含绝对值不等式的题型
含有绝对值的不等式练习
含有绝对值的不等式练习【同步达纲练习】A 级一、选择题1.设x ∈R ,则不等式|x |<1是x 2<1成立的( )条件. A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件 2.若a,b,c ∈R ,且|a-c |<|b |,则( )A.|a |>|b |+|c |B.|a |<|b |-|c |C.|a |>|b |-|c |D.|a |>|c |-|b |3.不等式|x 2-x-6|>3-x 的解集是( )A.(3,+∞)B.(-∞,-3)∪(3,+∞)C.(-∞,-3)∪(-1,+∞)D.(-∞,-3)∪(-1,3)∪(3,+∞) 4.设集合A ={x ||2-x -3|<1,x ∈N },则A 中元素个数是( ) A.13 B.12 C.11 D.10 5.下面四个式子:①|a-b |=|b-a | ②|a+b |+|a-b |≥2|a |③2)(a -=a④21(|a |+|b |)≥ab 中,成立的有( )A.1个B.2个C.3个D.4个二、填空题6.对于任意的实数x ,不等式|x+1|+|x-2|>a 恒成立,则实数a 的取值范围是 .7.不等式|x 2+2x-1|≥2的解集是 . 8.不等式|x x 1-|>xx-1的解集是 .三、解答题9.解不等式12+x >x.10.设m 等于|a |、|b |和1中最大的一个,当|x |>m 时,求证:2xbx a +<2.AA 级一、选择题1.设实数a,b 满足ab<0,则( )A.|a+b |>|a-b |B.|a+b |<|a-b |C.|a-b |<|a |-|b |D.|a-b |<|a |+|b |2.不等式组⎪⎩⎪⎨⎧+->+->x 2x 2x 3x 30x 的解集是( )A.{x |0<x<2}B.{x |0<x<2.5}C.{x |0<x<6}D.{x |0<x<3}3.不等式24x -+xx ≥0的解集是( )A.{x |-2≤x ≤2}B.{x |-3≤x<0或0<x ≤2}C.{x |-2≤x<0或0<x ≤2}D.{x |-3≤x<0或0<x ≤3}4.设a>1,方程|x+log a x |=|x |+|log a x|的解集是( )A.0≤x ≤1B.x ≥1C.x ≥aD.0<x ≤a5.设全集为R ,A ={x |x 2-5x-6>0},B ={x ||x-5|<a }(a 为常数),且11∈B ,则( ) A. A ∪B =R B.A ∪B =RC. A ∪B =RD.A ∪B =R二、填空题6.已知|a |≤1,|b |≤1,那么|ab+22)1()1(b a --|与1的大小关系是 .7.对于实数x,y 有|x+y |<|x-y |,则x ,y 应满足的关系是 . 8.不等式|x |+|x-2|≤1的解集是 .三、解答题9.解不等式|x+7|-|3x-4|+223->010.已知f(x)=21x +,当a ≠b 时,求证|f(a)-f(b)|≤|a-b |【素质优化训练】一、选择题1.不等式ba b a ++≤1成立的充要条件是( ) A.ab ≠0B.a 2+b 2≠0C.ab>0D.ab<02.在x ∈(31,3)上恒有|log a x|<1成立,则实数a 的取值范围是( ) A.a ≥3 B.0<a ≤31C.a ≥3或0<a ≤31D.a ≥3或0<a<313.已知x<y<0,设a =|x |,b =|y |,c =21|x-y |,d =xy ,则a,b,c,d 的大小关系是( )A.b<d<c<aB.a<d<c<bC.a<c<d<bD.c<b<d<a4.平面直角坐标系中,横、纵坐标都是整数的点叫做整点,那么满足不等式(|x |-1)2+(|y |-1)2<2的整点(x,y)的个数是( )A.16B.17C.18D.25 5.已知f(x)=|lgx |,若0<a<b<c ,且f(a)>f(c)>f(b),则( ) A.(a-1)(c-1)>0 B.ac>1 C.ac =1 D.ac<1二、填空题6.当0<a<1时,满足|log a (x+1)|>|log a (x-1)|的x 的取值范围是 .7.若α,β∈R +,C ∈R +,则|α+β|2与(1+c)|α|2+(1+c1)|β|2的大小关系是 .8.已知ab+bc+ca =1,则|a+b+c |与3的大小关系是 . 9.不等式)1()10)(3)(2(2----x x x x x ≥0的解集是 .三、解答题10.设不等式5-x>7|x+1|与ax 2+bx-2>0同解,求a,b 的值.11.已知f(x)=x 2-x+13,|x-a |<1,求证:|f(x)-f(a)|<2(|a |+1)补充题:1.关于实数x 的不等式|x-2)1(2+a |≤2)1(2-a 与x 2-3(a+1)x+2(3a+1)≤0(a ∈R)的解集依次为A 和B ,求使A ⊆B 的a 的取值范围.2.已知f(x)=x 2+px+q ,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21.3.设a,b ∈R ,|a |+|b |<1,α、β是方程x 2+ax+b =0的两根,确定|α|、|β|的范围.4.设a ∈R ,函数f(x)=ax 2+x-a(-1≤x ≤1).(1)若|a |≤1,证明|f(x)|≤45. (2)求a 的值使函数f(x)有最大值817.参考答案【同步达纲练习】A 级1.C2.D3.D4.C5.C6.(-∞,3)7.{x |x≥1或x≤-3或x =-1}8.(-∞,0) (1,+∞)9.解:原不等式等价于x<0或⎩⎨⎧>+≥2120x x x ⇒0≤x<1+2,综上得:解集为{x |x<1+2}. 10.证明:∵|x |>m≥|a |. ⎪⎩⎪⎨⎧≥>≥>1m x bm x ⇒|x |2>|b |. ∴|x a +2x b |≤|x a |+|2x b |=xa +2xb <xa +22xx =2,故原不等式成立.AA 级1.B2.C3.B4.B5.D6.