静电场的能量大学物理下
大学物理下知识点总结
电流分布 直 无限长 电 流 半无限长
导线所在直线上
圆 圆心处 电 流 弧电流圆心 长直载流密绕螺线管 载流密绕细螺绕环
磁场分布
B μ0 I 2πa
B 0I 4 a
B0
BO
0 I
2R
BO
0 I
2R
2
B内 0nI B内 0nI
B外 0 B外 0
1、B 、H 关系:
磁介质概要
对各向同性磁介质: B H
L L
di dt
(1)自感磁能:Wm
1 2
LI 2
(2)磁能密度:wm
1 2
B2
1 H 2
2
1 BH 2
磁能:Wm wmdV V
6、Maxwell位移电流假说: 实质:变化电场→ 磁场
平板电容器中总位移电流:
Jd
D t
Id
C dU dt
0 S板
dE dt
全电流定律:
H dl
L
Ic Id
n
点电荷系场: u ui 无连限续大带或电无体限场长: 带ui电1 体q du不能q 使4d用q0r该(方u法 0)
计算量
q
E
4
r2
0
r0
E
i
qi
40ri2
r0i
dq
E 40r 2 r0
1
S
E dS
0
qi
s内
Up
U0 E dl p
q U
4 0r
U
i
qi
4
0
ri
U
dq
40r
Q1 ,R1 Q2 ,R2 R1 R2
场强分布
E 2 0a
大学物理,静电场中的导体和电介质8-5 静电场的能量
2
R1
r
dr
Q R2 dWe wedV dr 2 8 π εr 2 2 R Q Q 1 1 2 dr We dWe ( ) 2 8 π ε R1 r 8 π ε R1 R2 9
8.5 静电场的能量
2
第8章 静电场中的导体和电介质
第8章 静电场中的导体和电介质
例:同轴电缆由内径为 R1、外径为 R2的两无限长金属圆柱 面构成,单位长度带电量分别为 +、 -,其间充有 r 电介 质。求: 1)两柱面间的场强 E;2)电势差 U;3)单位长 度电容 ;4)单位长度贮存能量。
介质中高斯定理: D dS q 0
5
8.5 静电场的能量
第8章 静电场中的导体和电介质
二、静电场的能量 能量密度 以平行板电容器为例,将电能用电场的量表示。
1 1 1 1 εS 2 2 2 2 ( Ed ) εE Sd εE V We CU 2 2 2 d 2
电场中单位体积的能量 称为电场能量密度:
d
S
εr
We we V
8.5 静电场的能量
第8章 静电场中的导体和电介质
静电场的能量 ( Electrostatic Energy ) 一个带电系统包含许多的电荷。电荷之间 存在着相互作用的电场力。 任何一个带电系统在形成的过程中,外力 必须克服电场力做功,即要消耗外界的能量。 外界对系统所做的功,应该等于系统能量 的增加。 因此,带电系统具有能量。
第8章 静电场中的导体和电介质
1 We QU 2
R1
1 λ R2 λh ln 2 2πε0 εr R1 2 λh R2 ln 4πε0 εr R1
大学物理下 第九章 静电场中的导体和电介质5
2
ε0S C= d
四,静电场的能量 (1)电容器的能量 )
1 Q2 W = CU 2 = 2 2C
(2)静电场的能量 有电场的地方就有能量 )
1 ωe = D E 2
W = ∫ ωe dV
(3)静电场的能量与功的关系 )
A 静 = W
已知 ε r1 : ε r 2 = 1 : 2 ,问 W1 : W2 = ?
