考研高数总复习专题三第2讲数列求和及数列的综合应用(讲义)
最新高考数学二轮复习-专题三-第2讲-数列求和及其综合应用-学案讲义
第2讲数列求和及其综合应用[考情分析] 1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法.2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不等式相结合,考查最值、范围以及证明不等式等.3.主要以选择题、填空题及解答题的形式出现,难度中等.考点一数列求和核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是相邻项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +k )=14n 2-1=2.错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.考向1分组转化法例1(2023·枣庄模拟)已知数列{a n }的首项a 1=3,且满足a n +1+2a n =2n +2.(1)证明:{a n -2n }为等比数列;(2)已知b n n ,n 为奇数,2a n ,n 为偶数,T n 为{b n }的前n 项和,求T 10.(1)证明由a n +1+2a n =2n +2可得a n +1-2n +1=2n +1-2a n =-2(a n -2n ).又a 1-21=1≠0,所以{a n -2n }是以1为首项,-2为公比的等比数列.(2)解由(1)可得a n -2n =(-2)n -1,即a n =2n +(-2)n -1.当n 为奇数时,b n =a n =2n +(-2)n -1=3×2n -1;当n 为偶数时,b n =log 2a n =log 2[2n +(-2)n -1]=log 22n -1=n -1.所以T 10=(b 1+b 3+b 5+b 7+b 9)+(b 2+b 4+b 6+b 8+b 10)=(3+3×22+3×24+3×26+3×28)+(1+3+5+7+9)=3×(1-45)1-4+(1+9)×52=1048.考向2裂项相消法例2(2023·沈阳质检)设n ∈N *,向量AB →=(n -1,1),AC →=(n -1,4n -1),a n =AB →·AC →.(1)令b n =a n +1-a n ,求证:数列{b n }为等差数列;(2)求证:1a 1+1a 2+…+1a n <34.证明(1)由题意可得a n =AB →·AC →=(n -1)2+4n -1=n 2+2n ,则b n =a n +1-a n =[(n +1)2+2(n +1)]-(n 2+2n )=2n +3,可得b n +1-b n =(2n +5)-(2n +3)=2,故数列{b n }是首项b 1=5,公差d =2的等差数列.(2)由(1)可得1a n =1n 2+2n则1a 1+1a 2+…+1a n=12×-13+12-14+…+1n -=12×-1n +1-∵1n +1>0,1n +2>0,故1a 1+1a 2+…+1a n =12×-1n +1-<34.考向3错位相减法例3(2023·全国甲卷)记S n 为数列{a n }的前n 项和,已知a 2=1,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2S n -2S n -1=na n -(n -1)a n -1=2a n ,化简得(n -2)a n =(n -1)a n -1,则当n ≥3时,a n a n -1=n -1n -2,则a n a n -1·a n -1a n -2·…·a 3a 2=n -1n -2·n -2n -3·…·21,即a n a 2=n -1,又因为a 2=1,所以a n =n -1,当n =1,2时都满足上式,所以a n =n -1,n ∈N *.(2)令b n =a n +12n =n 2n,则T n =b 1+b 2+…+b n -1+b n=12+222+…+n -12n -1+n 2n ,①12T n =122+223+…+n -12n +n 2n +1,②由①-②得12T n =12+122+123+…+12n -n 2n +1=21-12-n 2n +1=1-2+n 2n +1,即T n =2-2+n 2n .规律方法(1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和或差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)用错位相减法求和时,应注意:①等比数列的公比为负数的情形;②在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.跟踪演练1(1)(2023·淮南模拟)已知数列{a n }满足a n +1-a n =2n ,且a 1=1.①求数列{a n }的通项公式;②设b n =a n +1a n a n +1,求数列{b n }的前n 项和T n .解①∵数列{a n }满足a n +1-a n =2n ,且a 1=1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -1.当n =1时也成立,∴a n =2n -1(n ∈N *).②b n =a n +1a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,∴数列{b n }的前n 项和T n …1-12n +1-1.(2)(2023·浙江省强基联盟模拟)已知a 1=1,{a n +1}是公比为2的等比数列,{b n }为正项数列,b 1=1,当n ≥2时,(2n -3)b n =(2n -1)b n -1.①求数列{a n },{b n }的通项公式;②记c n =a n ·b n .求数列{c n }的前n 项和T n .