|ab+)1)(1(22b a --|≤1 7.x,y 异号 8.空集9.由223-=2-1,于是原不等式可化为:|x+7|-|3x-4|+2-1>0.等价于⎪⎩⎪⎨⎧>-+--+>012)43(734x x x ①或⎪⎩⎪⎨⎧>-+-++≤≤-012437347x x x ②或⎩⎨⎧>+-++--<0243)7(7x x x ③.解①得:34 <x<5+22.解②得:-21-22<x≤34.解③得无解.综上得,原不等式解集为(-422+,4210+). 10.证明:要证|f(a)-f(b)|<|a-b |.(21a +-21b +)2<(a-b)2.即:1+a 2+1+b 2-2)1)(1(22b a ++<a 2+b 2-2ab ,只需证:1+ab<)1)(1(22b a ++. ∵1+ab<|1+ab|,∴只需证|1+ab |<)1)(1(22b a ++.即证:1+2ab+a 2b 2<1+a 2+b 2+a 2b 2.即:2ab<a 2+b 2,又a≠b,故2ab<a 2+b2成立,故原不等式成立.【素质优化训练】1.B2.C3.D4.A5.D6.(2,+∞)7.|α+β|2≤(1+c)|α|2+(1+c1)|β|28.|a+b+c |≥3 9.解集是{x |x<1且x≠0,3≤x≤10或x =2}.10.解不等式5-x>7|x+1|成立的前提条件是:x<5.(1)当-1≤x<5,不等式化为:5-x>7x+7,∴-1≤x<-41.(2)当x<-1,不等式化为:5-x>-7x-7,∴x>-2,因此有:-2<x<-1.综合起来:不等式解为-2<x<-41,∴-2<x<-41为不等式ax 2+bx-2>0的解,∵a<0,不等式变形为x 2+a b x-a 2<0,它与不等式x 2+49x+21<0比较系数得:a =-4,b =-9. 11.证明:∵f(x)-f(a)=x 2-x-a 2+a =(x-a)(x+a-1),∴|f(x)-f(a)|=|(x-a)(x+a-1)|=|x-a ||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a |+2|a |+1<2|a |+2=2(|a |+1)补充题:1.解:A ={x |2a≤x≤a 2+1},由x 2-3(a+1)x+2(3a+1)≤0知(x-2)[x-(3a+1)]≤0,当3a+1≥2时,即a≥31时,B ={x |2≤x≤3a+1},当a≥31时,要使A ⊆B ,则⎩⎨⎧+≤+≤131222a a a ,∴1≤a≤3.当a<31时,B ={x |3a+1≤x≤2}.要使A ⊆B ,则⎩⎨⎧+≤+≤+1312132a a a a ,∴a =-1.故要使A ⊆B 的a 的范围是{a |1≤a≤3或a =-1}.2.证明:假设|f(1)|,|f(2)|,|f(3)|都小于21,则有|f(1)|+2|f(2)|+|f(3)|<21+2×21+21=2,又由于f(x)=x 2+px+q ,可得f(1)-2f(2)+f(3)=1+p+q-(8+4p+2q)+(9+3p+q),所以|f(1)|+2|f(2)|+|f(3)|≥|f(1)-2f(2)+f(3)|=2两式矛盾.故|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 3.解:由韦达定理知:α+β=-a,αβ=b ,而|a |+|b |=|α+β|+|αβ|<1.∴|α+β|<1-|αβ|=1-|α||β|.又|α+β|>|α|-|β|,∴|α|-|β|<1-|α||β|,即(|α|-1)(|β|+1)<0,∵|β|+1>0,∴|α|-1<0,即|α|<1,同理|β|<1.即|α|,|β|取范围为:|α|<1,|β|<1.4.证明:(1)∵|x |≤1,|a |≤1,∴|f(x)|=|a(x 2-1)+x |≤|a ||x 2-1|+|x |≤|x 2-1|+|x |=1-|x 2|+|x |=-(|x |-21)2+45≤45. (2)当a =0时,f(x)=x ;当-1≤x ≤1时,f(x)的最大值为f(1)=1不可能满足题设条件,∴a ≠0,又f(1)=a+1-a =1,f(-1)=a-1-a =-1,故f(±1)均不是最大值.∴f(x)的最大值为817,应在其对称轴上,即顶点位置取得.∴a<0.∴命题等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧<=-<-<-0817)21(1211a a f a ⇒⎪⎪⎩⎪⎪⎨⎧=++-=0)81)(2(21a a a ⇒⎪⎪⎩⎪⎪⎨⎧-=-=-<81a 2a 21a 或,∴a =-2.。
01绝对值不等式(含经典例题+答案)
绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
绝对值的八种题型
绝对值的八种题型绝对值是数学中常见的概念之一,用来表示一个数到0的距离。
在解决绝对值相关题目时,需要掌握不同类型的题型和相应的解题方法。
本文将介绍绝对值的八种常见题型及解题思路。
1. 绝对值的定义题型这种题型要求直接根据绝对值的定义来求解,即将绝对值内的数分别取正负值,求得结果。
例如,求解|3x+1|=7,可以得到两个方程3x+1=7和3x+1=-7,解方程得到x=2和x=-2。
2. 绝对值的不等式题型这种题型要求解不等式中包含绝对值的问题。
通常的解题思路是,先去掉绝对值,得到一个二次不等式,然后根据不等式的性质求解。
例如,求解|2x-3|>5,可以得到两个不等式2x-3>5和2x-3<-5,解方程得到x>4和x<-1。
3. 绝对值的加减法题型这种题型要求计算带有绝对值的加减式。
解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后进行计算。
例如,计算|2+3|+|4-5|,可以将绝对值内的数分别取正负值,得到5+1=6。
4. 绝对值的乘法题型这种题型要求计算带有绝对值的乘法式。