λ o d a
λ λ U = ∫ + dr 2πε0r 2πε0 (d r ) a -λ λ λ d a λ d = Ln ≈ Ln πε0 a πε0 a
λ λ πε 0 ∴ C0 = = = d d λ U Ln Ln a a πε 0
r
d a
P79 99 讨论
1)通电后维持电压不变插入电介质 ) 2)通电后断开再插入电介质 ) 讨论插入前后的 E,D,U,Q. , , , 令插入前为E , , , (令插入前为 0,D0,U0,Q0) 2) Q = Q 0
4a
UBA = UB∞
场具有球对称性
a
3a
解(1)a < r < 3a
∫∫ D dS = ∫∫ DdS = D4πr = QA
2 S S
Q
4a
a
QA D= 2 4πr
D QA E= = 2 ε0εr 4πε0εr r
3a
r > 4a ∫∫ D dS = D 4 πr = Q + Q A
2 S
Q + QA D= 2 4 πr
∫∫ D dS = Q0
S
E = E0 + E'
9-6,8 ,
E0
讨论 p79
大学物理8-5 静电场的能量
E ( R1 r R2 ) 2π 0 r
r R1
max Eb 2π 0 R1
l
max 2 0 R1 Eb
-+ - + R1 - + R2 -+
8 – 5
静电场的能量
第八章 静电场中的导体和电介 质
(2)电场的能量
E ( R1 r R2 ) 2π 0 r
( R1 r R2 )
1 1 R12 Eb2 2 wm 0 Em 0 2 2 2 r
R2
沿轴线单位长度的最大电场能量
Wm wm dV
2 1 2 b
R1
1 R E 0 2 1 2rdr 2 r
2 1
2 b
R2 4 1 0R E ln 5.76 10 J m R1
8 – 5
静电场的能量
第八章 静电场中的导体和电介 质
作业:
Q2 6 8 0 R
2
R
0
Q 2 dr 4 r dr R r 2 8 0
2 2
Q Q 3Q 40 0 R 8 0 R 20 0 R
8 – 5
静电场的能量
例8-6 如图所示,球形电容器的内、外半径分别为 R1和 所带电荷为 Q.若在两球壳间充以相对介电常数为 的电介质,求此电容器贮存的电场能量.
8 – 5 一
静电场的能量 电容器的电能
第八章 静电场中的导体和电介 质
q d W udq d q C
1 W C
Q
0
1 1 W QU CU 2 2 2
Q2 1 1 电容器贮存的电能 We QU CU 2 2C 2 2
大学物理下册知识点总结(期末)
大学物理下册学院:姓名:班级:一、气体的状态参量:用来描述气体状态特征的物理量。
气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。
垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。
单位 Pa(2)体积V:从几何角度来描写状态。
分子无规则热运动所能达到的空间。
单位m 3(3)温度T:从热学的角度来描写状态。
表征气体分子热运动剧烈程度的物理量。
单位K。
二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV R TM'=;P nkT=8.31JR k mol=;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=四、理想气体压强公式:23ktp nε=212ktm vε=分子平均平动动能五、理想气体温度公式:21322ktm v kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。
2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。
5.一个分子的平均动能为:2ki kT ε=五. 理想气体的内能(所有分子热运动动能之和) 1.1m ol 理想气体2i E R T =5.一定量理想气体()2i m E RT Mνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。
《静电场能量》课件
D1 1
r1
h
2
D2
r
2
在分界面上无自由电荷时,电位移 的法向分量是连续的。界面两侧电 场强度的法向分量是不连续的。
二、切向分量
E dl 0
ABCDA
E dl E dl E dl E dl 0
AB
R1
R2
解:若电容器两极板上电荷的分布是均匀的, 则球壳间的电场是对称的。由高斯定理可求得 球壳间的电场强度的大小为
E=
Q
4
r
2
电场总能量为
电场的能量密度为
e
1 2
E
2=
Q2
32 2
r4
取半径为r、厚为dr的球壳,其体
积为dV=4πr2dr。所以此体积元内
Q R2
2
We R1 8 r 2 dr
E1t=E2t
D1t = D2t
1 2
9-8 压电效应 铁电体 驻极体
一、压电效应
•压电效应(正压电效应):某些固体电介质,当它们发生机械形 变时,会产生极化,在它们相对的两个面上将产生异号的极化 电荷。这种因机械形变而产生的电极化现象称为压电效应。 •电致伸缩(逆压电效应):在电场的作用下,晶体发生机械形变。 •应用:
热驻极法 电驻极法 •应用:电容传声器、拾音器、拾振器等。
小结
•静电场的能量 •能量密度
W Q2 1 CU 2 1 QU
2C 2
