无机非金属材料

合集下载

无机非金属材料的定义

无机非金属材料的定义

无机非金属材料的定义无机非金属材料,也称非金属,是指不含金属元素作为基本组分的材料。

无机非金属材料的主要特点是由非金属原子组成的晶体和多种化合物,其物理性质介于金属和非金属之间,如磷、硅、氮和碳等。

无机非金属材料大致可以分为奥氏体钢、非晶硅、碳素材料和特殊材料等几类,常见的无机非金属材料有搪玻璃、陶瓷、氧化物、化学材料和合成石英等。

奥氏体钢是无机非金属材料中最常用的材料,它是一种氧化铁,是由氧原子和铁原子,其余部分由碳原子组成的复合材料。

它有良好的热力学性质和电学性质,容易制成非晶状态的棱柱,有高的抗腐蚀性、高的硬度,导电性和热导性较高,能够耐热和耐冲击,也具有一定的机械性能和高抗磨损性。

非晶硅属于无机非金属晶体材料,是一种典型的半导体材料,由硅原子和氧原子组成,它有很高的热稳定性,耐晒和耐酸碱腐蚀性,适合用作电子元件的基材、密封垫片等,在航空、航天和国防领域中有广泛应用,也用于半导体器件的制造。

碳素材料指的是由碳原子组装的无机非金属材料。

它具有良好的机械性能和耐火性能,可以用来制造各种微电子设备和低频电子设备,还可以用来制造电池和磁性材料,也可用于制造重要的无机结构部件。

石墨是常见的无机非金属材料之一,它是由高纯度的碳原子组成,有优良的抗热冲击性,具备良好的高温抗氧化性,可以用作动力发电机、电动机等电机的内层保护层材料。

石墨也被用于高温润滑剂的制备,用于制造机械零件的密封材料。

它还可以用作炉壁的耐火材料,用于制造航空航天电子器件、三相变压器的绝缘套件等。

特殊材料是指合成的石英及其它的复杂的无机非金属材料,比如金刚石和碳化物、二氧化碳复合体,玻璃纤维、陶搪玻璃、釉陶、镶嵌物等。

它们具有优良的电子特性、机械性能和化学稳定性,应用于太阳能电池、半导体器件、热电偶灯等电子产品的制造。

Inorganic nonmetallic materials, also known as nonmetals, refer tomaterials which are not composed of metallic elements as the basic components. The main characteristics of inorganic nonmetallic materials are crystals and various compounds composed of nonmetal atoms, with physical properties between metals and nonmetals, such as phosphorus, silicon, nitrogen and carbon, etc. Inorganic nonmetal materials can be divided into several categories such as austenite steel, amorphous silicon, carbon materials and special materials,and common inorganic nonmetallic materials include enamel, ceramics, oxides, chemical materials and synthetic quartz, etc.。

高三化学 无机非金属材料的定义与分类

高三化学 无机非金属材料的定义与分类

无机非金属材料包括耐火材料、耐火隔热材料、耐蚀(酸)非金属材料和陶瓷材料等。

一、耐火材料
常用有耐火砌体材料、耐火水泥、耐火混凝土。

二、耐热保温材料
常用有硅藻土、蛭石、玻璃纤维(又称矿渣棉)、石棉,以及它们的制品如板、管、砖等。

三、绝热材料
一般是轻质、疏松、多孔的纤维状材料。

它既包括保温材料,也包括保冷材料。

四、耐蚀(酸)非金属材料
常用有铸石、石墨、耐酸水泥、天然耐酸石材和玻璃等。

(一)铸石
具有极优良的耐磨性、耐化学腐蚀性、绝缘性及较高的抗压性能。

(二)石墨
具有高度的化学稳定性、极高的导热性能。

(三)玻璃
按形成玻璃的氧化物可分为硅酸盐玻璃、磷酸盐玻璃、硼酸盐玻璃和铝酸盐玻璃等,其中硅酸盐玻璃是应用最为广泛的玻璃品种。

(四)天然耐蚀石料
天然耐蚀石料组成中含SiO2的质量分数大于55.0%以上,其含量越高耐酸性能越好。

(五)水玻璃耐酸水泥
具有能抵抗大多数无机酸和有机酸腐蚀的能力,但不耐碱。

复杂的物理,化Na2CO3+SiO2Na2SiO3+CO2↑
CaCO3+SiO2CaSiO3+CO2↑复杂的物理,化学变化
无机非金属材料:
无机非金属材料的分类:
无机非金属材料的定义:
最初,无机非金属材料主要是指硅酸盐材料,所以,硅酸盐材料也称为传统无机非金属材料。

随着科学和生产技术的发展,以及人们生活的需要,一些具有特殊结构、特殊功能的新材料被相继研制出来,如半导体材料、超硬耐高温材料、发光材料等,我们称这些材料为新型无机非金属材料。

无机非金属材料ppt课件

无机非金属材料ppt课件

05
CATALOGUE
无机非金属材料的未来发展趋 势与挑战
发展趋势
01
高性能陶瓷材料
由于其优异的性能,陶瓷材料在许多领域都有广泛的应用,如航空航天
、汽车、医疗等。未来,陶瓷材料的研究将更加深入,应用领域更加广
泛。
02
纳米无机非金属材料
纳米无机非金属材料由于其尺寸效应和量子效应,具有许多优异的性能
THANKS
感谢观看
。随着纳米科技的不断发展,纳米无机非金属材料的研究和应用也将得
到更广泛的推广。
03
绿色无机非金属材料
随着环保意识的不断提高,绿色无机非金属材料将成为未来研究的热点
。这类材料具有低能耗、低污染、高循环利用的特点,符合可持续发展
的要求。
挑战与问题
材料性能的提升
尽管陶瓷等无机非金属材料的性能已经有所提升,但是与金属材料相比,仍然存在一定的 差距。因此,提高无机非金属材料的性能是当前面临的一个重要挑战。
02
CATALOGUE
无机非金属材料的性质与用途
性质
01
02
03
04
一般性质
无机非金属材料具有较高的熔 点、硬度,良好的化学稳定性
,但脆性较大。
力学性质
无机非金属材料具有较高的抗 压强度、抗拉强度,耐磨性较
好,但韧性较差。
电学性质
无机非金属材料具有较好的绝 缘性能和导热性能。
光学性质
无机非金属材料具有较好的光 学性能,如透光性、反射性等
根据性质和用途,无机非金属材料可 分为陶瓷、玻璃、水泥、耐火材料等 几大类。
无机非金属材料的重要性
无机非金属材料在国民经济发展中扮演着重要角色,特别是 在高技术领域,如航空航天、电子、新能源等领域具有不可 替代的作用。