解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后进行计算。
例如,计算|2x-1|*|3x+2|,可以将绝对值内的数分别取正负值,得到(2x-1)*(3x+2)和(2x-1)*(-3x-2)。
5. 绝对值的除法题型这种题型要求计算带有绝对值的除法式。
解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后进行计算。
例如,计算|2x-1|/|3x+2|,可以将绝对值内的数分别取正负值,得到(2x-1)/(3x+2)和(2x-1)/(-3x-2)。
6. 绝对值的方程题型这种题型要求求解带有绝对值的方程。
解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后解方程。
例如,求解|2x-1|=5,可以得到两个方程2x-1=5和2x-1=-5,解方程得到x=3和x=-2。
绝对值不等式50道题
1.不等式|3x-4|<2的整数解的个数为()A0 B1 C2 D大于22.函数y=√x-2-2的定义域是()A[-2,2] B(-0-2]U[2,+∞)C(-,-1]U[1,+∞) D[2,+8)3设不等式Ix-al<b的解集为{x-1<x<2},则a,b的值为()A.a=l,b=3B.a=-1,b=3C.a=-1,b=-34若两实数xy满足xy<0那么总有()A x+y<x-yBx+y>x-y Cx-y<x-y D.x+y<|y-x5.已知a-c<b,且abc≠0,则()Aa<b+cBa>c-b c |a <|b+|d Da|>7-lc6.f(x)=3x+1(xR),当x-1<b有f(x)-4<a(abeR),则a,b满足()Absa Bas Cb> Da2g7.不等式|2x+1>5-x|的解集是8解下列不等式:(1)x+1|>2-x;(2)x-2x-6<39.已知f(x)=1x+1l+|x-2l+a(1)当a=-5时,求f(x)定义域;(2)若f(x)的定义域为R,求a的取值范围。
10.1若不等式5-x>7lx+1l与不等式ax+bx-2>0同解,而lx-al+lx-b<k的解集为非,求实数k的取值范围2.当0<x<1时比较log(1+x)与log(1-x)的大小(a>0a≠l)11.|2-3x|-1<212.|3x+5|+1>613.4<|x²-5x|<614.|X+2|-|X-1|≥015.已知函数f(x)=|x+1|-|2x-3|.(I)在答题卡第(24)题图中画出y=f(x)的图像(11)求不等式|f(x)|>1的解集。
16.已知函数f(x)=-xfax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围17.不等式|8-3x|>0的解集是18.函数y=|x|-|x-3|的最大值为19.函数y=|x-4|+|x-6|的最小值为_.20.已知方程x-ax+b=0的两根分别为1和2,则不等式|ax-b|≤1的解集为(用间表示)。
含绝对值不等式练习题
含绝对值不等式练习题绝对值(absolute value)是数学中的一种运算符号,用来表示一个数与零点之间的距离。
绝对值不等式(absolute value inequality)是含有绝对值符号的不等式。
在解绝对值不等式时,通常需要将其分解为两个不等式,并分别求解。
下面是一些含有绝对值的不等式练习题,帮助你加深理解与练习。
请仔细阅读每道题目,并给出你的解答。
练习题一:求解不等式|2x+3| ≤ 5。
解答:首先,我们将不等式分解为两个不等式:2x+3 ≤ 5 和 -(2x+3) ≤ 5。
解第一个不等式,得到2x ≤ 2,从而得到x ≤ 1。
解第二个不等式,得到 -2x-3 ≤ 5,从而得到 -2x ≤ 8,x ≥ -4。
综合以上结果,我们可以得到 -4 ≤ x ≤ 1。
练习题二:求解不等式 |3x-1| > 7。
解答:首先,我们将不等式分解为两个不等式:3x-1 > 7 或 3x-1 < -7。
解第一个不等式,得到 3x > 8,从而得到 x > 8/3。
解第二个不等式,得到 3x < -6,从而得到 x < -2。
综合以上结果,我们可以得到 x < -2 或 x > 8/3。
练习题三:求解不等式 |4-5x| ≥ 2。
解答:首先,我们将不等式分解为两个不等式:4-5x ≥ 2 或 -(4-5x) ≥ 2。
解第一个不等式,得到 -5x ≥ -2,从而得到x ≤ 2/5。
解第二个不等式,得到 5x-4 ≥ 2,从而得到5x ≥ 6,x ≥ 6/5。
综合以上结果,我们可以得到x ≤ 2/5 或x ≥ 6/5。
练习题四:求解不等式 |x| + 3 > 1。
解答:首先,我们将不等式分解为两个不等式:x + 3 > 1 或 -(x) + 3 > 1。
解第一个不等式,得到 x > -2。
解第二个不等式,得到 -x + 3 > 1,从而得到 x < 2。
含绝对值的不等式的题型解析
如 e 所 以,原 脊等式 的解集 为{ 妒. {
~ }
制4 .解 等式 1 3 +l + I . l l>6 p一 解 :{ .+1f几何意 义是:数轴 j动点 .到 3与一1 一3 +} r l I ! 勺 : 的距 离的和 ,当 这 个和 为 6时,动点 .为 4和 一2 r .从数主上 可见: 【 I l 一
一
({ { — 的几何意 义是:数轴上动点 到a与b的距离的和, 1+ x bl 若和为c
例 1 .解 不等式 l + l 一 3>2 x
时 . 动 点 』分 j 为 I : I 2 则 { 目+x 6> )Ⅱ b) 解 集 为 j , ( < ). l l X 一 lI一 【 c {一 t的
三 或 s 曼 一
5 3 - ,屯 s 3 5臼 一 < < 一 ≤ 2司 2 一 < 2 s1 x . , 或5 <8
所 以原 等式 的解集 为 } c r一
所以 ,原不等 式的解壤 为 { 一 <x l ≤_ } }2 , 或5 Y <8 .