解①因为数列{a n +1}为等比数列,公比为2,首项为a 1+1=2,所以a n +1=2×2n -1=2n ,所以a n =2n -1(n ∈N *),由(2n -3)b n =(2n -1)b n -1,推得b n b n -1=2n -12n -3(n ≥2),所以b 2b 1=31,b 3b 2=53,b 4b 3=75,…,b n b n -1=2n -12n -3(n ≥2),故b n b n -1·b n -1b n -2·…·b 2b 1=2n -12n -3·2n -32n -5·…·31(n ≥2),又b 1=1,所以当n ≥2时,b n =2n -11b 1=2n -1,又b 1=1符合上式,所以b n =2n -1(n ∈N *).②由题可得c n =2n (2n -1)-(2n -1),令d n =2n (2n -1),{d n }的前n 项和为P n .所以P n =1×21+3×22+5×23+…+(2n -1)2n ,2P n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)2n +1,两式相减得-P n =2+2(22+23+…+2n )-(2n -1)2n +1,所以P n =(2n -1)2n +1-2-2(2n +1-4),所以P n =6+(2n -3)2n +1.令e n =2n -1,{e n }的前n 项和为E n ,则E n =(1+2n -1)n 2=n 2,综上,T n =P n -E n =(2n -3)2n +1+6-n 2.考点二数列的综合问题核心提炼数列与函数、不等式,以及数列新定义的综合问题,是高考命题的一个方向,考查逻辑推理、数学运算、数学建模等核心素养.解决此类问题,一是把数列看成特殊的函数,利用函数的图象、性质求解;二是将新数列问题转化为等差或等比数列,利用特殊数列的概念、公式、性质,结合不等式的相关知识求解.例4(1)分形的数学之美,是以简单的基本图形,凝聚扩散,重复累加,以迭代的方式而形成的美丽的图案.自然界中存在着许多令人震撼的天然分形图案,如鹦鹉螺的壳、蕨类植物的叶子、孔雀的羽毛、菠萝等.如图所示,为正方形经过多次自相似迭代形成的分形图形,且相邻的两个正方形的对应边所成的角为15°.若从外往里最大的正方形边长为9,则第5个正方形的边长为()A.814 B.8168C .4 D.463答案C 解析设第n 个正方形的边长为a n ,则由已知可得a n =a n +1sin 15°+a n +1cos 15°,∴a n +1a n =1sin 15°+cos 15°=12sin 60°=63,∴{a n }是以9为首项,63为公比的等比数列,∴a 5=a 1q 4=9=4.(2)(2023·武汉模拟)将1,2,…,n 按照某种顺序排成一列得到数列{a n },对任意1≤i <j ≤n ,如果a i >a j ,那么称数对(a i ,a j )构成数列{a n }的一个逆序对.若n =4,则恰有2个逆序对的数列{a n }的个数为()A .4B .5C .6D .7答案B解析若n=4,则1≤i<j≤4,由1,2,3,4构成的逆序对有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),若数列{a n}的第一个数为4,则至少有3个逆序对;若数列{a n}的第二个数为4,则恰有2个逆序对的数列{a n}为{1,4,2,3};若数列{a n}的第三个数为4,则恰有2个逆序对的数列{a n}为{1,3,4,2}或{2,1,4,3};若数列{a n}的第四个数为4,则恰有2个逆序对的数列{a n}为{2,3,1,4}或{3,1,2,4},综上,恰有2个逆序对的数列{a n}的个数为5.规律方法数列的“新定义问题”,主要是指定义新概念、新公式、新定理、新法则、新运算等,关键是将新数列转化为等差或等比数列,或者找到新数列的递推关系,主要考查的还是数列的基础知识.跟踪演练2(1)如图甲是第七届国际数学家大会(简称ICME-7)的会徽图案,会徽的主题图案是由图乙的一连串直角三角形演化而成的.已知OA1=A1A2=A2A3=A3A4=A4A5=A5A6=A6A7=A7A8=…=2,A1,A2,A3…为直角顶点,设这些直角三角形的周长从小到大组成的数列为{a n},令b n=2a n-2,S n为数列{b n}的前n项和,则S120等于()A.8B.9C.10D.11答案C解析由OA1=A1A2=A2A3=A3A4=A4A5=A5A6=A6A7=A7A8= (2)可得OA2=22,OA3=23,…,OA n=2n,所以a n=OA n+OA n+1+A n A n+1=2n+2n+1+2,所以b n=2a n-2=1n+n+1=n+1-n,所以前n项和S n=b1+b2+…+b n=2-1+3-2+…+n+1-n=n+1-1,所以S120=120+1-1=10.(2)(2023·郑州模拟)“角谷猜想”首先流传于美国,不久便传到欧洲,后来一位名叫角谷静夫的日本人又把它带到亚洲,因而人们就顺势把它叫作“角谷猜想”.“角谷猜想”是指一个正整数,如果是奇数就乘以3再加1,如果是偶数就除以2,这样经过若干次运算,最终回到1.对任意正整数a0,按照上述规则实施第n次运算的结果为a n(n∈N),若a5=1,且a i(i=1,2,3,4)均不为1,则a0等于()A.5或16B.5或32C.5或16或4D.5或32或4答案B解析由题知a n+1+1,a n为奇数,a n为偶数,因为a5=1,则有,若a4为奇数,则a5=3a4+1=1,得a4=0,不合题意,所以a4为偶数,且a4=2a5=2;若a3为奇数,则a4=3a3+1=2,得a3=13,不合题意,所以a3为偶数,且a3=2a4=4;若a2为奇数,则a3=3a2+1=4,得a2=1,不合题意,所以a2为偶数,且a2=2a3=8;若a1为奇数,则a2=3a1+1=8,得a1=73,不合题意,所以a1为偶数,且a1=2a2=16;若a0为奇数,则a1=3a0+1=16,可得a0=5;若a0为偶数,则a0=2a1=32.