而求出所求.解答:解:f'(x)=3kx2+6(k﹣1)x,∵函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,∴f'(x)=3kx2+6(k﹣1)x≤0在区间(0,4)上恒成立当k=0时,成立k>0时,f'(4)=48k+6(k﹣1)×4≤0,即0<k≤k<0时,f'(4)=48k+6(k﹣1)×4≤0,f'(0)≤0,k<0故k的取值范围是k≤故选D.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.11.若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数,再进行分类讨论,同时将函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,转化为f′(x)在其定义域的一个子区间(k﹣1,k+1)内有正也有负,从而可求实数k的取值范围解答:解:求导函数,当k=1时,(k﹣1,k+1)为(0,2),函数在上单调减,在上单调增,满足题意;当k≠1时,∵函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数∴f′(x )在其定义域的一个子区间(k﹣1,k+1)内有正也有负∴f′(k﹣1)f′(k+1)<0∴∴×<0∴∵k﹣1>0∴k+1>0,2k+1>0,2k+3>0,∴(2k﹣3)(2k﹣1)<0,解得综上知,故选D.点评:本题以函数为载体,考查函数的单调性,考查学生分析解决问题的能力,分类讨论,等价转化是关键.12.已知g(x )为三次函数f(x)=x3+ax2+cx的导函数,则它们的图象可能是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求出函数的导函数,然后利用排除法进行判定,以及f′(x)=ax2+2ax+c与x轴交点处,函数取极值可得结论.解答:解:∵f(x)=x3+ax2+cx∴f′(x)=ax2+2ax+c对称轴为x=﹣1可排除选项B与选项C再根据f′(x)=ax2+2ax+c与x轴交点处,函数取极值可知选项D正确故选D.点评:本题主要考查了函数的单调性与导数的关系,解题的关键是原函数图象与导函数图象的关系,属于基础题.13.已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则的取值范围是()A.(B.C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)考点:函数的单调性与导数的关系;简单线性规划.专题:计算题;压轴题;数形结合.分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用线性规划的方法得到答案.解答:解:由图可知,当x>0时,导函数f'(x)<0,原函数单调递减,∵两正数a,b满足f(2a+b)>1,且f(2)=1,∴2a+b<2,a>0,b>0,画出可行域如图.k=表示点Q(2,1)与点P(x,y)连线的斜率,当P点在A(1,0)时,k最大,最大值为:;当P点在B(0,2)时,k最小,最小值为:.k的取值范围是(﹣,1).故选A.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.14.已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()D.{x|﹣1<x<1,且x≠0} A.{x|x<﹣1或x>1} B.{x|x<﹣1或0<x<1} C.{x|﹣1<x<0或0<x<1}考点:函数的单调性与导数的关系;其他不等式的解法.专题:计算题;压轴题.分析:由已知当x>0时总有xf′(x)<f(x)成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可解答:解:设g(x)=,则g(x)的导数为g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x)∴函数g(x)为定义域上的偶函数又∵g(1)==0∴函数g(x)的图象性质类似如图:数形结合可得不等式f(x)>0⇔x•g(x)>0⇔或⇔0<x<1或x<﹣1故选B点评:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.15.已知函数f(x)的定义域为[﹣2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是()X ﹣2 0 4f(x) 1 ﹣1 1A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题;数形结合.分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性求出不等式的解即a,b的关系,画出关于a,b的不等式表示的平面区域,给函数与几何意义,结合图象求出其取值范围.解答:解:由导函数的图形知,x∈(﹣2,0)时,f′(x)<0;x∈(0,+∞)时,f′(x)>0∴f(x)在(﹣2,0)上单调递减,在(0,+∞)上单调递增;∵f(2a+b)<1∴﹣2<2a+b<4∵a>0,b>0∴a,b满足的可行域为表示点(a,b)与(﹣3,﹣3)连线的斜率的2倍由图知当点为(2.,0)时斜率最小,当点为(0,4)时斜率最大所以的取值范围为故选A点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.二.解答题(共15小题)16.已知m∈R,函数f(x)=x2﹣m x,g(x)=lnx.(1)当x∈[1,2]时,如果函数f(x)的最大值为f(1),求m的取值范围;(2)若对有意义的任意x,不等式f(x)>g(x)恒成立,求m的取值范围;(3)当m在什么范围内取值时,方程f(x)=g(x)分别无实根?只有一实根?有两个不同实根?考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题.分析:(1)本问题求出函数的最值代入已知最大值为f(1),即可解得参数m的值,(2)本题恒成立问题转化为函数的最值来解答,具体方法是由f(x)>g(x)等价于x2﹣mx>lnx,即,构造出函数,利用导数工具可以求解.(3)我们对本题可以这样处理,想根据函数y=x2,y=mx,y=lnx的图象的增减性,判断猜测出参数m取值时分别对应方程的根的情况,然后来证明这个结论.证明时可利用新构造的函数h(x)=f(x)﹣g(x),利用导数以及函数的单调性,求出函数的最值来判断根x0的性质以辨别是否存在这个根.解答:解:(1)函数f(x)=x2﹣mx的图象开口向上,函数在x=1或x=2处取得最大值,则f(1)≥f(2),1﹣m≥4﹣2m,得:m≥3.(2)f(x)>g(x)等价于x2﹣mx>lnx,其中x>0,即:由,令,得,当x=1时t′(x)=0,当x∈(0,1)时t′(x)<0;当x∈(1,+∞)时t′(x)>0,m<t(x)min=t(1)=1,∴m<1.(3)设h(x)=f(x)﹣g(x)=x2﹣mx﹣lnx,其中x>0.观察得当m=1时,方程f(x)=g(x)即为:x2﹣x﹣lnx=0的一个根为x=1.猜测当m<1,m=1,m>1时方程分别无根,只有一个根,有且只有两个根.证明:∵h′(x)==0,等价于2x2﹣mx﹣1=0此方程有且只有一个正根为,且当x∈(0,x0)时,h′(x)<0;当x∈(x0,+∞)时,h′(x)>0,函数只有一个极值h(x)min=h(x0)=x02﹣mx0﹣lnx0.1°当m<1时,由(2)得f(x)>g(x)恒成立,方程无解.2°当m=1时,x0=1,h(x)min=h(1)=0,则h(x)≥h(x)min=0,当且仅当x=1时,h(x)=0,此时只有一个根x=1.3°当m>1时,,关于m在(1,+∞)上递增,∴x0∈(1,+∞)时lnx0>0,∵m>1⇒1<m2⇒8<8m2⇒m2+8<9m2⇒⇒⇒⇒x0<m.∴h(x)min=h(x0)=x02﹣mx0﹣lnx0=x0(x0﹣m)﹣lnx0<0.证毕点评:本题考查二次函数在定区间上的最值问题,函数类型简单,是一个二次函数,第一问的设计很容易,后面两问的综合性较强,对学生的逻辑思维能力,运算能力有很好的锻炼价值,本题第二小题是一个恒成立的问题,求参数的范围,一般转化最值问题来求解,本题第三问也是构造函数来解答,转化为利用导数研究新构造的函数的单调性求出函数的最值,结合最值来判断根的存在与否.本题对运算能力有一定的要求,解题时一定要严谨.考查的思想方法有分类讨论,构造函数等方法思想.17.设函数h(x)=x2,φ(x)=2elnx(e为自然对数的底).(1)求函数F(x)=h(x)﹣φ(x)的极值;(2)若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.试问:函数h(x)和φ(x)是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题;新定义;数形结合;转化思想.分析:(1)根据所给的函数,对函数求导,使得导函数等于0,验证可能的极值点两侧导函数的符合相反,得到函数存在极值.(2)由题意知若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,两个函数的图象有公共点,设出直线的方程,根据函数的恒成立得到k的值,求出函数的极大值,得到结论.解答:解:(1)∵F(x)=h(x)﹣φ(x)=x2﹣2elnx(x>0)∴当x=时,F′(x)=0,当0<x<时,F′(x)<0,当x>时,F′(x)<0∴F(x)在处取得极小值0.(2)由(1)知当x>0时,h(x)≥φ(x),若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,∵两个函数的图象有公共点,∴隔离直线必过(,e)设直线的方程是y﹣e=k(x﹣)∴h(x)≥kx+e﹣k恒成立,∴△≤0∴k=2令G(x)=φ(x)﹣2x+e对函数求导有当x>时,F′(x)<0,当0<x<时,F′(x)<0∴当时有G(x)的极大值为0,也就是最大值为0.从而G(x)≤0,即恒成立.故函数h(x)和φ(x)存在唯一的“隔离直线”.点评:本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的极值,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.18.函数f(x)=x2+bln(x+1)﹣2x,b∈R.(1)当b=1时,求曲线f(x)在点(0,f(0))处的切线方程;(2)当时,求函数f(x)在(﹣1,1]上的最大值;(ln2≈0.69)(3)设g(x)=f(x)+2x,若b≥2,求证:对任意x1,x2∈(﹣1,+∞),且x1≥x2,都有g(x1)﹣g(x2)≥2(x1﹣x2).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:压轴题.分析:(1)把b=1代入解析式,使得解析式具体,对于函数求导利用导函数的几何意义即可求的;(2)把代入解析式,由函数求导得导函数,求出函数在定义域上的极值,在与区间端点值进行比较大小,进而求得函数在区间上的最值;(3)由于g(x)=f(x)+2x,由函数解析式求导得其导函数,利用导函数得到函数在区间上的单调性,进而得到要证明的不等式.解答:解:(1)当b=1时,f(x)=x2+ln(x+1)﹣2x定义域为(﹣1,+∞),,f′(0)=﹣1,又f(0)=0,故有直线的方程可知:曲线f(x)在点(0,f(0))出的切线方程为:y=﹣x,(2)当b=,求导得:,由f′(x)=0⇒,当x变化时,f′(x),f(x)的变化情况如下表:由上表可知:,,,所以,所以函数f(x)在(﹣1,1]上的最大值为:,(3)证明:∵f(x)=x2+bln(x+1)﹣2x∴=0.当且仅当2(x+1)=,即:b=2,且x=0时取等号,∴b≥2时,函数f(x)在(﹣1,+∞)内单调递增,从而对于任意x1,x2∈(﹣1,+∞)且x1≥x2,有f(x1)>f(x2),即g(x1)﹣2x1≥g(x2)﹣2x2∴g(x1)﹣g(x2)≥2(x1﹣x2)点评:此题考查了利用导数求函数在闭区间上的最值,还考查了导数的几何含义进而求出曲线上任意一点处的切线方程,还考查了利用均值不等式求解函数的最值.19.已知函数f(x)=ax+lnx,a∈R.