六、i () () {’ ± { I / l I()型 . I fx 或 I g ) I )十 gx 1 , > , ) < ( 南绝对 德的件 质氪i 八 I ’ ) 立的 条件 为 / <0 :} ) 《 成 >, 、) ; (
, gx e.g () :- ㈨ 曲 c酬 。
解法 二:由雅不 等式得 : ( +2 . + ( +2 ) 0 解 得 x 1 以原不等 式 一 , ≥一 . 所
的解 集为 { x - } xj I
八
{ 或 厂 { 一 { 或 . { 一
归
四、{ -a +1 - c x— +I bl ( l b) x } x b 或I aI — <c a- I c> 型
含有绝对值不等式的解法典型例题
含绝对值不等式的解法例1 解绝对值不等式|x+3|>|x-5|.解:由不等式|x+3|>|x-5|两边平方得>|x-5||x+3|22,x-5)即(x+3)>(.x>1x>1}.原不等式的解集为{∴ x|22,可在22,两边平方脱去绝对于两边都含“单项”绝对值的不等式依据|x|=x评析对值符号.当然,此例可按绝对值定义讨论脱去绝对值符号,但解题繁琐.的取值范围是|x-2|>k恒成立,则实数k例2 对任意实数x,若不等式|x+1|-)( C.k≤3 A.k<3 B.k<-3.k≤-3 D|的最小值x-2x>k对任意实数恒成立,只要|x+1|-|x+1分析要使||-|x-2|2-1x到的距离,|x-2|的几何意义为点x到大于k.因|x+1|的几何意义为数轴上点-3,与2的距离的差,其最小值为-1x+1的距离,||-|x-2|的几何意义为数轴上点x到.选B ∴ k<-3,∴此例利用绝对值的几何意义使问题迅速得解,若采用其他方法则解答过程冗评析长.>x+3.3例解不等式|3x-1|两种情况讨论.分析解此类不等式,要分x+3≥0和x+3<0x≥两种情况求解:和x+3≥0,即x≥-3时,原不等式又要分-3≤x< 解:当- ;①-,此时不等式的解为3≤x<,即当-3≤x< 时,-3x+1>x+3x<-x≥时,3x-1>x+3,即x>2,此时不等式的解为x>2.②当又当x+3<0,即x<-3时,不等式是绝对不等式.③取①、②、③并集知不等式的解集为x<-,或x>2}.x{|2x+3|-||<1解不等式例4|x-5- 分别使上式两个绝对值中代数式的值为零,它们将数轴分成三段:5和x=解:x=于是,原不等式变为(Ⅰ)或(Ⅱ)或(Ⅲ)<x≤5, x<-7,解(Ⅱ)得解(Ⅰ)得x>5;解(Ⅲ)得x> }即为原不等式的解集.x|x<-7或(Ⅰ)(Ⅱ)(Ⅲ)的并集{说明解这类绝对值不等式(仅限绝对值符号里面是一次式)可分如下几个步骤:第一步令每个绝对值号里的一次因式等于零求出相应的根;第二步把这些根按从小到大的顺序排号并把数轴分成相应的若干个区间;第三步根据所分区间去掉绝对值符号,组成若干个不等式组,最后分别解每个不等式组,取结果的并集就是原不等式的解.例5解不等式1≤|2x-1|<5.原不等式等价于解法一:或②①1≤x<3;解①得 -2<x≤0.解②得原不等式的解集为∴{x|-2<x≤0或1≤x<3}.解法二:原不等式等价于1≤2x-1<5,或 -5<2x-1≤-1,即 2≤2x<6,或 -4<2x≤0,解得 1≤x<3,或 -2<x≤0.∴原不等式的解集为{x|-2<x≤0,或1≤x<3}.评析比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是|≤ba≤x≤b,或-b≤x≤-a(a≥0).a≤|x这一规律对我们今后解题很有作用,要在理解的基础上加以记忆.本例亦可用图像法求解,不妨一试.例6 解不等式|x+3|+|x-3|>8.分析这是一个含有两个绝对值符号的不等式,为了使其转化为解不含绝对值符号的不等式,要进行分类讨论.解法一:由代数式|x+3|、|x-3|知,-3和3把实数集分为三个区间:x<-3,-3≤x<3,x≥3.当x<-3时,-x-3-x+3>8,即x<-4,此时不等式的解为x<-4;①当-3≤x<3时,x+3-x+3>8,此时无解;②当x≥3时,x+3+x-3>8,即x>4,此时不等式的解为x>4.③取①、②、③的并集得原不等式的解集为{x|x<-4,或x>4}.点评解这类绝对值符号里是一次式的不等式,其一般步骤是:(1)令每个绝对值符号里的一次式为零,并求出相应的根;(2)把这些根由小到大排序并把实数集分为若干个区间;求出它们的解集;解这些不等式,由所分区间去掉绝对值符号组成若干个不等式,)3(.(4)取这些不等式的解集的并集就是原不等式的解集.模仿例1,我们还有解法二:不等式|x+3|+|x-3|>8表示数轴上与A(-3),B(3)两点距离之和大于8的点,而A,B两点距离为6.因此线段AB上每一点到A、B的距离之和都等于6.如下图,要找到A,B距离之和为8的点,只须由点B向右移1个单位(这时距离之和增加2个单位),即移到点B(4),或由点A向左移1个单位,即移到点A(-4).11可以看出,数轴上点B(4)向右的点或者点A(-4)向左的点到A、B两点的距离之11和均大于8.∴原不等式的解集为{x|x<-4,或x>4}.解法三:分别画出函数y=|x+3|+|x-3|和y=8的图像,如下图.21=y1不难看出,要使y>y,只须x<-4,或x>4.21∴原不等式的解集为{x|x<-4,或x>4}.点评对于形如|x-a|+|x-b|>c,或|x-a|-|x-b|<c的不等式,利用不等式的几何意义或者画出左、右两边函数的图像去解不等式,更为直观、简捷.这又一次体现了数!形结合思想方法的优越性.。
高一数学含绝对值不等式的解法练习题
