第2课时仰角、俯角与方位角
《 仰角、俯角问题》完整版教学课件PPT
D′
C′
B′
D
C
B
解:如图,由题意可知,∠AD′B′=30°,
∠AC′B′=60°,
D′C′=50m
∴ ∠D′AB′=60°,∠C′AB′=30°,D′C′=50m ,
设tanD' AB' D' B' ,tanC' AB' C' B' ,
ABD′=B m
x
x tan60,CB
x
tan30,
x
C
解:如图,a = 30°,β= 60°, AD=120.
tan a BD , tan CD .
AD
AD
BD AD tan a 120 tan 30 120 3 40 3(m). 3
CD AD tan 120 tan 60 A
120 3 120 3(m).
B
αD β
BC BD CD 40 3 120 3
45° 37° B 400米 A
解:作O⊥AB交AB的延长线于O
设O=米,
在Rt△OB中,∠BO=45°,
OB=O= 米
在Rt△OA中,∠AB=37°,
tan∠PAB PO 0.75 , OA
O
即
x x 400
0.75 ,解得=1200
故飞机的高度为1200米
45° 37° B 400米 A
当堂练习
1 如图①,在高出海平面100米的悬崖顶A处,观测海平 面上一艘小船B,并测得它的俯角为45°,则船与观 测者之间的水平距离BC=_____1_0_0__米 2 如图②,两建筑物0°,测得C点的俯角为60°,则 建筑物CD的高为__2_0__米3
x tan 60 x tan 30 50,
九下数学课件仰角、俯角和方向角有关的问题(课件)
(参考数据:sin 43°≈0.68,cos 43°≈0.73,tan 43°≈0.93) A.23米 B.24米 C.24.5米 D.25米
题型一 仰角、俯角问题
解:过点E作EF⊥CD于点F,过点E作EM⊥AC于点M,如图. ∵斜坡DE的坡度(或坡比)i=1:2.4,∴设EF=x米,则DF=2.4x米. 在Rt△DEF中,DE=78米,∵EF2+DF2=DE2,∴x2+(2.4x)2=782, 解得x=30(负值舍去),∴EF=30米,DF=72米.∴CF=DF+DC=72+78=150(米). ∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形.∴EM=CF=150米, CM=EF=30米.在Rt△AEM中,∵∠AEM=43°, ∴AM=EM·tan 43°≈150×0.93=139.5(米), ∴AC=AM+CM≈139.5+30=169.5(米). ∴AB=AC-BC≈169.5-144.5=25(米). 故选D.
为50°,则建筑物AB的高度约为( D )
(参考数据:sin 50°≈0.77;cos 50°≈0.64;tan 50°≈1.19) A.69.2米 B.73.1米 C.80.0米 D.85.7米
题型一 仰角、俯角问题
【变式2】如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操
作:
①在点C处放置测角仪,测得旗杆顶部的仰角∠ACE=α; ②量得测角仪的高度CD=a;
题型一 仰角、俯角问题
【变式4】如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的
俯角为60°,已知楼高AB为30米,则荷塘的宽CD为__________米(结果保留根
仰角、俯角和方位角
B
CE D F
南
你能计算出该船正东方向暗礁带的宽度吗?
如何将动圆与点的位 置关系变为动圆圆心 所在直线与定圆的位 置关系?
某日上午8点,A市气象局测得城市正东方向80Km处B点有一 台风中心正在以25Km每小时的速度沿西偏北37°的BC方向迅 速移动,在距离台风中心50Km范围内为严重影响区域
• 指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角.
• 如图:点A在O的北偏东30°
• 点B在点O的南偏西45°(西南方向或南偏
西45°)
北
A
30°
西
东
O45°B南例1. 如图,一艘海轮位于灯塔P的北偏东45°方向,距 离灯塔80海里的A处,它沿正南方向航行一段时间后, 到达位于灯塔P的南偏东30°方向上的B处,这时,海 轮所在的B处距离灯塔P有多远?
问题本质是:
直线与圆的位 北
A
置关系
相离---无危险
相切---无危险
60°
30°
东
相交---有危险
B 12 D F
针对性习题1:
如
图,在一笔直的海岸线上有A,B两个
观测站,A在B的正西方向,AB=2km,从A测
得船C在北偏东60°的方向,从B测得船C在
北偏西45°的方向.求船C离海岸线的距离.
C
60°
1、如图,为了测量电线杆的高度AB,在离 电线杆30米的C处,用高1.20米的测角仪CD 测得电线杆顶端B的仰角a=30°,求电线 杆AB的高.