2
we
1 2
0
r
E
2
1 2
DE
作业:
思考题:
大学物理课件静电场
有限差分法求解边值问题
有限差分法原理
将连续的空间离散化为网格,用差分方程近 似代替微分方程进行数值求解。
有限差分法的离散化方案
常见的离散化方案包括向前差分、向后差分 和中心差分等。
有限差分法的求解步骤
建立差分方程、确定边界条件、采用迭代法 或直接法求解差分方程得到近似解。
06 静电危害防护与 安全措施
连续分布电荷系统势能计算方法
通过积分求解连续分布电荷的势能,需考虑电荷分 布的空间范围和形状。
静电场能量密度和总能量
静电场能量密度定义
单位体积内静电场所具有的能量。
静电场能量密度计算公式
$w = frac{1}{2} varepsilon_0 E^2$,其中$varepsilon_0$为真空 介电常数,$E$为电场强度。
静电场总能量计算
通过对静电场能量密度在空间上的积分,可求得静电场的总能量。
能量守恒定律在静电场中应用
能量守恒定律表述
在一个孤立系统中,无论发生何种变化,系统的总能量保持不变。
静电场中能量转化与守恒
在静电场中,电荷的移动和电场的变化都会伴随着能量的转化,但 总能量保持不变。
应用实例
如电容器充放电过程中,电场能与电源提供的电能或其他形式的能 量相互转化,但总能量不变。
分离变量法的适用范围
适用于具有规则几何形状和简单边界条件的静电场问题。
格林函数法求解边值问题
1 2
格林函数法原理
利用格林函数表示点源产生的场,并通过叠加原 理求解任意源分布产生的场。
格林函数的性质 格林函数具有对称性、奇异性和边界条件等性质。
3
格林函数法的应用步骤 确定格林函数、将源分布表示为点源的叠加、利 用格林函数求解场分布。
物理-静电场的能量
力需克服静电场力作的功dw;
再计算电量由0累积到Q的过程,外力的总功:
Q
dW 0 dW
如:前面例1(均匀带电球面的静电能)
Q
W
q
dq Q2
0 4 0 R
8 0R
++ +
+O
+Q
+ +
+R +
+++
三、连续分布电荷系统的静电能
思路(二):考察带电体上所电荷元间
的相互作用能 带电体上任到一个电荷元dq,设
4 0r
q1q2
4 0
dr r r2
q1q2
4 0r
一、电荷系统的自能与相互作用能
3、带电体系的总静电能
q2 q3 q1
qi
qn
某电荷系统A
每个带电体的自能 电荷系统的总能
所有带电体的相互作用能
一、电荷系统的自能与相互作用能
例3:求两个半径分别为 R1、R2,电量为 Q1、Q2,相 距为 d(d R1, R2 ) 的两个均匀带电球面的静电能。
Q1 + +
+ +
O1
+ + +
+ R1 +
+++
d( R1, R2 )
+ +
+
+ O2
+ Q2
+ +
+ R2 +
+++
自能:
W1
Q1 8 0R1
W2
Q2 8 0R2
;
相互作用能: W12
大学物理 科学出版社 第9章 静电场 参考答案
第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
大学物理II_第十章
第十章 静电场电荷守恒定律电荷守恒定律是物理学的基本定律之一. 它指出, 对于一个孤立系统, 不论发生什么变化, 其中所有电荷的代数和永远保持不变. 电荷守恒定律表明, 如果某一区域中的电荷增加或减少了, 那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷, 那么必定有等量的异号电荷同时产生或消失. 库仑定律库仑定律(Coulomb's law), 法国物理学家查尔斯·库仑于1785年发现, 因而命名的一条物理学定律. 库仑定律是电学发展史上的第一个定量规律. 因此, 电学的研究从定性进入定量阶段, 是电学史中的一块重要的里程碑. 库仑定律阐明, 在真空中两个静止点电荷之间的相互作用力与距离平方成反比, 与电量乘积成正比, 作用力的方向在它们的连线上, 同号电荷相斥, 异号电荷相吸.0221041r rq q F πε= 21212010854187817.8---⋅⋅⨯=m N C ε, 真空电容率(真空介电常数)电场强度电场强度是用来表示电场的强弱和方向的物理量. 实验表明, 在电场中某一点, 试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量. 于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向, 以前述比值为大小的矢量定义为该点的电场强度, 常用E 表示. 按照定义, 电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定.0q F E =;02041r r q E πε=点电荷系在某点产生的电场的电场强度等于各点电荷单独在该点产生的电场强度的矢量和∑∑==02041iii i r r q E E πε 带电体在一点产生的电场强度等于所有电荷元产生的电场强度的矢量积分⎰⎰==0204r r dq E d E πε 高斯定理真空中的静电场中, 穿过任一闭合曲面的电通量, 在数值上等于该闭合曲面内所包围的电量的代数和乘以ε0的倒数.∑⎰=⋅insi Sq S d E 01ε⎰⎰=⋅VSdV S d E ρε01给予空间的某个区域内, 任意位置的电场. 原则上, 应用高斯定律, 可以很容易地计算出电荷的分布. 