2018-2019学年江苏省宿迁市沭阳县七年级数学下册期末考试试卷
2018-2019年最新苏教版七年级数学下学期期末复习教学质量检测及答案解析(精品试卷)
FECDAB苏教版2017-2018学年七年级数学下册期末学业质量测试注一、选择题(本大题共有6小题,每小题3分,共18分)1.不等式390x ->的解可以是(▲)A .1B .2C .3D .4 2.下列计算正确的是 ( ▲ )A.6332x x x =⋅B.824a a a ÷=C .325()a a = D.633227131y x xy =⎪⎭⎫ ⎝⎛3.下列等式从左到右的变形中,属于因式分解的是(▲ ) A .x 2-6x =x(x -6) B .(x +3)2=x 2+6x+9 C .x 2-4+4x =(x +2)(x -2)+4x D .8a 2b 4=2ab 2·4ab 24.下列命题:(1)同位角相等;(2)等角的余角相等;(3)多边形的外角和小于内角和;(4)面积相等的两个三角形是全等三角形.其中真命题的个数有( ▲ ) A .0 B .1 C .2 D .3 5.已知⎩⎨⎧==1,2y x 是方程组⎩⎨⎧=+=+1,5ay bx by ax 的解,则a-b-1的值是( ▲ ) A .-1B .2C .3D .46.如图,在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,DE ⊥AB 于E , DF ⊥AC 于F.给出下列结论:①DA 平分∠EDF ;②AE =AF ,DE =DF ; ③AD 上任意一点到B 、C 两点的距离相等;其中正确的有( ▲ ) A.3个B.2个C.1个D.0个 (第6题图)二、填空题(本大题共有10小题,每小题3分,共30分)D ACBBAC7. ▲ 2362b a ab =⨯.8.命题“对顶角相等”的逆命题是 ▲ .9.某种流感病毒的直径大约为0.0000000081米,用科学记数法表示为 ▲ 米. 10.若一个多边形的每一个内角都是144°,则这个多边形的内角和为 ▲ °.11.若8=+b a ,10=ab ,则22ab b a += ▲ .12.如图,已知AB =AD ,要使△ABC ≌△ADC ,还需要增加一个条件,这个条件可以是▲ .(填写一个即可)13.写出一个解为⎩⎨⎧=-=.6,4y x 的二元一次方程组 ▲ .(第12题图) (第14题图) (第16题) 14.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为 ▲ .15.若关于x 的一元一次不等式组10,0x x a -<⎧⎨->⎩无解,则a 的取值范围是 ▲ .16.如图,△ABC 是格点三角形(顶点在网格线的交点),则在图中能够作出与△ABC 全等且 有一条公共边的格点三角形(不含△ABC )的个数是 ▲ .三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)(1)计算:(1)()1022317121--⎪⎭⎫ ⎝⎛-⨯-+⎪⎭⎫⎝⎛-;(2)求(x -1)(x -3)-4x(x+1)+3(x +1)(x -1)的值,其中81=x . 18.(本题满分8分)因式分解:321FEBDCA(1)22218a b - ; (2)32244y y x xy ++-.19.(本题满分8分)解不等式:1629312≤+--x x ,把解集表示在数轴上,请写出其所有非 正整数解.20.(本题满分8分)如图,已知四边形ABCD 中,∠D= ∠B= 90°,AE 平分∠DAB ,CF 平分∠DCB .(1)求证:AE//CF ;(证明过程已给出,请在下面的括号内填上适当的理由) 证明:∵∠DAB+∠DCB+∠D+∠B=360°( ▲ ), ∴°°360()180DABDCB D B ∠+∠=-∠+∠=(等式的性质).∵AE 平分∠DAB ,CF 平分∠DCB (已知), (第20题图) ∴DCB DAB ∠=∠∠=∠212,211( ▲ ), ∴∠1+∠2=21(∠DAB+∠DCB )=90°(等式的性质). ∵∠3+∠2+∠B=180°( ▲ ),∴∠3+∠2 =180°-∠B=90°, ∴∠1=∠3( ▲ ),∴AE//CF ( ▲ ).(2)若∠DAB=50°,求∠AEC 的度数. 21.(本题满分10分)(1)已知x =5-,y = 15-,求222)(n n y x x ⋅⋅(n 为正整数)的值; (2)观察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…,探索以上式子的规律,试写出第n 个等式,并运用所学的数学知识说明你所写式子的正确性.22.(本题满分10分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控手段来引导市民节约用水:每户居民每月用水不超过63m 时,按基本价格收费;超过63m 时,超过 的部分要加价收费.该市某户居民今年4、5月份的用水量和水费如下表所示.FE D ABCG(1)求该市居民用水的两种收费价格;(2)如果该户居民6月份交水费超过47元,那么该户居民6月份的用水量至少为多少3m ?23.(本题满分10分)已知关于x 、y 的方程组⎩⎨⎧-=-+=+81232,181125a y x a y x . (1)求方程组的解(用含a 的代数式表示);(2)若方程组的解满足条件x >0,且y >0,求a 的取值范围.24.(本题满分10分)(1)已知:如图,AD 是△ABC 的角平分线①,点E 在BC 上,点G 在CA 的延长线上,EG交AB 于点F ,且∠AFG=∠G ②. 求证:GE ∥AD ;(2)交换(1)中的条件①或条件②与结论,可得到(1)的 逆命题,试写出其中的一个逆命题,并判定这个逆命题是真命题还是假命题?若是真命题,请给出证明;若是假命题,(第24题图)请举出反例.25.(本题满分12分)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用 A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方月份 用水量/3m水费/元 4 8 22 5927O GFD CBAE案,并求出最少租车费.26.(本题满分14分)如图,点A 、C 、E 在一条直线上,已知在△ABC 和△EDC 中,CA=CB , CE=CD ,∠ACB=∠ECD=60°,AD 、BE 相交于点O ,AD 、 BC 相交于点F ,CD 、BE 相交于点G ,连接FG 和OC . (1)试证明:AD=BE(2)小明认为还可以得到如下结论:①AF=BG ;②FG ∥AE ; ③∠AOC=∠EOC .你认为其中正确的有___▲___(填序号即可),并选择一个正确结论进行证明; (第26题) (3)试猜想线段OC 、OD 、OE 之间有何数量关系?并证明你的猜想的正确性.参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.D ;3.A ;4.B ;5.C ;6.A.二、填空题(本大题共有10小题,每小题3分,共30分)7.b a 23;8.相等的角是对顶角;9.9101.8-⨯;10.1440;11.80;12.CB =CD 或∠BAC =∠DAC 或∠B =∠D =90°;13.⎩⎨⎧-=-=+.10,2y x y x (答案不唯一);14.22()()a b a b a b -=+-;15.a ≥1;16.4.三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)⑴原式=4+1×1-3(4分,每对1个得1分)=2(6分);(2)原式=334434222-+--+-x x x x x (3分)=-8x (5分),当x =81时,原式=1818-=⨯-(6分)18.(本题满分8分)(1)原式=2(a 2-9b 2)(2分)=2(a+3b )(a-3b )(4分); (2)原式=)44(22y xy x y +-(2分)=2)2(y x y -(4分).19.(本题满分8分)去分母得:2(2x ﹣1)-(9x+2)≤6(1分),去括号得:4x ﹣2﹣9x ﹣2≤6(2分),移项得:4x ﹣9x ≤6+2+2(3分),合并同类项得:﹣5x ≤10(4分),把x 的系数化为1得:x ≥﹣2(5分).这个不等式的解集可表示如图:(7分),其所有非正整数解为-2,-1,0(8分).20.(本题满分8分)(1)(四边形内角和等于360°),(角平分线的定义),(三角形内角和 等于180°),(同角的余角相等),(同位角相等,两直线平行)(5分,一个正确得1分);(2)∠ACE=115°,过程略(8分).21.(本题满分10分)(1)原式=(-5)2×(-5)2n ×(-51)2n =25[(-5)×(-51)]2n (3分)=25(5分);(2)规律:(2n+1)2-(2n-1)2=8n (n 为正整数,8分,不写“n 为正整数”不扣分).验证:(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)] =4n ×2=8n (10分).22.(本题满分10分)(1)设基本价格为x 元/3m ,超过63m 部分的按y 元/3m . 由题意知⎩⎨⎧=+=+.276-96226-86y x y x )(,)((3分),解这个方程得⎩⎨⎧==.52y x ,(5分).答:基本价格为2元/3m ;超过63m 部分的按5元/3m (6分);(2)该户居民6月份交水费47元,因此用水超过了63m (7分).设该户居民6月份 用水z 3m ,则由6×2+5(z-6)≥47,解得z ≥13.即该户居民6月份至少用水133m (10分)23.(本题满分10分)(1)x=3a+2或y=﹣2a+4(2分),⎩⎨⎧+-=+=42,23a y a x (5分);(2)∵x >0,y >0,∴⎩⎨⎧>+->+042023a a (7分),∴a 的取值范围是32-<a <2(10分).24.(本题满分10分)(1)∵∠BAC=∠AFG+∠G ,∠AFG=∠G ,∴∠BAC=2∠G (2分).又∠BAC= 2∠CAD ,∴2∠CAD=2∠G ,即∠CAD=∠G (4分),∴EG ∥AD (5分); (2)命题制作正确(8分),证明或举反例正确(10分). 25.(本题满分12分)(1)设1辆A 型车和1辆车B 型车都载满货物一次可分别运货x 、y 吨,则有方程 组⎩⎨⎧=+=+.112,102y x y x (3分),解得⎩⎨⎧==43y x (4分);(2)a=1,b=7;a=5,b=4;a=9,b=1(9分);(3)a=1时,费用最低为940元(12分).26.(本题满分14分)(1)证明略(4分);(2)①②③(10分,一个结论正确得1分,证明正确3分);(3)OC+OD=OE (11分).在OE 上截取OT=OD ,连接DT ,证明△OCD ≌ △TED (14分).。
2018-2019学年苏科版七年级下册期末数学测试题含答案
2018-2019学年七年级数学下册期末试题一、选择题(本大题共8小题)1.下列图形中,由,能得到的是( )A. B.C. D.2.下列计算中,正确的是( )A. B. C. D.3.不等式组的解集在数轴上表示正确的是A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组的解满足,则a的值是( )A. 6B. 7C. 8D. 96.下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银注:这里的斤是指市斤,1市斤两设共有x人,y两银子,下列方程组中正确的是( )A. B. C. D.8.若关于x的不等式组所有整数解的和是10,则m的取值范围是( )A. B. C. D.二、填空题(本大题共8小题)9.计算:.10.分解因式:.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若,,则.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________________根火材棒.15.已知,则n的值是________________.16.如图,已知,,,则________________.三、计算题(本大题共4小题)17.计算:;.18.分解因式:;.19.解方程组和不等式组:20.求代数式的值,其中,,.四、解答题(本大题共5小题)21.如图,已知点E在AB上,CE平分,求证:.22.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.、B两种树苗的单价分别是多少元该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵23.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形请画出示意图,并在图形下方写上剩余部分多边形的内角和.24.已知关于x、y的方程组求代数式的值;若,,求k的取值范围;若,请直接写出两组x,y的值.25.如图,直线,垂足为O,直线PQ经过点O,且点B在直线l上,位于点O下方,点C在直线PQ上运动连接BC过点C作,交直线MN于点A,连接点A、C与点O都不重合.小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;当时,在图中画出示意图并证明;探索和之间的数量关系,并说明理由.七年级数学试题答案和解析【答案】1. C2. A3. B4. B5. C6. D7. D8. A9.10.11.12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214.15. 516.17. 解:原式;原式.18. 解:原式;原式.19. 解:,,得:,将代入,得:,解得:,方程组的解为;,解不等式,得:;解不等式,得:,不等式组的解集为.20. 解:原式,当,,时,原式.21. 证明:平分,,又,,.22. 解:设A种树苗单价为x元,B种树苗单价为y元,根据题意,得,解方程组,得,答:A种树苗单价为60元,B中树苗单为50元.设购进A种树苗m棵,则购进B种树苗棵,根据题意,得,解不等式,得,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图,剩余的部分是三角形,其内角和为,如图,剩余的部分是四边形,其内角和为,如图,剩余的部分是五边形,其内角和为.24. 解:,,得,,把代入,得,,,,,;,,,解得;,.25. 