综上所述,a0=5或a0=32.专题强化练一、单项选择题1.数列{a n}满足2a n+1=a n+a n+2,且a8,a4040是函数f(x)=x2-8x+3的两个零点,则a2024的值为()A.4B.-4C.4040D.-4040答案A解析因为a8,a4040是函数f(x)=x2-8x+3的两个零点,即a8,a4040是方程x2-8x+3=0的两个根,所以a8+a4040=8.又2a n+1=a n+a n+2,所以数列{a n}是等差数列,所以a8+a4040=2a2024=8,所以a2024=4.2.(2023·阜阳模拟)在数列{a n}中,已知a n+1+a n=3·2n,则{a n}的前10项和为() A.1023B.1024C.2046D.2047答案C解析∵a n+1+a n=3·2n,∴a2+a1=3×2,a4+a3=3×23,a6+a5=3×25,a8+a7=3×27,a10+a9=3×29,则{a n}的前10项和为3×(2+23+25+27+29)=3×2-29×41-4=2046.3.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3n项和为S n,则S2026的值为()A.2023 2024B.2024 2025C.2025 2026D.2026 2027答案D解析由题意得f′(x)=2x+b,∴f′(1)=2+b=3,解得b=1,∴f(n)=n2+n,∴1f(n)=1n2+n=1n(n+1)=1n-1n+1,∴S2026=1-12+12-13+13-14+…+12026-12027=1-12027=20262027.4.(2023·佛山模拟)已知数列{a n}的通项公式为a n=n2+kn+2,若对于n∈N*,数列{a n}为递增数列,则实数k的取值范围为()A.k≥-3B.k≥-2C.k>-3D.k>-2答案C解析因为数列{a n}为递增数列,所以a n+1>a n,即(n+1)2+k(n+1)+2>n2+kn+2,整理得k>-(2n+1),因为当n∈N*时,f(n)=-(2n+1)单调递减,f(n)max=f(1)=-(2×1+1)=-3,所以k>-3.5.(2023·盐城模拟)将正整数n 分解为两个正整数k 1,k 2的积,即n =k 1·k 2,当k 1,k 2两数差的绝对值最小时,我们称其为最优分解.如20=1×20=2×10=4×5,其中4×5即为20的最优分解,当k 1,k 2是n 的最优分解时,定义f (n )=|k 1-k 2|,则数列{f (5n )}的前2023项的和为()A .51012B .51012-1C .52023D .52023-1答案B 解析当n =2k (k ∈N *)时,由于52k =5k ×5k ,此时f (52k )=|5k -5k |=0,当n =2k -1(k ∈N *)时,由于52k -1=5k -1×5k ,此时f (52k -1)=|5k -5k -1|=5k -5k -1,所以数列{f (5n )}的前2023项的和为(5-1)+0+(52-5)+0+(53-52)+0+…+(51011-51010)+0+(51012-51011)=51012-1.6.某软件研发公司对某软件进行升级,主要是软件程序中的某序列A ={a 1,a 2,a 3,…}重新编辑,编辑新序列为A *,a 3a 2,a 4a 3,…n 项为a n +1a n,若序列(A *)*的所有项都是3,且a 5=1,a 6=27,则a 1等于()A.19B.127C.181D.1243答案A 解析令b n =a n +1a n,即A *={b 1,b 2,b 3,…},则(A *)*,b 3b 2,b 4b 3,由已知得b 2b 1=b 3b 2=b 4b 3=…=b n +1b n=3,所以数列{b n }为公比为3的等比数列,设b 1=m ,则a 2a 1=b 1=m ,a 3a 2=b 2=3m ,…,a n +1a n=b n =3n -1·m ,当n ≥2时,累乘可得a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=m ·3m ·32m ·…·3n -2m =m n -131+2+3+…+(n -2),即a n a 1=m n -1(2)(1)23n n --,当n =5时,1a 1=m 436,当n =6时,27a 1=m 5310,解得m =13,a 1=19.二、多项选择题7.(2023·唐山模拟)如图,△ABC 是边长为2的等边三角形,连接各边中点得到△A 1B 1C 1,再连接△A 1B 1C 1的各边中点得到△A 2B 2C 2,…,如此继续下去,设△A n B n C n 的边长为a n ,△A n B n C n 的面积为M n ,则()A .M n =34a 2n B .a 24=a 3a 5C .a 1+a 2+…+a n =2-22-n D .M 1+M 2+…+M n <33答案ABD 解析显然△A n B n C n 是正三角形,因此M n =34a 2n ,故A 正确;由中位线性质易得a n =12a n -1,即{a n }是等比数列,公比为12,因此a 24=a 3a 5,故B 正确;a 1=12AB =1,a 1+a 2+…+a n 1-12=2-21-n ,故C 错误;M 1=34×12=34,{a n }是等比数列,公比为12,则{M n }也是等比数列,公比是14,M 1+M 2+…+M n =34×11-14<33,故D 正确.8.