小学奥数与应用题——时钟问题

合集下载

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学奥数专题16-时钟问题

小学奥数专题16-时钟问题

时钟问题◇专 题 知 识 简 述◇时钟问题是研究钟面上时针和分针关系的问题。

研究时钟的长针(分针)与短针(时针)成直线、成直角与重合的问题,叫做时钟问题。

钟表的分针每小时走60个小格,而时针每小时只走5个小格;分针每分钟走1个小格,而时针每分钟只走605个小格,即121个小格。

每分钟分针比时针多走1211个小格。

时钟问题的每一个公式都与1211有关,1211个小格是两针在1分钟内所走的路程差。

根据两针不同的间隔要求,用除法就可以求出题中所要求的时间。

解题规律:(1)求两针成直线所需要的时间,有:两针成直线所需要的分钟数=(原来两针间隔的格数±30)÷(1-121) (2)求两针成直角所需要的时间,有:两针成直角所需要的分钟数=(原来两针间隔的格数±15)÷(1-121),两针成直角所需要的分钟数=(原来两针间隔的格数±45)÷(1-121) (3)求两针重合所需要的时间,有:两针重合所需要的时间=原来两针间隔的格数刻,就得出两÷(1-121)求出所需要的时间后,再加上原来的时针形成各种不同位置的时刻。

◇例 题 解 析◇(一)求两针成直线所需要的时间例1 在7点钟到8点钟之间,分针与时针什么时候成直线?解:在7点钟的时候,分针在时针后面:5×7=35(格),当分针与时针成直线时,两针的间隔是30格。

因此,只需要分针追上时针:35-30=5(格)。

因为每分钟比时针多走(1-121)格,所以,我们看5个格之中包含多少个(1-121)格,即可得到两针成直线所需要的时间。

5÷(1-121)=5÷1211=5115(分) 综合算式:(5×7-30)÷(1-121)=5÷1211=5115(分) 答:在7点5115分,分针与时针成直线。

例2 在4点与5点之间,分针与时针什么时候成直线?解:4点钟时,分针在时针的后面: 5×4=20(格)当分针与时针成直线时,分针不仅要追上已落后的20格,还要超过时针30格,所以一共要追上:20+30=50(格)。

经典奥数时钟问题

经典奥数时钟问题

四、时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。

钟面上按“时”分为12大格,按“分”分为60小格。

每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。

1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。

而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。

解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。

2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。

在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。

因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。

因此,需追及(20+30)小格。

解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。

3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。

所以分针需追及(5×1+15)小格或追及(5×1+45)小格。

解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。

4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。

五年级时钟问题奥数题及答案【三篇】

五年级时钟问题奥数题及答案【三篇】

【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。

以下是⽆忧考为⼤家整理的《五年级时钟问题奥数题及答案【三篇】》供您查阅。

【第⼀篇】
现在是3点,什么时候时针与分针第⼀次重合?
【第⼆篇】
时钟的表盘上按标准的⽅式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每⼀个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟⾯的全部12个数,求n的最⼩值.
解答:(1)当时,有可能不能覆盖12个数,⽐如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);
(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.
(2)每个扇形覆盖4个数的情况可能是:
(1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数
(2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数
(3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数
(4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数
当时,⾄少有3个扇形在上⾯4个组中的⼀组⾥,恰好覆盖整个钟⾯的全部12个数.
所以n的最⼩值是9.
【第三篇】。

二年级奥数——时钟问题

二年级奥数——时钟问题

时钟问题
1、小光去食堂吃饭,出发前他看见钟面上显示大约是12:15分,到了食堂以后却发现食堂关门了,小光很不解,同学都笑小光看错了时间,把时针和分针看反了,因为现在根本不是饭点,你认为现在的时间应该是大约()。