(1)当a=﹣1时,求f(x)的最大值;(2)求证:;(3)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;压轴题;转化思想.分析:(1)当a=﹣1时,f(x)=﹣x+lnx,易求得f′(x),且f′(x)>0时,函数f(x)单调递增,f′(x)<0时,函数f(x)单调递减;故可求得f(x)的最大值.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,当取时,可得;把以上各式相加,可得证明.(3)直线P1P2的斜率k由P1,P2两点坐标可表示为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号;可得+<﹣1,整理可得<,同理,由,得;所以P1P2的斜率,在x∈(x1,x2)上,有,可得结论.解答:解:(1)当a=﹣1时,f(x)=﹣x+lnx,∴,且x∈(0,1)时,f′(x)>0,函数f(x)单调递增;x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减.故当x=1时,f(x)取最大值f(1)=﹣1.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,取,可得;以上各式相加得:ln(n+1)<1+++…+(n∈N+)(3)直线P1P2的斜率为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号,∴,同理,由,可得;故P1P2的斜率,又在x∈(x1,x2)上,,所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.点评:本题综合考查了利用导数研究曲线上过某点的切线方程,利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值问题,也考查了利用函数证明不等式的问题,是较难的题目.20.已知函数(Ⅰ)若函数在区间()(其中m>0)上存在极值,求实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求实数k的取值范围;(Ⅲ)求证:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;证明题;压轴题.分析:(Ⅰ)求出函数的极值,在探讨函数在区间(m,m+)(其中a>0)上存在极值,寻找关于m的不等式,求出实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求出f(x)在x≥1时的最小值,把k分离出来,转化为求k的范围.(Ⅲ)借助于(Ⅱ)的结论根据叠加法证明不等式.解答:解:(Ⅰ)因为函数所以f′(x)=﹣.极值点为f′(x)=0解得x=1故m<1<m+,解得<m<1.即答案为<m<1.(Ⅱ)如果当x≥1时,f′(x)=﹣≤0故f(x)递碱.故f(x)≥f(1)=1又不等式恒成立,所以恒成立,所以k≤2证明:(Ⅲ)由(Ⅱ)知:恒成立,即令x=n(n+1),则所以,,,….叠加得:ln[1×22×32×…n2×(n+1)]×=则1×22×32×…n2×(n+1)>e n﹣2,所以:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).点评:此题主要考查应用导数研究函数的极值最值问题,有关恒成立的问题一般采取分离参数,转化为求函数的最值问题,体现了转化的思想方法,证明数列不等式,借助函数的单调性或恒成立问题加以证明.属难题.21.设函数.(p是实数,e是自然对数的底数)(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;(2)若f(x)在其定义域内为单调函数,求p的取值范围;(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;综合题;压轴题.分析:(1)由“函数f(x)的图象相切于点(1,0)求得切线l的方程,再由“l与g(x)图象相切”得到(p﹣1)x2﹣(p﹣1)x﹣e=0由判别式求解即可.(2)求导f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,再转化为“p≥=恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立”,再转化为“p≤=恒成立”,由最值法求解,最后两个结果取并集.(3)因为“在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较.解答:解:(1)∵f′(x)=p+,∴f’(1)=2(p﹣1),设直线l:y=2(p﹣1)(x﹣1),∵l与g(x)图象相切,∴y=2(p﹣1)(x﹣1),得(p﹣1)(x﹣1)=,即(p﹣1)x2﹣(p﹣1)x﹣e=0,y=当p=1时,方程无解;当p≠1时由△=(p﹣1)2﹣4(p﹣1)(﹣e)=0,得p=1﹣4e,综上,p=1﹣4e(2)f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,即p≥=恒成立,又,所以当p≥1时,f(x)在(0,+∞)为单调增函数.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立,再转化为“p≤=恒成立”,又,所以当p≤0时,f(x)在(0,+∞)为单调减函数.综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0(3)因g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e]①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数,故只需f(x)max>g(x)min,x∈[1,e],即:f(e)=p(e﹣)﹣2lne>2⇒p>.③当0<p<1时,因x﹣≥0,x∈[1,e]所以f(x)=p(x﹣)﹣2lnx≤(x﹣)﹣2lnx<2,不合题意综上,p的取值范围为(,+∞)点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围往往转化为求相应函数的最值问题.22.设函数.(1)试判断当x>0,g(x)与f(x)的大小关系;(2)求证:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3(n∈N*);(3)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上的两点,且g′(x0)=(其中g′(x)为g(x)的导函数),证明:x0∈(x1,x2).考点:导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)欲求g(x)与f(x)的大小关系只需判断F(x)=g(x)﹣f(x)的正负,利用导数研究函数F(x)的最小值,使最小值与0比较即可;(2)由(1)知令x=n(n+1)(n∈N*),则,从而可证得结论;(3)根据,于是,,然后证明,等价于x1lnx2﹣x1lnx1﹣x2+x1<0,令h(x)=xlnx2﹣xlnx1﹣x2+x,利用导数研究最小值与0比较,对于同理可证,即可证得结论.解答:(1)解:设F(x)=g(x)﹣f(x)(x>0)则F′(x)=﹣由F′(x)=0得x=3当0<x<3时,F′(x)<0;当x>3时,F′(x)>0∴x=3时,F(x)取得最小值为F(3)=ln3﹣1>0∴F′(x)>0即g(x)>f(x)…(5分)(2)证明:由(1)知令x=n(n+1)(n∈N*),则…(7分)∴ln(1+1•2)+ln(1+2•3)+…+ln[1+n(n+1)]>(2﹣)+(2﹣)+…+[2﹣]=2n﹣3[++…+]=2n﹣3(1﹣)>2n﹣3∴(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3…(10分)(3)证明:,于是,,以下证明等价于x1lnx2﹣x1lnx1﹣x2+x1<0.令h(x)=xlnx2﹣xlnx1﹣x2+x …(12分)则h'(x)=lnx2﹣lnx1,在上,h'(x)>0所以h(x)在(0,x2]上为增函数当x1<x2时h(x1)<h(x2)=0,即x1lnx2﹣x1lnx1﹣x2+x1<0从而x0>x1,得到证明.对于同理可证.所以x0∈(x1,x2).…(16分)点评:本题主要考查了利用导数研究函数的最值,以及利用导数证明不等式,同时考查了转化的思想,以及考查计算能力,属于难题.23.已知函数f(x)=(x2﹣3x+3)e x的定义域为[﹣2,t],其中常数t>﹣2,e为自然对数的底数.(1)若函数f(x)是增函数,求实数t的取值范围;(2)求证:f(t)>13e﹣2;(3)设f'(x)表示函数f(x)的导函数,,求函数g(x)在区间(﹣2,t)内的零点个数.考点:导数在最大值、最小值问题中的应用.专题:综合题;压轴题;探究型;数形结合;分类讨论;转化思想.分析:(1)若函数f(x)是增函数,则必要导数f'(x)≥0,由此不等式即可解出实数t的取值范围;(2)由题意求证f(t)>13e﹣2,可解出函数f(x)在区间[﹣2,+∞)上的最小值,由此最小值与13e﹣2作比较即可证明此不等式;(3)由题意先解出的解析式,由所得的解析式,及零点判定定理知,可研究此函数在区间(﹣2,t)两个端点值的符号及区间内函数最值的符号,由定理判断出零点个数即可解答:解:(1)f(x)=(x2﹣3x+3)e x,f'(x)=(x2﹣x)e x=x(x﹣1)e x,…(1分)f'(x)≥0⇔x≥1或x≤0,…(2分)若函数f(x)是定义域[﹣2,t]上的增函数,知t的取值范围是(﹣2,0].…(4分)(2)由(1)知函数f(x)的增区间为[﹣2,0]与[1,+∞),减区间为[0,1],从而函数f(x)在区间[﹣2,+∞)上有唯一的极小值f(1)=e,…(6分)但f(﹣2)=13e﹣2<e(∵,故函数f(x)在区间[﹣2,+∞)上的最小值为f(﹣2)=13e﹣2,…(8分)因为t>﹣2,所以f(t)>f(﹣2)=13e﹣2.…(9分)(3)函数g(x)的图象是开口向上、对称轴为的抛物线,且,,.函数g(x)在区间(﹣2,t)内有两个零点;…(9分)当﹣2<t≤1时,g(﹣2)>0,g(t)≤0,又由可知,函数g(x)在区间(﹣2,t)内只有一个零点;…(11分)当t≥4时,g(﹣2)<0,g(t)>0,可知,函数g(x)在区间(﹣2,t)内只有一个零点.…(13分)综上,当1<t<4时,函数g(x)在区间(﹣2,t)内有两个零点;当﹣2<t≤1或t≥4时,函数g(x)在区间(﹣2,t)内只有一个零点.(14分)点评:本题考查导数在最值问题中的运用,利用导数研究单调性,再利用单调性求最值,这是导数的重要运用,解答本题,第一小题关键是理解导数与函数单调性的关系,第二小题关键是将证明不等式问题转化为利用导数解出函数的最值,从而证明不等式,第三题解题的关键是理解零点定理及函数区间内函数最值的判断,本题考查了转化的思想分类讨论思想等,由于本题运算量较大,易因运算导致错误,解题时要严谨24.已知函数f(x)=(a﹣1)lnx+ax2.(1)讨论函数y=f(x)的单调性;(2)求证:+++…+>(n≥2,n∈N+);(3)当a=0时,求证:f(x)≤﹣.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:(1)先求导得f′(x),通过对a分类讨论即可得出;(2)利用(1)的结论,取a=时,当x>1时,f(x)单调递增,f(x)>f(1),从而得出x2>lnx>0,取倒数得,令x=k,再利用放缩和裂项求和即可得出;(3)要证⇔⇔(xlnx)min≥,利用导数分别求出其极值即最值即可证明.解答:解:(1)f(x)=(a﹣1)lnx+ax2,定义域为(0,+∞).∵.当a≥1时,f'(x)>0,故f(x)在(0,+∞)单调递增;当a≤0时,f'(x)<0,故f(x)在(0,+∞)单调递减;当0<a<1时,令f'(x)=0,解得.则当时,f'(x)<0;时,f'(x)>0.故f(x)在单调递减,在单调递增.(2)当时,,由(1)知,时,y=f(x)递增,所以x>1时,∵x>1,∴x2>lnx>0,∴,,(3)就是要证,即需证.令g(x)=xlnx,则由g'(x)=lnx+1=0,得,当时g(x)递增,当时g(x)递减,所以g(x)的最小值为.设,。