已知函数f (x )=e x -x -1,数列{a n }的前n 项和为S n ,且满足a 1=12,a n +1=f (a n ),则下列有关数列{a n }的叙述不正确的是()A .a 5<|4a 2-3a 1|B .a 7≤a 8C .a 10>1D .S 100>26答案BCD 解析由e x ≥x +1知,a n +1=f (a n )=e n a -a n -1≥0,故{a n }为非负数列,又a n +1-a n =e n a -2a n -1,设g (x )=e x -2x -1,则g ′(x )=e x -2,易知g (x )在[0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,且-12<1-2ln 2=g (x )min <g (0)=0,又0<a 1=12<ln 2,所以0≤a 2<a 1=12,从而-12<a n +1-a n <0,所以{a n }为递减数列,且0≤a n ≤12,故B ,C 错误;又a 2=12e -12-1=12e -32<-32=14,故当n ≥2时,有a n <14,所以S 100=a 1+a 2+a 3+…+a 100<12+14+14+…+14=1014,故D 错误;又a 2<14,a 5<12,而|4a 2-3a 1|=|4a 2-32|>12,故A 正确.三、填空题9.(2023·铜仁质检)为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路·科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为________.答案77解析记10个班级的平均成绩构成的等差数列为{a n},则a n=70+2(n-1)=2n+68,又10×40%=4,所以这10个班级的平均成绩的第40百分位数为a4+a52=76+782=77.10.在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列称为等和数列,这个常数称为该数列的公和.已知数列{a n}是等和数列,且a1=-2,a2024=8,则这个数列的前2024项的和为________.答案6072解析依题意得a1+a2=a2+a3=a3+a4=a4+a5=…,故a1=a3=a5=…=a2023=-2,a2=a4=a6=…=a2024=8,则S2024=1012×(-2)+1012×8=6072.11.(2023·江苏联考)已知a1,a2,…,a n(n∈N*)是一组平面向量,记S n=a1+a2+…+a n,若a n=(4-n,1),则满足a n⊥S n的n的值为____________.答案5或6解析记b n=4-n的前n项和为T n,则T n=(3+4-n)n2=7n-n22,因为a n=(4-n,1),所以S n=a1+a2+…+a n=(3,1)+(2,1)+…+(4-n,1)又a n⊥S n,所以a n·S n=(4-n)×7n-n22+n=0,整理得n(n-5)(n-6)=0,解得n=0或n=5或n=6,因为n∈N*,所以n=5或n=6.12.在圆x2+y2=5x n条弦的长度成等差数列,最短弦长为数列的首项a1,最长弦长为a n,若公差d ,13,那么n的取值集合为__________.答案{4,5,6}解析由圆的方程为x 2+y 2=5x ,得圆心r =52.∴过点P 即a n =2r =5,过点P CP 垂直的弦为圆的最短弦,即a 1=2r 2-|PC |2=4,由a n =a 1+(n -1)d ,得5=4+(n -1)d ,∴d =1n -1,∵16<d ≤13,∴16<1n -1≤13,∴4≤n <7,n ∈N *,∴n 的取值为4,5,6.∴n 的取值集合为{4,5,6}.四、解答题13.(2023·锦州模拟)已知数列{a n }和{b n }满足a n +b n =2n -1,数列{a n },{b n }的前n 项和分别记作A n ,B n ,且A n -B n =n .(1)求A n 和B n ;(2)设c n =2n b +12A n,求数列{c n }的前n 项和S n .解(1)因为a n +b n =2n -1,所以数列{a n +b n }是首项为1,公差为2的等差数列,所以其前n 项和A n +B n =12(1+2n -1)×n =n 2,又因为A n -B n =n ,所以A n =n (n +1)2,B n =n (n -1)2.(2)当n ≥2时,b n =B n -B n -1=n (n -1)2-(n -1)(n -2)2=n -1.当n =1时,b 1=B 1=0也适合通项公式,故b n =n -1.所以c n =2n b +12A n =2n -1+1n (n +1)=2n -1+1n -1n +1,所以S n =(1+2+22+…+2n -1)-12+12-13+…+1n -=1×(1-2n )1-2+2n -1n +1.14.(2023·湖南省新高考教学教研联盟联考)已知数列{a n }的前n 项和为S n ,且S n =n -a n .(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且2b n =(n -2)(a n -1),若T n ≥λb n 对于n ∈N *恒成立,求λ的取值范围.解(1)∵S n =n -a n ,∴S n -1=(n -1)-a n -1(n ≥2),两式作差得2a n =a n -1+1,∴2(a n -1)=a n -1-1,当n =1时,S 1=1-a 1,∴a 1-1=-12,∴{a n -1}是首项为-12,公比为12的等比数列,故a n =1.(2)∵2b n =(n -2)(a n -1),∴b n =(2-n +1,∴T n =b 1+b 2+…+b n =1+0+(-1)+…+(2-n +1,①12T n =1+0+(-1)+…+(2-n +2,②两式作差得12T n =1+…+1-(2-n +2,化简得T n =n 2n +1,∵T n ≥λb n 恒成立,∴n 2n +1≥λ(2-n )12n +1,n ≥λ(2-n ),当n =1时,λ≤1;当n =2时,λ∈R ;当n ≥3时,λ≥n 2-n =-(n -2)+2n -2=-即λ≥-,∴λ≥-1,综上所述,-1≤λ≤1.。
高考数学大二轮复习层级二专题三数列第2讲数列求和及综合应用课件
1,n=1, 答案:an=-nn2+1,n≥2.