解:如图所示:,,,,,,.如图,设BC与OA相交于点E,在和中,,,又,,;如图,,,在四边形ABCO中,,即和互补,和的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法掌握法则是解题的关键根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:,故A正确;B.,故B错误;C.,故C错误;D.,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:由,能得到,故不合题意;B.由,根据两直线平行,内错角相等能得到,故不合题意;C.如图:,,又,.故C合题意;D.观察图形与为同旁内角,由,不能得到,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:,解不等式,得,解不等式,刘,所以不等式组的解集为,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:,不能组成三角形,故不合题意;B.,能组成三角形,故合题意;C.,不能组成三角形,故不合题意;D.,不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入,转化为关于a的一元一次方程求解即可.【解答】解:,,得:,解得:,,得:,解得:,,,解得:.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:同旁内角互补,两直线平行,故A错误;B.若,则,则B错误;C.如果,,则,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案【解答】解:根据题意得:.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:,由得;由得;故原不等式组的解集为.又因为不等式组的所有整数解的和是,由此可以得到.故选A.9. 【分析】此题考查的是多项式乘多项式用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:.故答案为.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键直接提取公因式xy进而分解因式得出即可.【解答】解:.故答案为.11. 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值将已知条件中的两边平方,利用完全平方公式变形后整体代入即可求出的值.【解答】解:,,,,.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化根据图案、、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒根,令可得答案.【解答】解:图案需火柴棒:8根;图案需火柴棒:根;图案需火柴棒:根;图案n需火柴棒:根.故答案为.15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:,,,,解得:.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出的度数,注意:两直线平行,同位角相等延长ED交BC于F,根据平行线的性质求出,求出,根据三角形外角性质得出,代入求出即可.【解答】解:延长ED交AC于F,如图所示:,,,,,.故答案为.17. 此题考查的是实数的运算以及整式的混合运算熟练掌握相关的运算性质和运算法则是关键.根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.首先提公因式5m,再利用平方差进行分解即可;首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法熟练掌握解答步骤是关键.利用加减消元法即可求解;先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值掌握法则是解题的关键先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法根据角平分线定义可得,结合已知条件利用等量代换得到,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,列出二元一次方程组;根据总费用不超过1550元,列出关于m的一元一次不等式.设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购进A种树苗m棵,则购进B种树苗棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A 种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理注意分情况讨论过四边形的两个顶点剪一刀,剩余图形为三角形;故其中一个顶点和一条边剪一刀,剩余图形为四边形;过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;根据,,列出不等式组,解不等式组求出k的取值范围即可;由,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.通过观察和动手操作易得答案;根据平行线的性质可得,结合已知条件易得,根据同旁内角互补,两直线平行可得答案;分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:经过画图、度量发现:在中,始终有一个角与相等,这个角是.故答案为;见答案;见答案.。
(苏科版)2018-2019学年七年级数学下学期期末考试试卷(含答案)
★绝密★启用前2018-2019学年下学期期末考试七年级数学(苏科版)一、选择题:1.下列图形中,由 AB // CD ,能得到.1-/2的是()2 •下列各计算中,正确的是( )A. (a 3) 2=a 6B. a 3?a 2=a 6C. a 8+ a 2=a 4D. a+2a 2=3a 23•下图中的图形绕虚线旋转一周,可得到的几何体是()4.下列命题是真命题的是( ) A. 如果a 2=b 2,那么a=bB. 如果两个角是同位角,那么这两个角相等C. 相等的两个角是对项角D. 平面内,垂直于同一条直线的两条直线平行5 .如图,不能判断I 1 // l 2的条件是( )A.Z 仁/ 3 B . Z 2+Z 4=180° C . Z 4=7 5 D . Z 2=7 3C.6.如图,人。
是厶ABC的中线,。
已是厶AD(的^高线,AB=3, AC=5, DE=2,点D到AB的距离是()二、填空题:2 211.若把代数式x -4x-5化成(x-m ) ' k 的形式,其中m , k 为常数,则m • k =2 212 .若 a+b=8, a - b=5,则 a - b = ________ .13 .若关于x 的方程2 (x - 1) +a=0的解是x=3,则a 的值为103D6 - 5G5 - 3B.27 •把代数式ax - 4ax+4a 分解因式,下列结果中正确的是( A. a (x - 2) B. a (x+2) 2 C. a (x - 4) & 20位同学在植树节这天共种了52棵树苗, 生有y 人,根据题意, 列方程组正确的是( A.x+y=52 B3x-f-2y=20 x+y=522x-f-3y=20 C.9.x+y=20 匚D.2x+3y=52如图,平面上直线 A. 20° B . 30° C . D. a (x - 2) (x+2) 其中男生每人种 3棵,女生每人种2棵.设男生有x+y=20 3x+2y=52a ,70° D . 80°x 人,女10.设△ ABC 的面积为1,如图①将边 BC AC 分别2等份,BE 、AD 相交于点O △ AOB 的面积记为 S;如图②将边BC AC 分别3等份,BE 、 AD 相交于点O, △ AOB 的面积记为S a ;……, 依此类推,贝U S 5的值为A. 18—D1011)14.如图是由射线 AB BC CD DE EA 组成的图形,/1 + Z 2+Z 3+ / 4+/5=15•如图,A B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若D 匡20米,米.16.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以17.如图,B 处在A 处的南偏西40°方向,C 处在A 处的南偏东12°方向,C 处在B 处得北偏东将厶ABC 沿 DE EF 翻折,顶点A, B 均落在点O 处,且EA 与EB 重合于线段 EO 若/ CD S / CFO则/ ACB 的度数为 的.18. 如图, 将一副三角板的直角顶点重合,摆放在桌面上,若/BOcZ / AOD 则/ AOD=D19.如图, 边长为 a 、b 的矩形,它的周长为 14,面积为10,则a 2b+ab 2的值为-^4500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有 80°方向,20.如图, 则AB 的长=88°,则/ C的度数为=三、解答题:21.计算:(1) 0.240.44 12.542 2 (2) 4(a 2) -7(a 3)(a-3) 3(a -1)22.因式分解:3 (1)- 2x +18x.“、4 2 2 4 (2) x - 8x y +16y .23.先化简后求值2 (x2y+xy2)- 2 (x2y - 3x) - 2xy2-2y 的值,其中x= - 1 , y=2 .24. 21.( 1)解不等式:2x - 1 > 3x+1,并把解集在数轴上表示出来.(2)解不等式组: r4(x+l)<7x+lC,并写出所有的整数解. x" "V25.规定两数a, b之间的一种运算,记作(a, b):如果a°=b,那么(a, b)=c.例如:因为23=8,所以(2 , 8)=3 .(1)根据上述规定,填空:1(3, 27) = ______ , ( 5, 1) = ______ , (2, _) = ________ .4(2)小明在研究这种运算时发现一个现象:(3n, 4n) = ( 3, 4)小明给出了如下的证明: 设(3n, 4n) =乂,则(3n) x=4n,即(3x) n=4n所以 3x =4,即(3, 4) =x , 所以(3n , 4n ) = (3, 4).请你尝试运用这种方法证明下面这个等式:26.如图,每个小正方形的边长为 1,在方格纸内将厶ABC 经过一次平移后得到△ A B' C',图中标出了点B 的对应点B',利用网格点画图:(1) 补全△ A B' C';(1)若 OE 平分/ BOA AF 平分/ BAD / OBA 42°,则/ OGA1 1(2)若/ GOA- / BOA / GAD- / BAD / OBA 42°,则/ OGA;33(3) 将(2)中的“/ OBA 42。
苏科版2018-2019学年七年级(下)期末数学试卷 (解析版)
2018-2018学年七年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)9的内角和为()A.180°B.360°C.540°D.720°2.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.3.(3分)下列由左到右的变形中,因式分解正确的是()A.x2﹣1=(x+1)(x﹣1)B.(x+1)2=x2+2x+1C.x2﹣2x+1=x(x﹣2)+1D.(x+1)(x﹣1)=x2﹣14.(3分)满足不等式x+1>0的最小整数解是()A.﹣1B.0C.1D.25.(3分)已知x2+4x+k是一个完全平方式,则常数k为()A.2B.﹣2C.4D.﹣46.(3分)用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.B.C.D.7.(3分)已知a=(﹣)0,b=﹣2﹣2,c=(﹣2)﹣2,则a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<a<c D.b<c<a8.(3分)对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程)9.(3分)如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2=°.10.(3分)命题“若a=b,则﹣a=﹣b”的逆命题是.11.(3分)太阳的半径约为700000000米,数据700000000用科学记数法表示为.12.(3分)计算:(b2)3÷b=.13.(3分)如图,△ABC中,∠1=∠2,∠BAC=60°,则∠APB=°.14.(3分)已知方程组,则a+b+c=.15.(3分)计算:(﹣9)1009×()2018=.16.(3分)(2+1)(22+1)(24+1)(28+1)(216+1)+1=.三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)分解因式:(1)x2﹣3x;(2)2a2﹣4a+2.18.(6分)解方程组:19.(6分)化简并求值:(n+2)(2n﹣1)﹣2n2,其中n=.20.(6分)利用数轴确定不等式组的解集.21.(6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作:(1)将△ABC先向右平移2个单位,再向上平移4个单位,画出平移后的△A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的位置关系为、数量关系为;(3)画出△ABC的AB边上的中线CD以及BC边上的高AE.22.(6分)已知:如图,是一个形如“5”字的图形,AC∥DE,AB∥CD,∠D+∠E=180°.求证:∠A=∠E.证明:∵(已知)∴∠A+∠C=180°()∵AC∥DE()∴∠=∠D()又∠D+∠E=180°(已知)∴∠A=∠E()23.(8分)已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=4,求m的值;(2)若方程组的解满足x+y<0,求m的取值范围.24.(8分)一家公司加工蔬菜,有粗加工和精加工两种方式,如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?25.