(完整版)导数压轴题

(完整版)导数压轴题

导数压轴题4(1) 当a = 3时,求f(x)的极值点.1 3(2) 若 f(x)为2,2上的单调函数,求a 的取值范围.ax 2— 2ax + 1 e[解析]行’(x)二丹 1 + ax4 13(1)当 a = 3时,若 f'(x)= 0,则 4x 2 — 8x + 3= 0? x 1 =㊁,x 2 —:X1 — 是极大值点,x 2 — 2是极小值点.(2)记 g(x)— ax 2— 2ax + 1,则2g(x) — a(x — 1) + 1— a ,1 3••g(x)>0或 g(x)<0对 x € 2,2 恒成立, 1又g(x)的对称轴为x — 1,故g(x)的最小值为g(1),最大值为g 2 . 1 4由 g(1) >0 或 g 2 W 0? 0<a < 1 或 a >3,4•的取值范围是0<a < 1或a >3.10. (能力挑战题)函数 f(x) — xln x — ax 2— x(a € R).vf(x)为3,3上的单调函数,贝U f ' (x)在 刁3上不变号,9.(能力挑战题)设f(x) = 1 + ax 1 2,其中a 为正实数. 1 + ax 2 2>0,⑴若函数f(x)在x= 1处取得极值,求a的值.(2)若函数f(x)的图象在直线y= —x图象的下方,求a的取值范围.⑶求证:2 0133 4 012<2 0122 013[解析]⑴函数定义域为(0,+%), F(x)= In x—2ax,■-'f(x)在x= 1处取得极值,.•.f' (1) = 0,即一2a= 0,.°.a = 0.•••f' (x) = In x,当x€ (0,1)时,f' (x)<0,当x€ (1 ,+x)时,f' (x)>0,•■•f(x)在x= 1处取得极值.⑵由题意,得xln x—ax2—x< —x,•'•xln x—a点<0.(0,+^),In xa>vIn x设h(x)=—,1 —In x则h' (x) = —x—入令h' (x)>0,得0<x<e,•••h(x)在(0, e)上为增函数;令h' (x)<0,得x>e,•■•h(x)在(e,+x)上为减函数.3 a> .e1 •■•h(x) max=DIn x⑶由(2)知h(x) = p 在(e ,+^)上为减函数, 入 •••h(x)>h(x + 1), In x ln x + 5 6 .•— > ----- xx + 1 '-■.(x + 1)ln x>x ln(x + 1), •n x x + 1>l n(x + 1)x ,•••xx + 1>(x + 1)x .令 x = 2 012,得 2 0122 013>2 0132 012 ax 11. 已知函数 f(x) = ln(1 + x) — (a € R).1 — x2x — 2 + a x + 1 — a2 ,6 + x 1 — x由 f ' (x) = 0,得 x 2 — (2 + a)x + 1 — a = 0,(1) 求函数f(x)的单调区间;(2) 若数列{a }的通项公a m =12 0132m 1•k a 1 a 2 …a m <3(m € N ).[解析](1)由题意,函数的定义域为(一1,1)U (1, +013(m € N *),求证:1%), f ' (x)二 —1 + x2'1 a当a < 0时,注意到 >0, 产0,1 + x 1 — x所以f ' (x)>0,即函数f(x)的增区间为(—1,1), (1 , + ),无减区间;当 a>0 时,f ' (x) =1 1+ x1— xa + 2 —、/a2+ 8a a+ 2+、/a2+ 8a此方程的两根X1= 2 ,X2= 2 ,其中一1<X1<1<X2, 注意到(1 + x)(1 - X)2>0,所以f' (X)>0? - 1<x<x i 或X>X2,f' (X)<0? X1<X<1 或1<X<X2,即函数f(x)的增区间为(-1 , X1), (X2,+x),减区间为(X1,1), (1 , X2).综上,当a< 0时,函数f(X)的增区间为(一1,1)(1,+x),无减区间;当a>0时,函数f(x)的增区间为(-1, X1),(X2,+X),减区间为(X1,1), (1,X2),a + 2-、/a2+ 8a其中X1二2 ----------a + 2+ a2+ 8a x2= 2x⑵当a= 1时,由(1)知,函数f(x) = ln(1 + x)- 在(0,1)上为减函数,1 - xx则当0<X<1时,f(x) = ln(1 + x) —<f(0)= 0,1 - xX即ln(1 + X)<1-x令 * ^013^ 加N*),则1 + ______________________ln 2 013X 2m+ 1 <2 013X 2m,丄严才丄2 013 X 2" + 1 ) ' 2" T< e< 3.X212.已知函数f(x) = + a3ln(x —a—a2), a€ R 且a^0.(1)讨论函数f(x)的单调性;⑵当a<0时,若a2+ a<x i<x2<a2—a,证明:2f x2 —f x i a< 石—a. x2 —x i 2a3[解析](1 )由题意,f' (X)= X+ 2x—a—ax2—a+ a2 x+ a3x—a —a22x—a x—a= 2x —a —a令f' (x)>0,因为x— a —a2>0,故(x—a)(x —a2)>0.当a>0 时,因a+ a2>a 且a+ a2>a2,所以上面不等式的解集为(a+ a2,+x),从而此时函数f(x)在(a+ a2,+^)上单调递增.当a<0时,因a<a+ a2<a2,所以上面不等式的解集为(a2,+^),从而此时函数f(x)在(a2,+x)上单调递增,同理此时f(x)在(a+ a2,a2]上单调递减.⑵证法一:要证原不等式成立,只需证明2af(x2)—f(x i)<(x2 —x i) ——a,2 2 a a只需证明f(x2)——— a x2<f(x i)—~2— ax i.在x € (a 6 + a , a 2 — a)内单调递减.2a 由(1)知 h ' (x) = x — 2 — a4323 2 a a 2x —护 x + 2 + — ax — a — a 2因为 x — a — a 2>0,我们考察函数 g(x) = x 2 — |a 2x + 庁 + 亍—a 2, x € (a 2 + a , a 2 — a). 因 a + a + a _a = a 2>x 对称轴=警,且 7f<a 2 — a , 所以 g(x)< g(a 2— a) = 0.从而知 h ' (x)<0在 x € (a 2 + a , a 2 — a)上恒成立,2a 2 2所以函数h(x) = f(x) — — a x 在x € (a + a , a — a)内单调递减.6 2a a只需证明 f(x 2) — "2 — a x 2<f(x i )— — a x i . 又 a 2 + a<x i <x 2<a 2— a , 设 g(x) = f(x) — — a x ,则欲证原不等式只需证明函数 g(x) = f(x) — a ; — ax 在x € (a 2 + a,a 2 — a)内单 调递减.由⑴可知3a + 2x — a —a从而原命题成立.证法二:要证原不等式成立,2a 只需证明f(X2)—f(X1)V(X2—x i) — a ,g ' (x)二f ' (x)—冷—a 3 2aa—x + 2 — 2 — ax —a —a 232 . a—x — a — a + 2+ a +x — a — aa 32在(a 2 + a , a 2 — a)上为增函数, x — a — a 所以 g ' (x )w g ' (a 2— a) 2 2+ a + a 2— f — a = 0. a —a — a —a 2从而知g ' (x)<0在x € (a 2 + a , a 2 — a)上恒成立,2所以函数g(x) — f(x)—卡—a x 在x € (a 2 + a , a 2 — a)内单调递减. 从而原命题成立.13.已知函数 f(x) = e x sin x. (1) 求函数f(x)的单调区间; 冗(2)如果对于任意的x € 1, , f(x) > kx 总成立,求实数k 的取值范围;数F(x)图象的所有切线,令各切点的横坐标构成数列 之和S 的值.[解析](1)由于f(x) = e x sin x ,所以 f ' (x) = e x sin x + e x cos x = e x (sin x + cos x) =2e x sin x +.n — n 3 n 当 x + 4^ (2 k n 2k n+ n,即卩 x € 2k n- 4, 2k n+^ 时,f ' (x)>0;当 x +(2k n+ n, 2k n+ 2 n,)即 x € 2k n+ 手 2k n+ 于时,f ' (x)<0.a 22 a ~2— a .因为 a<0,所以 y =x — a — a 2+ 3—a 2— a — a — a 2+a(3)设函数 F(x) — f(x) + e xcos x , x € ?2 011 n 2 013 n - n 一 1寸【过点M —一- , 0作函{X n },求数列{X n }的所有项3nn 3 n所以f(x)的单调递增区间为2k n- 4,2k n+才化€ Z),3 n 7 n单调递减区间为2k n+j, 2k n+* (k€ Z).. n⑵令g(x)= f(x)- kx= e x sin x-kx,要使f(x) >kx 总成立,只需x€ 0, 2 时g(x)min》0.g' (x)= e<(sin x+ cos x) —k,n 令h(x) = e x(sin x+ cos x),贝U h' (x) = 2e x cos x>0, x€ 0, 2 ,n所以h(x)在o, 2上为增函数,所以h(x)€ [1, e'].对k分类讨论:n①当k< 1时,g' (x)>0恒成立,所以g(x)在0, 2上为增函数,所以g(x)min =g(0) = 0, 即卩g(x)>0 恒成立;n②当1<k<e时,g' (x)= 0在[1, e]上有实根x o,因为h(x)在0, 2上为增函数,所以当x€ (0, x o)时,g' (x)<0,所以g(x o)vg(0) = 0,不符合题意;▼n③当k>e时,g' (x)< 0恒成立,所以g(x)在0, 2上为减函数,则g(x)<g(0) =0,不符合题意;综合①②③可得,所求的实数k的取值范围是(―%, 1].(3) 因为F(x) = f(x) + e x cos x= e x(sin x+ cos x),所以F' (x)= 2e x cos x,设切点坐标为(x0, ex0(sin X0+ cos x。