(2)各项均不为 0 的数列{an}满足an+1an2+an+2=an+2an(n∈N*), 且 a3=2a8=15,则数列{an}的通项公式为____________.
解析:因为an+1an2+an+2=an+2an,所以 an+1an+an+1an+2=2an+2an. 因为 anan+1an+2≠0,所以an1+2+a1n=an2+1, 所以数列a1n为等差数列.
[解析] (1)由已知,an+1-an=lnn+n 1,a1=2, 所以 an-an-1=lnn-n 1(n≥2), an-1-an-2=lnnn- -12, … a2-a1=ln21,
将以上 n-1 个式子叠加,得 an-a1=lnn-n 1+lnnn--21+…+ln21 =lnn-n 1·nn- -12·…·21 =ln n. 所以 an=2+ln n(n≥2), 经检验 n=1 时也适合.故选 A.
②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-311--33n+ n×3n+1=2n-123n+1+3.
所以 a1c1+a2c2+…+a2nc2n=3n2+6Tn=3n2+3×2n-123n+1+3 =2n-13n+22+6n2+9(n∈N*).
[主干整合] 1.数列通项 (1)数列通项 an 与前 n 项和 Sn 的关系,an=SS1n-Sn-1nn≥=21., (2)应用 an 与 Sn 的关系式 f(an,Sn)=0 时,应特别注意 n=1 时的 情况,防止产生错误.
12Tn=3·12+7·212+…+(4n-9)·21n-2+(4n-5)·21n-1, 所以12Tn=3+4·12+4·212+…+4·21n-2-(4n-5)·21n-1, 因此 Tn=14-(4n+3)·21n-2,n≥2, 又 b1=1,所以 bn=15-(4n+3)·12n-2.
高考数学理科二轮复习课件:专题3第二讲 数列求和及综合应用
综上,数列2an-n 1的前 n 项和 Sn=2nn-1.
本题考查等差数列的通项公式的求法以及用错位相减法 求数列的前n项和,难度适中.
数列{bn}的前 n 项和.
解析:(1)设等差数列{an}的公差为 d,由题意得: d=a4-3 a1=12- 3 3=3, 所以 an=a1+(n-1)d=3n(n=1,2,…), 设等比数列{bn-an}的公比为 q,由题意得:q3=bb41--aa41
=240--312=8,解得 q=2.
所以 bn-an=(b1-a1)qn-1=2n-1,从而 bn=3n+2n-1(n =1,2,…).
随堂讲义
专题三 数 列 第二讲 数列求和及综合应用
高考数列一定有大题,按近几年高考特点,可估计 2016年不会有大的变化,考查递推关系、数学归纳法的 可能较大,但根据高考题命题原则,一般会有多种方法 可以求解.因此,全面掌握数列求和相关的方法更容易 让你走向成功.
例 1 已知数列{an}中,a1=1,an·an+1=12n(n∈N*),
(1)求数列{an}的通项公式;
(2)求数列2an-n 1的前 n 项和. 思路点拨:(1)由题设求出 a1,d,可确定通项公式; (2)可用错位相减法求和.
解析:(1)设等差数列{an}的公差为 d,由已知条件可得 a21a+1+d1=2d0, =-10,解得ad1==-1,1.
(1)已知数列{bn}的前 n 项和 Sn,求 bn 时分如下三个步 骤进行:①当 n=1 时,b1=S1;②当 n≥2 时,bn=Sn-Sn -1;③验证 b1 是否适合 n≥2 的解析式,据验证情况写出 bn 的表达式.