含绝对值的不等式解法一、选择题1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6C. a +6D. a -62.不等式|8-3x |≤0的解集是( ) A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧38 3.绝对值大于2且不大于5的最小整数是( ) A. 3B. 2C. -2D. -54.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A 中的元素个数是( ) A. 11 B. 10 C. 16 D. 156.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. ∅7.语句3≤x 或5>x 的否定是( )A. 53<≥x x 或B. 53≤>x x 或C. 53<≥x x 且D. 53≤>x x 且 二、填空题1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 .2.不等式1211<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ .三、解答题1.解不等式 1.02122<--x x 2.解不等式 x 2 - 2|x |-3>03.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求:(1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )4.解不等式3≤|x -2|<9 7.解不等式|3x -4|>1+2x .5.画出函数|21|x-||x y ++=的图象,并解不等式| x +1|+| x -2|<4.6.解下列关于x 的不等式:1<| x - 2 |≤77.解不等式2≤|5-3x |<9 11.解不等式|x -a |>b8.解关于x 的不等式:|4x -3|>2x +19.解下列关于x 的不等式:021522≤---x x x含绝对值的不等式解法答案一、选择题(共7题,合计35分) 1.1760答案:B 2.1743答案:D 3.1744答案:D 4.1773答案:D 5.2075答案:C 6.4109答案:B 7.1672答案:D二、填空题(共5题,合计21分)1.1539答案:{-5<x <1},{x |x ≥2或x ≤-1}2.1725答案:{x |0<x <4}3.1602答案:⎭⎬⎫⎩⎨⎧≤≤-3434x x4.1728答案:a <35.1788答案:0三、解答题(共19题,合计136分) 1.1510答案:{x |x >10或x <-10}2.1502答案:{}33-<>x x x 或3.1509答案:(1) A ∪B = {x |x <-1或x >4=, C U (A ∪B )= {x |-1≤x ≤4}(2) C U A = {x |-2≤x ≤4}, C U B = {x |x ≤-5或x ≥-1}, (C U A )∩(C U B ) = {x |-1≤x ≤4}4.1535答案:⎭⎬⎫⎩⎨⎧>-<317x x x 或5.1597答案:⎭⎬⎫⎩⎨⎧≥-≤2721x x x 或6.1598答案:{x |-7<x ≤-1或5≤x <11}7.1599答案:⎭⎬⎫⎩⎨⎧><553x x x 或8.1600答案:2523<<-x9.1538答案:⎭⎬⎫⎩⎨⎧>-<032x x x 或 10.1554答案:⎭⎬⎫⎩⎨⎧<≤≤<-31437134x x x 或 11.1536答案:当b <0时,解集为R ;当b =0时,解集为{x |x ∈R 且x ≠a };当b >0时,解集为{x |x <a -b 或x >a +b }.12.1601答案:a 的取值范围为a >5 13.1721答案:-5≤x <1或3<x ≤9.14.1722答案:x >2或x <1/3.15.1723答案:|x -1|+|x -2|<3⇔0<x <1或1≤x <2或2≤x <3⇔0<x <3.16.1724答案:当m >0时,原不等式的解集是{x |-3m <x <2m };当m =0时,原不等式的解集是∅;当m <0时,原不等式的解集是{x |2m <x <-3m }. 17.1726答案:x <-1/2或0<x <4.18.1727答案:x ≤-3或2<x ≤519.4121答案:21<a <32。
含有绝对值的不等式
第六节 含有绝对值的不等式【目录】题型1 含绝对值不等式的证明 题型2 含绝对值不等式的解法题型3 绝对值不等式中的综合问题三.解答题题型1 含绝对值不等式的证明1.已知|x-a|<M2ε,0<|yb-b|<a2ε,y ∈(0,M).求证:|xy-ab|<ε.证:|xy-ab|=|ay-ya+ay-ab|=|y(x-a)+a(y-b)|≤|y|·|x-a|+|a|·|y-b|<M ·M2ε+|a|·a2ε=ε.2.已知f(x)=x 2-x+13,且|x-a|<1.求证:|f(x)-f(a)|<a(|a|+1)。
证:∵|x-a|<1,∴|f(x)-f(a)|=|x 2-x-a 2+a|=|(x-a)(x+a-1)|<|x+a-1|=|(x-a)+(2a-1)| ≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1).3.已知a,b ∈R.求证:||1||b a b a +++≤||1||a a ++||1||b b +.证:当a+b=0时,不等式显然成立.当a+b ≠0时,∵|a+b|≤|a|+|b|,∴||1b a +≥||||1b a +,于是||1||b a b a +++=||111b a ++≤||||111b a ++=||||1||||b a b a +++=||||1||||||1||b a b b a a +++++≤||1||||1||b b a a +++.证法二:前面与证法1同.若证||1||b a b a +++≤||||1||||b a b a +++,即证|a+b|+|a||a+b|+|b||a+b|≤|a|+|b|+|a+b||a|+|a+b||b|,也即证|a+b|≤|a|+|b|,上式显然成立.∴原题得证.4. 已知|x-a|<1,求证:|a|-1<|x|<|a|+1.证:∵|a-a|=|a-x|,根据绝对值不等式定理,得|x|-|a|≤|x-a|,|x|-|a|≤|x-a|<1,和|a|-|x|≤|x-a|<1,∴|x|<|a|+1,和|a|-1≤|x|.∴|a|-1<x<|a|+1.5. 已知1|1|,1||,1||<++<<abb a :b a 求证.证: 由已知01>+ab ,∴①ab b a ab +<+<--⇔11,,0)1)(1()(1>±±=+±+b a b a ab ∴②成立,即①成立。