无机非金属新材料

无机非金属新材料

无机非金属新材料介绍无机非金属新材料是指那些没有金属元素的无机材料,它们在各个领域中有着广泛的应用。

这些材料具有优异的物理、化学和机械性能,且具备很高的耐热、耐腐蚀、绝缘和耐磨损等特点。

本文将对无机非金属新材料的种类、特点、应用以及发展前景进行全面的探讨。

无机非金属新材料的种类1. 氧化物材料•二氧化硅(SiO2)•氧化铝(Al2O3)•氧化锆(ZrO2)•氧化钛(TiO2)2. 碳化物材料•碳化硅(SiC)•碳化硼(B4C)•碳化钨(WC)•碳化钛(TiC)3. 氮化物材料•氮化硅(Si3N4)•氮化铝(AlN)•氮化钛(TiN)•氮化硼(BN)4. 磷化物材料•磷化镓(GaP)•磷化铝(AlP)•磷化钛(TiP)•磷化硼(BP)无机非金属新材料的特点1.高温稳定性:无机非金属新材料具有出色的高温稳定性,能够在极端的高温环境下保持良好的性能。

2.耐腐蚀性:这些材料对酸、碱等腐蚀性物质具有很高的抵抗能力,能够在腐蚀性环境中长期使用。

3.绝缘性:无机非金属新材料通常具有良好的绝缘性能,可用于电子器件、绝缘材料等领域。

4.高硬度:这些材料具有较高的硬度,能够抵抗磨损和划伤,适用于制作耐磨材料。

5.轻质:许多无机非金属新材料具有较低的密度,可以用于制作轻型结构材料。

无机非金属新材料的应用1. 电子器件•氧化铝用于制作电容器、绝缘层等部件;•氮化硅用于制作高功率电子器件的散热材料;•碳化硅用于制作功率器件和高频器件。

2. 光电器件•氧化锌用于制作发光二极管(LED);•磷化镓用于制作激光二极管(LD);•碳化硅用于制作光电耦合器件。

3. 能源领域•氧化锂用于制作锂离子电池的正极材料;•硫化镉用于制作太阳能电池。

4. 机械工程•碳化硅用于制作机械密封件、轴承等耐磨材料;•氧化铝用于制作切削工具。

无机非金属新材料的发展前景无机非金属新材料具有广阔的应用前景。

随着科学技术的不断进步,对新材料的需求越来越高。

无机非金属新材料具有独特的特点和优势,能够满足现代社会对高性能材料的需求。

无机非金属材料

无机非金属材料

玻璃玻璃是一种具有无规则结构的非晶态固体。

微晶玻璃微晶玻璃是通过基础玻璃在加热过程中进行控制晶化而制得的一种含有大量微晶体的多晶固体材料。

胶凝材料在物理化学作用下,能从浆体变成坚固的石状体,并能胶结其它物料而有一定机械强度的物质,统称为胶凝材料。

水泥凡细磨材料与水混合后成为塑性浆体,经一系列物理化学作用凝结硬化变成坚硬的石状体,并能将砂石等散状材料胶结成为整体的水硬性胶凝材料,通称为水泥。

硅酸盐水泥由硅酸盐水泥熟料、0%~5%石灰石或粒化高炉矿渣,适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥(即国外通称的波特兰水泥,Portland Cement)。

釉釉是附在陶瓷表面的一种玻璃或玻璃与晶体的连续粘着层。

在陶瓷表面施釉可使其表面平滑、光泽、抗污染性强,降低吸水性,同时提高强度、表面硬度及耐化学腐蚀性,加强了陶瓷容器的装饰性。

铁电效应铁电材料的晶体结构在不加外电场时就具有自发极化现象,其自发极化的方向能够被外加电场反转或重新定向的特性被称为“铁电效应”或“铁电现象”。

耐火材料耐火材料是指耐火度不低于1580℃的无机非金属材料。

一般的,凡具有抵抗高温以及在高温下所产生的物理化学作用的材料统称为耐火材料。

耐火度耐火材料抵抗高温而不变形的性能叫耐火度。

加热时,耐火材料中各种矿物质组成之间会发生反应,并生成易熔的低熔点结合物而使之软化,故耐火度只是表明耐火材料软化一定程度时的温度。

抗热震性材料承受温度急剧变化而不失效的能力。

特种陶瓷特种陶瓷是采用纯度较高的人工合成化合物(如Al2O3 ZrO2、SiC、Si3N4、BN),经配料、成型、烧结而制得。

电介质陶瓷从电学性能角度分类,可将固体材料分为超导体、导体、半导体和绝缘体。

绝缘体(材料)亦称为电介质。

电介质陶瓷即是指电阻率大于108Ω的陶瓷材料,能承受较强的电场而不被击穿。

✓什么是无机非金属材料?大致有哪些种类?无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、膨化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。