专题三 第二讲 数列的综合应用
一、选择题1.(2011·安徽高考)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15解析:a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.答案:A2.向量v =(a n +1-a n 2,a 2n +12a n),v 是直线y =x 的方向向量,a 1=5,则数列{a n }的前10项和为( )A .50B .100C .150D .200解析:依题意得a 2n +12a n =a n +1-a n 2,化简得a n +1=a n .又a 1=5,所以a n =5,数列{a n }的前10项和为5×10=50.答案:A3.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( )解析:∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d 2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.答案:C4.已知函数f (x )=⎩⎪⎨⎪⎧(1-3a )x +10a ,x ≤6,a x -7, x >6.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递减数列,则实数a 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫13,12C.⎝⎛⎭⎫13,58D.⎝⎛⎭⎫58,1解析:∵f (n )=⎩⎪⎨⎪⎧(1-3a )n +10a ,n ≤6,a n -7, n >6是递减数列, ∴⎩⎪⎨⎪⎧ 1-3a <0,0<a <1,f (6)>f (7),即⎩⎪⎨⎪⎧ 1-3a <0,0<a <1,6-8a >1,解得13<a <58. 答案:C二、填空题 5.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =____________;|a 1|+|a 2|+…+|a n |=____________.解析:设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |= 12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1) =12(2n -1)=2n -1-12. 答案:-2 2n -1-126.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,x n =________,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.解析:∵y =x n +1, ∴y ′=(n +1)x n ,它在点(1,1)处的切线方程为y -1=(n +1)(x -1),它与x 轴交点的横坐标为x n =1-1n +1=n n +1. 由a n =lg x n ,得a n =lg n -lg(n +1),于是a 1+a 2+…+a 99=lg1-lg2+lg2-lg3+…+lg99-lg100=lg1-lg100=0-2=-2. 答案:n n +1-2 7.(2011·陕西高考)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________(米).解析:当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案:2 000三、解答题8.已知二次函数f (x )=x 2-2(10-3n )x +9n 2-61n +100(n ∈N *).(1)设函数y =f (x )的图像的顶点的横坐标构成数列{a n },求证:数列{a n }是等差数列;(2)在(1)的条件下,若数列{c n }满足c n =1+14n -252+a n (n ∈N *),求数列{c n }中最大的项和最小的项.解:(1)证明:y =f (x )的图像的顶点的横坐标为x =-b 2a =--2(10-3n )2=10-3n ,∴a n =10-3n ,∴a n -a n -1=-3.∴{a n }是等差数列.(2)∵c n =1+14n -252+a n =1+14n -252+10-3n =1+22n -5, 当n ≤2时,22n -5<0,且c 1>c 2, 当n ≥3时,22n -5>0且c n >c n +1. ∴{c n }中最小的项为c 2=-1,最大的项为c 3=3.9.(2011·北京海淀)数列{a n }的前n 项和为S n ,若a 1=2,且S n =S n -1+2n (n ≥2,n ∈N *).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,则求出数列{b n }的通项公式;若不存在,则说明理由.解:(1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N *成立.即a n =2n 对n ≥2成立.又a 1=S 1=2×1,所以a n =2n 对n ∈N *成立.所以a n +1-a n =2对n ∈N *成立.所以{a n }是等差数列. 所以S n =a 1+a n 2·n =n 2+n ,n ∈N *. (2)存在.由(1)知a n =2n 对n ∈N *成立,则a 3=6,a 9=18.又a 1=2,所以由b 1=a 1,b 2=a 3,b 3=a 9,得b 2b 1=b 3b 2=3.即存在以b1=2为首项,公比为3的等比数列{b n},其通项公式为b n=2·3n-1.10.已知数列{a n}满足a1=1,a2=4,a n+2+2a n=3a n+1(n∈N*).(1)求数列{a n}的通项公式;(2)记数列{a n}的前n项和S n,求使得S n>21-2n成立的最小整数n.解:(1)由a n+2+2a n-3a n+1=0得a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=3为首项,公比为2的等比数列.∴a n+1-a n=3·2n-1,∴n≥2时,a n-a n-1=3·2n-2,…,a3-a2=3·2,a2-a1=3,累加得a n-a1=3·2n-2+…+3·2+3=3(2n-1-1),∴a n=3·2n-1-2(当n=1时,也满足).(2)由(1)利用分组求和法得S n=3(2n-1+2n-2+…+2+1)-2n=3(2n-1)-2n,S n=3(2n-1)-2n>21-2n得3·2n>24,即2n>8=23,∴n>3,∴使得S n>21-2n成立的最小整数n=4.。
第2讲 数列求和及综合应用
第2讲 数列求和及综合应用
1
真题感悟 考点整合
热点聚焦 分类突破
归纳总结 思维升华
@《创新设计》
高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位 相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数 列与不等式、函数交汇渗透.
2
真题感悟 考点整合
@《创新设计》
14
真题感悟 考点整合
热点聚焦 分类突破
归纳总结 思维升华
(2)由(1)知bn=-1-log2|an|=2n-1,数列{bn}的前n项和Tn=n2, cn=TbnTn+n+1 1=n2(2nn++11)2=n12-(n+1 1)2,
所以 An=1-(n+11)2. 因此{An}是单调递增数列, ∴当 n=1 时,An 有最小值 A1=1-14=34;An 没有最大值.
@《创新设计》
6
真题感悟 考点整合
热点聚焦 分类突破
归纳总结 思维升华
@《创新设计》
3.(2019·天津卷)设{an}是等差数列,{bn}是等比数列,公比大于0.已知a1=b1=3,b2=a3, b3=4a2+3. (1)求{an}和{bn}的通项公式; 1,n为奇数, (2)设数列{cn}满足 cn=bn2,n为偶数. 求 a1c1+a2c2+…+a2nc2n(n∈N*).
解 (1)由已知得a21a+1+7d1= 5d1=,3,解得ad1==1-. 6,
∴an=-6+(n-1)×1=n-7.