(完整版)导数压轴题

(完整版)导数压轴题

导数压轴题9.(能力挑战题)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点.(2)若f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,求a 的取值范围.[解析] ∵f ′(x )=(ax 2-2ax +1)e x(1+ax 2)2,(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0⇒x 1=12,x 2=32,∴x 1=12是极大值点,x 2=32是极小值点. (2)记g (x )=ax 2-2ax +1,则 g (x )=a (x -1)2+1-a ,∵f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,则f ′(x )在⎣⎢⎡⎦⎥⎤12,32上不变号,∵e x(1+ax 2)2>0, ∴g (x )≥0或g (x )≤0对x ∈⎣⎢⎡⎦⎥⎤12,32恒成立,又g (x )的对称轴为x =1,故g (x )的最小值为g (1),最大值为g ⎝ ⎛⎭⎪⎫12.由g (1)≥0或g ⎝ ⎛⎭⎪⎫12≤0⇒0<a ≤1或a ≥43, ∴a 的取值范围是0<a ≤1或a ≥43.10.(能力挑战题)函数f (x )=x ln x -ax 2-x (a ∈R ).(1)若函数f(x)在x=1处取得极值,求a的值.(2)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围.(3)求证:2 0132 012<2 0122 013.[解析](1)函数定义域为(0,+∞),f′(x)=ln x-2ax,∵f(x)在x=1处取得极值,∴f′(1)=0,即-2a=0,∴a=0.∴f′(x)=ln x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)在x=1处取得极值.(2)由题意,得x ln x-ax2-x<-x,∴x ln x-ax2<0.∵x∈(0,+∞),∴a>ln xx.设h(x)=ln xx,则h′(x)=1-ln xx2.令h′(x)>0,得0<x<e,∴h(x)在(0,e)上为增函数;令h′(x)<0,得x>e,∴h(x)在(e,+∞)上为减函数.∴h(x)max=h(e)=1e,∴a>1e.(3)由(2)知h (x )=ln xx 在(e ,+∞)上为减函数, ∴h (x )>h (x +1), ∴ln x x >ln (x +1)x +1.∴(x +1)ln x >x ln(x +1), ∴ln x x +1>ln(x +1)x , ∴x x +1>(x +1)x .令x =2 012,得2 0122 013>2 0132 012. 11.已知函数f (x )=ln(1+x )-ax1-x(a ∈R ). (1)求函数f (x )的单调区间;(2)若数列{a m }的通项公式a m =⎝ ⎛⎭⎪⎫1+12 013×2m +1 2 013(m ∈N *),求证:a 1·a 2·…·a m <3(m ∈N *).[解析] (1)由题意,函数的定义域为(-1,1)∪(1,+∞),f ′(x )=11+x-a(1-x )2, 当a ≤0时,注意到11+x >0,a (1-x )2≤0, 所以f ′(x )>0,即函数f (x )的增区间为(-1,1),(1,+∞),无减区间; 当a >0时,f ′(x )=11+x -a (1-x )2 =x 2-(2+a )x +1-a (1+x )(1-x )2, 由f ′(x )=0,得x 2-(2+a )x +1-a =0,此方程的两根x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2,其中-1<x 1<1<x 2,注意到(1+x )(1-x )2>0,所以f ′(x )>0⇔-1<x <x 1或x >x 2,f ′(x )<0⇔x 1<x <1或1<x <x 2,即函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2). 综上,当a ≤0时,函数f (x )的增区间为(-1,1)(1,+∞),无减区间; 当a >0时,函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2),其中x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2.(2)当a =1时,由(1)知,函数f (x )=ln(1+x )-x1-x在(0,1)上为减函数, 则当0<x <1时,f (x )=ln(1+x )-x1-x<f (0)=0, 即ln(1+x )<x1-x ,令x =12 013×2m+1(m ∈N *),则 ln ⎝ ⎛⎭⎪⎫1+12 013×2m+1<12 013×2m ,12.已知函数f (x )=x 22+a 3ln(x -a -a 2),a ∈R 且a ≠0. (1)讨论函数f (x )的单调性;(2)当a <0时,若a 2+a <x 1<x 2<a 2-a ,证明:f (x 2)-f (x 1)x 2-x 1<a 22-a .[解析] (1)由题意,f ′(x )=x +a 3x -a -a 2=x 2-(a +a 2)x +a 3x -a -a 2=(x -a )(x -a 2)x -a -a 2.令f ′(x )>0,因为x -a -a 2>0,故(x -a )(x -a 2)>0. 当a >0时,因a +a 2>a 且a +a 2>a 2, 所以上面不等式的解集为(a +a 2,+∞), 从而此时函数f (x )在(a +a 2,+∞)上单调递增.当a <0时,因a <a +a 2<a 2,所以上面不等式的解集为(a 2,+∞),从而此时函数f (x )在(a 2,+∞)上单调递增,同理此时f (x )在(a +a 2,a 2]上单调递减.(2)证法一: 要证原不等式成立,只需证明 f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.因为a 2+a <x 1<x 2<a 2-a ,所以原不等式只需证明函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x在x ∈(a 2+a ,a 2-a )内单调递减.由(1)知h ′(x )=x -⎝ ⎛⎭⎪⎫a 22-a +a 3x -a -a 2=x 2-32a 2x +a 42+a 32-a 2x -a -a 2,因为x -a -a 2>0,我们考察函数g (x )=x 2-32a 2x +a 42+a 32-a 2,x ∈(a 2+a ,a 2-a ).因a 2+a +a 2-a 2=a 2>x 对称轴=3a 24,且3a 24<a 2-a ,所以g (x )≤g (a 2-a )=0.从而知h ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立.证法二:要证原不等式成立, 只需证明f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.又a 2+a <x 1<x 2<a 2-a , 设g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x ,则欲证原不等式只需证明函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.由(1)可知g ′(x )=f ′(x )-⎝ ⎛⎭⎪⎫a 22-a=x +a 3x -a -a2-⎝ ⎛⎭⎪⎫a 22-a =x -a -a 2+a 3x -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a .因为a <0,所以y =x -a -a 2+a 3x -a -a2在(a 2+a ,a 2-a )上为增函数, 所以g ′(x )≤g ′(a 2-a )=a 2-a -a -a 2+a 3a 2-a -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a =0. 从而知g ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立. 13.已知函数f (x )=e x sin x . (1)求函数f (x )的单调区间;(2)如果对于任意的x ∈⎣⎢⎡⎦⎥⎤1,π2,f (x )≥kx 总成立,求实数k 的取值范围;(3)设函数F (x )=f (x )+e x cos x ,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2.过点M ⎝ ⎛⎭⎪⎫π-12,0作函数F (x )图象的所有切线,令各切点的横坐标构成数列{x n },求数列{x n }的所有项之和S 的值.[解析] (1)由于f (x )=e x sin x ,所以 f ′(x )=e x sin x +e x cos x =e x (sin x +cos x ) =2e x sin ⎝ ⎛⎭⎪⎫x +π4.当x +π4∈(2k π,2k π+π),即x ∈⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4时,f ′(x )>0; 当x +π4∈(2k π+π,2k π+2π),即x ∈⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4时,f ′(x )<0.所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4(k ∈Z ),单调递减区间为⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4(k ∈Z ).(2)令g (x )=f (x )-kx =e x sin x -kx ,要使f (x )≥kx 总成立,只需x ∈⎣⎢⎡⎦⎥⎤0,π2时g (x )min ≥0.g ′(x )=e x (sin x +cos x )-k ,令h (x )=e x (sin x +cos x ),则h ′(x )=2e x cos x >0,x ∈⎝ ⎛⎭⎪⎫0,π2,所以h (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数, 所以h (x )∈[1,e ]. 