解含绝对值的不等式专题练习(有详细答案)
解“含绝对值的不等式”专题练习班级 学号一.选择题:1.不等式 |x +2|<3 的解集是 ( )(A )-5<x<1 (B )x<-5或x>1 (C )x<-5 (D )x>1 2.不等式|2x -1|>2的解集是 ( )(A )x>1或x<-1 (B )12x <-或32x > (C )1322x -<< (D )-1 <x< 3 3.不等式5123<-<x 的解集为 ( )A .{x|2<x<3}B .{x|-2<x<-1}C .{x|-2<x<-1或2<x<3}D .{x|-2<x<3}4.不等式5120<-<x 的解集为 ( )A .{x|-2<x<3}B .{x|-2<x<2}C .{x|x<-2或x>3}D .{x|-2<x<3且x 21≠} 5.不等式3|52|>-x 的解集是 ( )(A){}4|>x x (B){}41|<<x x (C){}41|>-<x x x 或 (D){}41|><x x x 或 6.关于x 的不等式)0(0<+<-+b a xb xa 的解集是 ( ) (A){}a x x -<| (B){}b x a x x >-<或| (C){}a x b x x -><或| (D){}a x b x -<<| 7.不等式2||2<-x x 的解集是 ( )(A){}21|>-<x x x 或 (B){}21|<<-x x (C)R x ∈ (D)φ 8.不等式 (1)(1||)0x x +->的解集是 ( )A. {|01}x x ≤<B. {|0,1}x x x <≠-C. {|11}x x -<<D.{|1,1}x x x <≠- 9.已知集合A={x|-2<x<4},B={x|x ≥a},若A ∩B=φ,且A ∪B 中不含元素5,则下列值中a 可能是A .3B .4C .5D .6 ( )10.若不等式21<x 和31>x 同时成立,则x 的取值范围是 ( ) A .3121<<-x B .3121-<>x x 或 C .3121<>x x 或 D .21>x11.设集合{}{}2450,0P x x x Q x x a =--<=-≥,则能使P Q =∅成立的a 的值是( )A .{}5a a > B .{}5a a ≥ C .{}15a a -<< D .{}1a a >12.0xx≥的解集是 ( )A .{}22x x -≤≤B .{}002x x x ≤<<≤或C . {}2002x x x -≤<<≤或D .{00x x x <<≤或13.已知0a >,不等式43x x a -+-<在实数集R 上的解集不是空集,则a 的取值范围是( )A .0a >B .1a >C . 1a ≥D .2a >14.设集合{}212,12x A x x a B x x ⎧-⎫=-<=<⎨⎬+⎩⎭,若A B ⊆,则a 的取值范围是( )A .{}01a a ≤≤ B .{}01a a <≤ C .{}01a a << D .{}01a a ≤<二.填空题:15. 不等式|x+1|+|x-1|≤2的解集是__________________ 16.xx x x x x 323222++>++的解集是________________ 17.不等式|x+1|+|x-1|>2的解集是_________________________. 18.若a>0,b R ∈,则不等式a b x <+-|3|的解集是_______________ .19.不等式|x+1|-|x-1|≥a 的解集是R ,则a 的取值集合_________________________. 20.不等式x 2-5|x|+6<0.的解集是_______________21.已知集合A={x||x+2|≥5},B={x|-x 2+6x -5>0},则A ∪B= 三. 解答题:22.解下列不等式⑴|1-2x|≥2 ⑵(x-1)2<100(3)解不等式 293x x -≤+ (4)解不等式 |x-|2x+1||>1.(5)|32|||x x +< (6)|x 2 -4x+2|≥ 2x;(7)|x+3|-|x -3|>3.23.已知{}4A x x a =|-<,{}2450B x x x =|-->,且A ∪B=R.求实数a 的取值范围.24.以知{}{}||1|,0,||3|4,A x x c c B x x A B =-<>=->=∅且,求C 取值的范围。
含绝对值的不等式题目
1、解不等式 |x - 3| ≤ 5,其解集为:A. x ≤ 8B. -2 ≤ x ≤ 8C. x ≥ -2D. x ∈ ∅(答案)B2、对于不等式 |2x + 1| > 9,下列哪个区间是其解集的一部分?A. [-4, -3]B. [-5, -4]C. [3, 4]D. [4, 5](答案)D3、不等式 |x| + |y| ≤ 1 表示的图形在直角坐标系中是:A. 一个正方形B. 一个圆C. 一个三角形D. 一个菱形(答案)D(注:实际上更准确地说是一个以原点为中心的正方形区域,但选项中最接近的是D)4、解不等式 |x - 1| < 3,其解集为:A. x < 4B. -2 < x < 4C. x > -2D. x ∈ ℝ(答案)B5、对于不等式 |x + 2| ≥ 5,下列哪个数不是它的解?A. -7B. 3C. -1D. 6(答案)C6、解不等式 |3x - 4| ≤ 2,得到的解集是:A. x ≤ 2B. x ≥ 2/3C. 2/3 ≤ x ≤ 2D. x ∈ ∅(答案)C7、不等式 |x - 5| + |x + 5| ≥ 10 的解集是:A. x ≤ -5 或 x ≥ 5B. -5 ≤ x ≤ 5C. x ∈ ℝD. x ∈ ∅(答案)C8、解不等式 |2x| - 3 < 5,其解集为:A. x < 4B. -4 < x < 4C. x > -4D. x ∈ ℝ且x ≠ 0(答案)B9、对于不等式 |x| < |x - 1|,下列哪个区间是其解集的一部分?A. [0, 1]B. [1, 2]C. [-1, 0]D. [2, 3](答案)D10、解不等式 |x + 3| - |x - 3| ≤ 6,其解集为:A. x ≤ -3B. x ≥ 3C. x ∈ ℝD. -3 ≤ x ≤ 3(答案)C。