无机非金属材料定义

无机非金属材料定义

无机非金属材料定义
无机非金属材料是指一类不含金属元素的物质,主要包括硅酸盐
材料、氧化物材料、硼化合物材料、碳化合物材料等。

这些材料在生
产和生活中都有着广泛的应用,是现代科技和工业发展的基础材料之一。

硅酸盐材料是指由硅酸盐组成的材料,如石英、长石、沸石等。

这类材料具有高温稳定性、耐腐蚀性和电绝缘性能等优良性质,广泛
用于制备陶瓷、耐火材料、玻璃等。

其中玻璃是一种无机非金属材料
的经典代表,其透明、光滑、坚硬等特性,使其被广泛应用于建筑、
汽车、电子、医学等领域。

氧化物材料是指以氧化物为主要成分的材料,如氧化铝、氧化锆等。

这类材料具有高温抗热性、电绝缘性能、化学稳定性等特性,主
要应用于电子、陶瓷、建筑、化工等领域。

其中氧化铝广泛用于研磨剂、陶瓷、电解质、催化剂等领域,氧化锆则被用于制备金属陶瓷等
高端材料。

硼化合物材料是指由硼和非金属元素组成的材料,如碳化硼、氮
化硼等。

这类材料具有极高的硬度、高温稳定性和良好的导热性能,
广泛应用于制备车削、磨削工具、防弹材料、耐腐蚀材料等领域。

碳化合物材料是指由碳和其他非金属元素组成的材料,如碳化硅、碳化钼等。

这类材料具有高温稳定性、硬度高和耐腐蚀性能好等特点,广泛应用于制备切削工具、陶瓷、电子技术、新材料等领域。

无机非金属材料的研究与应用,已经成为现代科技与工业发展的重要领域。

随着人类对环境和生态的重视,绿色环保无机非金属材料的研究和应用也逐渐受到关注。

未来,无机非金属材料将继续在各个领域发挥更加重要的作用。

无机非金属材料

无机非金属材料

电子与电气
航空航天与军事
用于制造电子元件、电路板、绝缘材料和 电池隔膜等,起到导电、绝缘和பைடு நூலகம்撑的作 用。
用于制造飞机、火箭和导弹的部件,以及 军事装备和防护装备,要求具有耐高温、 高压和抗冲击等特性。
03
无机非金属材料的生产工艺与 技术
生产工艺
配料与混合
将原料按照配方比例进行混合 ,确保成分均匀。
特性
无机非金属材料具有高硬度、高耐磨 性、高耐腐蚀性、高电绝缘性等特点 ,广泛应用于建筑、电子、航空航天 、国防等领域。
分类
硅酸盐材料
硅酸盐材料是指以硅和氧为主 要成分的一类无机非金属材料
,如陶瓷、玻璃等。
氧化物材料
氧化物材料是指以金属元素和 氧元素结合形成的氧化物,如 氧化铝、氧化钛等。
碳化物材料
碳化物材料是指以碳和金属元 素结合形成的化合物,如碳化 硅、碳化钛等。
氮化物材料
氮化物材料是指以氮和金属元 素结合形成的化合物,如氮化
铝、氮化钛等。
02
无机非金属材料的性质与应用
性质
硬度与耐磨性
无机非金属材料通常具有较高的硬度 ,使其在磨损和划伤方面表现出色。
耐热性和耐火性
许多无机非金属材料能在高温下保持 稳定性,不易燃烧或熔化。
化学稳定性
无机非金属材料对大多数化学物质具 有较高的耐受性,不易被腐蚀或与化 学物质发生反应。
电绝缘性
许多无机非金属材料具有良好的电绝 缘性能,常用于电子和电气领域。
应用
建筑领域
工业制造
用于制造建筑材料,如混凝土、玻璃、陶 瓷和砖石,提供结构支持并具有装饰效果 。
用于制造工业零件和工具,如炉衬、研磨 介质和热工设备。

传统无机非金属材料

传统无机非金属材料

配料计算:根据原料的化学成分和物理性质进行配料计算
混合与成型:将原料混合均匀后,采用成型设备制成所需形状的耐火材料
烧成与冷却:将成型后的耐火材料进行烧成和冷却处理,以获得所需的物理和化学性能
陶瓷的性能特点
耐高温:陶瓷材料具有较高的熔点和化学稳定性,能够在高温下保持优良的性能。
硬度高:陶瓷材料具有较高的硬度,能够承受较大的压力和磨损。
耐久性好:水泥材料具有较好的耐久性,能够抵抗自然环境中的侵蚀和破坏。
耐火性差:水泥的耐火性较差,容易受到高温的影响而失去强度。
抗渗性差:水泥的抗渗性较差,容易受到水分和化学物质的侵蚀。
耐腐蚀性差:水泥的耐腐蚀性较差,容易受到低温的影响而失去强度。
无机非金属材料具有高硬度、高耐磨耗性、高熔点等特性,被广泛应用于建筑、机械、电子等领域。
无机非金属材料的分类
传统无机非金属材料:水泥、玻璃、陶瓷等
新型无机非金属材料:功能陶瓷、功能玻璃、新型碳材料等
传统无机非金属材料与新型无机非金属材料的区别
无机非金属材料的应用领域
无机非金属材料的应用领域
建筑材料:如水泥、玻璃、陶瓷等
玻璃的制备工艺
原料选择与配料
熔制过程
玻璃成型
玻璃退火与淬火
水泥的制备工艺
添加标题
添加标题
添加标题
添加标题
生产过程:破碎、配料、均化、煅烧、冷却、粉磨等
原料:石灰石、粘土、铁矿粉等
生产设备:立窑、回转窑、磨机等
生产工艺流程:原材料准备、配料、生料制备、熟料煅烧、水泥粉磨等
耐火材料的制备工艺
原料选择:根据耐火度要求选择合适的原料
陶瓷案例分析:以陶瓷刀具为例,介绍其性能特点、应用领域及市场前景。