2、有一个钟,每逢整点和半点敲,1点敲一下,2点敲两下,以此类推,每逢半点敲1下,那么这个钟一天(24小时)一共敲了()下。

3、有一个闹钟,一昼夜(一天)快3分钟,小华要赶火车,明天早上8点必须准时报时,现在是下午4点,这个闹钟应该拨慢()分钟。

4、下图是几个时钟在镜子里反射的图像,实际的时间是多少
5、观察下列时钟所表示的时间,按规律在第五个钟面上画出正确的
时针和分针。

5、一辆汽车早上5:20出发,到7点整到达终点站,经过了()时()分。

6、一节课40分钟,然后下课10分钟休息,接着上第二节课,如果早上8点开始第一节课,那么第三节课下课是()时()分。

7、一只电子表,每分钟要慢1秒,现在是早上8点整,表面时间完全正确,那么当表上显示到12点时,标准的时间应该是()时()分。

8、小明参加学校一年一度的“野外绝地求生大逃杀”活动,活动结束后到家发现时间在中午12点整,他算了一下这次出门一共用了200个小时,那么他是()点出门的。

9、小东家的钟坏了,奶奶在下午2点时对钟,由于老花眼,把时针
和分针很颠倒了,小东放学回家一看才3点整,吓坏了,那么现在应该是()时()分。

小学生奥数时钟问题、概率问题、分类枚举练习题

小学生奥数时钟问题、概率问题、分类枚举练习题

小学生奥数时钟问题、概率问题、分类枚举练习题1.小学生奥数时钟问题练习题篇一1、小明出去玩的时候,看了一下钟,时针在2和3之间,分针指向6,他回来的时候时针在6和7之间,分针指向6,小明一共外出了几小时?答案与解析:出去的时候:2:30,回来的时候6:30,一共出去4个小时。

2、有一架时钟,每到整点都用响声报点,到几点就响几下。

这架时钟一昼夜响多少下?点拨:整点时间,几点响几下,就是一点时钟响1下,亮点时响2下,三点时响3下……十二点时响12下,一昼夜是24小时,时针要转两圈,可以先算出转一圈响的下数,在乘以2,就是一昼夜响的下数了。

解:1+2+3+……+12=(1+12)*122=13*6=78(下)78*2=156(下)答:一共要响156下。

2.小学生奥数时钟问题练习题篇二1、小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【分析】小强家的闹钟比标准时间走得快,因此需要定闹钟时需要多设置一些。

晚上10点到第二天早晨6点共隔了8个小时,闹钟每小时快3分钟,即可求解【解】(6+12-10)*3=24(分钟)6点+24分=6点24分【答】他应该将闹钟的铃定在6点24分2、6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。

现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间短?这个短时间是多少?答案与解析:第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候;第6个人接水时,只有他1个人等候。

可见,等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会少,因此,应当把接水时间按从少到多顺序排列等候接水,这个短时间是3×6+4×5+5×4+6×3+7×2+10=100(分)。

小学奥数趣味学习《时钟问题》典型例题及解答

小学奥数趣味学习《时钟问题》典型例题及解答

小学奥数趣味学习《时钟问题》典型例题及解答时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等,这类问题可转化为行程问题中的追及问题。

时钟的数量关系:分针的速度是时针的12倍,二者的速度差为5.5度/分。

通常按追及问题来对待,也可以按差倍问题来计算。

解题思路和方法:将两针重合,两针垂直,两针成一线,两针夹角60°等为“追及问题”后可以直接利用公式。

例题1:钟面上从时针指向8开始,再经过多少分钟,时针正好与分针第一次重合?(精确到1分)解:1、此类题型可以把钟面看成一个环形跑道,那么本题就相当于行程问题中的追及问题,即分针与时针之间的路程差是240°。

2、分针每分钟比时针多转6°-0.5°=5.5°,所以需要240÷5.5≈44(分钟)。

也就是从8时开始,再经过44分钟,时针正好与分针第一次重合。

例题2:从早晨6点到傍晚6点,钟面上时针和分针一共重合了多少次?解:我们可以把钟面看成一个环形跑道,这样分针和时针的转动就可以转化成追及问题。

从早晨6点到傍晚6点,一共经过了12小时,12个小时分针要跑12圈,时针只能跑1圈,分针比时针多跑12-1=11(圈)。

而分针每比时针多跑1圈,就会追上时针一次,也就是和时针重合1次,所以12小时内两针一共重合了11次。

例题3:一部记录中国军队时代变迁的纪录片时长有两个多小时,小明发现,纪录片播放结束时,手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下,这部纪录片时长多少分钟?(精确到1分)解:1、解决本题的关键是认识到时针与分针合走的路程是1080°,进而转化成相遇问题来解决。

2、两个多小时,分针与时针位置正好交换,所以分针与时针所走的路程和正好是三圈,也就是分针和时针合走了360°×3=1080°,而分针和时针每分钟的合走6°+0.5°=6.5°,所以合走1080°需要1080÷6.5≈166(分钟),即这部纪录片时长166分钟。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人"分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0。

5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟",或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒。

而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600—30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600—30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600—30)/3600*(3600+30)/3600】=1-14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小升初奥数专项——时钟问题