只要积分电场于任意区域的表面, 再乘以真空电容率, 就可以得到区域内的电荷数量.但是, 更常遇到的是逆反问题. 给予电荷的分布, 求算在某位置的电场. 这问题比较难解析. 虽然知道穿过某一个闭合曲面的电通量, 这资料仍旧不足以解析问题. 在闭合曲面任意位置的电场可能会是非常的复杂.假若, 问题本身显示出某种对称性, 促使在闭合曲面位置的电场大小变得均匀. 那么, 就可以借着这均匀性来计算电场. 像圆柱对称、平面对称、球对称等等, 这些空间的对称性, 都能帮助高斯定律来解析问题. 若想知道怎样利用这些对称性来计算电场, 请参阅高斯曲面(Gaussian surface). 静电场环路定理在静电场中, 电场强度沿任一闭合路径的线积分(即电场强度的环流)恒为零0=⋅⎰Ll d E电势能在静电学里, 电势能(Electric potential energy)是处于电场的电荷分布所具有的势能, 与电荷分布在系统内部的组态有关. 电势能的单位是焦耳. 电势能与电势不同. 电势定义为处于电场的电荷所具有的电势能每单位电荷. 电势的单位是伏特.电势能的数值不具有绝对意义, 只具有相对意义. 所以, 必须先设定一个电势能为零的参考系统. 当物理系统内的每一个点电荷都互相分开很远(分开距离为无穷远), 都相对静止不动时, 这物理系统通常可以设定为电势能等于零的参考系统. 假设一个物理系统里的每一个点电荷, 从无穷远缓慢地被迁移到其所在位置, 总共所做的机械功为, 则这物理系统的电势能U 为.W U =⎰⋅='0'0aa l d E q W在这过程里, 所涉及的机械功W, 不论是正值或负值, 都是由这物理系统之外的机制赋予, 并且, 缓慢地被迁移的每一个点电荷, 都不会获得任何动能. 如此计算电势能, 并没有考虑到移动的路径, 这是因为电场是保守场, 电势能只跟初始位置与终止位置有关, 与路径无关. 电势在静电学里, 电势(electric potential)定义为处于电场中某个位置的单位电荷所具有的电势能. 电势又称为电位, 是标量. 其数值不具有绝对意义, 只具有相对意义, 因此为了便于分析问题, 必须设定一个参考位置, 称为零势能点. 通常, 一个明智的选择是将无穷远处的电势设定为零. 那么, 电势可以定义如下:假设检验电荷从无穷远位置, 经过任意路径, 克服电场力, 缓慢地移动到某位置, 则在这位置的电势, 等于因迁移所做的机械功与检验电荷量的比值.⎰⋅=='0'0aaa l d E q W u在国际单位制里, 电势的度量单位是伏特(V olt), 是为了纪念意大利物理学家亚历山德罗·伏打(Alessandro V olta)而命名.点电荷系产生的电场中, 某点的电势是各点电荷单独存在时, 在该点产生的电势的代数和∑==ni i a u u 1⎰∞⋅=aa l d E u电势与电场强度的积分和微分关系式⎰⋅='0'aa l d E udl duE l -=;⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=k z u j y u i xu E导体的静电平衡静电平衡是指导体中的自由电荷(通常为带负电荷电的电子)所受到的力达到平衡而不再做定向运动的状态. 处在静电平衡下的导体, 为一个等势体, 其表面为等势面. 导体内部的电场强度处处为零, 导体表面上任意一点场强的方向与表面垂直, 大小与该处的电荷面密度成正比.n E surface 0εσ=电容在电路学里, 给定电势差, 电容器储存电荷的能力, 称为电容(capacitance), 标记为C. 采用国际单位制, 电容的单位是法拉(farad), 标记为F.平行板电容器是一种简单的电容器, 是由互相平行、以空间或介电质隔离的两片薄板导体构成. 假设这两片导板分别载有负电荷与正电荷, 所载有的电荷量分别为-Q 、+Q, 两片导板之间的电势差为V , 则这电容器的电容为VQ C =1法拉等于1库仑每伏特, 即电容为1法拉的电容器, 在正常操作范围内, 每增加1伏特的电势差可以多储存1库仑的电荷.课后习题:10. 1 (1)(2)(3)(4)(5); 10. 2 (1)(2)(4)(5)(7); 建议作业题:10. 4;10. 8(此题为10. 4的延伸);10. 13(类似加深难度的有10. 21);10. 17(可作为填空);10. 18(类似加深难度的有10. 24);10. 33(此题为10. 13的延伸);10. 35(此题为10. 21的延伸);10. 41;10. 4210.1 选择题(1)真空中两平行带电平板相距为d , 面积为S , 且有d 2<<S , 带电量分别为q +和q -, 两板间的作用大小为[D](A)2204q F d πε= (B)20q F S ε= (C)202q F S ε= (D)202q F S ε=解析:平板电容器由两个彼此靠得很近的平行极板(设为A 和B )所组成,两极板的面积均为S ,设两极板分别带有q +,q -的电荷,于是每块极板的电荷密度为Sq=σ。
大学物理电学第六节
E = EBC
+
+
dl +
+
Y
+ + +
A
a
O B dE
θ
a
θ
+
C dE
a
D
X
取电荷元 dl , dq 所以
= λdl dq λdl dE = = 2 2 4πε0a 4πε0a
E x = ∫ dE x = 0
由对称性分析: 由对称性分析:
+ + + +
Y
+ + +
a
A