解含绝对值的不等式专题练习有详细答案
解“含纽对值的不等成”专題练习册级学号一•选择題:1.不等衣|x + 2|<3的解集是()(A) - 5<x<1 ( B ) x< - 5 或x>1 ( C ) x< - 5 ( D ) x>12.不等衣|2z-1 |>2的解集是()1 3 1 3(A ) x> 1 或x<- 1 ( B ) A <一一或A > - ( C ) --<x<- ( D ) - 1 <x<32 2 2 23•不等衣3v|2x —l|v5的解集为()A. {x|2<x<31B. {x|-2<x<-1}C. {x|-2<x<-1 或2<x<3}D. {x|-2<x<3}4•不等S0<|2x-l|<5的解集为( )A. {x|-2<x<3}B. {x|-2<x<2} C・(x|x<-2 或x>3} D. {x|-2<x<3 fl -}25•不等衣I2x —5I>3的解集是()(A) {x I x > 4} (B){xl 1 <x< 4}(C) {x I x<一1弧 > 4)(D) {x\x< 1 或兀 > 4)6•关于x的不等氏叱vO(“ + 〃vO)的瞬集是()b_x(A) {x\x< -a} (B){x I x < > /?}(C) {x I x < /?或x: > -a} (D){xl/?<x< -a}7•不等itlx2-xl<2的解集是( )(A) {x \ x < -lgJcx > 2) (B) {x I -1 v x v 2} (C)x e 7? (D)08•不等式(l + x)(l-lxl) >0的解集是()A. {xIOSxvl} B・{xlx vO,xH-l}C. {xl-1 <x< l)D.{xlx<9•已知集合A={x卜2<x<4},B=(x|xMa},若AnB=4>, fl AuB中不含元素5,则下列值中a可能是A. 3B. 4C. 5D. 6 ( )10•若不等直丄v2和卜|>抑时应立,呱x的取值X围是()A. —丄vxvlB. x> 丄或vv-丄C. x>-D. x> -2 3 2 3 2 3 211.设集合P={X|X2-4X-5<0},Q = {X^x\-a>0}, i 能便PflQ = 0 成立的a 的值是( ) A. {a\a>5} B. {a|a>5}C. {d|-lva<5}D. ^a\a > 1}12•不等衣奸¥+凶》0的解集是( )A. {x|-2<x<2}B. 0或0K2}C. {x|-2<x<0«lc0<J<2)D. {x|-辰x<0或0W>/T}13.E »a>o,不等此卜一 4|+卜一 3|<“在实数集R 上的解集不是空集,剧“的取值X 围是( A. a >0B. a > 1 C ・ a>\ D. a >22、•一]14 •设集合4 = {人•卜一牛2}, 3 =杯二卜若A^B 9収的収值X 围是(x I 2A. {切0<«< ljB. {切0<a<\}C. {G |0 va v 1} D ・{a|0<a<\} 二填空題: 15•不等S|X +1|+|X-1|<2的解集是 ______________________17•不等贰|x+1 |+|x-11>2的解集是 ___________________________ ・1&若a>O,be/?,般不等j{\-3x + b\< "的解集是 _____________________ .19•不等jt|x +1|-|x-1>a 的解集是R,则a 的取值集合 __________________________________ 20•不等氏/-5^|+6<0.的解集是 _________________ 21•巳知集合 A={x||x+2>5EB={x|-屮+6乂・ 5>0},M AuB=三.解笞題:22. 解下列不等衣 (1)|1-2x>2⑵(x-1 ) 2<100(3)解不等 S X 2-9<X +3 (4)解不等式 |x-|2x+1||>1.16.x 2 +3x JV + 2>卞的解集是 -----------------------(5)l3x + 2lvlxl(6) I x2 -4x+2 | >-;2 (7 ) | x+3 | - | x - 3 | >3.23.BflA = {x||x-a|<4}1B = {x|x2-4x-5>0}, fl AuB=R.XX 数a 的取值X 围.24.M BlA = {xllx-ll<c,c>O},B = {xllx-3l>4},KAn^ = 0» 求C 皿值的XU。
含绝对值的不等式解法练习
含绝对值的不等式解法练习一、选择题1.已知A={x||x+2≥5},B={x||3-x|<2},则A ∪B=( )A.{x|x ∈R}B.{x|x ≤-7,或x ≥3}C.{x|x ≤-7,或x>1}D.{x|-7≤x<1} 2.设全集U=R ,不等式|x|<4的解集的补集是( )A.{x|-4<x<4}B.{x|x ≤-4或x ≥4}C.{x|x<-4或x>4}D.以上都不对二、填空题3.不等式21|21312|<+++x x 的解是__________。
4.不等式1≤|2x-3|≤5的解是__________。