对k 分类讨论:①当k ≤1时,g ′(x )≥0恒成立,所以g (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,所以g (x )min=g (0)=0,即g (x )≥0恒成立;②当1<k <e 时,g ′(x )=0在[1,e ]上有实根x 0,因为h (x )在⎝ ⎛⎭⎪⎫0,π2上为增函数,所以当x ∈(0,x 0)时,g ′(x )<0,所以g (x 0)<g (0)=0,不符合题意;③当k ≥e 时,g ′(x )≤0恒成立,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上为减函数,则g (x )<g (0)=0,不符合题意;综合①②③可得,所求的实数k 的取值范围是(-∞,1]. (3)因为F (x )=f (x )+e x cos x =e x (sin x +cos x ), 所以F ′(x )=2e x cos x ,设切点坐标为(x 0,e x 0(sin x 0+cos x 0)), 则斜率为F ′(x 0)=2e x 0cos x 0,切线方程为y -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·(x -x 0),将M ⎝ ⎛⎭⎪⎫π-12,0的坐标代入切线方程,得 -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·⎝ ⎛⎭⎪⎫π-12-x 0, 整理得-tan x 0-1=-2⎝ ⎛⎭⎪⎫x 0-π-12, 即tan x 0=2⎝ ⎛⎭⎪⎫x 0-π2,令y 1=tan x ,y 2=2⎝ ⎛⎭⎪⎫x -π2,则这两个函数的图象均关于点⎝ ⎛⎭⎪⎫π2,0对称,它们交点的横坐标也关于π2对称且成对出现,方程tan x =2⎝ ⎛⎭⎪⎫x -π2,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2的根即所作的所有切线的切点横坐标构成的数列{x n }的项也关于π2对称且成对出现,在⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2内共构成1 006对,每对的和为π,因此数列{x n }的所有项的和S =1 006π.14.已知函数f (x )=ln x -px +1. (1)求函数f (x )的极值点;(2)若对任意的x >0,恒有f (x )≤0,求p 的取值范围; (3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1)(n ∈N ,n ≥2).[解析] (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1-pxx ,当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点;当p >0时,令f ′(x )=0, ∴x =1p ∈(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出:当p >0时,f (x )有唯一的极大值,当x =1p 时,f (x )=-ln p ;即函数f (x )的极值点是⎝ ⎛⎭⎪⎫-1p ,-ln p .(2)当p >0时,在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是最大值,要使f (x )≤0恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0;∴p ≥1,∴p 的取值范围为[1,+∞). (3)令p =1,由(2)知,ln x -x +1≤0, ∴ln x ≤x -1,∵n ∈N ,n ≥2,ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 222+ln 332+…+ln n n 2 =12⎝ ⎛⎭⎪⎫ln 2222+ln 3232+…+ln n 2n 2≤12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =12⎣⎢⎡⎦⎥⎤(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2<12(n -1)-12⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =12(n -1)⎣⎢⎡⎦⎥⎤1-12(n +1)=2n 2-n -14(n +1)(n ∈N ,n ≥2),得证.10.(2014·银川模拟)已知函数f (x )=ax +bx 2+1在点M (1,f (1))处的切线方程为x -y -1=0.(1)求f (x )的解析式.(2)设函数g (x )=ln x ,证明:g (x )≥f (x )对x ∈[1,+∞)恒成立. [解析] (1)将x =1代入切线方程得f (1)=0, 又f (1)=a +b2,化简得a +b =0.① f ′(x )=a (x 2+1)-(ax +b )·2x(1+x 2)2,f ′(1)=2a -2(a +b )4=-2b 4=-b2, 由f ′(1)=1得-b2=1.② 由①②解得:a =2,b =-2, 所以f (x )=2x -2x 2+1.(2)要证ln x ≥2x -2x 2+1在[1,+∞)上恒成立,即证(x 2+1)ln x ≥2x -2在[1,+∞)上恒成立, 即证x 2ln x +ln x -2x +2≥0在[1,+∞)上恒成立. 设h (x )=x 2ln x +ln x -2x +2, h ′(x )=2x ln x +x +1x -2.∵x ≥1,∴2x ln x ≥0,x +1x ≥2,即h ′(x )≥0. ∴h (x )在[1,+∞)上单调递增,h (x )≥h (1)=0, ∴g (x )≥f (x )在x ∈[1,+∞)上恒成立.11.(2014·河北质检)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). [解析] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2, g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e .∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,∴实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2. 下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0(*),即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,设t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,∴u ′(t )>0, ∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故(*)式成立,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立. 12.(2014·潍坊模拟)已知函数f (x )=ax 2+x ,g (x )=ln(x +1). (1)若a =1,求F (x )=g (x )-f (x )在(-1,+∞)上的最大值.(2)利用(1)的结论证明:对任意的正整数n ,不等式2+34+49+…+n +1n 2>ln(n +1)都成立.(3)是否存在实数a (a >0),使得方程2g (x -1)x =f ′(x )-(4a -1)在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.[解析] (1)F ′(x )=1x +1-2x -1=-x (2x +3)x +1,当x ∈(-1,0)时,F ′(x )>0, x ∈(0,+∞)时,F ′(x )<0,∴x =0是F (x )在(-1,+∞)上唯一的极大值点, 从而当x =0时,F (x )取得最大值 F (0)=0. (2)由(1)知∀x ∈(0,+∞),F (x )<0, 即ln(x +1)<x 2+x , 令x =1n 得ln ⎝ ⎛⎭⎪⎫1n +1<1n 2+1n ,即ln(n +1)-ln n <n +1n 2, ∴ln 2-ln 1<2,ln 3-ln 2<34, ……ln(n +1)-ln n <n +1n 2,∴ln(n +1)-ln 1<2+34+49+…+n +1n 2, 即2+34+49+…+n +1n 2>ln(n +1).(3)把方程2g (x -1)x =f ′(x )-(4a -1)整理为ax 2+(1-2a )x -ln x =0.设H (x )=ax 2+(1-2a )x -ln x (x >0),原方程在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根,即函数H (x )在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个零点. H ′(x )=2ax +(1-2a )-1x =2ax 2+(1-2a )x -1x=(2ax +1)(x -1)x,令H ′(x )=0,因为a >0,解得x =1或x =12a (舍), 当x ∈(0,1)时,H ′(x )<0,H (x )是减函数;当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数,H (x )在⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的零点,只需⎩⎪⎨⎪⎧H ⎝ ⎛⎭⎪⎫1e >0,H (x )min<0,H (e )>0,即⎩⎪⎨⎪⎧a e 2+1-2ae +1=(1-2a )e +a +e 2e 2>0,H (1)=a +(1-2a )=1-a <0,a e 2+(1-2a )e -1=(e 2-2e )a +(e -1)>0,∴⎩⎪⎨⎪⎧a <e 2+e2e -1,a >1,a >1-e e 2-2e,解得1<a <e 2+e 2e -1,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫1,e 2+e 2e -1. 13.(14届衡水中学期中)已知函数f (x )=a ln x +1x -1(a ≠0)在⎝ ⎛⎭⎪⎫0,12内有极值.(1)求实数a 的取值范围;(2)若x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(2,+∞)且a ∈⎣⎢⎡⎦⎥⎤12,2时,求证:f (x 2)-f (x 1)≥ln 2+34.[解析] (1)由f (x )=a ln x +1x -1(a ≠0),得 f ′(x )=ax 2-(2a +1)x +ax (x -1)2,∵a ≠0,令g (x )=x 2-⎝ ⎛⎭⎪⎫2+1a x +1, ∴g (0)=1>0.令g ⎝ ⎛⎭⎪⎫12<0或⎩⎪⎨⎪⎧0<1+12a <12,Δ=(2a +1)2-4a 2>0,g ⎝ ⎛⎭⎪⎫12>0,则0<a <2.即a 的取值范围是(0,2).(2)由(1)得:f ′(x )=ax 2-(2a +1)x +ax (x -1)2,设ax 2-(2a +1)x +a =0(0<a <2)的两根为α,β,则⎩⎨⎧α+β=2+1a ,α·β=1解得0<α<12<2<β.当x ∈(0,α)和(β,+∞)时, f ′(x )=ax 2-(2a +1)x +ax (x -1)2>0,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫α,12和(2,β)时,f ′(x )=ax 2-(2a +1)x +ax (x -1)2<0,函数f (x )单调递减,则f (x 1)≤f (α),f (x 2)≥f (β), 则f (x 2)-f (x 1)≥f (β)-f (α)=a ln β+1β-1-a ln α-1α-1=a ln βα+α-βαβ-(α+β)+1=a ⎝ ⎛⎭⎪⎫ln β2+β-1β⎝ ⎛⎭⎪⎫利用α+β=2+1a ,α·β=1 令h (x )=ln x 2+x -1x ,x >2则 h ′(x )=(x +1)2x 2>0,则函数h (x )单调递增,h (x )≥h (2)=2ln 2+32, ∴ln β2+β-1β≥2ln 2+32>0. ∵a ∈⎣⎢⎡⎭⎪⎫12,2,则a ⎝ ⎛⎭⎪⎫ln β2+β-1β≥ln 2+34,∴f (x 1)-f (x 2)≥ln 2+34.。