19
真题感悟 考点整合
热点聚焦 分类突破
归纳总结 思维升华
(2)∵数列{bn}是递增的等比数列, 由b2b3=8,得b1b4=8,① 又b1+b4=9,② 联立①,②得b1=1,b4=8. 因此公比q=2,则bn=2n-1, ∴(a1+b1)+(a3+b3)+(a5+b5)+…+(a2n-1+b2n-1) =(a1+a3+…+a2n-1)+(b1+b3+…+b2n-1) =(-6-4-2+…+2n-8)+(1+4+16+…+4n-1)
大学数学(高数微积分)专题三第2讲数列求和及数列的综合应用(课堂讲义)ppt课件
ln 3)+[-1+2-3+…+(-1)nn]ln 3.
本 当n为偶数时,Sn=2×11--33n+n2ln 3
讲 栏
=3n+n2ln 3-1;
目 开
当n为奇数时,Sn=2×11--33n-(ln 2-ln 3)+n-2 1-nln 3
关 =3n-n-2 1ln 3-ln 2-1.
3n+n2ln 3-1, 综上所述,Sn=3n-n-2 1ln 3-. ln 2-1,
目 开
④
1 n+
n+k=1k(
n+k-
n).
关
2.数列应用题的模型
(1)等差模型:如果增加(或减少)的量是一个固定量时,该
模型是等差模型,增加(或减少)的量就是公差.
.
主干知识梳理
(2)等比模型:如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比. (3)混合模型:在一个问题中同时涉及等差数列和等比数列的 模型.
.
热点分类突破
考点一 分组转化求和法
例 1 等比数列{an}中,a1,a2,a3 分别是下表第一、二、三行
本 讲
中的某一个数,且 a1,a2,a3 中的任何两个数不在下表的同
栏 一列.
目 开
第一列 第二列 第三列
关
第一行 3
2
10
第二
18
.
热点分类突破
(1)求数列{an}的通项公式;
关 程中的相互抵消,最后只剩下有限项的和.这种方法,适用于
求通项为 1 的数列的前 anan+1
n
项和,其中{an}若为等差数列,
则ana1n+1=1da1n-an1+1. .
主干知识梳理
常见的拆项公式:
高考数学二轮复习专题三数列第2讲数列求和及综合应用课件
12/13/2021
真题感悟 考点整合 第十九页,共三十二页。 热点聚焦 分类突破
归纳总结 思维升华
【训练(xùnliàn)1-2】 已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公 比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通项公式; (2)求数列(shùliè){a2nbn}的前n项和(n∈N*). 解 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q(q>0), 由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0, 又因为q>0,解得q=2,所以bn=2n. 由b3=a4-2a1,可得3d-a1=8,① 由S11=11b4,可得a1+5d=16,② 联立①②,解得a1=1,d=3,由此可得an=3n-2. 所以{an}的通项公式为an=3n-2,{bn}的通项公式为bn=2n.
12/13/2021
真题感悟 考点整合 第十五页,共三十二页。 热点聚焦 分类突破
归纳总结 思维升华
[考法3] 错位相减法(jiǎnfǎ)求和 【例1-3】 (2018·杭州调研)已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项
分别加上1,1,3后成等比数列,且an+2log2bn=-1. (1)求数列{an},{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn.
所以,n的值为4.
12/13/2021
真题感悟 考点整合 第十页,共三十二页。 热点聚焦 分类突破
专题三 第2讲 数列求和及其综合应用
2 考点二 数列的综合问题
PART TWO
核心提炼
数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破 的关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前 n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩 进行不等式的证明.
(2)(2021·长春模拟)已知等比数列{an}满足:a1+a2=20,a2+a3=80.数
列{bn}满足bn=log2an,其前n项和为Sn,若 6
Sn+bn11≤λ恒成立,则λ的最小
值为__2_3__.
解析 设等比数列{an}的公比为 q,由题意可得aa11+q+a1aq1=q2=208,0, 解得a1=4,q=4, 故{an}的通项公式为an=4n,n∈N*. bn=log2an=log24n=2n, Sn=2n+12n(n-1)·2=n2+n,
例4 (1)(2021·淄博模拟)已知在等比数列{an}中,首项a1=2,公比q>1,
a2,a3是函数f(x)=13 x3-6x2+32x的两个极值点,则数列{an}的前9项和 是__1_0_2_2__.