a
λdl E = E y = ∫ dE y = ∫ dE sin θ = ∫ sin θ 2 4πε 0 a
2
+ dq
外力作功
把微小电荷 + dq 移到另一个极板外力克服电场力作功
dA = (V1 − V2 )dq
' '
q 电容器电容为C,此时带电量为q, V1′ − V2′ = C q dA = dq 所以
C 当电容器由 q = 0 到 q = Q 外力作功
A = ∫ dA = ∫
Q
0
这个功应等于电容器的静电能。 这个功应等于电容器的静电能。 Q = C (V1 − V2 ) 电容器的静电能
解: D =
q 4π r 2
dr
E=
D
ε
=
q 4πε r
2
2
r R2
R1
dV = 4π r dr
1 q 2 we = ε E = 2 2 8πε r
2
dWe = we dV
1 q 1 − We = ∫ wedV =∫ dr = 2 R R R 8 1 8πε 1 πε r 2
大学物理12真空中的静电场
03
电势与电势差
电势的概念
总结词
电势是描述电场中某点电荷所具有的势能,其值与零电势点的选 择有关。
详细描述
电势是描述电场中某点电荷所具有的势能,通常用符号"φ"表示。它 是一个标量,其值与零电势点的选择有关。在静电场中,零电势点 是任意选择的,通常选择大地或无穷远处作为零电势点。
电势的计算方法
计算电场能量
利用高斯定理可以计算电场的能量密度和总能量。
静电场的散度与源电荷的关系
02
01
03
静电场的散度等于该点源电荷的密度。
数学表达式:divE = ρ/ε0
其中,divE是电场强度的散度,ρ是电荷的密度,ε0是 真空中的电容率。
05
静电场的环路定理与电场线的引入
静电场的环路定理
总结词
静电场的环路定理描述了电场与磁场之 间的关系,是电磁学中的基本定理之一 。
大学物理12真空中的静电场
目
CONTENCT
录
• 引言 • 电场与电场强度 • 电势与电势差 • 高斯定理与静电场的散度 • 静电场的环路定理与电场线的引入 • 静电场的边界条件与导体表面的电
场线分布 • 静电场的能量与力
01
引言
主题简介
静电场是静止电荷产生的电场,是电 磁学的重要概念之一。
在真空环境中,静电场不受其他电磁 场的影响,因此具有独特的性质和规 律。
指导电路设计
在电路设计中,通过合理 布置导线和元件的位置, 利用电场线的分布来优化 电路性能。
07
静电场的能量与力
静电场的能量分布
静电场的能量分布由电场强度和电势的乘积积分得 到,表示电场中各点的能量密度。
在真空中的静电场,能量分布与电荷分布有关,电 荷密度越大,能量密度越高。
静电场的能量 能量密度
C = 4πεo R1 ,
孤立导体球电容。 孤立导体球电容。 ②R2 –R1= d , R2 ≈R1 = R
4πε o R 1 R 2 C = R 2 − R1
C = 4πεo R2 d = ε o S d
平行板电容器电容。 平行板电容器电容。
③
圆柱形电容器
板间电场
R2
R1 l
解:设两极板带电 ± q
Q C= = C 1 + C 2 U
C
22、电容器的串联 、 特点 每个电容器极板所带的电量相等 总电压
Q Q 1 1 U = U 1 + U 2 = + = + Q C1 C 2 C1 C 2 等效电容
C= Q 1 = 1 1 U + C1 C 2
C1
C2
等效
1 1 1 = + C C1 C 2
讨论
C = ∑ Ci
i
并联电容器的电容等于 各个电容器电容的和。 各个电容器电容的和。 串联电容器总电容的倒数 等于各串联电容倒数之和。 等于各串联电容倒数之和。
1 1 =∑ C i Ci
当电容器的耐压能力不被满足时, 当电容器的耐压能力不被满足时,常用串并联 使用来改善。 使用来改善。 串联使用可提高耐压能力 并联使用可以提高容量 电介质的绝缘性能遭到破坏,称为击穿。 电介质的绝缘性能遭到破坏,称为击穿。 击穿 所能承受的不被击穿的最大场强叫做击穿场强或 所能承受的不被击穿的最大场强叫做击穿场强或 击穿场强 介电强度。 介电强度。
球形
柱形
平行板
R1 R2
R1
R2
d
4 4、电容器的作用 、 •在电路中:通交流、隔直流; 在电路中:通交流、隔直流; 在电路中 •与其它元件可以组成振荡器、时间延迟电路等; 与其它元件可以组成振荡器、 与其它元件可以组成振荡器 时间延迟电路等; •储存电能的元件; 储存电能的元件; 储存电能的元件 •真空器件中建立各种电场; 真空器件中建立各种电场; 真空器件中建立各种电场 •各种电子仪器。 各种电子仪器。 各种电子仪器 5 、电容器电容的计算 5、 计算电容的一般步骤为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; 设电容器的两极板带有等量异号电荷 设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; 求出两极板之间的电场强度的分布; 求出两极板之间的电场强度的分布 •计算两极板之间的电势差; 计算两极板之间的电势差; 计算两极板之间的电势差 •根据电容器电容的定义求得电容。 根据电容器电容的定义求得电容。 根据电容器电容的定义求得电容
大学物理D-05静电场
q
p q
l
两个等量异号电荷-q,+q相距为l,该带电体系 为电偶极子;
电偶极矩(电矩) p q l 用 l 表示从-q到+q的位矢.