(8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元.小华:我有1元和5角的硬币共13枚,总币值小于8.5元.小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元.这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.【定理证明】已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.【定理推论】如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB=°;(2)若∠A=80°,则∠DBC+∠ECB=°.【拓展延伸】如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP=°;(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为;(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)四边形的内角和为()A.180°B.360°C.540°D.720°【分析】根据多边形的内角和公式即可得出结果.【解答】解:四边形的内角和=(4﹣2)•180°=360°.故选:B.【点评】本题主要考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.2.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案.【解答】解:∵只有C的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点评】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.(3分)下列由左到右的变形中,因式分解正确的是()A.x2﹣1=(x+1)(x﹣1)B.(x+1)2=x2+2x+1C.x2﹣2x+1=x(x﹣2)+1D.(x+1)(x﹣1)=x2﹣1【分析】直接利用因式分解的定义以及整式的乘法运算法则分别判断得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),由左到右的变形中,因式分解正确,符合题意;B、(x+1)2=x2+2x+1,是整式乘法,不合题意;C、x2﹣2x+1=x(x﹣2)+1,不是因式分解,不合题意;D、(x+1)(x﹣1)=x2﹣1,是整式乘法,不合题意;故选:A.【点评】此题主要考查了公式法分解因式以及整式的乘法运算,正确掌握相关定义是解题关键.4.(3分)满足不等式x+1>0的最小整数解是()A.﹣1B.0C.1D.2【分析】先移项得出不等式的解集,在此范围内确定不等式的最小整数解可得.【解答】解:∵x+1>0,∴x>﹣1,则不等式的最小整数解为0,故选:B.【点评】本题考查的是解一元一次不等式,在解答此类题目是要注意,不等式的两边同时除以一个负数时不等号的符号要改变,这是此类题目的易错点.5.(3分)已知x2+4x+k是一个完全平方式,则常数k为()A.2B.﹣2C.4D.﹣4【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+2)2=x2+4x+4,∴k=4,故选:C.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.6.(3分)用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.B.C.D.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=18,再列出方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:.故选:B.【点评】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.7.(3分)已知a=(﹣)0,b=﹣2﹣2,c=(﹣2)﹣2,则a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<a<c D.b<c<a【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:∵a=(﹣)0=1,b=﹣2﹣2=﹣,c=(﹣2)﹣2=,∴b<c<a.故选:D.【点评】此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.8.(3分)对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40【分析】由题意可知:规定{x}表示不小于x的最小整数,当{}=3时,可以确定的取值范围,进而得到关于x的一元一次不等式组,解之即可.【解答】解:有题意得:,解不等式①得:x>16,解不等式②得:x≤26,不等式组的解集为16<x≤26,20符合x的取值范围.故选:B.【点评】本题考查解一元一次不等式组,根据数量关系,列出一元一次不等式组是解题的关键.二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程)9.(3分)如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2=70°.【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由对顶角相等,即可求得∠2的度数.【解答】解:∵a∥b,∴∠3=∠1=70°,∵∠2与∠3是对顶角,∴∠2=70°.故答案为:70.【点评】此题考查了平行线的性质与对顶角的运用.解题的关键是数形结合思想的应用.10.(3分)命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【分析】根据命题的逆命题进行解答即可.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.11.(3分)太阳的半径约为700000000米,数据700000000用科学记数法表示为7×108.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:700000000=7×108,故答案为:7×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)计算:(b2)3÷b=b5.【分析】利用单项式除单项式法则计算即可得到结果.【解答】解:(b2)3÷b=b5,故答案为:b5【点评】此题考查了整式的除法,涉及的知识有:同底数幂的乘法,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.13.(3分)如图,△ABC中,∠1=∠2,∠BAC=60°,则∠APB=120°.【分析】依据∠1=∠2,∠BAC=∠BAP+∠1=60°,即可得出∠BAP+∠2=60°,进而得到△ABP中,∠P=180°﹣60°=120°.【解答】解:∵∠1=∠2,∠BAC=∠BAP+∠1=60°,∴∠BAP+∠2=60°,∴△ABP中,∠P=180°﹣60°=120°,故答案为:120.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.14.(3分)已知方程组,则a+b+c=2.【分析】方程组三方程相加即可求出所求.【解答】解:,①+②+③得:2(a+b+c)=4,则a+b+c=2,故答案为:2【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(3分)计算:(﹣9)1009×()2018=﹣1.【分析】直接利用幂的乘方运算法则以及积的乘方运算法则将原式变形得出答案.【解答】解:(﹣9)1009×()2018=(﹣32)1009×()2018=﹣32018×()2018=﹣(3×)2018=﹣1.故答案为:﹣1.【点评】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.16.(3分)(2+1)(22+1)(24+1)(28+1)(216+1)+1=232.【分析】原式乘以(2﹣1)后,利用平方差公式依次计算,合并即可得到结果.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)+1=(24﹣1)(24+1)(28+1)(216+1)+1=(28﹣1)(28+1)(216+1)+1=(216﹣1)(216+1)+1=232﹣1+1=232.故答案为:232【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)分解因式:(1)x2﹣3x;(2)2a2﹣4a+2.【分析】(1)原式提取公因式即可得到结果;(2)原式提取2,再利用完全平方公式分解即可.【解答】解:(1)原式=x(x﹣3);(2)原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.(6分)解方程组:【分析】直接利用代入消元法解方程得出答案.【解答】解:,把②代入①得:2(1﹣y)+3y=5,解得:y=3,把有代入②得:x=1﹣3,解得:x=﹣2,故方程组的解为.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.19.(6分)化简并求值:(n+2)(2n﹣1)﹣2n2,其中n=.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把n的值代入计算即可求出值.【解答】解:原式=2n2+3n﹣2﹣2n2=3n﹣2,当n=时,原式=1﹣2=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(6分)利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.21.(6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作:(1)将△ABC先向右平移2个单位,再向上平移4个单位,画出平移后的△A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的位置关系为AA1∥BB1、数量关系为AA1=BB1;(3)画出△ABC的AB边上的中线CD以及BC边上的高AE.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用平移的性质直接得出线段之间的关系;(3)利用基本作图方法得出CD,AE即可.【解答】解:(1)如图:△A1B1C1,即为所求;(2)线段AA1、BB1的位置关系为:AA1∥BB1、数量关系为:AA1=BB1;故答案为:AA1∥BB1,AA1=BB1;(3)如图所示:CD,AE即为所求.【点评】此题主要考查了平移变换以及平移的性质,正确得出对应点位置是解题关键.22.(6分)已知:如图,是一个形如“5”字的图形,AC∥DE,AB∥CD,∠D+∠E=180°.求证:∠A=∠E.证明:∵AB∥CD(已知)∴∠A+∠C=180°(两直线平行,同旁内角互补)∵AC∥DE(已知)∴∠C=∠D(两直线平行,内错角相等)又∠D+∠E=180°(已知)∴∠A=∠E(等角的补角相等)【分析】依据AB∥CD可得∠A+∠C=180°,依据AC∥DE可得∠C=∠D,再根据∠D+∠E=180°,即可得到∠A=∠E.【解答】解:∵AB∥CD(已知)∴∠A+∠C=180°(两直线平行,同旁内角互补)∵AC∥DE(已知)∴∠C=∠D(两直线平行,内错角相等)又∠D+∠E=180°(已知)∴∠A=∠E(等角的补角相等)故答案为:AB∥CD;两直线平行,同旁内角互补;已知;C;两直线平行,内错角相等;等角的补角相等.【点评】本题主要考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.23.(8分)已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=4,求m的值;(2)若方程组的解满足x+y<0,求m的取值范围.【分析】(1)用加减消元法解出x和y的值,把x和y用含有m的式子表示,代入x ﹣y=4,求出m的值即可,(2)把x和y用含有m的式子表示,代入x+y<0,得到关于m的一元一次不等式,解之即可.【解答】解:(1),解得:,代入x﹣y=4得:m+2=4,解得:m=2,故m的值为2,(2)把x=2m﹣2,y=m﹣4代入x+y<0得:3m﹣6<0,解得:m<2,故m的取值范围为:m<2.【点评】本题考查解二元一次方程组和解一元一次不等式,解题的关键:(1)正确找出等量关系列出关于m的一元一次方程,(2)根据不等量关系列出关于m的一元一次不等式.24.(8分)一家公司加工蔬菜,有粗加工和精加工两种方式,如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?【分析】设粗加工蔬菜为x吨,精加工蔬菜为y吨,根据14天要加工完成150吨蔬菜,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设粗加工蔬菜为x吨,精加工蔬菜为y吨,根据题意得:,解得:.答:粗加工蔬菜为120吨,精加工蔬菜为30吨.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元.小华:我有1元和5角的硬币共13枚,总币值小于8.5元.小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元.这三人身上哪一个的5角硬币最多呢?请写出解答过程.【分析】设小军身上有1元硬币x枚,5角硬币y枚,根据13枚硬币共9元,即可得出关于x,y的二元一次方程组,解之可得出y的值;设小华身上有5角硬币m枚,则有1元硬币(13﹣m)枚,根据总币值小于8.5元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;设小峰身上有1元硬币a枚,5角硬币b枚,根据总币值4元,即可得出关于a,b的二元一次方程,结合a>0可得出b<8.综上,即可得出结论.