无机非金属材料ppt课件

无机非金属材料ppt课件

类型:陶瓷、玻璃、水泥 (1)陶瓷 ·主要原料:黏土 ·主要成分:含水的铝硅酸盐,成分复杂
(2)玻璃 ·主要原料:纯碱(Na2CO3)、石灰石(CaCO3)、石英砂(SiO2) ·主要成分:Na2SiO3、CaSiO3和SiO2
高温
Na2CO3+SiO2===Na2SiO3+CO2↑
高温
CaCO3 +SiO2===CaSiO3 + CO2↑
二、新型无机非金属材料
1、硅和二氧化硅
根据元素周期表中硅的位置,思考: 为什么硅能成为应用最为广泛的半导体材料?
第三周期、第IV A族
①硅的存在与性质:
硅在自然界以硅酸盐和氧化物的形式存在
硅酸盐矿石
玛瑙( SiO2 )
水晶( SiO2 )
高温下,硅能与氧气反应生成SiO2,与氯气反应生成 SiCl4 。
(3)碳纳米材料
碳纳米材料是近年来人们十分关注的一类新型无机非金属 材料,主要包括富勒烯、碳纳米管、石墨烯等,在能源、信息、 医药等领域有着广阔的应用前景。
注:碳纳米材料、金刚石、石墨都是碳的同素异形体, 它们因结构不同(碳原子排列方式不同)而具有不同性质。
——富勒烯
富勒烯是由碳原子构成的 一系列笼形分子的总称,其中 的C60是富勒烯的代表物。C60的 发现为纳米科学提供了重要的 研究对象,开启了碳纳米材料 研究和应用的新时代。


②二氧化硅的性质:
(1)物理性质: 二氧化硅硬度大、熔点高,不溶于水
(2)化学性质:
酸性氧化物:SiO2+2NaOH=== Na2SiO3+H2O ;
具有氧化性:SiO2+2C
Si+2CO↑;
特 性 :SiO2+4HF=== SiF4↑+2H2O。

无机非金属材料

无机非金属材料

无机非金属材料无机非金属材料是指不含金属元素的无机化合物,是当今工业生产的主要原料之一。

它们的特点是材质硬度高,耐热性好,导电性能强,耐腐蚀性好,耐冲击性能优越,无毒无害,易操作性好等。

一、无机非金属材料的分类无机非金属材料可以大致分为矿物材料、非金属硬质聚合物材料以及非金属表面活性剂材料。

1、矿物材料矿物材料是以河砂、石英砂、石墨、云母、石棉、石膏和石灰等无机物为主要原料的。

它们的用途有:石英砂用于制造玻璃、抛光物品;石棉用于建筑防火;石墨用于制造电容器;石灰用于水泥制造等。

2、非金属聚合物材料非金属硬质聚合物材料主要由共聚物、热塑性塑料、陶瓷、聚氨酯以及树脂等组份组合而成,用于冶金、制造、航空、航天和医药等行业。

3、非金属表面活性剂材料表面活性材料是含有活性物质的材料,具有电容、电子封装、涂层等功能,其中的活性物质分为有机表面活性剂、无机表面活性剂、柔性活性剂以及组合活性剂。

二、无机非金属材料的应用无机非金属材料的应用非常广泛,主要应用于建筑、冶金、化工、航空航天、塑料、电子、服装、陶瓷等行业。

1、建筑无机非金属材料在建筑领域有着巨大的应用,从常见的建筑材料如水泥、砂浆、石膏、彩砂、灰饼等,到新型有机复合材料、玻璃钢、拉拔网等,都是无机非金属材料。

2、冶金无机非金属材料在冶金行业有着广泛的用途,比如铁矿石、钢铁、合金材料等,它们都是无机非金属材料。

3、化工无机非金属材料的应用于化工行业更是无处不在,从常见的石油、煤炭、石化制品等,到更现代的合成树脂、高分子材料等,都是无机非金属材料。

4、航空航天无机非金属材料也大量应用于航空航天行业,包括多孔金属材料、陶瓷、复合材料等,它们具有质量轻、耐热、耐腐蚀性强等特点,能够高效地应用于航空航天领域。

5、塑料无机非金属材料还应用于塑料领域,如树脂、聚氨酯、彩色塑料等,它们的应用融入到日常生活中。

6、电子电子方面,无机非金属材料如石墨、金属材料、复合材料和表面活性剂材料等都可以用于制造电子元件。

无机非金属材料ppt课件

无机非金属材料ppt课件
熔融法制备无机非金属材料的缺点是制备出的无机非金属材料结构不够致密,性能不够优异。
热解法制备的无机非金属材料有炭黑、石墨、碳纤维等。
热解法制备无机非金属材料的缺点是制备出的无机非金属材料结构不够致密,性能不够优异。
烧结法是一种将粉末状的物质加热到高温状态,使其发生物理和化学变化,最终形成致密化块状无机非金属材料的方法。
热膨胀系数
无机非金属材料的热膨胀系数差异较大,有些材料在加热时膨胀较小,适用于高温或温度变化较大的环境。
电导率与绝缘性:大多数无机非金属材料具有较高的绝缘性能,是良好的电绝缘材料。例如,陶瓷、玻璃和某些特种水泥可用于高压电器和电子设备的绝缘结构。
折射率与光学常数
无机非金属材料的折射率较高,决定了它们在光学仪器、光纤通讯和照明系统等领域的应用价值。不同材料的光学常数(如折射率、消光系数和色散等)决定了它们在特定波长范围内的光学行为。
烧结法制备无机非金属材料的优点是制备出的无机非金属材料结构致密,性能优异。
烧结法制备无机非金属材料的缺点是制备过程需要高温条件,能耗较高,同时制备出的无机非金属材料尺寸较小。
烧结法制备的无机非金属材料有陶瓷、玻璃、耐火材料等。
无机非金属材料的性能特点
硬度
韧性
强度与断裂韧性
疲劳性能
无机非金属材料的硬度通常较高,具有较好的耐磨性和耐压性能。例如,陶瓷材料具有极高的硬度,广泛用于切割工具、磨料和轴承等领域。
A
B
D
C
化学气相沉积法
利用化学反应产生气体,在气体的扩散和迁移过程中,通过化学反应生成无机非金属材料。
溶胶-凝胶法
将无机盐或金属醇盐溶解在合适的溶剂中,经过水解、缩聚等化学反应,形成稳定的溶胶,再经干燥、烧结固化制备无机非金属材料。