1.20
=300 30
2、在山脚C处测得山顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
仰角、俯角和方位角共34页PPT
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
第02课时 仰角、俯角、方位角
1.(5 分)如图,某地修建高速公路,要从 B 地向 C 地修一座隧道(B,
C 在同一水平面上),为了测量 B,C 两地之间的距离,某工程师乘坐热
气球从 C 地出发,垂直上升 100 m 到达 A 处,在 A 处观察 B 地俯角为
30°,则 B,C 两地之间的距离为( A )
A.100 3 m
B.50 2 m
一、选择题(每小题 6 分,共 12 分)
7.如图,从热气球 C 处测得地面 A,B 两点的俯角分别为 30°,45°,
如果此时热气球 C 处的高度 CD 为 100 米,点 A,D,B 在同一直线上,
则 A,B 两点的距离是( D )
A.200 米
B.200 3 米
C.220 3 米
D.100( 3+1)米
CED=60°,sin∠CED=CCDE ,∴CE= sinC6D0°= 2
3+1.5 3 =(4+
3)
2
≈5.7(米),答:拉线CE的长约为5.7米
11.(14分)(2014·黔东南州)黔东南州某校九年级某班开展数学活 动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得 旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为 30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身 高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,
三、解答题(共42分) 10.(14分)(2014·钦州)如图,在电线杆CD上的C处引拉线CE,CF 固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米 的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30 °,求拉线CE的长.(结果保留小数点后一位,参考数据: 2 ≈ 1.414, 3≈1.732)
仰角俯角和方位角
指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角. 如图:点A在O的北偏东30° 点B在点O的南偏西45°(西南方向或南偏西 45°)
北 30° A
西
O 45°
东
B
南
例1. 如图,一艘海轮位于灯塔P的北偏东45°方向,距 离灯塔80海里的A处,它沿正南方向航行一段时间后, 到达位于灯塔P的南偏东30°方向上的B处,这时,海 轮所在的B处距离灯塔P有多远?
B
A
合作与探究
变题1:如图,直升飞机在长400米的跨江大桥 AB的上方P点处,且A、B、O三点在一条直线 上,在大桥的两端测得飞机的仰角分别为30° 和45 °,求飞机的高度PO .
P
答案: (200 3 200) 米
x
O
x
45°
30°
B
400米
A
1、如图,为了测量电线杆的高度AB,在离 电线杆30米的C处,用高1.20米的测角仪CD 测得电线杆顶端B的仰角a=30°,求电线 杆AB的高.
C
60° 45°
A
2km D
B
例3.如图,小岛P的周围20√2海里内有暗礁, 某渔船沿北偏东60°的AM方向航行,在A处测得 小岛P的方向为北偏东30°,距A处40海里,该 渔船若不改变航向,有无触礁的可能?若有, 渔船在A处应再向北偏东偏离多大角度才能脱险?
①弄清已知条件及要求解的问题。 ②画图将实际问题转化为数学问题。 ③寻找解题途径。 ⑷解、答
(2)、如果图中无直角三角形,可适当地作垂 线等辅助线,“化斜为直”,“善于转化”为 解直角三角形问题。 (3)、解直角三角形的有关问题常通过设未知 数、列方程(组)来解,也比较容易。常常设 图形中具有“双重身份”的线段或者是两个三 角形联系密切的特殊线段为未知数。
28.2.2仰角、俯角(教案)-2023春九年级下册数学(人教版)安徽
我们将结合教材中的例题与练习,让学生在实际操作中掌握以上内容,培养他们的空间想象能力和解决问题的能力。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过观察和操作,理解仰角与俯角的定义及其在空间中的形成;
2.提升学生运用数学知识解决实际问题的能力,将仰角与俯角的概念应用于现实情境,进行观察、分析和计算;
28.2.2仰角、俯角(教案)-2023春九年级下册数学(人教版)安徽
一、教学内容
28.2.2仰角、俯角- 2023春九Байду номын сангаас级下册数学(人教版)安徽
本节课我们将学习以下内容:
1.理解仰角与俯角的概念;
2.学会使用量角器测量仰角与俯角;
3.掌握仰角与俯角在直角坐标系中的表示方法;
4.解决实际问题中涉及仰角与俯角的相关计算;
1.教学重点
-仰角与俯角的定义:明确仰角与俯角的定义,理解它们是在直角三角形中,由观察者与目标物体位置关系形成的角度。
-量角器的使用:掌握量角器的正确使用方法,能够准确地测量出仰角与俯角的大小。
-仰角与俯角的应用:能够将仰角与俯角的概念应用于实际情境,解决高度、距离等问题。
-举例:通过观察教学楼与地面的相对位置,测量出教学楼顶部的仰角,进而计算教学楼的高度。
此外,我也意识到在总结回顾环节,学生对知识的巩固还需要加强。可能是因为时间的关系,我没有足够的时间去解答所有学生的疑问。在未来的课程中,我需要调整时间分配,确保学生在课程结束时能够对所学知识有一个清晰的理解。
3.增强学生的数据分析观念,通过对角度数据的收集、整理和分析,培养逻辑推理和数学表达的能力;
4.激发学生的数学抽象思维,将实际问题抽象为数学模型,运用几何知识进行问题求解,体会数学模型的广泛应用;
仰角、俯角和方位角
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
A
300
D 60° F x
E
30°
C
x
B
3、在山顶上D处有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
30米30°