小升初奥数专项——时钟问题

课程六时钟问题学习目标时钟问题是研究钟面上时针和分针关系的问题,而各针转动的速度是确定的。

以格/分为单位,分针的速度是1格/分,而时针的速度是5分/小时=112格/分。

以度/分为单位,因为1格相当于360°60=6°,所以分针的速度是6°/分,而时针的速度是112×6=0.5度/分。

例1、分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?例2、小明有一块手表,每分钟比标准时间快2秒钟,小明早晨8点整将手表对准,问当小明这块手表第一次指示12点时,标准时间此时是几点几分?、例3、小华家有两个旧手表,一个每天快20分针,一个每天慢30分针,现在将两个手表同时调到标准时间,它们要经过多少天才能再次同时显示标准时间?例4、小明去看一部记录影片,他在影片刚放映时看了一下手表,影片结束时他又看了下手表,他发现时针和分针刚好交换了一下位置,已知这场电影时间不足1小时。

问这部纪录片片场多少分钟?例5、现在是3时,再过多长时间,时针和分针恰在“3”字两边,并且与“3”字距离相等?练习1、在7点与8点之间(包括7点和8点)的什么时刻,两针之间的夹角为120度?2、某人下午6点多外出时,看了看手表两针夹角为110°,下午7点前回家时发现两指针夹角仍为110°,问:他外出多长时间?3、小张下午要到工厂上3点的班,他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了,他上足发条后忘了拨针,匆匆离家,到工厂一看离上班时间还有10分钟,8小时工作后夜里11点下班,小张回到家里,一看钟才9点整,假定他上班和下班在路上用的时间相同,那么他家的钟停了多长时间?4、小华与妈妈8点多种外出,临出门时他一看钟,时针和分针是重合的,下午2点多钟回到家,一进门看到时针与分针方向相反,正巧成一条直线,他们外出了多少时间?5、某手表每小时比标准时间慢3分,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是几点几分?。

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。

分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。

11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。

小学奥数专题之时钟问题

小学奥数专题之时钟问题

小学奥数专题之时钟问题
小学奥数专题之时钟问题
1、某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒.问:这块手表一昼夜比标准时间差多少秒?
2、一节课40分,从8点30分上课应当到几点几分下课?
3、王老师上午7:30到校上班,11:30下班,上午在校的时间是多少?
4、贝贝做家庭作业用了50分,正好在晚上8:00做完,贝贝是晚上几时几分开始做作业的?
5、做一个零件从上午7:40分开始做,上午9:20分完成,做这个零件用了多长时间?
6、小玲家的钟停了,之声广播2点时,奶奶跟之声对时,由于年老眼花,把时针与分针颠倒了,小玲放学回家时见钟才2点整,大吃一惊,,请你帮助想一想,现在应该是几点钟?
7、小王骑自行车去A地,上午8时出发,在途中因有事停留了15分钟,到中午12时才到达A地,小王骑自行车行了多少时间?
8、钟面上有12个数,你能画两条线将钟面分成三部分,使每部分的数相加的.和相等吗?
9、小奇从家到学校跑步去和回要8分钟,如果去时步行,回来时跑步一共需要10分,那么小奇来回都是步行要几分钟?
10、冬冬做作业,写语文作业用去规定时间的一半,写数学作业用去剩下时间的一半,最后5分钟读书,冬冬完成全部作业作去了多长时间?
11、一只蜗牛从20厘米深的沟底往上爬,每爬4厘米要2分钟,然后停1分,问蜗牛从沟底爬到沟沿上要用多长时间?
12.明明家的台钟,一点钟响铃一下,两点钟响铃两下,三点钟响铃三下,八点钟响铃八下,有一次明明听见台钟响铃一下,没多久又响响了一下,后来又响了一下,你知道最后一响是几点钟吗?。

小学奥数-时钟问题(教师版)

小学奥数-时钟问题(教师版)

时钟问题【例1】★有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【小试牛刀】钟表的时针与分针在4点多少分第一次重合? 【解析】此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

【例2】★钟表的时针与分针在8点多少分第一次垂直?【解析】32711,此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。

【小试牛刀】2点钟以后,什么时刻分针与时针第一次成直角?【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分) 【例3】★现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【解析】时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分),即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度, ,第一次在一条直线时,分针与时针的夹角是180度,,即 分针与时针从60度到180度经过的时间为所求。