无机非金属材料

无机非金属材料
大部分无定形碳是由石墨层型结构的分子碎片大致相互平行地、无规则地堆 积在一起,可简称为乱层结构。层间或碎片之间用金刚石结构的四面体成键方式 的碳原子键连起来。这种四面体的碳原子所占的比例多,则比较坚硬,如焦炭和 玻璃态碳等。纳米碳管和葱头型碳粒等的结构可从球碳的结构出发来理解。
无定形碳中石墨层的大小,随制造不同工业用途的品种和工艺而异。例如, 用作橡胶填充剂的炭黑及个纳米,层间距离接近石墨晶体中的数值,约为 340pm,碳纤 维中的石墨层呈卷曲状,沿纤维轴方向延伸。煤的结构很复杂,由于生成的条件 不同,石墨化程度不同,氢、氧、氮等的含量差异很大,结构的差异也很大。
石墨晶体由层型分子堆积而成,层间作用力微弱,是石墨能形成多种多样的 石墨夹层化合物的内部结构根源。也使石墨的许多物理性质具有鲜明的各向异 性。在力学性质上,和层平行的方向有完整的解理性,层间易于滑动,所以很软, 是良好的固体润滑剂,是制作铅笔的好材料。层型分子内的离域π键结构,使石 墨具有优良的导电性,是制作电极的良好材料。 3. 球碳
1985 年至 1990 年,科学界出现了不少有关富勒烯结构及其物理、化学性质 的研究论文。但是,实验上确认C60富勒烯结构则是 1990 年以后的事情。当时 Kraatschmer W和Huffman改变了传统的C60制备方法,他们通过在氦气氛中蒸发 石墨的方法成功地获得较纯的宏观数量的C60和C70,并用红外光谱、X射线衍射 以及后来的核磁共振、扫描隧道显微镜(STM),使C60分子的结构已完全得到确认, 如图 4.3-4 所示,它是由二十面体截去十二个顶角而得到的。碳原子占据的 60 个顶点位于一个半径为 0.355 nm的球面上。它含有两种不等价的化学键,分别称 为单键与双键,键长分别为 145 pm和 140 pm,所有的五元环均由单键构成,而 六元环由单键和双键交替构成。这些单、双键既不是石墨那样的sp2杂化,也不 像金刚石那样的sp3杂化,而是介于二者之间。

高中化学传统无机非金属材料

高中化学传统无机非金属材料

高中化学传统无机非金属材料无机非金属材料是指由非金属元素或其化合物制成的材料,常见的有氧化物、硫化物、氮化物、碳化物等。

在化学中,无机非金属材料是一个重要的研究领域,因为它们不仅应用广泛,而且对于理解元素之间的化学反应和化学键的本质也具有重要的作用。

氧化物是最常见的无机非金属材料之一。

它们由氧和其他元素形成,例如二氧化硅、三氧化二铝和四氧化三铁等。

二氧化硅是一个重要的氧化物,广泛应用于制造玻璃、陶瓷和半导体器件等领域。

三氧化二铝是一种高温陶瓷材料,具有优异的机械、电学和热学性能,被广泛应用于航空航天、电子和化工等领域。

四氧化三铁是一种重要的磁性材料,广泛应用于电子、信息和磁性材料等领域。

硫化物是另一类常见的无机非金属材料。

它们由硫和其他元素形成,例如硫化铁、硫化锌和硫化镉等。

硫化铁是一种黑色的矿物,也称为辉铁矿,是铁的重要矿石之一。

硫化锌是一种白色的固体,广泛应用于制造橡胶、涂料、塑料和医药等领域。

硫化镉是一种黄色的固体,具有优异的光学性质,广泛应用于制造光电器件、半导体材料和液晶显示器等领域。

氮化物是一类重要的无机非金属材料。

它们由氮和其他元素形成,例如氮化硅、氮化铝和氮化镓等。

氮化硅是一种高硬度、高强度和高热稳定性的陶瓷材料,广泛应用于制造切削工具、轴承和热散尽材料等领域。

氮化铝是一种高温陶瓷材料,具有优异的机械、电学和热学性能,广泛应用于航空航天、电子和化工等领域。

氮化镓是一种重要的半导体材料,广泛应用于制造激光器、LED和太阳能电池等领域。

碳化物是一类重要的无机非金属材料。

它们由碳和其他元素形成,例如碳化硅、碳化钨和碳化钛等。

碳化硅是一种高硬度、高强度和高耐磨性的陶瓷材料,广泛应用于制造切削工具、轴承和热散尽材料等领域。

碳化钨是一种高硬度和高熔点的金属材料,广泛应用于制造切削工具、电极和高温加热器等领域。

碳化钛是一种重要的金属陶瓷材料,具有优异的机械、耐腐蚀和生物相容性,广泛应用于制造人工骨、牙齿种植物和医疗器械等领域。

无机非金属材料总结(完整版)

无机非金属材料总结(完整版)