导数压轴题

导数压轴题

导数压轴题1.已知函数()xf x e kx =-(k 为常数)的图象与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为1-.(Ⅰ)求k 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,x e x <2;(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2. 【答案】(Ⅰ)2k =,极小值为ln 2(ln 2)2ln 22ln 40,f e =-=->()f x 无极大值;(Ⅱ)详见解析; (Ⅲ)详见解析. 【解析】试题分析:(Ⅰ)由()x f x e kx =-,得'()x f x e k =-.再根据曲线()x f y =在点A 处的切线斜率为1-,便可得'(0)11f k =-=-从而得2k =.代入解析式得()2,'()2x x f x e x f x e =-=-.由此根据导数的符号即可得函数的极值;(Ⅱ)令2()x g x e x =-.为了证x e x <2,只需证()0g x >,而这利用导数很易证明;(Ⅲ)由(Ⅱ)知,当0x >时, 2x x e <.所以当1c ≥时必有0x >时, 2x x ce <.取00x =即可.若01c <<,为了使问题简化,作以下转化:令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只要2ln()x kx >,即2ln ln x x k >+成立.令()2ln ln h x x x k =--,这样转化后,这个函数的导数就很简单了,利用导数可找到0x ,使得当()∞+∈,0x x ,恒有x ce x <2. 试题解析:解:(Ⅰ)由()xf x e kx =-,得'()xf x e k =-. 又'(0)11f k =-=-,得2k =. 所以()2,'()2xxf x e x f x e =-=-.令'()0f x =,得ln 2x =.当ln 2x <时, '()0,()f x f x <单调递减;当ln 2x >时,'()0,()f x f x >单调递增. 所以当ln 2x =时, ()f x 取得极小值,且极小值为ln2(ln 2)2ln 22ln 40,f e =-=->()f x 无极大值.(Ⅱ)令2()xg x e x =-,则'()2xg x e x =-.由(Ⅰ)得'()()(ln 2)0g x f x f =≥>, 故()g x 在R 上单调递增,又(0)10g =>, 因此,当0x >时, ()(0)0g x g >>,即2x x e <.(Ⅲ)①若1c ≥,则x x e ce ≤.又由(Ⅱ)知,当0x >时, 2x x e <. 所以当0x >时, 2x x ce <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <. ②若01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时, '()0,()h x h x >在(2,)+∞内单调递增. 取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+. 易知ln ,ln 2,50k k k k >>>.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2x x ce <.综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2xx ce <. .....14分解法二:(Ⅰ)同解法一(Ⅱ)同解法一(Ⅲ)对任意给定的正数c ,取o x =由(Ⅱ)知,当x>0时,2xe x >,所以2222()()22xx xx x e e e =⋅>,当o x x >时,222241()()()222xx x x e x c c>>=因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2xx ce <.考点:1、导数的应用;2、导数与不等式.2.已知函数2()1xe f x ax =+,其中a 为实数,常数 2.718e = .(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a的取值范围. 【答案】(1)95a =;(2)()f x 的单调增区间是1(1)2,1(,12;()f x 的单调减区间是1(,)2-∞-,1(,122--,(1)2++∞;(3)(1,)+∞.【解析】试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先对()f x 求导,由于13x =是函数()f x 的一个极值点,所以1()03f '=,解出a 的值,需验证,当95a =时,()f x 是否有极值点;第二问,把4a =-代入,对()f x 求导,利用'()0f x >,'()0f x <解不等式,解出函数()f x 的单调递增递减区间;第三问,对()f x 求导,令'()0f x =,讨论0,0,0∆>∆=∆<三种情况,来决定方程'()0f x =有没有根,再分别数形结合看()y f x =与y m =的图象是否有三个交点.试题解析:(1)222(21)()(1)xax ax e f x ax -+'=+ (2分) 因为13x =是函数()f x 的一个极值点,所以1()03f '=, 即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =. (4分)(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得1x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是因此()f x 的单调增区间是1(1)22-,1(,1)22+;()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)+∞; (9分)(3) 当a 取正实数时,222(21)()(1)xax ax e f x ax -+'=+,令()0f x '=得2210ax ax -+=,当1a >时,解得12x x ==. ()f x 在1(,)x -∞和2(,)x +∞上单调递增,在12(,)x x 上单调递减,但是函数值恒大于零,极大值1()f x ,极小值2()f x ,并且根据指数函数和二次函数的变化速度可知当x →+∞时,2()1xe f x ax =→+∞+,当x →-∞时,2()01xe f x ax =→+.因此当21()()f x m f x <<时,关于x 的方程()f x m =一定总有三个实数根,结论成立;当01a <≤时,()f x 的单调增区间是(,)-∞+∞,无论m 取何值,方程()f x m =最多有一个实数根,结论不成立.因此所求a 的取值范围是(1,)+∞. (12分) 考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值. 3.已知函数1ln ()xf x x+=(1)若函数()f x 在(11)a a -+,(11)a a -+,(1)a >上有极值点,求实数a 的范围. (2)求证:1x ≥时,22(21)(1)()xx x x f x e++> 【答案】(1)(1,2);(2)见解析 【解析】试题分析:(1)先求出()f x 的导数,求出()f x 的单调区间,找出()f x 的极值点,让()f x 的极值点在(11)a a -+,,列出关于a 的不等式,从而求出a 的取值范围;(2)构造函数22(21)()(1)()xx x x x f x e ϕ+=+-,利用导数的运算法则求出()x ϕ的导函数,可判定当1x >时,()x ϕ的导函数恒大于0,所以()x ϕ在(1,+∞)上是增函数,所以当1x >时,()x ϕ>(1)ϕ>0,从而证明原不等式成立.试题解析:(1)0x >,2ln ()xf x x '=-2分 当01x <<时,2ln ()0x f x x '=->;当1x >时,2ln ()0xf x x'=-<故()f x 在(01),单增,在(1)+∞,上单减 4分 若函数()f x 在(11)a a -+,上有极值点须11111a a a -<⎧⎪+>⎨⎪>⎩解得12a << 故实数a 的范围是(12), 6分 (2)证明:证法一:设22(21)()(1)()xx x x x f x e ϕ+=+-,则22(21)()(1)(1l n )xx x x x e ϕ+=++- 22(21)()(1)(1ln )xx x x x e ϕ+=++-, 7分 求导化简得,218()2ln x xx x x e ϕ'=+++ 9分2181,ln 0,0,0x x x x x e ≥∴≥>>218()2ln 0x xx x x eϕ'∴=+++> 11分()x ϕ在[1)+∞,上单增,故22262(3)()(1)20e x e eϕϕ-≥=-=> 13分∴1x ≥时,22(21)(1)()xx x x f x e ++>14分 证法二:令()(1)()(1)(1ln )x x x f x x x ϕ=+=++(1)x ≥则1()2ln x x x ϕ'=++, 令1()2ln h x x x =++,则21()x h x x -'= 当1x ≥时21()0x h x x-'=≥,故()h x 在[1)+∞,单增 8分故()()(1)30x h x h ϕ'=≥=>,故()x ϕ在[1)+∞,上单增,故()(1)2x ϕϕ≥= 10分令()(1)xg x e x =-+,则()1xg x e '=-,当1x ≥时()110xg x e e '=-≥-> 故()g x 在[1)+∞,上单增,故()(1)20g x g e ≥=-> 12分∴1x e x >+ 22x ≥∴2210x e x >+>∴2211x x e +<∴22(21)2xx e+< 13分∴1x ≥时,22(21)(1)()2x x x x f x e ++≥>∴1x ≥时,22(21)(1)()x x x x f x e++>14分考点:常见函数的导数;导数的运算法;导数与函数单调性关系;导数与函数极值关系;利用导数证明不等式;运算求解能力 4.设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0. (1)求b 的值;(2)若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围.【答案】(1)1b =;(2)a 的取值范围是()()11,+∞ . 【解析】试题分析:(1)根据条件曲线()y f x =在点()()1,1f 处的切线的斜率为0,可以将其转化为关于a ,b 的方程,进而求得b 的值:()()1af x a x b x'=+--,()10f '=⇒()101a a b b +--=⇒=;(2)根据题意分析可得若存在[1,)x ∈+∞,使得不等式()1a f x a <-成立,只需min ()1af x a >-即可,因此可通过探求()f x 的单调性进而求得()f x 的最小值,进而得到关于a 的不等式即可,而由(1)可知()21ln 2a f x a x x x -=+-,则()()()11x a x a f x x---⎡⎤⎣⎦'=,因此需对a 的取值范围进行分类讨论并判断()f x 的单调性,从而可以解得a 的取值范围是()()11,--+∞ .试题解析:(1)()()1af x a x b x'=+--,2分 由曲线()y f x =在点()()1,1f 处的切线的斜率为0,得()10f '=,3分 即()10a a b +--=,1b =; 4分(2)由(1)可得,()21ln 2a f x a x x x -=+-, ()()()()()211111x a x a a x x a a f x a x x x x---⎡⎤--+⎣⎦'=+--==, 5分令()0f x '=,得11x =,21a x a =-,而21111a a a a--=--, 6分①当12a ≤时,11a a ≤-,在[)1,+∞上,()0f x '≥,()f x 为增函数,()()()min111122a a f x f ---==-=,令121a aa --<-,即2210a a +-<,解得11a <<. 8分 ②当11a <<时,1a >,()()()2minln 112111a a a a a f x f a a a a a a ⎛⎫==++> ⎪-----⎝⎭, 不合题意,无解,10分③当1a >时,显然有()0f x <,01a a >-,∴不等式()1af x a <-恒成立,符合题意, 12分综上,a 的取值范围是()()11,+∞ . 13分 考点:导数的运用.5.已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线的斜率为3.(1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围;(3)当1n m >>*(,)m n N ∈m n>. 【答案】(1)1a =;(2)1k ≥;(3)详见解析. 【解析】试题分析:(1)由'()l n 1f x a x =++结合条件函数()ln f x ax x x =+的图象在点x e=处的切线的斜率为3,可知'()3f e =,可建立关于a 的方程:ln 13a e ++=,从而解得1a =;(2)要使2()f x kx ≤对任意0x >恒成立,只需max 2()[]f x k x≥即可,而由(1)可知()ln f x x x x =+,∴问题即等价于求函数1ln ()xg x x+=的最大值,可以通过导数研究函数()g x 的单调性,从而求得其最值:221(1ln )ln '()x x x x g x x x⋅-+==-,令'()0g x =,解得1x =,当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数;当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数,因此()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求;(3)考虑采用分析法证明欲证的不等式:1111111111ln ln ln ln (1)ln (1)ln 11n m n mm n m m n m n m n nn m n m ---->⇔>⇔>⇔->-⇔>--,故可考虑构造函数ln ()1x xh x x =-,则问题等价于证明()h x 在(1,)+∞上单调递增,可以考虑利用导数求证:21ln '()(1)x xh x x --=-,由(2)知,1ln (0)x x x ≥+>,∴'()0h x ≥,∴()h x 是(1,)+∞上的增函数,即欲证不等式得证.试题解析:(1)∵()ln f x ax x x =+,∴'()ln 1f x a x =++, 1分 又∵()f x 的图象在点x e =处的切线的斜率为3,∴'()3f e =,即ln 13a e ++=, ∴1a =; 2分(2) 由(1)知,()ln f x x x x =+,∴2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 4分 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x x x g x x x ⋅-+==-,令'()0g x =,解得1x =, 5分 当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数;当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数. 6分 故()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求; 8分(3)令ln ()1x xh x x =-,则21ln '()(1)x x h x x --=-, 9分 由(2)知,1ln (0)x x x ≥+>,∴'()0h x ≥, 10分 ∴()h x 是(1,)+∞上的增函数,∵1n m >>,∴()()h n h m >,即ln ln 11n n m mn m >--, 11分 ∴ln ln ln ln mn n n n mn m m m ->-, 12分即ln ln ln ln mn n m m mn m n n +>+,ln ln ln ln mn m mn n n m m n +>+,ln()ln()n m m n mn nm >, 13分∴()()n mm nmn nm >mn>. 14分 考点:1.利用导数求切线方程;2.利用导数判断函数单调性与求函数极值. 6.