【解答】解:设小军身上有1元硬币x枚,5角硬币y枚,根据题意得:,解得:,∴小军身上有5角硬币8枚;设小华身上有5角硬币m枚,则有1元硬币(13﹣m)枚,根据题意得:13﹣m+0.5m<8.5,解得:m>10,∴小军身上有5角硬币至少10枚;设小峰身上有1元硬币a枚,5角硬币b枚,根据题意得:a+0.5b=4,∴b=8﹣2a,∴小峰身上有5角硬币不超过8枚.综上所述,小华身上5角硬币最多.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及二元一次方程的应用,通过解方程(方程组、不等式)求出三人身上5角硬币的枚数(或范围)是解题的关键.26.(12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.【定理证明】已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.【定理推论】如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=∠A+∠ABC.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB=70°;(2)若∠A=80°,则∠DBC+∠ECB=260°.【拓展延伸】如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP=230°;(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为∠P=∠A+100°;(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.【分析】【定理证明】方法一:过点A作直线MN∥BC,根据平行线的性质和平角的定义可得结论;方法二:延长BC到点D,过点C作CE∥AB,根据平行线的性质和平角的定义可得结论;【定理推论】根据三角形的内角和定理和平角的定义可得结论;【初步运用】(1)根据三角形的外角等于与它不相邻的两个内角的和列式可得结论;(2)根据三角形的内角和得:∠ABC+∠ACB=100°,由两个平角的和可得结论;【拓展延伸】(1)连接AP,根据三角形内角和定理的推论可得等式,将两个等式相加可得结论;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,综合可得结论;(3)如图⑥,作辅助线,构建三角形PQC,根据(1)的结论得:∠DBP+∠ECP=∠A+∠BPC,和角平分线的定义,证明∠MBP=∠PQC,可得结论.【解答】【定理证明】证明:方法一:过点A作直线MN∥BC,如图所示,∴∠MAB=∠B,∠NAC=∠C,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°;(3分)方法二:延长BC到点D,过点C作CE∥AB,如图所示,∴∠A=∠ACE,∠B=∠ECD,∵∠ACB+∠ACE+∠ECD=180°,∴∠A+∠B+∠ACB=180°;(3分)【定理推论】∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠ABC,(4分)故答案为:∠A+∠ABC;【初步运用】(1)∵∠DBC=∠A+∠ACB,∴∠ACB=∠DBC﹣∠A=150°﹣80°=70°,故答案为:70;(5分)(2)∵∠A=80°,∴∠ABC+∠ACB=100°,∴∠DBC+∠ECB=360°﹣100°=260°,故答案为:260;(6分)【拓展延伸】(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=80°,∠P=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=80°+130°=230°,故答案为:230;(7分)(2)∠P=∠A+100°(9分)理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE =y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=50°,∴∠P=∠A+100°,故答案为:∠P=∠A+100°;(3)证明:延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN(12分)【点评】本题考查的是三角形内角和的证明、三角形外角的性质的推理及运用、平行线的性质,根据题意作出辅助线,构造出三角形是解答此题的关键.。
2018-2019学年苏科版初一下数学期末试卷及答案
1 (2) S ′+ S″= 2S…………………………………………………………………………
1
(4)
∵ S△ + PAB S△ = PCD 2S= S△ , BCD S△ = PAB 3, S△ = PBC 7 ,
2分 4分
∴ S△ = PBD S 四 边 形 - PBCD S△ = BCD S△ + PBC S△ - PCD S△ , BCD
22.解:分别设 (1) 、 (3) 班得分为 x 分、 y 分………………………………………… , x= 2y - 40
…………………………………………………………………
解得
x = 60 , y= 50 .
………………………………………………………………………………
2x-y= 0, 3x-2y= 5.
(2)解不等式组:
5x - 1> 2x - 4
1 x+2 2x≤ 4
.
22.( 8 分)某校春季运动会比赛中,七年级 (1) 班、 (3) 班的竞技实力相当.关于比赛结果,甲同学说: (3) 班得分比为 6:5 ;乙同学说: (1) 班得分是 (3) 班得分的 2 倍少 40 分.求两个班得分各是多少?
D. (x + 2)(x - 2) = x2- 4
4.已知等腰三角形的两条边长分别是 7 和 3,则第三条边的长可能为…………(
)
A .8
B .7
C.4
D. 3
5 .下列命题中,是真命题的是……………………………………………………(
) A .同位角相等
B.相等的角是对顶角 C.有且只有一条直线与已知直线垂直
∴∠ B=∠ CDF…………………………………………………………………………
江苏省宿迁市七年级下学期数学期末考试试卷
江苏省宿迁市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七上·蓬江期末) 下列图形中,∠1与∠2是对顶角的有()A .B .C .D .2. (2分)某地上半年每月的平均气温是5℃,8℃,12℃,18℃,24℃,30℃,为了表示出气温变化的情况可以把它绘制成()A . 扇形统计图B . 折线统计图C . 条形统计图D . 以上都可以3. (2分) (2019七下·随县月考) 下列说法中正确的是()A . 过一点有且只有一条直线平行于已知直线B . 两条直线被第三直线所截,同位角相等C . 两条直线有两种位置关系:平行、相交D . 同一平面内,垂直于同一条直线的两条直线平行4. (2分)若a<0,点M(1,a)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)为了了解本校三个年级学生身高的分布情况,四位同学做了不同的调查:甲、乙、丙三个同学分别向七年级、八年级、九年级的全体同学进行了调查,丁分别向七年级、八年级、九年级的1班进行了调查.你认为调查较科学的是()A . 甲B . 丙C . 丁D . 乙6. (2分)如果直线a、直线b都和直线c平行,那么直线a和直线b的位置关系是()A . 相交B . 平行C . 相交或平行D . 不相交7. (2分)如果a>b,那么下列结论一定正确的是()A . a﹣3<b﹣3B . 3﹣a<3﹣bC . ac2>bc2D . a2>b28. (2分)(2016·兖州模拟) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2009. (2分)若方程组的解是,则方程组的解是()A .B .C .D .10. (2分)(2016·温州) 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A . (0,3)B . (3,0)C . (6,4)D . (1,4)11. (2分)下列命题中的假命题是()A . 对顶角相等B . 内错角相等,两直线互相平行C . 同位角相等D . 平行于同一条直线的两直线互相平行12. (2分)某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A .B .C .D .二、填空题 (共6题;共8分)13. (2分) (2017七下·重庆期中) 在二元一次方程﹣ x+3y=2中,当x=4时,y=________;当y=﹣1时,x=________.14. (1分) (2015八上·句容期末) 用字母表示的实数m﹣2有算术平方根,则m取值范围是________.15. (1分) (2017七下·兰陵期末) 在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为________人.16. (1分)(2019·甘肃) 不等式组的最小整数解是________.17. (1分) (2017七下·睢宁期中) 如图,在△ABC,中,∠BAC=90°,沿AD折叠△ABC,使点B恰好落在AC边上的点E处,若∠C=20°,则∠ADE=________.18. (2分) (2017七下·兴隆期末) 对于X、Y定义一种新运算“*”:X*Y=2X+3Y,等式右边是通常的加法和乘法的运算.已知:3*5=2×3+3×5=21,4*7=2×4+3×7=29,那么1*2=________;2*(﹣3)=________.三、解答题 (共8题;共71分)19. (10分)(2017·市中区模拟) 根据问题进行计算:(1)计算:(x+3)(x﹣3)﹣x(x﹣2)(2)解不等式组:.20. (5分)(2011·衢州) 解不等式,并把解在数轴上表示出来.21. (10分) (2017七下·汶上期末) 综合题:探索发现规律拓展应用题(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE=130°,求∠C的度数;(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE与∠C的数量关系,并说明理由.22. (9分)(2018·邗江模拟) 某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=________,n=________,并补全条形统计图________;(2)扇形统计图中“C组”所对应的圆心角的度数是________;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.23. (5分) (2017七下·东城期末) 解不等式组:,并把它的解集在数轴上表示出来.24. (12分) (2017九上·德惠期末) 如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3 .(1)△ABC与△A1B1C1的位似比等于________;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为________.25. (10分)(2017·锦州) 某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:销售时段销售数量销售收入甲种型号乙种型号第一周3台7台2160元第二周5台14台4020元(1)求甲、乙两种型号蓝牙音箱的销售单价;(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台.26. (10分) (2019七下·阜阳期中) 在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级美联点”为Q(3 +4,1+3 ),即Q(7,13).(1)已知点A(一2,6)的“ 级关联点”是点,求点的坐标。
2018-2019学年苏科版七年级数学下册期末试卷(附答案)
CB 向点 B 作匀速移动,点 G 从点 B 出发沿 BD 向点 D 匀速移动,三个点同时出发,当
有一个点到达终点时,其余两点也随之停止运动,当
t=Βιβλιοθήκη 时,△ DEG 和△ BFG
全等.
三、解答题:
17.( 6 分)计算:
(
1)﹣
12017+
(
π﹣
3)
0
+
(
) ﹣1
( 2)(﹣ a) 3?a2+( 2a4) 2÷ a3
三角形的一个外角等于两个内角的和.其中是真命题的个数是(
)
A.4 个
B. 3 个
C.2 个
D.1 个
8.( 2 分)在数学中,为了书写简便, 18 世纪数学家欧拉就引进了求和符号“
”.如记
= 1+2+3+ … +( n﹣ 1) +n, ( x+k)=( x+3) +( x+4 ) +… +( x+n);已知
[(
x+
k)(
x﹣
k+1)
]=
2
2x +2x+
m,则
m 的值是(
)
A.﹣ 40
B.﹣ 8
二、填空题:(每题 2 题,共 16 分)
C. 24
D.8
9.( 3 分)一种花瓣的花粉颗粒直径约为 0.0000065 米,将数据 0.0000065 用科学记数法表
示为
.
10.( 3 分)若 xn= 4, yn= 9,则( xy) n=
2018-2019 学年七年级(下)期末数学试卷
一、选择题(每题 2 分,共 16 分)
2018-2019学年苏科版初一数学七年级第二学期期末试卷(含答案)
2018-2019学年七年级(下)期末数学试卷
一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一
项是符合题目要求的)
1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是()
A.B.C.D.
2.(2分)某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为()
A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×107 3.(2分)下列各式从左边到右边的变形,是因式分解的是()
A.ab+ac+d=a(b+c)+d B.a 2
﹣1=(a+1)(a﹣1)
C.(a+b)2=a2+2ab+b2D.a2b=ab?a
4.(2分)二元一次方程2x+3y+10=35的一个解可以是()
A.B.C.D.