第一章1. 粘土的定义:是一种颜色多样,细分散的多种含水铝硅酸盐矿物的混合体。

粘土是自然界中硅酸盐岩石(主要是长石)经过长期风化作用而形成的一种疏松的或呈胶状致密的土状或致密块状矿物,是多种微细矿物和杂质的混合体。

2. 粘土的成因:各种富含硅酸盐矿物的岩石经风化,水解,热液蚀变等作用可变为粘土。

一次粘土(原生粘土)风化残积型:母岩风化后残留在原地所形成的粘土。

(深层的岩浆岩(花岗岩、伟晶岩、长石岩)在原产地风化后即残留在原地,多成为优质高岭土的矿床,一般称为一次粘土)。

二次粘土(次生粘土)沉积型:风化了的粘土矿物借雨水或风力的迁移作用搬离母岩后,在低洼地方沉积而成的矿床,成为二次粘土。

一次粘土与二次粘土的区别:分类化学组成耐火度成型性一次粘土较纯较高塑性低二次粘土杂质含量高较低塑性高3. 高岭土、蒙脱土的结构特点:高岭土晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四面体层和Al-(O,OH)八面体层通过共用氧原子联系成双层结构,构成结构单元层。

层间以氢键相连,结合力较小,所以晶体解理完全并缺乏膨胀性。

蒙脱土(叶蜡石)是2:1型层状结构,两端[SiO4]四面体,中间夹一个[AlO6]八面体,构成单元层。

单元层间靠氧相连,结合力较小,水分子及其它极性分子易进入晶层中间形成层间水,层间水的数量是可变的。

4. 粘土的工艺特性:可塑性、结合性、离子交换性、触变性、收缩、烧结性。

1)可塑性:粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂,外力解除后,能维持形变,不因自重和振动再发生形变,这种现象称为可塑性。

表示方法:可塑性指数、可塑性指标可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度大,渗水性强,便于压滤榨泥。

W1塑限:粘土或(坯料)由粉末状态进入塑性状态时的含水量。

W2液限:粘土或(坯料)由粉末状态进入流动状态时的含水量。

塑限反映粘土被水润湿后,形成水化膜,使粘土颗粒能相对滑动而出现可塑性的含水量。

(完整版)无机非金属材料10.1

(完整版)无机非金属材料10.1

该窑依山倾斜建筑,结构简单,似龙形,故 称龙窑。
该窑依山倾斜建筑。一般分成8-10间,成 阶梯状,故称阶级窑。
1-拱顶; 2-拱脚; 3-拱脚梁; 4-立柱; 5-拉杆; 6-检查坑;
R-拱半径; B-跨度 ; -拱心角; s-拱厚;
f-拱高
玻璃工业
十七世纪以来由于工业纯碱的使用导致各 种日用玻璃和技术玻璃迅速进入全社会。
机制平板玻璃自20世纪问世以来,有诸多 的生产方法,如:有槽法、无槽法、平拉 法、对辊法等,总称为传统工艺。1957年, 英国人发明了浮法工艺(PB法),逐步取 代了平板玻璃的传统工艺,成为生产平板 玻璃最先进的工艺方法。
无机非金属材料

绪论
一.无机非金属材料定义与分类
1.定义 无机非金属材料是以某些元素的氧化物、
碳化物、氮化物、卤素化合物、硼化物以及 硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组 成的材料。是除有机高分子材料和金属材料 以外的所有材料的统称。
2.分类
普通的(传统的)和先进的(新型的)两 大类。
原料称量W、粉料均化H。
无机非金属材料生产的工艺流程简写为:
玻璃
C-R-B(G、W、H)M-F-P
传统陶瓷、耐火材料 C-R-B(G、W、HS-P
水泥
C-R-B(G、W、H)S-G-H
1. 胶凝材料类 (1)水泥:粉磨-煅烧-粉磨 (2)石灰:煅烧 (3)半水石膏:粉磨-煅烧 (4)碳化硅磨料:粉磨-煅烧-粉磨 2. 玻璃、玻璃纤维、铸石、人工晶体类 (1)玻璃:粉碎-熔化-成型 (2)玻璃纤维:粉碎-熔化-成型 (3)铸石:粉碎-熔化-成型-晶化
(1)传统无机非金属材料

无机非金属材料

无机非金属材料


在晶体结构上,无机非金属材料的元素 结合力主要为离子键、共价键或离子-共价 混合键。这些化学键所特有的高键能、高键 强赋予这一大类材料以高熔点、高硬度、耐 腐蚀、耐磨损、高强度和良好的抗氧化性等 基本属性,以及宽广的导电性、隔热性、透 光性及良好的铁电性、铁磁性和压电性。
2.分类
无 机 非 金 属 材 料
但是,由于天然金刚石非常少,远远不能满 足生产和科研的需要。科学家们通过对石墨和金 金 刚石同素异形体结构的研究,指出了在一定条件 刚 下使石墨转化为金刚石的可能性。 石 1955年,美国首先用石墨合成出金刚石,这 锯 片 是材料合成领域的一项重大成就。 目前,世界上用石墨合成金刚石的研究发展 很快,我国在这方面的研究也在飞速发展,许多 城市都建有人造金刚石的工厂和研究所,以满足 生产发展的需要。
(3)人造宝石
红宝石和蓝宝石的主要成分都是Al2O3(刚 玉)。 红宝石呈现红色是由于其中混有少量含铬化 合物;
而蓝宝石呈蓝色则是由于其中混有少量含钛 化合物。
1900年,科学家曾用氧化铝熔融后加入少量 氧化铬的方法,制出了质量为2g-4g的红宝石。 现在,已经能制造出大到10g的红宝石和蓝宝石。
(6)超导材料
超导材料是一类在低温下( 23.2K 或更低温度下) 电阻可以完全消失的材料。用超导材料做成导线,电阻几乎 为零,可以实现远距离无损耗输电;超导材料可以产生极强 的磁场,用于制造磁悬浮列车;用超导材料制成的发电机将 会比现有的发动机输出功率高 100 倍以上。由于超导现象发 生在很低的温度下,使其应用受到很大的限制,因此寻找研 制在较高临界温度下具有超导特性的材料成为近30年来科学 家研究的重要课题。 1986 年 , 瑞 士 的 IBM 公 司 实 验 室 的 JGBendnorz 和 KAMtiller首先在高温氧化物超导体的研究中取得了决定性 的突破。在通式为AxByCuzOw(A=La,Y„„;B=Ba,Sr„„ 等)的钙钛矿结构的体系中,获得了临界温度Tc达35K的超导 体,因此他们获得了1987年诺贝尔物理奖。1987年,美国休 斯敦大学的朱经武小组、中科院物理研究所赵忠贤等发现了 临界温度Tc为90K的Y-Ba-Cu-O材料,实现了在液氧(77K) 中的超导性。