小学奥数——钟表问题

小学奥数——钟表问题

钟表问题1.某钟面的指针指在2点整,再过多少分钟,时针和分针第一次重合?过多少分钟时针和分针首次成直角?2.钟面上3点过几分时,时针和分针与“3”的距离相等,并且在“3”的两旁?3.小明晚上7点与8点之间开始做作业,当时钟面上时针与分针恰好成一直线,当她完成作业时,发现时针与分针刚好重合,小明花了几分钟做作业?4.小红发现自己的手表比家里的闹钟每小时快3分,而闹钟却又比标准时间每小时慢3分,早上8时,将手表和闹钟都对准了标准时间,到第二天凌晨4时,手表上的时针指示的是什么时刻?5.小明去看一场内部资料影片,他在影片刚放映是看了一下手表,影片结束时他又看了下手表,他发现时针和分针刚好交换了一下位置,已知这场影片时间不足1小时,问:这部影片片长多少分钟?6.在4点到5点之间,时针与分针何时成直角?7.现在是下午5时整,6时以前时针与分针正好重合的时刻是几时几分?8.2点整以后,时针与分针第二次重合时几时几分?9.5点到6点之间,分针与时针在什么时候成直角?10.小明有一块手表,每分钟比标准时间快2秒钟,小明早上8点整将手表对准,问当小明这块手表第一次指示12点时,标准时间此时应是几时几分?11.现在是上午9点整,再过多少分钟,分针、时针在一条直线上,而且指向相反?12.钟面上6时与7时之间,时针和分针重合是几点几分?13.钟面上6时45分,时针在分针后面多少度?14.小明每天6点回家吃饭,一天她妈妈从6点开始等,一直等到时针与分针第二次成直角时,小明才回家,问小明几点钟回家的?15.爷爷的老式时钟的时针与分针,每隔66分钟辆两针重合一次,这只时钟每昼夜慢多少分钟?16.当时钟指示的时刻是14时整时,开始计算分针旋转的周数,分针旋转了1919周,时针指示的时刻是几时?17.小明5时起床,一看钟,6字恰好在时针和分针的正中间,这时是5时几分?18.张奶奶家的闹钟每小时快2分钟,昨晚9时,她把闹钟与北京时间对准了,同时把闹钟拨到今天早晨6时闹铃,张奶奶听到闹铃响是比北京时间今天早晨6点提前了多少小时?19.小明家的挂钟比标准时间每小时慢2分钟,小明早上7点上学把时钟对准,回家时挂钟正好指着12点,问:此时标准时间是多少?20.从3点钟开始,分针与时针第二次形成30度角的时间是三点几分?21.小明家的钟比走时准确的钟每小时快12分钟,如果小明家的钟走了2小时,那么准确的钟走了多少小时?22.一辆汽车的速度为每小时50千米,现有一块每5小时慢2分钟的表,若用该表计时,测量这辆汽车的速度是多少?(保留1位小数)。

六年级奥数《时钟问题》练习题

六年级奥数《时钟问题》练习题

第一讲 时钟问题(必做与选做)1. 钟表在6点12分的时候时针和分针的夹角是多少度?A. 114B. 116C. 118D. 120解析:分针指向第12小格处,时针指向第31小格处,因此它们之间差19格,每一小格是6°,所以夹角为:19×6=114(度)。

所以选A 。

2. 一个钟表在13点25分的时候停了下来,时针和分针之间的夹角是多少度?A. 42.5B. 105C. 107.5D. 150解析:分针指向的位置与“12”的夹角为:25×6=150(度),时针指向的位置与“12”的夹角为:6025×30+30=42.5(度),因此它们之间夹角为:150-42.5=107.5(度)。

所以选C 。

3. 钟表在10点40分的时候时针和分针的夹角是多少?A. 50B. 60C. 70D. 80解析:分针指向的位置与“8”的夹角为0度,时针指向的位置与“8”的夹角为:40÷60×30+2×30=80(度),因此它们之间夹角为:80-0=80(度)。

所以选D 。

4.时钟的时针转了20°,则分针转了多少度?A. 120B. 180C. 200D. 240解析:分针的转速是时针的12倍,因此分针转了20×12=240(度)。

所以选D。

5.从14点24分到16点42分,时针转过了多少度?A. 65B. 68C. 69D. 72解析:以“2”为参照点,14点24分的时针指向:24÷60×30=12(度),16点42分的时针指向:42÷60×30+2×30=81(度)。