①弄清已知条件及要求解的问题。 ②画图将实际问题转化为数学问题。 ③寻找解题途径。 ⑷解、答
(2)、如果图中无直角三角形,可适当地作垂 线等辅助线,“化斜为直”,“善于转化”为 解直角三角形问题。 (3)、解直角三角形的有关问题常通过设未知 数、列方程(组)来解,也比较容易。常常设 图形中具有“双重身份”的线段或者是两个三 角形联系密切的特殊线段为未知数。
·
F
·
12
11
10
30°
9
B
·
如图, 海上有一灯塔P, 在它周围3海里内有 暗礁. 一艘客轮以9海里/时的速度由西向东 航行, 行至A点处测得P在它的北偏东60度的 方向, 继续行驶20分钟后, 到达B处又测得 灯塔P在它的北偏东45度方向. 问客轮不改变 方向继续前进有无触礁的危险?
问题的本质:
?
C
B
被观测点
这个问题归结为: 在Rt△ABC中,已知∠A= 60°, 斜边AB=30,求AC的长
问题本质是 直线与圆的关系
例2.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?
解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册
专题1.11解直角三角形(2)——仰角与俯角、方位角、坡角(比)问题(知识讲解)【学习目标】1.理解用三角函数解决实际问题的有关概念;2.理解并解决实际问题中转化为三角函数模型解决实际问题。
【要点梳理】解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形的应用——仰角和俯角问题1.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m 1.732≈)在Rt CDE △中,90E ∠=︒∴222DE CE CD +=∴222(3)(4)20x x +=∴4x =(负值舍去)∴12DE =,16CE =举一反三:【变式1】如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30°(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)AFDF 4三角函数的定义是解答本题的关键.【变式2】如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.(解答过程中可直接使用表格中的数据哟!)【答案】能,综合楼的高度约是37.00米.【分析】在Rt△AEG中,利用正切函数求得AG的长,在Rt△ACH中,利用正切函数求得CH的长,据此求解即可得到综合楼的高度.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:·类型二、解直角三角形的应用——方位角问题2.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)举一反三:【变式1】如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile (nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile 处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)由题意得:EF=BC=33.2海里,【变式2】如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)类型三、解直角三角形的应用——坡度坡比问题来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:︒︒︒)≈≈≈≈sin370.60,cos370.80,tan37 1.73【答案】约为1.9米【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.举一反三:【变式1】如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m)【变式2】宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1≈)1.7≈ 1.4【点拨】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.类型四、解直角三角形的应用——其他问题4.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题..∴==m.OD AG4.5答:OD的长为4.5m.【点拨】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解【变式1】某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留≈).1.7∠=︒FDB45,∴=,DF FB【变式2】小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB =8m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1m ,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)【答案】11.8m【分析】过M 点作ME ⊥MN 交CD 于E 点,证明四边形ABCM 为矩形得到CM=AB =8,∠NMC =180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD =∠EMC ,且∠CME =90°-∠CMN =28°,进而求出∠CMD =56°,最后在Rt △CMD 中由tan ∠CMD 即可求解.解:过M 点作ME ⊥MN 交CD 于E 点,如下图所示:∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,∵房顶AM与水平地面平行,∴四边形AMCB为矩形,【点拨】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.。
北师大版数学九年级下册第2课时 仰角、俯角问题课件
30º
60º
50 m
解:如图∠DAC=30°,∠DBC=60°,AB=50m,设塔高DC=x m.