无机非金属材料

无机非金属材料

传统工艺
传统无机非金属材料: 1、水泥和其他胶凝材料:硅酸盐水泥、铝酸盐水泥、石灰、石膏等; 2、陶瓷:粘土质、长石质、滑石质和骨灰质陶瓷等; 3、耐火材料:硅质、硅酸铝质、高铝质、镁质、铬镁质等,玻璃硅酸盐 ; 4、搪瓷:钢片、铸铁、铝和铜胎等; 5、铸石:辉绿岩、玄武岩、铸石等; 6、研磨材料:氧化硅、氧化铝、碳化硅等; 7、多孔材料:硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等 ; 8、碳素材料:石墨、焦炭和各种碳素制品等; 9、非金属矿:粘土、石棉、石膏、云母、大理石、水晶和金刚石等; 新型无机非金属材料
生产工艺
普通无机非金属材料的生产是采用天然矿石作原料。经过粉碎、配料、混合等工序,成型(陶瓷、耐火材料 等)或不成型(水泥、玻璃等),在高温下煅烧成多晶态(水泥、陶瓷等)或非晶态(玻璃、铸石等),再经过 进一步的加工如粉磨(水泥)、上釉彩饰(陶瓷)、成型后退火(玻璃、铸石等),得到粉状或块状的制品。
高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重, 热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1300 ℃左右,由于燃料 充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航 空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。
硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。
应用领域
无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分 为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必 需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规 格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生 产、生活息息相关,它们产量大、用途广。其他产品如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩 等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是 20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现 代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维 等。 无机非金属材料分类

无机非金属材料资料 (2)

无机非金属材料资料 (2)

烧成
表面处理
对无机非金属材料的表面进行涂层、 镀膜或涂覆等处理,以提高其耐腐蚀 性、耐磨性和装饰性。
在高温下对坯体或部件进行烧结或熔 融,以实现材料的致密化和稳定性。
性能优化
成分优化
通过调整原料成分和制备工艺参数,优化无机非金属材料的物理、化学和机械性 能。
复合增强
将两种或多种无机非金属材料进行复合,实现优势互补和性能增强,如陶瓷基复 合材料、玻璃纤维增强复合材料等。
废弃物资源化利用
对无机非金属材料的废弃物进行资源化利用,减少对环境的负担,实现可持续发展。
市场与应用领域的拓展
新能源领域
随着新能源产业的快速发展,无机非金属材料在太阳能电池、风力发电机叶片等领域的 应用逐渐增多。
生物医学领域
无机非金属材料在生物医学领域的应用逐渐拓展,如生物陶瓷、生物玻璃等在牙齿种植、 骨修复等领域的应用。
制备方法
固相法
通过高温或化学反应将原料转化为无机非金属材料,如烧结、熔 融、水热合成等。
气相法
利用化学反应或物理过程将气体物质转化为无机非金属材料,如化 学气相沉积、物理气相沉积等。
液相法
利用溶胶-凝胶法、沉淀法等方法将液体物质转化为无机非金属材 料。
加工工艺
成型
将制备好的无机非金属材料加工成所 需形状和尺寸的坯体或部件,如压制 成型、注射成型、挤压成型等。
抗蠕变性
某些无机非金属材料在高温下仍能保持较 好的稳定性,不易变形,这使得它们在高 温环境下具有较好的应用前景。
热学性能
良好的隔热性能 耐高温性能 热膨胀性 抗热震性
无机非金属材料的热导率较低,具有良好的隔热性能,可用于 制作保温材料。
许多无机非金属材料能够承受高温,如耐火材料、陶瓷等,可 以在高温环境下保持其结构和性能的稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机非金属材料
以某些元素的氧化物、碳化物、氮化物、硼化物、硫系化合物(包括硫化物、硒化物及碲化物)和硅酸盐、钛酸盐、铝酸盐、磷酸盐等含氧酸盐为主要组成的无机材料的泛称。