5.(2分)已知a>b,则下列不等关系正确的是()
A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+2
6.(2分)如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC于点D、E,若∠ADE=30°,则∠C的度数为()
A.30°B.40°C.50°D.60°
7.(2分)命题“若a=b,则|a|=|b|”与其逆命题的真假性为()A.该命题与其逆命题都是真命题
B.该命题是真命题,其逆命题是假命题
C.该命题是假命题,其逆命题是真命题。
2018—2019学年第二学期七年级数学期末检测试题3江苏版苏科版七下含答案解析
2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】03第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式计算中,正确的是( )A.B.C.D.2.不等式的解集在数轴上表示正确的是A.B.C.D.3.若a<b,则下列不等关系中一定正确的是( )A.c+a<c+b B.c-a<c-b C.ac2<bc2D.4.下列各式从左边到右边的变形是因式分解的是A.B.C.D.5.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A.1个B.2个C.3个D.4个6.下列句子:①延长线段到点;②两点之间线段最短;③与不相等;④月份有个星期日;⑤用量角器画;⑥任何数的平方都不小于吗?其中是命题的有()个.A.2 B.3 C.4 D.57.如图,给出下列条件:其中,能判断AB∥CD的是()①∠1=∠2 ②∠3=∠4 ③∠B=∠DCE ④∠B=∠D.A.①或④B.②或③C.①或③D.②或④.8.两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A.4个B.5个C.8个D.10个9.若关于、的方程组的解是方程的一个解,则的值为()A.2B.-2C.1D.-110已知不等式组的解集为,则得取值范围是()A.B.C.D.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11______.12计算: =______.13已知一粒大米的质量约为0.000021㎏,这个数用科学记数法表示为____kg.14命题“如果,那么”的逆命题是______.15不等式的最大..整数解是______.16若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=_____.17图,已知,,,则________________.18如图1所示为一张长为m,宽为n(m<n)的小长方形纸片,现将8张该纸片按如图2所示的方式无缝隙不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分面积差为S,当BC长度变化时,按照同样的方式放置,S却始终保持不变,则此时=______.三、解答题(本大题共8小题,共96分)19把下列各式因式分解:;;.20下列方程组或不等式组(1)(2)21求代数式的值,其中,,.22画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.23解下列不等式(组),并把解集在数轴上表示出来:(1);(2)24已知关于x、y的方程组,为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.25如图,直线分别与直线、交于点、,平分,平分,且// .求证://.26(1)计算:(n为正整数).(2)观察下列各式:1×5+4=32…………△,3×7+4=52…………△,5×9+4=72…………△,……探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】03第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式计算中,正确的是( )A.B.C.D.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】B【解析】分析:根据平方差公式可判断选项A;根据单项式乘以单项式可以判断选项B;根据积的乘方可以判断选项C;根据差的完全平方公式可以判断D.详解:,故该选项错误;B. ,正确;C. ,故该选项错误;D. ,故该选项错误.故选B.点睛:本题主要考查平方差公式、完全平方公式、单项式乘以单项式以及积的乘方,熟练掌握公式以及运算法则是解答此题的关键.2.不等式的解集在数轴上表示正确的是A.B.C.D.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】C【解析】【分析】先解不等式得到,然后利用数轴表示此解集.【详解】解不等式,得,则解集用数轴表示为:.故选:.【点睛】本题考查了用数轴表示不等式的解集:一是定界点,一般在数轴上只标出原点和界点即可.定界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.二是定方向,定方向的原则是:“小于向左,大于向右”.3.若a<b,则下列不等关系中一定正确的是( )A.c+a<c+b B.c-a<c-b C.ac2<bc2D.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】A【解析】分析:根据不等式的基本性质对各选项分析判断后利用排除法求解.【解答】解:A、不等式两边都加上c,不等号的方向不变,故A选项正确;B、不等式两边都乘以-1,不等号的方向改变,故B选项错误;C、不等式的两边都乘以c2,当c=0时,变为等式,故C选项错误;D、不等式的两边同除以c,当c<0时,不等号的方向要改变,故D选项错误.故选:A.点睛:本例重在考查不等式的三条基本性质,特别是性质3,两边同乘以( 或除以)同一个负数时,一定要改变不等号的方向! 这条性质是初学者最易出错也经常出错的地方.4.下列各式从左边到右边的变形是因式分解的是A.B.C.D.【来源】江苏省扬州市江都区2016-2017学年期末【答案】D【解析】A、没把一个多项式转化成几个整式积的形式,故A错误;B.是乘法交换律,故B错误;C.是整式的乘法,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.5.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A.1个B.2个C.3个D.4个【来源】江苏省常州市2016-2017学年期末【答案】B【解析】:①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题.其中属于真命题的有2个.故选:B.6.下列句子:①延长线段到点;②两点之间线段最短;③与不相等;④月份有个星期日;⑤用量角器画;⑥任何数的平方都不小于吗?其中是命题的有()个.A.2 B.3 C.4 D.5【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】B【解析】分析:要判断是否是个完整的句子(通常为陈述句),并且能够做出肯定或者否定的判断,依据这些进行判断是否为命题.详解: 延长线段AB到点C, 用量角器画 AOB=90°是描述性语言,没有对某个条件做判断它们都不是命题;两点之间线段最短, 与不相等, 月份有个星期日,都是命题;任何数的平方都不小于0吗?是疑问句,它不是命题.故选B.点睛:本题考查了命题的识别,表示判断的语句叫做命题,命题通常由条件(题设)和结论(题断)两部分组成,条件是已知的事项,结论是由已知的事项推断出的事项.7.如图,给出下列条件:其中,能判断AB∥CD的是()①∠1=∠2 ②∠3=∠4 ③∠B=∠DCE ④∠B=∠D.A.①或④B.②或③C.①或③D.②或④.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】C【解析】①∵∠1=∠2 , AB CD,故①正确;②∵∠3=∠4, AD BC,故 不正确;③∵∠B=∠DCE, AB CD,故③正确;④∵∠B=∠D不能判定两直线平行,故不正确.故选C.8.两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A.4个B.5个C.8个D.10个【来源】江苏省常州市2016-2017学年期末【答案】A【解析】根据三角形的三边关系,得第三根木棒的长大于2cm而小于12cm.又第三根木棒的长是偶数,则应为4cm,6cm,8cm,10cm.共可以构成4个不同的三角形故选:A.9.若关于、的方程组的解是方程的一个解,则的值为()A.2B.-2C.1D.-1【来源】江苏省南京玄武区2016年期末考试【答案】A【解析】(1)−(2)得:6y=−3a,∴y=−,代入(1)得:x=2a,把y=−,x=2a代入方程3x+2y=10,得:6a−a=10,即a=2.故选A.10已知不等式组的解集为,则得取值范围是()A.B.C.D.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】D【解析】∵不等式组的解集为,故选D.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11______.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】【解析】【分析】根据有理数指数幂的运算法则计算即可.【详解】.故答案为:.【点睛】本题考查有理数指数幂的运算,解题时要熟练掌握基本的运算法则和运算性质.12计算: =______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】1【解析】==1故答案为:1.13已知一粒大米的质量约为0.000021㎏,这个数用科学记数法表示为____kg.【来源】2017年山东省淄博市高青县中考数学一模试卷【答案】2.1×10-5【解析】.故答案为:.点睛:在把一个绝对值小于1的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②等于原来的数中从左至右第1个非0数字前面0的个数(包括小数点前面的0).14命题“如果,那么”的逆命题是______.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】如果,那么a=b.【解析】由题意得,如果,那么a=b.【点睛】如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题叫做互逆命题,其中一个命题叫做另一个命题的逆命题.15不等式的最大..整数解是______.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】2.【解析】,,∴不等式的最大整数解是2.16若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=_____.【来源】吉林省2018届九年级中考数学全真模拟试卷【答案】3【解析】解:∵m﹣n=﹣1,∴原式=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.17图,已知,,,则________________.【来源】江苏省常州市2017-2018年第二学期期末联考【答案】【解析】分析: 反向延长DE交AC于点F.由AB∥DE得∠A=∠AFD,从而∠CFD=1180°-∠A.由三角形外角的性质得∠CDE=∠A CD+∠CFD,将以上两个式子整理即可得出答案.详解: 反向延长DE交AC于点F.∵AB∥DE,∴∠A=∠AFD,∴∠CFD=180°-∠AFD =180°-∠A.∵∠CDE=∠A CD+∠CFD,∴∠CDE=∠ACD+180°-∠A,∴∠ACD=∠CDE+∠A-180°=°.故答案为:.点睛:本题考查了平行线的性质,三角形外角的性质,熟练掌握两直线平行,内错角相等;三角形的外角等于和它不相邻的两个内角的和是解答本题的关键.18如图1所示为一张长为m,宽为n(m<n)的小长方形纸片,现将8张该纸片按如图2所示的方式无缝隙不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分面积差为S,当BC长度变化时,按照同样的方式放置,S却始终保持不变,则此时=______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】3.【解析】分析:表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出m与n的关系式,由S却始终保持不变,得S与m,n之间的关系式,从而可求出结果.详解:如图,各点标记为:左上角阴影部分的长为AE,宽为AP=3m,右下角阴影部分的长为FC,宽为n,∵AD=BC,即AE+ED=AE+n,BC=BF+FC=4m+FC,∴AE+n=4m+FC,即AE−FC=4m−n,∴阴影部分面积之差S=AE⋅AP−FC⋅CG=3mAE−nPC=3m(FC+4m−n)−nFC=(3m−n)FC+12m2−3nm,则3m−n=0,即n=3m.∵S却始终保持不变,∴S=(12m2−3nm)==3.故答案为:3.点睛:此题考查了整式的混合运算的运用,弄清题意是解本题的关键.三、解答题(本大题共8小题,共96分)19把下列各式因式分解:;;.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】(1),(2),(3)【解析】【分析】(1)直接利用提取公因式法分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案.【详解】解:;;..【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 20下列方程组或不等式组(1)(2)【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】(1).方程组的解为 (2).不等式组的解集为【解析】(1)解:②-2×①可得 x=6,将x=6代入①可得 y=-3则方程组的解为x=6,y=-3。