27
大学物理
解一
Y
E
E
Q E 40 Q E X 4 0
E E r r r
Q
E
文字表述: 在真空中,两个静止点电荷之间的相 互作用力大小,与它们的电量的乘积成正比,与它 们之间距离的平方成反比;作用力的方向沿着它们 的联线,同号电荷相斥,异号电荷相吸。
qq F k e F r
1 2 12 2 12 12
21
q1
F21
q1
r12
r12
F12
q2
q2
y
l 4 0 x 2 q E i 2 l 4 0 x 2 E q
5
大学物理
物理学的第二次大综合
库仑定律: 电荷与电荷间的相互作用 (磁极与磁极间的相互作用)
奥斯特的发现: 电流的磁效应,安培发现电流与电流 间的相互作用规律. 法拉第的电磁感应定律: 电磁一体
麦克斯韦电磁场统一理论(19世纪中叶)
赫兹在实验中证实电磁波的存在,光是电磁波.
技术上的重要意义:发电机、电动机、无线电技术等.
11
大学物理
2.库仑定律
点电荷模型
(d r12)
1) 概念:当带电体的大小和形状可以忽略时, 可把电荷看成是一个带电的点,称为点电荷
q1
F21e
q1
r12
12
F12
q2
q2
F21
6静电场的能量
2 a ⎛ 1 1 Q Q 3 r ⎞ 2 We = ∫ ρ udV = ∫ ⎟ ⎜ 4 π r dr − 3 3 ⎟ ⎜ 2 2 0 4 π a 3 8πε 0 ⎝ a a ⎠
3Q 2 = 16 πε 0 a 3
∫
a
0
2 ⎛ ⎞ r 3 2 r ⎜ ⎜ a − a3 ⎟ ⎟dr ⎝ ⎠
Q
a
3Q We = 20 πε 0 a
1 q2 = 2C
4 πε R1 R2 C= R2 − R1
思考: 半径为R、带电量为Q的均匀带电球面, 其静电能与球体 的静电能相比, 哪个大?