已知函数),(3)(23R b a x bx ax x f ∈-+=,在点))1(,1(f 处的切线方程为02=+y .(I )求函数)(x f 的解析式;(II )若对于区间]2,2[-上任意两个自变量的值21,x x ,都有c x f x f ≤-|)()(|21,求实数c 的最小值;(III )若过点)2)(,2(≠m m M ,可作曲线)(x f y =的三条切线,求实数m 的取值范围.【答案】(1)x x x f 3)(3-=;(2)4;(3)26<<-m . 【解析】试题分析:(1)由题意,利用导函数的几何含义及切点的实质知:⎩⎨⎧='-=0)1(2)1(f f ,可建立a ,b 的方程,然后求解即可;(2)由题意,对于定义域内任意自变量都使得|f (x 1)-f (x 2)|≤c ,通过分离参数,可以转化为求函数在定义域下的最值即可得解;(3)由题意,若过点M (2,m )(m ≠2)可作曲线)(x f y =的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解,求参数m 的取值范围.试题解析:(1)323)(2-+='bx ax x f 根据题意,得⎩⎨⎧='-=,0)1(,2)1(f f 即⎩⎨⎧=-+-=-+,0323,23b a b a 解得⎩⎨⎧==.0,1b a.3)(3x x x f -=∴(2)令33)(2-='x x f 0=,解得1±=x(1)2,(1)2f f -==- ,2)2(,2)2(=-=-f f[2,2]x ∴∈-当时,max min ()2,() 2.f x f x ==-则对于区间[-2,2]上任意两个自变量的值12,x x ,都有12max min |()()||()()|4f x f x f x f x -≤-= 所以 4.c ≥所以c 的最小值为4.(Ⅲ)设切点为300000(,),3x y y x x =-则200()33f x x '=- , ∴切线的斜率为203 3.x -则3200003332x x m x x ---=- 即32002660x x m -++=,因为过点(2,)(2)M m m ≠,可作曲线()y f x =的三条切线所以方程32002660x x m -++=有三个不同的实数解即函数32()266g x x x m =-++有三个不同的零点,则2()612.g x x x '=- 令()0,0 2.g x x x '===解得或⎩⎨⎧<>∴0)2(0)0(g g 即⎩⎨⎧<->+0206m m ,∴26<<-m 考点:1.导数的几何意义;2.利用导数研究函数的极值;3.利用导数研究曲线上某点的切线方程.7.已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Q m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点. 【答案】(1)12-=m 或12--=m ;(2)当1k =时, 函数()y f x kx =-有一零点2mx =-; 当11k m >-(0m >),或11k m<-(0m <)时,函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11.【解析】 试题分析:(1)先根据二次函数的顶点式设出函数g (x )的解析式,然后对其进行求导,根据g (x )的导函数的图象与直线y=2x 平行求出a 的值,进而可确定函数g (x )、f (x )的解析式,然后设出点P 的坐标,根据两点间的距离公式表示出|PQ|,再由基本不等式表示其最小值即可.(2)先根据(1)的内容得到函数y=f (x )-kx 的解析式,即(1-k )x 2+2x+m=0,然后先对二次项的系数等于0进行讨论,再当二次项的系数不等于0时,即为二次方程时根据方程的判别式进行讨论即可得到答案.试题解析:(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=;又()g x '的图像与直线2y x =平行 22a ∴= 1a =m x x m x x g ++=-++=∴21)1()(22, ()()2g x mf x x x x ==++, 设(),o o P x y ,则202020202)()2(||x m x x y x PQ ++=-+= m m m m m x m x 2||2222222220220+=+≥++=当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m(2)由()()120my f x kx k x x=-=-++=(0≠x ),得()2120k x x m -++= ()*当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2mx =-; 当1k ≠时,方程()*有二解()4410m k ⇔∆=-->, 若0m >,11k m >-,函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即 1)1(11---±=k k m x ;若0m <,11k m <-,函数()y f x k x =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11综上,当1k =时, 函数()y f x kx =-有一零点2m x =-; 当11k m >-(0m >),或11k m<-(0m <)时, 函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11. 考点:1.导数的几何意义;2.利用导数研究函数的极值;3.函数零点与方程根的关系.8.已知函数f(x)=2e x-ax -2(a ∈R) (1)讨论函数的单调性;(2)若f(x)≥0恒成立,证明:x 1<x 2时,12121()()2(1)x f x f x e x x ->--【答案】(1)当x ∈(-∞,ln2a )时,f (x)单调递减;当x ∈(ln 2a,+∞)时,f (x)单调递增.(2)见解析【解析】试题分析:(1)利用导数值的正负,通过对a 范围的讨论,找出相应单调区间;(2)先确定a 的范围,然后利用(1)的结论找出f (x 2)-f (x 1)与x 2-x 1的关系式,试题解析:(Ⅰ)f '(x)=2e x-a .若a ≤0,则f '(x)>0,f (x)在(-∞,+∞)上单调递增; 若a >0,则 当x ∈(-∞,ln 2a)时,f '(x)<0,f (x)单调递减; 当x ∈(ln2a,+∞)时,f '(x)>0,f (x)单调递增. 4分 (Ⅱ)证明:由(Ⅰ)知若a ≤0,f (x)在(-∞,+∞)上单调递增,又f (0)=0,故f (x)≥0不恒成立.若a >0,则由f (x)≥0=f (0)知0应为极小值点,即ln2a=0, 所以a =2,且e x-1≥x ,当且仅当x =0时,取“=”. 7分当x 1<x 2时,f (x 2)-f (x 1)=2(e x2-e x1)-2(x 2-x 1)=2e x1(e x2-x1-1)-2(x 2-x 1)≥2e x1(x 2-x 1)-2(x 2-x 1)=2(e x1-1) (x 2-x 1), 所以()()2121f x f x x x -->2(e x1-1). 12分注:若有其他解法,请参照评分标准酌情给分.考点:利用导数讨论函数的单调性,分类与整合,不等式的证明9.已知函数)0()(>++=a c xbax x f 的图象在点))1(,1(f 处的切线方程为1-=x y .[来(1)用a 表示出b ,c ; (2)证明:当21≥a 时,x x f ln )(≥在),1[+∞上恒成立; (3)证明:)()1(2)1ln(131211*N n n n n n ∈+++>++++. 【答案】(1)⎩⎨⎧-=-=a c a b 211;(2)由(1)得a x a ax x f 211)(-+-+=,令x x f x g ln )()(-=x a xa ax ln 211--+-+=,),1[+∞∈x , 0)1(=g ,222')1)(1()1)(1(11)(x x a a x a x x a ax x x a a x g --+=--+=---=. 21≥a ,11≤-∴aa.1>∴x ,0)('>x g ,)(x g 是增函数,所以0)1()(=>g x g ,即x x f ln )(>,故当1≥x 时,x x f ln )(≥.所以当21≥a 时,x x f ln )(≥在),1[+∞上恒成立.(3)由(2)知,当21≥a 时,x x f ln )(≥在),1[+∞上恒成立. 令21=a ,则x xx x f ln )1(21)(≥-=,当且仅当1=x 时等号成立,即当1>x 时,总有x x x ln )1(21>-. 令kk x 1+=,则)111(21)11(211ln++=+-+<+k k k k k k k k ,即)111(21ln )1ln(++<-+k k k k . 令n k ,,2,1 =,得到n个不等式并将之累加得)1ln()1(21)13121(21+>++++++n n n ,整理得)()1(2)1ln(131211*N n n n n n ∈+++>++++. 【解析】 试题分析:(1)通过函数的导数,利用导数值就是切线的斜率,切点在切线上,求出b ,c 与a 的关系;(2)利用不等式x x f ln )(≥,构造函数x x f x g ln )()(-=,问题转化为0ln )()(≥-=x x f x g 在),1[+∞上恒成立,利用导数求出函数在),1[+∞上的最小值大于0,求a 的取值范围; (3)由(1)可知当21≥a 时,x x f ln )(≥在),1[+∞上恒成立,则当21=a 时,x xx ln )1(21≥-在),1[+∞上恒成立,对不等式的左侧每一项裂项,然后求和即可推出要证的结论.试题解析:(1)2')(xb a x f -=,则有0)1(=f ,1)1('=f ,代入得 ⎩⎨⎧=-==++=1)1(0)1('b a fc b a f ,解得⎩⎨⎧-=-=a c a b 211. (2)由(1)得a xa ax x f 211)(-+-+=,令x x f x g ln )()(-=x a xa ax ln 211--+-+=,),1[+∞∈x , 0)1(=g ,222')1)(1()1)(1(11)(xx a a x a xx a ax x x a a x g --+=--+=---=. 21≥a ,11≤-∴aa.1>∴x ,0)('>x g ,)(x g 是增函数,所以0)1()(=>g x g ,即x x f ln )(>,故当1≥x 时,x x f ln )(≥.所以当21≥a 时,x x f ln )(≥在),1[+∞上恒成立.(3)由(2)知,当21≥a 时,x x f ln )(≥在),1[+∞上恒成立. 令21=a ,则x xx x f ln )1(21)(≥-=,当且仅当1=x 时等号成立,即当1>x 时,总有x x x ln )1(21>-. 令kk x 1+=,则)111(21)11(211ln++=+-+<+k k k k k k k k ,即)111(21ln )1ln(++<-+k k k k . 令n k ,,2,1 =,得到n个不等式并将之累加得)1ln()1(21)13121(21+>++++++n n n ,整理得 )()1(2)1ln(131211*N n n nn n ∈+++>++++. 考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值;函数恒成立问题.10.已知函数x ax x x f 221ln )(2--=(0<a ).(Ⅰ)若函数)(x f 在定义域内单调递增,求实数a 的取值范围; (Ⅱ)若21-=a ,且关于x 的方程b x x f +-=21)(在[]4,1上恰有两个不等的实根,求实数b 的取值范围;(Ⅲ)设各项为正数的数列{}n a 满足11=a ,2ln 1++=+n n n a a a (*∈N n ),求证:12-≤n n a .【答案】(Ⅰ)(]1,-∞-;(Ⅱ)5ln 22,4⎛⎤-- ⎥⎝⎦;(Ⅲ)见解析【解析】试题分析:(Ⅰ)求出()f x 的定义域及导函数()f x ',由函数)(x f 在定义域内单调递增知,()f x '≥0在定义域内恒成立,通过参变分离化为()a g x ≤在定义域内恒成立,求出()g x 的最小值,即a ≤min [()]g x 即为a 的取值范围;(Ⅱ)先将关于x 的方程b x x f +-=21)(在[1,4]上恰有两个不等实根转化为方程1()2f x x + =b 在[1,4]上恰有两个不等实根,即函数y=1()2f x x +(x ∈[1,4])图像与y=b 恰有两个不同的交点,利用导数通过研究函数y=1()2f x x +(x ∈[1,4])的单调性、极值、最值及图像,结合y=1()2f x x +(x ∈[1,4])的图像,找出y=1()2f x x +(x ∈[1,4])与y=b 恰有两个交点时b 的取值范围,即为所求;(Ⅲ)利用ln 1x x <-(x ≠1),将2ln 1++=+n n n a a a 放缩为),1(211+≤++n n a a 即11021n n a a -+<<+,通过累积,求出n a 的范围,即为所证不等式.试题解析:(Ⅰ)函数的定义域为()+∞,0,)0(12)(2>-+-='x xx ax x f ,依题意0)(≥'x f 在0>x 时恒成立,则1)11(2122--=-≤x x x a 在0>x 时恒成立,即[])0(1)11(min 2>--≤x xa , 当1=x 时,1)11(2--x 取最小值-1,所以a 的取值范围是(]1,-∞- 4分(Ⅱ)21-=a ,由b x x f +-=21)(得0ln 23412=-+-b x x x 在[]4,1上有两个不同的实根, 设[]4,1,ln 2341)(2∈+-=x x x x x g xx x x g 2)1)(2()(--=',[)2,1∈x 时,0)(<'x g ,(]4,2∈x 时,0)(>'x g22ln )2()(min -==g x g ,22ln 2)4(,45)1(-=-=g g ,0)4ln 43(412ln 243)4()1(<-=-=-g g ,得)4()1(g g <则⎥⎦⎤ ⎝⎛--∈45,22ln b 8分 (Ⅲ)易证当0>x 且1≠x 时,1ln -<x x .由已知条件12212ln ,01+=++-≤++=>+n n n n n n n a a a a a a a , 故),1(211+≤++n n a a 所以当2≥n 时,,21101≤++<-n n a a ,211021≤++<--n n a a ⋅⋅⋅,,211012≤++<a a 相乘得,211011-≤++<n n a a 又,11=a 故n n a 21≤+,即12-≤n n a 12分 考点:常见函数的导数,导数的运算法则,导数函数单调性关系,导数的综合应用,利用导数证明不等式,运算求解能力. 11.已知关于x 的函数321()3f x x bx cx bc =-+++,其导函数为()f x '.记函数()()g x f x '= 在区间[]11-,上的最大值为M .(1) 如果函数()f x 在1x =处有极值43-,试确定b c 、的值; (2) 若1b >,证明对任意的c ,都有2M >; (3) 若M k ≥对任意的b c 、恒成立,试求k 的最大值. 【答案】(1)1b =-,3c =;(2)证明详见解析;(3)12. 【解析】试题分析:本题主要考查导数的运算、利用导数求函数的极值和最值等基础知识,考查学生的转化能力、分析问题解决问题的能力、计算能力.第一问,先对()f x 求导,由于()f x 在x=1处有极值43-,则'(1)0f =,4(1)3f =-,列出方程组,解出b 和c 的值,由于得到了两组值,则需要验证看是否符合已知条件,若不符合需舍掉;第二问,可以利用二次函数图象和性质直接证明()2g x >,也可以利用反证法证明出矛盾,从而得到正确结论;第三问,结合第二问的结论,可以直接得到1b >时的情况,当1b ≤时需分10b -≤≤,01b <≤,0b =三种情况讨论,最后综合所有情况再得出结论. 试题解析:(1) ∵2()2f x x bx c '=-++,由()f x 在1x =处有极值43-,可得 (1)12014(1)33f b c f b c bc '=-++=⎧⎪⎨=-+++=-⎪⎩,解得,11b c =⎧⎨=-⎩或13b c =-⎧⎨=⎩ 2分 若1b =,1c =-,则22()21(1)0f x x x x '=-+-=--≤,此时函数()f x 没有极值; 3分若1b =-,3c =,则2()23(1)(1)f x x x x x '=--+=-+-,此时当x 变化时,()f x ,()f x '的变化情况如下表:∴ 当1x =时,()f x 有极大值3-,故1b =-,3c =即为所求。