包括陶瓷、玻璃、水泥、耐火材料、搪瓷、磨料以及新型无机材料等。

其中陶瓷一词,随着与陶瓷工艺相近的无机材料的不断出现,其概念的外延也不断扩大。

最广义的陶瓷概念几乎与无机非金属材料的含意相同。

无机非金属材料也和金属材料以及有机高分子材料等一样,是当代完整的材料体系中的一个重要组成部分。

普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。

此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。

但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。

与高分子材料相比,密度较大,制造工艺较复杂。

特种无机非金属材料的特点是:①各具特色,例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。

②各种物理效应和微观现象,例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。

③不同性质的材料经复合而构成复合材料,例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料。

沿革旧石器时代人们用来制作工具的天然石材是最早的无机非金属材料。

在公元前6000~前5000年中国发明了原始陶器。

中国商代(约公元前17世纪初~约前11世纪)有了原始瓷器,并出现了上釉陶器。

以后为了满足宫廷观赏及民间日用、建筑的需要,陶瓷的生产技术不断发展。

公元 200年(东汉时期)的青瓷是迄今发现的最早瓷器。

陶器的出现促进了人类进入金属时代,中国夏代(约公元前22世纪末至约前21世纪初~约前17世纪初)炼铜用的陶质炼锅,是最早的耐火材料。

铁的熔炼温度远高于铜,故铁器时代的耐火材料相应地也有很大发展。

18世纪以后钢铁工业的兴起,促进耐火材料向多品种、耐高温、耐腐蚀方向发展。

公元前3700年,埃及就开始有简单的玻璃珠作装饰品。

公元前1000年前,中国也有了白色穿孔的玻璃珠。

公元初期罗马已能生产多种形状的玻璃制品。

1000~1200年间玻璃制造技术趋于成熟,意大利的威尼斯成为玻璃工业中心。

1600年后玻璃工业已遍及世界各地区。

公元前3000~前2000年已使用石灰和石膏等气硬性胶凝材料。

随着建筑业的发展,胶凝材料也获得相应的发展。

公元初期有了水硬性石灰,火山灰胶凝材料,1700年以后制成水硬性石灰和罗马水泥。

1824年英国J.阿斯普丁发明波特兰水泥(见水泥)。

上述陶瓷、耐火材料、玻璃、水泥等的主要成分均为硅酸盐,属于典型的硅酸盐材料。

18 世纪工业革命以后,随着建筑、机械、钢铁、运输等工业的兴起,无机非金属材料有了较快的发展,出现了电瓷、化工陶瓷、金属陶瓷、平板玻璃、化学仪器玻璃、光学玻璃、平炉和转炉用的耐火材料以及快硬早强等性能优异的水泥。

同时,发展了研磨材料、碳素及石墨制品、铸石等。

20世纪以来,随着电子技术、航天、能源、计算机、通信、激光、红外、光电子学、生物医学和环境保护等新技术的兴起,对材料提出了更高的要求,促进了特种无机非金属材料的迅速发展。

30~40年代出现了高频绝缘陶瓷、铁电陶瓷和压电陶瓷、铁氧体(又称磁性瓷)和热敏电阻陶瓷(见半导体陶瓷)等。

50~60年代开发了碳化硅和氮化硅等高温结
构陶瓷、氧化铝透明陶瓷、β-氧化铝快离子导体陶瓷、气敏和湿敏陶瓷等。

至今,又出现了变色玻璃、光导纤维、电光效应、电子发射及高温超导等各种新型无机材料。

分类无机非金属材料的名目繁多,用途各异,因此,还没有一个统一而完善的分类方法。

通常把它们分为普通的(传统的)和特种的(新型的)无机非金属材料两大类。

前者指以硅酸盐为主要成分的材料并包括一些生产工艺相近的非硅酸盐材料;例如:碳化硅,氧化铝陶瓷,硼酸盐、硫化物玻璃,镁质、铬镁质耐火材料和碳素材料等。

通常这一类材料生产历史较长、产量较大,用途也较广。

后者主要指20世纪以来发展起来的、具有特殊性质和用途的材料。

例如:压电、铁电、导体、半导体、磁性、超硬、高强度、超高温、生物工程材料及无机复合材料等。

但这种划分也并非绝对,因为新型材料是从传统材料逐渐发展起来的,有些材料的归属很难确定。

习惯上,无机非金属材料沿用传统生产工艺分为陶瓷、玻璃、水泥、耐火材料、搪瓷、碳素材料等类,同时新型材料按其生产工艺、用途和发展状况,又逐步形成一些新的材料类别,例如无机复合材料、无机多孔材料等。

有些品种按习惯并入传统分类中,例如:铁电、压电陶瓷并入陶瓷;微晶玻璃、光导纤维等并入玻璃等。

有的还可按照材料中的主要成分分类,有硅酸盐、铝酸盐、钛酸盐、磷酸盐、氧化物、氮化物、碳化物材料等;根据材料的用途分,有日用、建筑、化工、电子、航天、通信、生物、医学材料等;根据材料的性质分,有胶凝、耐火、隔热、耐磨、导电、绝缘、耐腐蚀、半导体材料等;根据材料的物质状态分,有晶体(单晶体、多晶体、微晶体)、非晶体及复合材料等,还可以从材料的外观形态分,有块状、多孔、纤维、晶须、薄膜材料等。

生产工艺普通无机非金属材料的生产是采用天然矿石作原料。

经过粉碎、配料、混合等工序,成型(陶瓷、耐火材料等)或不成型(水泥、玻璃等),在高温下煅烧成多晶态(水泥、陶瓷等)或非晶态(玻璃、铸石等),再经过进一步的加工如粉磨(水泥)、上釉彩饰(陶瓷)、成型后退火(玻璃、铸石等),得到粉状或块状的制品。

特种无机非金属材料的原料多采用高纯、微细的人工粉料。

单晶体材料用焰融、提拉、水溶液、气相及高压合成等方法制造。

多晶体材料用热压铸、等静压、轧膜、流延、喷射或蒸镀等方法成型后再煅烧,或用热压、高温等静压等烧结工艺,或用水热合成、超高压合成或熔体晶化等方法制造粉状、块状或薄膜状的制品。

非晶态材料用高温熔融、熔体凝固、喷涂、拉丝或喷吹等方法制成块状、薄膜或纤维状的制品。

展望未来科学技术的发展,对各种无机非金属材料,尤其是对特种新型材料提出更多更高的要求。

材料学科有广阔的发展前景,复合材料、定向结晶材料、增韧陶瓷以及各种类型的表面处理和涂层的使用,将使材料的效能得到更大发挥。

由于对材料科学基础研究的日益深入,各种精密测试分析技术的发展,将有助于按预定性能设计材料的原子或分子组成及结构形态的早日实现。

相关文档
最新文档