2 1 q we = ε E 2 = 2 8πε r 2
dWe = we dV
静电场的能量
We = ∫ we dV = ∫
计算电容量:
R2
R1
q2 q2 dr = 2 8πε r 8πε
⎛1 1 ⎞ ⎜ ⎜R −R ⎟ ⎟ 2 ⎠ ⎝ 1
q2 1 We = 2 4 πε R1 R2 R2 − R1
2
静电场的能量
解法二:
We = ∫ we dV = ∫0
=∫
a 2
a
∞1 1 2 ε 0 E1 dV + ∫ ε 0 E22 dV a 2 2
2
o
∞1 ⎛ Q ⎞ 1 ⎛ Qr ⎞ 2 2 ⎟ ⎜ ⎟ r r 4 π r dr 4 π d ε0⎜ ε + 0⎜ 3 ⎟ 2 ∫ ⎟ ⎜ a 2 2 ⎝ 4 πε 0 a ⎠ ⎝ 4 πε 0 r ⎠
1 2 We = ε E Sd 2
电容器体积: V = Sd
静电场的能量
Hale Waihona Puke 电场的能量密度: 单位体积电场所具有的能量
(完整版)大学物理静电场
(
r
l 2
)2
1
(r
l 2
)2
1
E
(
r
l 2
)2
E
若r>>l,则有:
E 2ql 4 0r3
2Pe 4 0r3
写成矢量形式即为:
E 2Pe 4 0r3
电偶极子在电场中所受的力
如图所示 M=flSin
=qElSin =PeESin
则 M Pe E
f +
l
pe
f
θ
E
[例2] 如图示,求一均匀带电直线在 O点的电场。
3、电荷的量子化 e =1.6021892±0.0000046×10-19C 密里根油滴实验
二、库仑定律(Coulomb’s Law)
1、库仑定律
F
k
q1q2 r122
其中 k 1
4 0
0 8.85 1012C 2N 1m2
2、矢量性:
1 Qq
F
4 0
r2
r0
r0 F
与电荷电性无关(指研 究对象) 的方向与电荷电性及r0 有关
r2
Cos
5、选择积分变量
选作为积分变量,则
l = atga =atg(-/2)
=-aCtg dl=aCsc2 d r2=a2+l2=a2+a2Ctg2
=a2Csc2 所以有:
Y
dE
X
θ2
0
aa
r
a
θ1
q
dl
l
dEX
1 4 0
Cos aCsc2d a2Csc2
1 4 0
d a
Cos
大学物理 (下)
大学物理7.17 静电场的能量
存的静电能W
We
Q2 2C
CU 2 QU 22
Q2
A
0
dq C
2C
Q CU
任何电容器的能量式
2015/2/5
DUT 常葆荣
1
二、电场能量和能量密度
由电容器中的能量得
We
QU 2
U Ed
Q S
E
Sd V
We
2
E 2V
we
E2 2
能量密度
各向同性介质
We
E2
dV 非均匀电场 V2
2015/2/5
DUT 常葆荣
3
例题:求电量为Q 、半径为R的均匀带电球面的静电能。
解:
W
eE
2
E
2V
0 Q
r
We
R V
E 2
2
dV
40 r 2 (r R)
R
取半径为r,厚度为dr的球壳,球壳的体积为dV=4r2dr
体积dV内的静电能为
dWe
wedV
1 2
0
E
2
4
r
2dr
We
1
2
0
E
2
dV
R
1
2
0
(
Q2
4 0
r
2
)2
4
r
2
d
r
Q2
8 0 R
均匀带电导体球的静电能?
2015/2/5
大学物理(下)试试题库
大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。
2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。
4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。
5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。
8、【 】两个点电荷21q q 和固定在一条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Aq2(U 2U )
U2是q1在B点产生的电势,V∞是q1在无限远处的电势。
U2
1
4 0
q1 r
U 0
所以
Aq2U2
1 q1q2
A4r0
r B
q1
q2
同理,先把q2从无限远移B点,再把q1移到点,
外力做功为
Aq1U1
1
40
q1q2 r
U1是q2在A点产生的电势。
两种不同的迁移过程,外力做功相等。
(填“变大”、“变小”或者“不变”)
例、一空气平板电容器的极板面积为S,间距为d, 今将一厚度为t、面积也为S的铜板平行地插入电容 器内。求: (1)计算此时电容器的电容; (2)用电源充电到电容器的带电量为Q时,断开电 源,再将该铜板从电容器中抽出,外界需要做多少 功。
d
t
例、一空气平板电容器的极板面积为S,间距为d, 用电源充电到电容器两极板之间的电势差为V时, 保持与电源的连接,将一厚度为t、面积也为S的铜 板平行地插入电容器内,求该电容器储存的电场能 量的改变量。
W A 1A 2A 3
q 24q 1 0r12 q 3(4q 1 0r1 34q 2 0r2)3
C q3
r13
q1
r23 A r12
B q2
可改写为