2018-2019学年度苏科版七年级数学下册期末测试题含答案
2018–2019学年度第二学期期末七年级调研监测数 学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 若a >b ,下列不等式变形中,正确的是.A 5a -<5b - .B a 23->b 23- .C a 4>b 4 .D 3a ->3b -2. 下列方程组是二元一次方程组的是.A ⎩⎨⎧=+=-4z y 3y x .B ⎪⎩⎪⎨⎧=+=-1y 3x 3y x 1.C ⎩⎨⎧=-=+5y x 34x y x .D ⎩⎨⎧=--=1x 4y 3y 5x 3. 用科学计数法表示2006000.0-,正确的是.A 6102.6-⨯ .B 6102.6-⨯- .C 5102.6-⨯ .D 5102.6-⨯- 4. 下列式子中,计算正确的是.A 222b ab 2a )b a (+-=-- .B 2a )2a )(2a (2-=-+ .C 10a 3a )2a )(5a (2-+=-+ .D 623a 6a 2a 3=⋅5. 已知不等式组⎩⎨⎧〈〉ax 1x 无解,则a 的取值范围是 .A 1a ≤ .B 1a ≥ .C a <1 .D a >16.下列句子:①延长线段AB 到点C ;②两点之间线段最短;③α∠与β∠不相等;④2月份有4个星期日;⑤用量角器画o 90AOB =∠;⑥任何数的平方都不小于0吗?其中是命题的有( ▲ )个..A 2 .B 3 .C 4 .D 5 7. 如图所示,F E D C B A ∠+∠+∠+∠+∠+∠的度数为 .A o 180 .B o 360 .C o 540 .D o 7208. 我们知道:331=、932=、2733=、8134=、24335=……, 通过计算,我们可以得出20193的计算结果中个位上的数字为.A 3 .B 9 .C 7 .D 1二、填空题(本大题共10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. “同旁内角互补,两直线平行”的逆命题是 ▲ . 10. 已知方程01y 3x 2=+-,用含y 的代数式表示x 为 ▲ .11. 小丽种了一棵高cm 75的小树,假设小树平均每周长高cm 3,x 周后这棵小树的高度不超过cm 100,所列不等式为 ▲ .12. 已知代数式m n m y x 3+-与n 34y x 5是同类项,则=m ▲ ,=n ▲ . 13. 已知21xy -=,5y x =+,则=++3223x y 2y x 4y x 2 ▲ . 14. 如图,在AB C ∆中,点D 、E 分别在AB 、BC 上,且DE //AC ,o 80A =∠,o 55BED =∠, 则=∠AB C ▲ .15. 若72x )2m (m 3≤+--是关于x 的一元一次不等式,则=m ▲ . 16. 已知方程组⎩⎨⎧=-=-4y 2x 5y x 2,则=-y x ▲ .17. 某天,小明和同学做了一个游戏,游戏规定:小明从点A 出发,沿直线前进m 2后向左转o 45,再沿直线前进m 2后向左转o 45……照这样走下去,小明第一次回到出发点A ,一共走了 ▲ 米.18. 已知5552a -=、3333b -=、2226c -=,比较a 、b 、c 的大小关系,用“<”号连接 为 ▲ .(第7题)(第14题)三、解答题(本大题共10题,共96分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤). 19. (本题满分8分) (1)计算:2)2(4)31(3o 2-÷-+⨯-- (2)因式分解:100a 42-20. (本题满分8分) 下列解方程组: (1)⎩⎨⎧-=-=-5y 3x 24y 2x 5 (2)⎩⎨⎧-==-x57y 17y 3x 421. (本题满分8分) 解不等式7x 2x31-≥-,将解集在数轴上表示出来,并写出符合条件的x 的非负整数解.鸡兔同笼,鸡和兔一共有42条腿,如果把鸡和兔的数量互换,一共有36条腿,那么原来有几只鸡,几只兔呢?23. (本题满分10分)已知关于x 、y 的方程组⎩⎨⎧-=-+=+1m 5y x 9m 3y x 中,x 的值为正数,y 的值为非负数,求符合条件的m 的整数值.24. (本题满分10分)如图,直线EF 分别与直线AB 、CD 交于点M 、N ,MG 平分EMB ∠,NH 平分END ∠,且MG //NH .求证:AB //CD .(第24题)求不等式0)3x )(1x 2(〉+-的解集.解:根据“同号两数相乘,积为正”可得①⎩⎨⎧〉+〉-03x 01x 2或②⎩⎨⎧〈+〈-03x 01x 2 解①得:21x 〉解②得:3x -〈 ∴不等式的解集为21x 〉或3x -〈.请仿照上述方法求不等式0)1x )(4x 2(〈+-的解集.26. (本题满分10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.杨辉法则:如图,两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了n)b a (+(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,第三行的三个数1、2、1,恰好对应222b ab 2a )b a (++=+展开式中的系数;第四行的四个数1、3、3、1,恰好对应32233b ab 3b a 3a )b a (+++=+展开式中的系数.(1)根据上面的规律,写出5)b a (+的展开式;(2)利用上面的规律计算:1)3(5)3(10)3(10)3(5)3(2345+-⨯+-⨯+-⨯+-⨯+-.…某停车场收费标准分为中型汽车和小型汽车两种,某两天这个停车场的收费情况如下表:(1)中型汽车和小型汽车的停车费每辆多少元?(2)某天停车场共停车70辆,若收取的停车费用高于500元,则中型汽车至少有多少辆?28. (本题满分12分)在AB C ∆中,o100BAC =∠,ACB AB C ∠=∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且A ED A DE ∠=∠,设n DAC =∠. (1)如图①,当点D 在边BC 上时,且o36n =,则=∠B A D ▲ ,=∠C D E ▲ ; (2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想B AD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,B AD ∠和CDE ∠还满足(2)中的数量关系吗?请画出图形,并说明理由.②①③(第28题)2018–2019学年度第二学期期末七年级调研监测数学参考答案一、选择题(本大题共8小题,每题3分,共24分).1.C2.D3. B4. C5. A6. B7. B8. C 二、填空题(本大题共10小题,每题3分,共30分).9. 两直线平行,同旁内角互补 10. 21y 3x -= 11. 100x 375≤+12. 3 1 13. 25- 14. o 45 15. 4 16. 3 17. 16 18. c <a <b三、解答题(19—22题8×4=32分,23—26题10×4=40分,27—28题12×2=24分,共96分).19.(1)解:2)2(4)31(3o 2-÷-+⨯--2)8(1)3(2÷-+⨯-= …………………………………2分)4(9-+=5= …………………………………4分(2)解:100a 42-)25a (42-=…………………6分)5a )(5a (4-+= ………………………8分 20. (1) 解:①3⨯,得:12y 6x 15=- ③②2⨯,得:10y 6x 4-=- ④ ③-④, 得:22x 11=2x = ……………………3分将2x =代入①,得:4y 225=-⨯①②⎩⎨⎧-=-=-5y 3x 24y 2x 53y =所以原方程组的解是⎩⎨⎧==3y 2x ……………………………4分 (2) 解:把②代入①,得:17)x 57(3x 4=--2x =……………………………6分把2x =代入②,得:3257y -=⨯-=所以原方程组的解是⎩⎨⎧-==3y 2x ……………………………8分 21.7x 2x31-≥- 解:去分母,得 )7x (2x 31-≥-去括号,得 14x 2x 31-≥- 移项,得 114x 2x 3--≥-- 合并同类项,得 15x 5-≥-两边同时除以5-,得 3x ≤………………………5分 这个不等式的解集在数轴上表示如下:∴满足条件的非负整数解有:0、1、2、3.……………………………8分22. 解:设原来有x 只鸡,y 只兔………………………1分 根据题意,得:⎩⎨⎧=+=+36y 2x 442y 4x 2 ……………………4分解这个方程组,得⎩⎨⎧==8y 5x ……………………7分 ②①⎩⎨⎧-==-x 57y 17y 3x 4………………………7分答:原来有5只鸡,8只兔.………………………8分23. 解:①+②,得:8m 8x 2+=4m 4x +=①-②,得:10m 2y 2+-=5m y +-=所以原方程组的解是⎩⎨⎧+-=+=5m y 4m 4x ………………………4分由题可知:0x 〉 0y ≥∴⎩⎨⎧≥+-〉+05m 04m 4 解这个不等式得:5m 1≤〈-………………………8分∴符合条件的m 的整数值有:0、1、2、3、4、5.………………………10分24. 证明:∵MG 平分EMB ∠ NH 平分E N D ∠∴EMG 2EMB ∠=∠ E N H 2E N D ∠=∠…………………4分 ∵ MG //NH∴ENH EMG ∠=∠…………………6分 ∴END EMB ∠=∠…………………8分 ∴AB //CD …………………10分25. 解:根据“异号两数相乘,积为负”可得:①⎩⎨⎧〉+〈-01x 04x 2 或 ②⎩⎨⎧〈+〉-01x 04x 2…………………5分解①得:1-<x <2 解②得:不等式组无解∴原不等式的解集为:1-<x <2. …………………10分 26.(1)543223455b ab 5b a 10b a 10b a 5a )b a (+++++=+…………………5分 (2) 1)3(5)3(10)3(10)3(5)3(2345+-⨯+-⨯+-⨯+-⨯+-②①⎩⎨⎧-=-+=+1m 5y x 9m 3yx (第24题)5)13(+-= 5)2(-=32-= …………………10分27.解:(1)设中型汽车的停车费每辆x 元小型汽车的停车费每辆y 元…………………1分根据题意,得⎩⎨⎧=+=+300y 20x 18360y 35x 15 …………………3分 解这个方程组得⎩⎨⎧==6y 10x …………………5分 答:中型汽车的停车费每辆10元,小型汽车的停车费每辆6元.…………………6分 (2)设中型汽车有a 辆,小型汽车有)a 70(-辆…………………7分根据题意,得500)a 70(6a 10〉-+…………………9分 解这个不等式,得:20a 〉 …………………11分 答:中型汽车至少有21辆. …………………12分28. (1)o 64 o 32 ………………………………4分(2)解:CDE 2B AD ∠=∠ 证明:如图②在ABC ∆中,o 100BA C =∠ ∴o oo 402100180ACB ABC =-=∠=∠在ADE ∆中,n DAC =∠②∴2n 180AED ADE o -=∠=∠ ∵ACB ∠是DCE ∆的外角∴AED CDE ACB ∠+∠=∠∴ 2100n 2n 18040AED ACB CDE oo o-=--=∠-∠=∠ ∵o 100BAC =∠ n D AC =∠∴o 100n BAD -=∠∴CDE 2B AD ∠=∠ ………………………………8分 (3)解:CDE 2B AD ∠=∠证明:如图③在AB C ∆中,o 100BAC =∠ ∴o oo 402100180ACB ABC =-=∠=∠ ∴o 140ACD =∠在ADE ∆中,n DAC =∠ ∴2n 180AED ADE o -=∠=∠ ∵AC D ∠是D C E ∆的外角∴AED CDE ACD ∠+∠=∠∴ 2n 1002n 180140AED ACD CDE o o o+=--=∠-∠=∠ ∵o 100BAC =∠ n D AC =∠∴n 100BAD o +=∠③∴CDE 2B AD ∠=∠ ………………………………12分。
苏科版数学2018-2019学年初一下期末试卷及答案
(满分 100 分,考试时间 100 分钟)
一、精心选一选(本大题共 8 小题,每题 3 分,共 24 分.)