因此时针转过了:81-12=69(度)。

所以选C。

6.从21点15分到23点50分,分针转过了多少度?A. 210B. 570C. 920D. 930解析:分针每分钟转6度,一共经过了(60-15+60+50)分钟,所以分针一共转过了:(60-15+60+50)×6=930(度)。

小学奥数时钟问题

小学奥数时钟问题

1、小学奥数时钟问题有一个时钟每小时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?解:假设24小时制。

设X小时后再准时。

24h=86400sX*20s=86400sX=4320h4320h/24h=180天所以8月28号中午12时会再次准确。

如果是12小时制,那就是要90天,就是在5月30号准确。

6点钟在过多久,时针与分针将第一次在一条直线上?(不包括重合)解:一个小时又60/11分钟方程为:(360/60)x=30+(30/60)x,其中x为走了一个小时到7点后,又走的时间因为6点的时候是满足要求的在一条直线上,之后分针比时针跑的快,所以可以确定,再次满足条件(不是重合的在一条直线上)一定是7点之后, 从7点看起,此时分针指向正上方,时针在正下的偏30度,所以,从现在(7点)起设他们再走x分钟就可以在一条直线上,在这段时间分针走了(360/60)x度,时针走了(30/60)x度.那么,由于上面所说的偏30度的问题,(请自己画出7点的图以帮助理解)就有:分针走的=时针走的+30度, 因此列方程如下:(360/60)x=30+(30/60)x,解之得x=60/11,由于我们是在7点之后设的时间,所以总时间为一个小时又60/11分钟老王有一只手表,他发现手表比家里的闹钟每小时快30秒,而闹钟却比标准时间每小时慢30秒,那么老王的手表一昼夜比标准时间差几秒?解:设手表实际每小时走x秒由题意“手表比闹钟每小时快30秒”,即:闹钟走1小时(3600秒),手表走3630秒;“闹钟比标准时间每小时慢30秒”即:标准时间1小时,闹钟走3570秒。

则有标准时间1小时内3630/3600=x/3570x=3599.75每小时手表与标准时间差3600-x=0.25则王叔叔的手表一昼夜比标准时间差24*0.25=6秒或者:手表比闹钟每小时快30秒,表示闹钟走了3600秒时(每小时的秒数),手表走了3630秒.同样,闹钟比标准每小时慢30秒,表示标准时间走了3600秒时,闹钟走了3570秒. 因此标准时间走了一昼夜24小时(86400秒)时,手表走了24*3570/3600*3630=86394秒也就是说,手表一昼夜比标准时间慢了6秒.2、平均数问题一次考试,甲、乙、丙三人平均分是91分,乙、丙、丁三人平均分是89分,甲、乙二人平均分是95分。

小学奥数专题八_时钟问题

小学奥数专题八_时钟问题

小六奥数专题八:时钟问题一:知识点归纳钟面上有时针与分针,每针转动的速度是确定的。

分针每分钟旋转的速度:360°÷60=6°时针每分钟旋转的速度:360°÷(12×60)=0.5°在钟面上总是分针追赶时针的局面,或是分针超越时针的局面。

这里的转动角度用度数来表示,相当于行走的路程。

因此钟面上两针的运动是一类典型的追及行程问题。

例1: 钟面上3时多少分时,分针与时针恰好重合?分析正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。

当两针第一次重合,就是3时过多少分。

在正3时到两针重合的这段时间内,分针要比时针多行走90°。

而可知每分钟分针比时针多行走6-0.5=5.5(度)。

相应的所用的时间就很容易计算出来了。

例2 在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?分析在正5时时,时针与分针相隔150°。

然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。

例3 钟面上12时30分时,时针在分针后面多少度?分析要避免粗心的考虑:时针在分针后面180°。

正12时时,分针与时针重合,相当于在同一起跑线上。

当到12时30分钟时,分针走了180°到达6时的位置上。

而时针在同样的30分钟内也在行走。

实际上两针相隔的度数是在30分钟内分针超越时针的度数。

例4钟面上6时到7时之间两针相隔90°时,是几时几分?分析从6时正作为起点,此时两针成180°。

当分针在时针后面90°时或分针超越时针90°时,就是所求的时刻。

练习题1、求下列时刻的时针与分针所形成的角的度数。

(1)9点整(2) 2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、钟面上3点过几分,⑴时针和分针重合?⑵下次时针和分针重合是几点几分?⑶时针和分针所在的射线与中心到“3”字的连线所成的角度数相等?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。