W 1 2 [q 1 (4 q 2 0 r 1 2 4 q 3 0 r 1)3 q 2 (4 q 1 0 r 1 2 4 q 3 0 r 2)3
K
合上开关向电容器充电到电势差 为u、电量为q时,再将dq的电
荷从负极板搬运到正极板
u
+-q dq
q dWudq dq
WQqdqQ2 1cQV1CV 2 0C 2C 2 2
即当电容器被充电到电量为Q、电势差为V时, 所储存的能量为Q2/2C。
这是计算电容器充电后所储存的电场能量的 基本公式。
2、电场能量
1.2 三个点电荷
依次把q1 、q2、 q3从无限远移至所在的位置。
把q1 移至A点,外力做功 A1 0
再把q2 移至B点,外力做功
最后把q3 移至C点,外力做功
C
AA32 qq32(44qq1010r1r1324q20r23)
q3 r13
r23 A r12
q1
B q2
三个点电荷组成的系统的相互作用能量(电势能)
d
S
r
S
例:一真空平板电容器充电后切断电源, 然后充入均匀电介质,则该电容器的电容 将____,电量将_____,两板间的电势差 将_____,所储存的电场能量将变_____; 如果充电后保持与电源连接,再充入均匀 电介质,则电容器的电容将变_____,电 量将_____,两板间的电势差将_____,所 储存的电场能量将变_____。
电场能量体密度——描述电场中能量分布状况
例题、求平板电容器所储存的电场能量。 如图所示,两块带等量异号电荷的金属板平行放置 组合而成的平板电容器,求所储存的电场能量。
q q
r
S S E
Ad B
例、一空气平板电容器的极板面积为S,间距为d, 用电源充电后两极板带电量分别为+Q和-Q,断开 电源后,将两极板距离拉开为2d, 求:
外力做功等于系统的相互作用能W。
WA410q1rqA2 r B
q1
q1
q2
q2
可改写为
W 1 2q1410q r21 2q2410q r112q1U112q2U2
1 2
2 i 1
qiU i
两个点电荷组成的系统的相互作用能(电势能) 等于每个电荷在另外的电荷所产生的电场中的电势 能的代数和的一半。
电荷之间具有相互作用能(电势能),当电荷间 相对位置发生变化或系统电荷量发生变化时,静电能 转化为其它形式的能量。
1. 点电荷间的相互作用能
1.1 两个点电荷
假设q1、q2从相距无穷远移至相距为r。 先把q1从无限远移至A点,因q2与A点相距仍然为无 限,外力做功等于零。
A
q1
q2
再把q2从无限远移至B点,外力要克服q1的电场力 做功,其大小等于系统电势能的增量。
q3(4q10r134q20r23)]
1 2(q1U1q2U2q3U3)
1 2
3 i 1
qiU i
U1是q2和q3在q1 所在处产生的电势,余类推。
1.3 多个点电荷
推广至由n个点电荷组成的系统,其相互作用能
(电势能)为
W
1 2
n i1
qiUi
Vi是除qi外的其它所有电荷在qi 所在处产生的电势。
C
q3 r13 q1
r23 A r12
B q2
2. 电荷连续分布时的静电能
设想不断把电荷元dq从无穷远处迁移到物体上, 系统的静电能为
dq
dq
W
1 2
udq
u是带电体上的所有电荷在电荷元dq处产生的电势。
3、电容器中的电场能量
ab
K
C
R
我们再来看一看电容器的充电过程。
K
+
+-
电容器的充电过程就是由电源不断地将正电荷从 电容器的负极板搬运到正极板的过程。这一过程电源 所消耗的能量就转化为电容器内所储存的电场能量。
W 1 CV 2 1(0rS)(Ed)2
2
2d
120rE2(Sd)
1 2
0r
E2V
Q
Q
r S d
电场存在的空间体积
电场能量体密度——电场中单位体积所储存的 能量它描述了电场中能量分布状况
W 120rE2V
Q
Q
电场存在的空间体积
r S d
ห้องสมุดไป่ตู้
wW V120rE212DE
W dW
V
V
120rE2dV
(1)外力克服两极板相互吸引力所作的功。 (2)两极板间的相互吸引力。
Q
Q
F
0
F
S
d
例、一空气平板电容器的极板面积为S,间距为d, 用电源充电后两极板之间的电势差为U,保持与电源 的连接,将两极板距离由d拉开为2d,求该平板电 容器储存的电场能量的改变量。
U
F
0
F
S
d
例题、一真空平行板电容器,充电后,断开电 源,拉大两极板间的距离,则电容器的电容将 ,两极板间的电场强度将,两板间 的电势差将,电容器的电量将, 电容器储存的电场能量将;若充电 后,保持与电源连接,拉大两极板间的距离, 则电容器的电容将,两极板间的电场强 度将,两板间的电势差将,电容 器的电量将,电容器所储存的电场能 量将。
d
t
例、一平行板电容器的极板面积为S,间距为d,其 间充满了相对介电常数为r的均匀电介质,充电后, 正负极板的带电量分别为Q,求: (1)此时电容器中的电场能量; (2)如果断开电源,再将该电介质板从电容器中 抽出,外界需要做多少功。
d
S
r
S
例、一空气平行板电容器的极板面积为S,间距为d, 充电后,正负极板之间的电势差为V,如果保持与 电源的连接,再将一相对介电常数为r的均匀电介 质板平行插入该电容器,求该电容器中储存的电场 能量的改变量。