1.一个正多边形的每个外角都是 36°,这个正多边形是( ▲ )
A.正六边形
B.正八边形 C.正十边形 D.正十二边形
2.下列语句中,不是命题的是 ( ▲ )
16.已知 s t 4, 则 s 2 t 2 8t =
▲
.
17.方程组
3x y
x5
y
a
a
2
的解
x、y
满足
x
是
y
的
2
倍,则
a
的值为
▲
.
18.设有 n 个数 x1,x2,…xn,其中每个数都可能取 0,1,-2 这三个数中的一个,且满
足下列等式:x1+x2+…+xn=0,x12+x22+…+xn2=12,则 x13+x23+…+xn3 的值
A.(a-b)(b-a) B.(-x+1)(x-1) C.(-a-1)(a+1)
D.(-x—y)(-x+y)
5.小明同学把一个含有 45 角的直角三角板在如图所示的两条平行线 m,n 上,测得
1200 ,则 的度数是( ▲ )A.450
B.550
C.650
D.750
第 5 题图
第 6 题图
1 2 3 4 ▲
.
A P
20
50
B
C
M
(第 14 题)
14.如图,BP 是△ABC 中ABC 的平分线,CP 是ACB 的外角的平分线,如 果ABP=20,
ACP=50,则AP=
苏科版江苏省宿迁市2018-2019学年七年级(下)期末考试数学试题(含答案)
2018–2019学年度第二学期期末调研测试七年级 数 学(考试时间:100分钟,卷面总分:150分)一、选择题(本大题共8小题,每题3分,共24分.在每小题给出的四个选项中,有且只有一个符合题目要求,请将正确选项直接写在题目后面的括号内).1.某红外线波长为0.00 000 094m ,用科学记数法把0.00 000 094m 可以写成 ( ) A .8104.9-⨯m B .7104.9⨯m C .7104.9-⨯m D .8104.9⨯m2. 下列运算正确的是( ). A. ()325aa = B. 325a a a ⋅= C. ()222a b a b +=+ D. 336a a a +=3.下列等式从左到右的变形,属于因式分解的是 ( ) A .a (x -y )=ax -ay B .x 2-1=(x +1)(x -1) C .(x +1)(x +3)=x 2+4x +3 D .x 2+2x +1=x (x +2)+14. 不等式3431>x -的解集为 ( ) A. 94->x B. 94-<x C. 4-<x D. 4->x5. 以下说法中:(1)多边形的外角和是360︒; (2)两条直线被第三条直线所截,内错角相等; (3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为 ( )A .0B .1C .2D .36.已知方程组2,21x y k x y +=⎧⎨+=⎩的解满足3x y +=,则k 的值为 ( )A .8k =-B .2k =C .8k =D .2k =-7.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的速度是250米/分钟,步行的速度是80米/分钟.他家离学校的距离是2900米.若他骑车和步行的时间分别为x 分钟和y 分钟,则列出的方程组是 ( ) A .14250802900x y x y ⎧+=⎪⎨⎪+=⎩ B .158********x y x y +=+=⎧⎨⎩ C .152********x y x y +=+=⎧⎨⎩ D .14802502900x y x y ⎧+=⎪⎨⎪+=⎩8. 观察式子:771=、4972=、34373=、240174=、1680775=、11764976=、…, 请你判断20197的结果的个位数是 ( )A. 1B. 3C. 7D. 9二、填空题(本大题共10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在题目相应位置的横线上).9. 计算:()30112-⎛⎫+- ⎪⎝⎭= .10. 如果3,5x y =⎧⎨=-⎩是方程组,2x y m x y n+=⎧⎨-=⎩的解,则m n -= .11. 命题“对顶角相等”的逆命题是 . 12. 如图,把一块含有45︒角的直角三角板的两个锐角顶点放在直尺的对边上. 如果 120∠=︒,那么2∠的度数是 .13. 一件衬衫成本为100元,商家要以利润率不低于20%的价格销售,这件衬衫的销售价格至少为 元. 14. 不等式(4)m x -<6的解集是x >64m -,则m 的取值范围是 . 15. 一个多边形的内角和是外角和的3倍,该多边形的边数是 .16. 若从长度分别为3cm 、4 cm 、7 cm 和9 cm 的小木棒中选取的3根搭成了一个三角形, 则这个三角形的周长为 . 17. 若不等式组⎩⎨⎧ax x <>1只有1个整数解,则a 的取值范围为 .18. 如图,在ABC △中,依次取BC 的中点1D 、BA 的中点2D 、1BD 的中点3D 、2BD 的 中点4D 、…,并连接1AD 、21D D 、32D D 、43D D 、….若ABC △的面积是1,则20182019BD D ∆的面积是 .三、解答题(本大题共9小题,共96分.请在相应题指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤).19. (本题满分10分)(1) 计算:20241142443---⎛⎫⎛⎫⎛⎫⨯+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2) 因式分解:()224x --.(第12题) 21(第18题)D 4D 3D 2D 1C B A20. (本题满分10分)解方程组: 7,532.52x y y x ⎧+=⎪⎪⎨⎪-=-⎪⎩21.(本题满分10分) 解不等式 263121++-x x >,并把它的解集在数轴上表示出来.22. (本题满分10分)如图,64,76A B ∠=︒∠=︒,将纸片的一角折叠,使点C 落在ABC ∆外, 若22AEC '∠=︒,求BDC '∠的度数.(第22题)E C /DCBA23. (本题满分10分)已知关于x 、y 的二元一次方程组35,232x y ax by -=⎧⎨+=⎩与234,3x y ax by +=-⎧⎨-=⎩有相同的解.求a 、b 的值.24. (本题满分10分)已知:如图,在ABC ∆中,90ACB ︒∠=,CD 是高,AE 是ABC ∆内部的一条线段,AE 交CD 于点F ,交CB 于点E ,且CFE CEF ∠=∠. 求证:AE 平分CAB ∠.25. (本题满分12分)已知方程组13,7x y a x y a-=+⎧⎨+=--⎩的解x 是非正数,y 为负数.(1)求a 的取值范围; (2)化简:23a a +--.(第24题)ABCD EF26. (本题满分12分)某店计划购进甲、乙两种商品,若购进甲种商品1件,乙种商品2件,需要160元;购进甲种商品2件,乙种商品3件,需要280元. (1)购进甲乙两种商品每件各需要多少元?(2)该商场决定购进甲乙商品100件,并且考虑市场需求和资金周转,用于购买这些商品的资金不少于6300元,同时又不能超过6430元,则该商场共有几种进货方案? (3)若销售每件甲种商品可获利30元,每件乙种商品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?27.(本题满分12分)已知MN ∥GH ,在ABC Rt △中,︒=∠90ACB ,︒=∠45BAC ,点A 在MN 上,边 BC 在GH 上,在DEF Rt △中,︒=∠90DFE ,边DE 在直线AB 上,︒=∠30EDF , 如图1.(1)求BAN ∠的度数;(2)将DEF Rt △沿射线BA 的方向平移,当点F 在MN 上时,如图2,求AFE ∠的 度数;Rt△从图2的位置继续沿射线BA的方向平移,当以A、D、F为顶点(3)将DEF度数.的三角形是直角三角形时,求FAN2018–2019学年度第二学期期末调研测试七年级数学参考答案一、选择题(本大题共8小题,每题3分,共24分).1.C 2. B 3.B 4. C 5. C 6.C 7.C 8. B. 二、填空题(本大题共10小题,每题3分,共30分).9. 9 10. -13 11. 相等的两个角是对顶角 12. 25︒ 13. 120 14. 4m < 15. 8 16. cm 19或20cm 17. 32≤a < 18. 201912三、解答题(本大题共9小题,共96分).19.解:(1)原式=191611616⨯+÷ ………………………………………3分 =1625199+= ………………………………………5分(2)原式 =()()2222x x -+-- ………………………………………8分=()4x x - ………………………………………10分 20.解:原方程组可化为351055220x y x y +=⎧⎨-+=-⎩①②………………………………………4分①2⨯,②5⨯得:6102102510100x y x y +=⎧⎨-+=-⎩③④③-④得:31310x =解得10x = ………………………………………6分 把 10x =带入②得15y = ………………………………………8分所以原方程组的解为1015x y =⎧⎨=⎩ ………………………………………10分21. 解:去分母,得()()631226++-x x > ………………………………………2分去括号,得183246+--x x >……………………………………………………4分 移项、合并同类项,得147>x - …………………………………………………6分 系数化为1,得2-<x ………………………………………………………8分 这个不等式的解集在数轴上表示如下:………………………………………10分22.解:在ABC ∆中,180180647640C A B ∠=︒-∠-∠=︒-︒-︒=︒ ……………4分由折叠可知'40C ∠=︒, ……………6分 所以224062DFE AEC C '∠=∠+∠=︒+︒=︒ …………………8分 所以6240102BDC DFE C '∠=∠+∠=︒+︒=︒ …………………10分23. 解:联立新的方程组得3523 4.x y x y -=⎧⎨+=-⎩;解这个方程组得12x y =⎧⎨=-⎩ ………………………………………4分把1,2x y ==-带入232,3ax by ax by +=-=得26223a b a b -=⎧⎨+=⎩ ……………………………………8分 解得:11525a b ⎧=⎪⎪⎨⎪=⎪⎩………………………………………10分24. 证明: ,CD AB ⊥Q∴在ABC ∆中,29090AFD CFE ∠=︒-∠=︒-∠ …………4分 90,ACE ∠=︒Q 在 AEC ∆中190ECF ∴∠=︒-∠ …………………8分CFE CEF ∠=∠Q21∴∠=∠即AE 平分CAB ∠. ………………10分25.(1)解方程组得342x ay a=-+⎧⎨=--⎩ …………………2分由题意知x ≤0,y <0,得30402a a -+≤⎧⎨--⎩<即32a a -≤⎧⎨⎩>…………………4分所以32a -≤< …………………6分 (2)因为 32a -≤< 所以0,230a a -+≤> …………………8分FE C /D C B A()232323a a a a a a+--=+--=+-+ …………………10分21a =- ………………12分26.(1)设甲每件x 元,乙每件y 元, …………………1分由题意得216023280x y x y +=⎧⎨+=⎩ …………………2分解之得8040x y =⎧⎨=⎩…………………3分 答:甲每件80元,乙每件40元 …………………4分 (2)设购进甲a 件,购进乙()100a -件()()8040100630080401006430a a a a +-≥⎧⎪⎨+-≤⎪⎩ …………………………6分 得57.560.75a ≤≤ …………………………7分 所以58,59,60.a =有三种方案:方案一:甲58件,乙42件; 方案二:甲59件,乙41件;方案三:甲60件,乙40件; …………………………8分(3)有题意知,每件商品甲的获利比乙多,要想获利最大,选择方案三 ………10分此时最大利润为306012402280⨯+⨯=(元) ………………12分27. 解:(1)∵︒=∠90ACB∴︒=∠+∠90ABC BAC 又∵︒=∠45BAC ∴︒=∠45ABC 又∵MN ∥GH∴︒=∠=∠45ABC BAN …………………………………………3分 (2)∵︒=∠90DFE ∴︒=∠+∠90EDF DEF 又∵︒=∠30EDF ∴︒=∠60DEF又∵AFE EAF DEF ∠+∠=∠∴︒=︒-︒=∠-∠=∠154560EAF DEF AFE ………………6分 (3)由题意可知,︒=∠90AFD 或︒=∠90FAD ①当︒=∠90AFD 时,∵︒=∠90AFD∴︒=∠+∠90ADF FAD ∵︒=∠30ADF ∴︒=∠60FAD∴︒=︒-︒=∠-∠=∠154560BAN FAD FAN …………………8分 ② 当︒=∠90FAD 时,︒=︒-︒=∠-∠=∠454590BAN FAD FAN …………………10分 ∴FAN ∠度数为︒15或︒45. …………………………………12分。