二年级奥数——时钟问题

二年级奥数——时钟问题

时钟问题
1、小光去食堂吃饭,出发前他看见钟面上显示大约是12:15分,到了食堂以后却发现食堂关门了,小光很不解,同学都笑小光看错了时间,把时针和分针看反了,因为现在根本不是饭点,你认为现在的时间应该是大约()。

2、有一个钟,每逢整点和半点敲,1点敲一下,2点敲两下,以此类推,每逢半点敲1下,那么这个钟一天(24小时)一共敲了()下。

3、有一个闹钟,一昼夜(一天)快3分钟,小华要赶火车,明天早上8点必须准时报时,现在是下午4点,这个闹钟应该拨慢()分钟。

4、下图是几个时钟在镜子里反射的图像,实际的时间是多少?
5、观察下列时钟所表示的时间,按规律在第五个钟面上画出正确的
时针和分针。

5、一辆汽车早上5:20出发,到7点整到达终点站,经过了()时()分。

6、一节课40分钟,然后下课10分钟休息,接着上第二节课,如果早上8点开始第一节课,那么第三节课下课是()时()分。

7、一只电子表,每分钟要慢1秒,现在是早上8点整,表面时间完全正确,那么当表上显示到12点时,标准的时间应该是()时()分。

8、小明参加学校一年一度的“野外绝地求生大逃杀”活动,活动结束后到家发现时间在中午12点整,他算了一下这次出门一共用了200个小时,那么他是()点出门的。

9、小东家的钟坏了,奶奶在下午2点时对钟,由于老花眼,把时针
和分针很颠倒了,小东放学回家一看才3点整,吓坏了,那么现在应该是()时()分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数与应用题——时钟问题
一、基础知识
追及问题路程差=速度差×追及时间
行程问题∽
时钟问题追及格数÷速度差=追及时间(分钟)[时间] 60分钟
[路程] 分针走60格
时针走5格
[速度] 分针每分钟走(60÷60)格
时针每分钟走(5÷60)格
如:现在是12点整,多长时间后分针与时针再次重合?
定角度分析
[速度差] 分针每分钟比时针多走(1-5
60
)格
[路程差] 格数差:60格
[追及时间] 追及时间(分钟)=格数差÷(1-5 60

即:60÷(1-5
60
)=
5
65
11
(分钟)
答:略
二、几个概念
表盘60每格6度
时针∽线段00重合
时针与分针的交点∽顶点→角0
180在一条直线上分针∽线段0
90垂直
其他度数
三、两种题型
1、求两针发生某种位置关系时的时刻
主要在于确定追及时间
关键在于确定起始时间和追及格数
2、时钟的快慢问题
确定标准时间每分钟快或慢几分钟
主要在于确定追快慢与比标准时间的比
四、例题分析
1、现在是3点,什么时候时针与分针第一次重合?
2、在10点与11点之间,钟面上时针和分针在什么时刻垂直?
3、在9点与10点之间的什么时刻,分针与时针在一条直线上?
4、小明在7点与8点之间解了一道题,开始时分针与时针正好在一条直线上,解完题时两针正好重合,求小明解题的起始时间?小明解题共用了多少时间?
5、一只钟的时针与分针均指在4与6之间,且钟面上的“5”字恰好在时针与分针的正中央,问这时是什么时刻?
6、一旧钟的分针和时针每65分钟(标准时间的65分钟)重合一次,问这只旧钟一天(标准时间24小时)慢或快几分钟?
时钟问题练习题
1、在6点和7点之间,两针什么时刻重合?
2、现在是2点15分,再过几分钟,
3、2点钟以后,什么时刻分针时针与分针第一次重合?与时针第一次成直角?
4、在7点与8点之间(包含7点和8点)的什么时刻,两针之间的夹角为120度?
5、在10点与11点之间,两针在什么时刻成一条直线?
6、一旧钟钟面上的两针每66分钟重合一次,这只旧钟在标准时间的一天中快或慢几分钟?
7、李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,到屋里看钟,可是钟早在12点10分就停了。

他上足发条后忘了拔针,匆匆离家,到工厂一看离上班时间还有10分钟。

8小时工作后夜里11点下班,李叔叔回到家里,一看钟才9点整。

假定他上班和下班在路上用的时间相同,那么他家的钟停了多长时间?
8、小亮晚上9点整将手表对准,可早晨8点到校时却迟到了10分钟,那么小亮的手表每小时慢或快几分钟?。

相关文档
最新文档