导数压轴题训练

导数压轴题训练

导数 压轴题训练1.(2014 湖南). 22.(2014 湖南)..已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围.【答案】(1)详见解析 【解析】解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时,()'0f x x =⇒=则函数()f x在区间⎛ ⎝⎭单调递减,在⎫⎪+∞⎪⎝⎭单调递增的. (2) 解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时,()'0f x x =⇒=则函数()f x 在区间⎛ ⎝⎭单调递减,在⎫⎪+∞⎪⎝⎭单调递增的.2.(20)(2014江苏)(本小题满分14分)已知函数()x f x x ae =-()a R Î,x R Î.已知函数()y f x =有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围; (Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明 12x x +随着a 的减小而增大.(2014四川卷)21(2014四川卷).已知函数2()1x f x e ax bx =---,其中,a b R ∈,2.71828e =为自然对数的底数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数 压轴题训练1.(2014 ). 22.(2014 )..已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值围.【答案】(1)详见解析 【解析】解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时,()()21'0a a f x x -=⇒=±,则函数()f x 在区间()210,a a ⎛⎫- ⎪ ⎝⎭单调递减,在()21a a ⎛⎫- ⎪+∞⎪⎝⎭单调递增的.(2) 解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时,()()21'0a a f x x a-=⇒=±,则函数()f x 在区间()210,a a a ⎛⎫- ⎪ ⎪⎝⎭单调递减,在()21a a ⎫-⎪+∞⎪⎝⎭单调递增的.2.(20)(2014)(本小题满分14分)已知函数x f x xae aR ,x R .已知函数y f x有两个零点12,x x ,且12x x .(Ⅰ)求a 的取值围; (Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明 12x x 随着a 的减小而增大.(2014卷)21(2014卷).已知函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数。

(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;(2)若(1)0f =,函数()f x 在区间(0,1)有零点,求a 的取值围解:(1)因为2()1x f x e ax bx =--- 所以()()2x g x f x e ax b '==-- 又()2x g x e a '=-因为[0,1]x ∈,1xe e ≤≤ 所以:①若12a≤,则21a ≤,()20xg x e a '=-≥, 所以函数()g x 在区间[0,1]上单增,min ()(0)1g x g b ==-②若122ea <<,则12a e <<, 于是当0ln(2)x a <<时()20x g x e a '=-<,当ln(2)1a x <<时()20x g x e a '=->,所以函数()g x 在区间[0,ln(2)]a 上单减,在区间[ln(2),1]a 上单增,min ()[ln(2)]22ln(2)g x g a a a a b ==--③若2e a≥,则2a e ≥,()20xg x e a '=-≤ 所以函数()g x 在区间[0,1]上单减,min ()(1)2g x g e a b ==--综上:()g x 在区间[0,1]上的最小值为min 11,,21()22ln(2),,222,,2b a e g x a a a b a e e a b a ⎧-≤⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩(2)由(1)0f =⇒10e a b ---=⇒1b e a =--,又(0)0f =若函数()f x 在区间(0,1)有零点,则函数()f x 在区间(0,1)至少有三个单调区间由(1)知当12a ≤或2ea ≥时,函数()g x 即()f x '在区间[0,1]上单调,不可能满足“函数()f x 在区间(0,1)至少有三个单调区间”这一要求。

若122ea <<,则min ()22ln(2)32ln(2)1g x a a ab a a a e =--=--- 令3()ln 12h x x x x e =---(1x e <<) 则1()ln 2h x x '=-。

由1()ln 02h x x x '=->⇒< 所以()h x在区间上单增,在区间)e 上单减max ()110h x h e e ==--=--<即min ()0g x <恒成立 于是,函数()f x 在区间(0,1)至少有三个单调区间⇔(0)20(1)10g e a g a =-+>⎧⎨=-+>⎩21a e a >-⎧⇒⎨<⎩又122ea << 所以21e a -<< 综上,a 的取值围为(2,1)e -3.(2014卷).(本小题满分14分)设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,数a 的取值围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.21.4.【2014年卷(理20)】已知函数22()(,,)xx f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -. (1)确定,a b 的值; (2)若3c =,判断()f x 的单调性;(3)若()f x 有极值,求c 的取值围.解:(1)22'()22xx f x aebe c -=+-,由'()'()f x f x -=恒成立知:222242222(22)(22)0x x x x x ae be c ae be c a b e b a --+-=+-⇒-+-≡,故a b =另外'(0)2242f a b c c a b =+-=-⇒+= 联立解出1a b ==(2)此时222'()2232()10xx x x f x ee e e --=+-=-+>,故()f x 单调递增。

(3)等价于22'()220x xf x e ec -=+-=有非最值解,设20x t e =>,则等价于 方程22t c t+=在0t >时有非最值解,由双钩函数知:22[4,)t t +∈+∞所以4c >,故c 的取值围为(4,)+∞5.(2014).( 本小题满分13分)设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数) (I )当0k≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2存在两个极值点,求k 的取值围。

()()())。

的取值范围为(综上则)令(单调递增。

时,当单调递减;时,当则令时,当)解:(2,:1ln 0ln ln 2022,0)2(01)0(,01)0(ln ,)(2)(),2()()2,0(2,0)(0e 0,kx 0k )0())(2()12(2)(12ln 222''''x 3242'e e e ek k k k e k g e k k e g k e g g k g kx k e k e x g kx e x g x f x x f x x x f kx x x kx e x xx k x xe x e x f k x x x x x x >∴>∴<-=<∴>-=>-=>=<-===∴-=-=+∞∈∈∴==>-∴≤≤>--=+---⋅=6..( 2014年课标I ) (本小题满分12分)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f )处的切线为(1)2y e x =-+. (I )求,a b ; (Ⅱ)证明:()1f x >.请考生从第(22)、(23)、(24)三题中任选一题作答。

注意:只能做所选定的题目。

如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。

.【解析】(Ⅰ) 设(),0Fc ,由条件知2233c =,得3c = 又3c a =,所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分(Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,21,22824314k k x k ±-=+ 从而2221224143114k k PQ k x x k +-=+-=+又点O 到直线PQ 的距离21d k =+,所以∆OPQ 的面积214432OPQk S d PQ ∆-== ,243k t -=,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t=,7k =±0∆>,所以当∆OPQ 的面积最大时,l 的方程为:72y x =- 或72y x =-. …………………………12分。

相关文档
最新文档