江苏省宿迁市沭阳县七年级(下)期末数学试卷(无答案)
2019-2019学年江苏省宿迁市沭阳县七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(3分)如图,给出了过直线AB外一点P,作已知直线AB的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行2.(3分)下列运算正确的是()A.x3+x5=x8B.x•x5=x6C.(x3)5=x8D.x6÷x3=x23.(3分)下列等式从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.x2﹣4=(x+2)(x﹣2)C.8a2b3=2a2•4b3D.ax﹣ay﹣1=a(x﹣y)﹣14.(3分)下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.平面内,垂直于同一条直线的两条直线平行5.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE6.(3分)下列条件中,能判定△ABC为直角三角形的是()A.∠A=2∠B=3∠C B.∠A+∠B=2∠C C.∠A=∠B=30°D.∠A=∠B=∠C7.(3分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.568.(3分)关于x,y的二元一次方程组的解满足x<y,则a的取值范围是()A.a>B.a<C.a<D.a>二、填空题(本题共10小题,每小题3分,共30分不需写出解答过程)9.(3分)计算:5x﹣3x=.10.(3分)已知a+b=3,a﹣b=2,则a2﹣b2=.11.(3分)计算a m•a3•=a3m+3.12.(3分)命题“正数的绝对值是它本身”的逆命题是.13.(3分)如图是由射线AB、BC、CD、DE、EA组成的图形,∠1+∠2+∠3+∠4+∠5=.14.(3分)若2x=3,4y=5,则2x+2y的值为.15.(3分)如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.16.(3分)在学校举行的秋季田径运动会中,七年级(9)班、(12)班的竞技实力相当.比赛结束后,甲、乙两位同学对这两个班的得分情况进行了比较,甲同学说:(9)班与(12)班得分比为6:5;乙同学说:(9)班得分比(12)班得分的2倍少40分.若设(9)班得x分,(12)班得y分,根据题意所列的方程组应为.17.(3分)我们已经知道:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2再经过计算又可以知道:(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4将这些等式右边的系数从左到右进行排列,又得如图所示“三角形”形状,根据这个规律,猜测(a+b)5的结果是.18.(3分)如图,已知∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.当AB⊥OM,且△ADB有两个相等的角时,∠OAC的度数为.三、解答题(本大题共9小题,共96分.解答时应写全过程)19.(10分)计算:(1)23×0.43×1.253(2)(a+2)(a﹣2)﹣(a﹣1)220.(10分)因式分解:(1)9ax2﹣ay2;(2)3a3﹣6a2+3a21.(8分)解方程组:.22.(10分)先化简后求值:已知x=,y=,求(x+y)2+(x+y)(x﹣y)﹣2x (x﹣2y)的值.23.(10分)已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:24.(12分)如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD()所以∠BGF+∠3=180°()因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=.(等式性质).所以∠BGF=.(等式性质).25.(12分)某校为表彰在美术展览活动中获奖的同学,决定购买一些水笔和颜料盒作为奖品,请你根据图中所给的信息,解答下列问题:(1)求出每个颜料盒,每支水笔各多少元?(2)若学校计划购买颜料盒和水笔的总数目为20,所用费用不超过340元,则颜料盒至多购买多少个?26.(12分)对于任意的有理数a,b,c,d,我们规定=ad﹣bc.如:=(﹣2)×5﹣(﹣4)×3=2,根据这一规定,解答下列问题(1)化简;(2)若x,y同时满足=5,=8,求x+y的值.27.(12分)如图(1),直线AB∥CD,点P在两平行线之间,点E在AB上,点F在CD上,连结PE,PF.(1)∠PEB,∠PFD,∠EPF满足的数量关系是,并说明理由.(2)如图(2),若点P在直线AB上时,∠PEB,∠PFD,∠EPF满足的数量关系是(不需说明理由)(3)如图(3),在图(1)基础上,P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°.则∠P1=(用x,y的代数式表示),若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2,P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3…,依次平分下去,则∠P n=.(4)科技活动课上,雨轩同学制作了一个图(5)的“飞旋镖”,经测量发现∠PAC=28°,∠PBC=30°,他很想知道∠APB与∠ACB的数量关系,你能告诉他吗?说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题(本大题共9小题,共96分.请在相应题指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤).
19.(10分)(1)计算: ;
(2)因式分解:(x﹣2)2﹣4.
15.若一个多边形的内角和是外角和的3倍,则该多边形是边形(填该多边形的边数).
16.若从长度分别为3cm、4cm、7cm和9cm的小木棒中选取的3根搭成了一个三角形,则这个三角形的周长为.
17.已知不等式组 只有一个整数解,则a的取值范围为.
18.如图,在△ABC中,依次取BC的中点D1、BA的中点D2、BD1的中点D3、BD2的
A. B.
C. D.
8.观察式子:71=7、72=49、73=343、74=2401、75=16807、76=117649、…,请你判断72019的结果的个位数是( )
A.1B.3C.7D.9
二、填空题(本大题共10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在题目相应位置的横线上).
C.(x+1)(x+3)=x2+4x+3D.x2+2x+1=x(x+2)+1
4.不等式 的解集为( )
A. B. C.x<﹣4D.x>﹣4
5.以下说法中:
(1)多边形的外角和是360°;
(2)两条直线被第三条直线所截,内错角相等;
(3)三角形的3个内角中,至少有2个角是锐角.
其中真命题的个数为( )
A.9.4×10﹣7mB.9.4×107mC.9.4×10﹣8mD.9.4×108m
2.下列运算正确的是( )
A.(a2)3=a5B.a3•a2=a5
C.(a+b)2=a2+b2D.a3+a3=a6
3.下列等式从左到右的变形,属于因式分解的是( )
A.a(x﹣y)=ax﹣ayB.x2﹣1=(x+1)(x﹣1)
9.计算: =.
10.如果 是方程组 的解,则m﹣n=.
11.命题“对顶角相等”的逆命题是.
12.如图,将含有45°角的三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2=°.
13.一件衬衫成本为100元,商家要以利润率不低于20%的价格销售,这件衬衫的销售价格至少为元.
14.不等式(m﹣4)x<6的解集是x> ,则m的取值范围是.
(2)该商场决定购进甲乙商品100件,并且考虑市场需求和资金周转,用于购买这些商品的资金不少于6300元,同时又不能超过6430元,则该商场共有几种进货方案?
(3种进货方案中,哪种方案获利最大?最大利润是多少元?
27.(12分)已知MN∥GH,在Rt△ABC中,∠ACB=90°,∠BAC=45°,点A在MN上,边BC在GH上,在Rt△DEF中,∠DFE=90°,边DE在直线AB上,∠EDF=30°,如图1.
2018-2019学年江苏省宿迁市沭阳县初一下学期期末数学试卷
一、选择题(本大题共8小题,每题3分,共24分.在每小题给出的四个选项中,有且只有一个符合题目要求,请将正确选项直接写在题目后面的括号内)
1.某红外线波长为0.00 000 094m,用科学记数法把0.00 000 094m可以写成( )
图1图2备用图
(1)求∠BAN的度数;
(2)将Rt△DEF沿射线BA的方向平移,当点F在MN上时,如图2,求∠AFE的度数;
(3)将Rt△DEF从图2的位置继续沿射线BA的方向平移,当以A、D、F为顶点的三角形是直角三角形时,求∠FAN度数.
20.(10分)解方程组:
21.(10分)解不等式 ,并把它的解集在数轴上表示出来.
22.(10分)如图,∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC外,若∠AEC'=22°,求∠BDC'的度数.
23.(10分)已知关于x、y的二元一次方程组 与 有相同的解.求a、b的值.
24.(10分)已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.
A.0B.1C.2D.3
6.已知方程组 的解满足x+y=3,则k的值为( )
A.k=﹣8B.k=2C.k=8D.k=﹣2
7.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是( )
求证:AE平分∠CAB.
25.(12分)已知方程组 的解x是非正数,y为负数.
(1)求a的取值范围;
(2)化简:|a+2|﹣|a﹣3|.
26.(12分)某店计划购进甲、乙两种商品,若购进甲种商品1件,乙种商品2件,需要160元;购进甲种商品2件,乙种商品3件,需要280元.
(1)购进甲乙两种商品每件各需要多少元?