三、解答题5.解不等式||3|2|2x x >+。
6.解不等式|3x-4|>1+2x 。
7.解不等式|x-1|+2|x-2|>3。
8.已知a>0,使不等式|x-4|+|x-3|<a 在实数集R 上的解集不是空集,求a的取值范围。
9.⎩⎨⎧>+->01a x ax 的解集不是空集,求实数a 的取值范围。
10.解不等式|3x+1|+|2x-5|>|5x-4|。
11.解关于x 的不等式:(1)2x-a<bx+3;(2)|x-a|>b 。
12.解不等式|x+3|>|x-5|+7参考答案1.C A :x+2≥5或x+2≤-5,∴x ≥3或x ≤-7B :-2<3-x<2,∴1<x<5,∴A ∪B={x|x ≤-7或x>1}。
故选C 。
2.B |x|<4的解集的补集是|x|≥4。
故选B 。
3.}2134|{-<<-x x ∵35235)3(2312+-=+-+=++x x x x x ∴原不等式化为21|21352|<++-x ,∴}2134|{-<<-x x 。
4.{x|2≤x ≤4或-1≤x ≤1}原不等式等价于1≤2x-3≤5,-5≤2x-3≤-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含绝对值不等式题型
一、单绝对值问题
1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+;
(3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥
2. 不等式1|1|3x <+<的解集为( ).
.A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)--
3. 已知全集{12345}U =,,,,,集合{}
32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5}
4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( )
.A R .B {},0x x R x ∈≠ .C {}0 .D ∅
5. 不等式2103x x -≤的解集为( )
.A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤
6. 若x R ∈,则()()110x x -+>的解集是 ( )
.A {}
01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠-
7. 不等式()120x x ->的解集是( )
.A ()1
2,-∞ .B ()()1
2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( )
.A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7-
9. 不等式211x x --<的解集是_______________.
10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x
x -->的解集是_______
二、带参数的绝对值问题(分类讨论思想为主)
1.(1). 若不等式26ax +<的解集为()1,2-,则实数a 等于 ( )
.A 8 .B 2 .C 4- .D 8-
(2). 已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,则c a 2+的值为____.
2. 已知{23}A x x a =-<,{B x x =≤10},且A B ⊂≠,求实数a 的范围
3. 设0,0a b >>,解关于x 的不等式:|2|ax -≥bx .
4. 解关于x 的不等式2||x a a -<(a R ∈)
5. 解关于x 的不等式:
(1)解关于x 的不等式31<-mx ; (2)a x <-+132)(R a ∈
6. 设全集U R =,解关于x 的不等式: 110x a -+->()x R ∈
三、双绝对值问题
1. 对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是_________.
2. 对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是_________.
3. 若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a 的取值范围是_________.
4. 如果关于x 的不等式b x x ≥+--54的解集为空集,则参数b 的取值范围为 .
5.若关于x 的不等式a x x <-++12的解集是空集,则a 的取值范围是_________.
6.不等式1126>+-x 的解集为 .
7. 解不等式:
(1).221>-+-x x (2).|21||2|4x x ++->;
8. 设0≤a ≤1,若满足不等式:|x -a |<b 的一切实数x 都满足不等式:|x -a 2|<
2
13,求正实数b 的取值范围.
答案
一、1.(1) ),34()1,(+∞⋃-∞
(2) ),2
1
(+∞ (3) ]5,2
1()2
1
,2(⋃-- (4) )53,(-∞ (5) ),1[+∞-
2-5: DCBC 6-8: BBD
9. (0,2)
10. ),0(]2,3(+∞⋃--,),2()0,(+∞⋃-∞
二、带参数问题
1. (1) C (2) 16
2. 17≤a
3-6:略
三、双绝对值问题
1. a<3
2. a>4
3. a>7
4. b<9
5. 3≤a
6. ),3()2,3()4,(+∞⋃-⋃--∞
7. (1) ),25()2
1
,(+∞⋃-∞ (2) ),1()1,(+∞⋃--∞ 8. 4
27-≤b。