Rt△ADC中, tan 30 = DC .
AC
Rt△BDC中,
tan 60
=
DC BC
.
∴AB=AC-BC=
x tan 30
x tan 60
.
30º
60º
50 m
∴x=
50 1-1
25 3 ≈43(m).
楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高 AB是100 m,则乙楼的高CD为___1_0_03_3___(结果保留根号).
tan 30 CD CD 3
AD 100 3
45º
CD 100 3 3
100 m
100 m
3.[内江中考]如图,有两座建筑物DA 与CB,其中 CB的高为120 m, 从DA 的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为 45°,这两座建筑物的地面距离DC为多少米?(结果保留根号)
解:在Rt△CBD中,∵BC=5tan40°≈4.195(m), ∴EB=EC+CB=2+4.195=6.195(m). 在Rt△EBD中,
ED BE 2 DB2 6.1952 52 7.96m .
∴钢缆ED的长度约为7.96m.
课堂小结
通过本节课的学习, 你有哪些收获?
数学源于生活 又服务于生活
tan 30
PQ CM MQ CP 1 1475.6 248 1229m .
答:这座大桥PQ的长度约为1229m.
M
4. 如图,一灯柱AB被一钢缆CD固定,CD与地面成40°夹角, 且DB=5m.在C点上方2m处加固另一条钢缆ED,那么钢缆ED 的长度为多少?(结果精确到0.01m)
方位角俯角仰角课件..
根据题意画出如下图所示的几何图形 图4-26
A
75°
B
· D
C
1.5m 28.5m
解:
在Rt△ABC中,∠C = 90°,
BAC = 90 -15 = 75 AC=28.5+1.5=30(m),
由于BC是∠BAC的对边,AC是邻边,
因此
tan 75 = BC = BC . AC 30
BC = 30 tan 75 112(m ).
视线 铅 直 线 视线 仰角 俯角 水平线
例1 如图4-25,一艘游船在离开码头A后,以和河岸 成 30°角的方向行驶了500m到达B处,求B处与河岸 的距离.
?
图4-25
解: 从点B作河岸线(看成直线段)的垂线,垂足为C,
在Rt△ABC中,∠C=90°,∠A=30°,AB=500m. 由于BC是∠A的对边,AB是斜边,因此
sin 30 = BC = BC , AB 500
(m). 从而 BC =500 sin 30 250
C
A
答:B处与河岸的距离约为250m. C
实际问题
建立几何模型 转化
?
数学问题
图4-25
解直角三角形
练习
如图4-27,一艘轮船航行到B处时,灯塔A在船 的北偏东 60 的方向,轮船从B处向正东方向行驶 2400m到达C处,此时灯塔A在船的正北方向.求C处 与灯塔A的距离(精确到1m).
(俯角和仰角)
解直角三角形依据下列关系式 1、三边之间的关系:
B a C b c A
a b c (勾股定理)
2 2 2
2、两锐角之间的关系: ∠A+∠B=90° 3、边角之间的关系: a sin A cos B , c a 1 tan A , b tan B
冀教版九年级数学上册26.仰角、俯角、方向角课件
求塔高 AB . (结果精确到1米.参考数据: sin 37°≈0.60, cos 37°≈0.80,
tan 37°≈0.75,
≈1.73)
1
2
3
4
第1课时
仰角、俯角、方向角
知识梳
理
课时学业质量评价
解:如图,延长 CD 交 GH 于点 E ,延长 BA 交 GH 于点 F .
在Rt△BCD中,tan∠CBD=tan 60°=
1
= .
tan 60° 3
.
若设CD=x,则BD=
在Rt△ACD中,∠CAD=30,
CD 即 AD CD
tan
CAD
tan
30
所以
,
tan 30
AD
∵ AD BD
AB
, AB 30
40
20,
60
3x .
典例精讲
例1
如图所示,一艘渔船以30海里/时的速度由西向东航行.在A处
看见小岛C在船北偏东60°的方向上.40 min后,渔船行驶到B处,此
时小岛C在船北偏东30°的方向上.已知以小岛C为中心,10海里为
半径的范围内是多暗礁的危险区.如果这艘渔船继续向东航行,有
没有进入危险区的可能?
典例精讲
解: 如图所示,过点C作CD⊥AB,交AB的延长线于点D,则∠CBD=60°,
水平距离BC=_________米.
100
A
B
图①
C
当堂训练
2. 如图②,两建筑物AB和CD的水平距离为30米,从A点测