解析 由 f(x)=13x3-6x2+32x,得 f′(x)=x2-12x+32, 又因为 a2,a3 是函数 f(x)=13x3-6x2+32x 的两个极值点, 所以a2,a3是函数f′(x)=x2-12x+32的两个零点, 故aa22+ ·a3a=3=321,2,
专题三 数 列
考情分析
KAO QING FEN XI
1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法. 2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不
数列求和及数列的综合应用知识点讲解+例题讲解(含解析)
数列求和及数列的综合应用一、知识梳理 1.特殊数列的求和公式 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系. 小结:1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的三种变形 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( ) 解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解. 答案 (1)√ (2)√ (3)× (4)√2.数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n为( ) A.2 018 B.2 019 C.2 020D.2 021解析 a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019. 答案 B3.等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.解析 由a 1=27,a 9=1243知,1243=27·q 8, 又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1361-13=3649.答案 36494.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A.9B.15C.18D.30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18. 答案 C5.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________. 解析 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2, 又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4. 答案 2n +2+n (n +1)-46.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 答案 a n =2(n +1)考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.解 (1)设等比数列{a n }的公比为q , ∵a 1,a 2,a 3-1成等差数列, ∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2,∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1) =[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1) =1+(2n -1)2·n +1-2n 1-2=n 2+2n-1. ∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和. 【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解 (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5, ∴3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n .解 (1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2,当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝⎛⎭⎪⎫a n 2-n ,即a n +1=3a n +2,又a 2=8=3a 1+2, ∴a n +1=3a n +2,n ∈N *, ∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3, ∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1.∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝ ⎛⎭⎪⎫13-1-132-1+⎝ ⎛⎭⎪⎫132-1-133-1+…+⎝ ⎛⎭⎪⎫13n -1-13n +1-1=12-13n +1-1.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n . 解 (1)设{a n }的公比为q ,由题意知⎩⎪⎨⎪⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1, 又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1. 令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1. (1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ), 解得d =2(舍负),所以a n =1+(n -1)×2=2n -1.又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n . (2)由(1)知a n ·b n =(2n -1)·12n , 则T n =121+322+523+…+2n -12n ,①12T n =122+323+524+…+2n -12n +1,② 由①-②,得 12T n =12+2×⎝ ⎛⎭⎪⎫122+123+124+…+12n -2n -12n +1. ∴12T n =12+2×14⎝ ⎛⎭⎪⎫1-12n -11-12-2n -12n +1,∴T n =1+2-22n -1-2n -12n =3-4+2n -12n =3-3+2n 2n .考点四 数列的综合应用【例4】 某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?解 设该学生工作n 天,每天领工资a n 元,共领工资S n 元,则第一种方案a n (1)=38,S n (1)=38n ;第二种方案a n (2)=4n ,S n (2)=4(1+2+3+…+n )=2n 2+2n ;第三种方案a n (3)=0.4×2n -1,S n (3)=0.4(1-2n )1-2=0.4(2n -1). 令S n (1)≥S n (2),即38n ≥2n 2+2n ,解得n ≤18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令S n (1)≥S n (3),即38n ≥0.4×(2n -1),利用计算器计算得小于或等于9天时,第一种方案报酬高, 所以少于10天时,选择第一种方案.比较第二、第三种方案,S 10(2)=220,S 10(3)=409.2,S 10(3)>S 10(2),…,S n (3)>S n (2).所以等于或多于10天时,选择第三种方案.【训练4】 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 解 (1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式, 所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =12⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1=12⎝ ⎛⎭⎪⎫1-16n +1=3n 6n +1.三、课后练习1.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则( )A.a n ≥2n +1B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1解析 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2, ∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 答案 B2.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N的大小关系是()A.ω>NB.ω<NC.ω=ND.不确定解析投入资金逐月值构成等比数列{b n},利润逐月值构成等差数列{a n},等比数列{b n}可以看成关于n的指数式函数,它是凹函数,等差数列{a n}可以看成关于n的一次式函数.由于a1=b1,a12=b12,相当于图象有两个交点,且两交点间指数式函数图象在一次函数图象下方,所以全年的总利润ω=a1+a2+…+a12比总投资N=b1+b2+…+b12大,故选A.答案A3.已知数列{a n}中,a n=-4n+5,等比数列{b n}的公比q满足q=a n-a n-1(n≥2)且b1=a2,则|b1|+|b2|+|b3|+…+|b n|=________.解析由已知得b1=a2=-3,q=-4,∴b n=(-3)×(-4)n-1,∴|b n|=3×4n-1,即{|b n|}是以3为首项,4为公比的等比数列,∴|b1|+|b2|+…+|b n|=3(1-4n)1-4=4n-1.答案4n-14.(2019·潍坊调研)已知数列{a n}的前n项和为S n,a1=5,nS n+1-(n+1)S n=n2+n.(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n =1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n =5+(n -1)=n +4,所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3. 又a 1=5也符合上式,所以a n =2n +3(n ∈N *), 所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,① 2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,② 所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n +3)2n +1-10-(2n +2-8) =(2n +1)2n +1-2.。
高考数学二轮复习专题三数列第2讲数列的求和及综合应用课件文1205340-数学备课【全免费】
由 b1=2,所以 bn=2n-1+1. (3)cn=bnbann+1=bnb+nb1-n+b1 n=b1n-bn1+1, 所以 Tn=c1+c2+…cn=b11-b12+b12-b13+…+ b1n-bn1+1=b11-bn1+1=12-2n+1 1.
命题视角 3 错位相减法求和
cn=TbnTn+n+1 1=n2(2nn++11)2=n12-(n+1 1)2, 所以 An=1-(n+1 1)2=(nn2++12)n 2.
因此{An}是单调递增数列, 所以当 n=1 时,An 有最小值 A1=1-14=34;An 没有 最大值.
[规律方法] 1.给出 Sn 与 an 的关系求 an,常用思路是:一是利 用 Sn-Sn-1=an(n≥2)转化为 an 的递推关系,再求其通项 公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之间的 关系,再求 an. 2.形如 an+1=pan+q(p≠1,q≠0),可构造一个新的 等比数列.
[变式训练] (2017·太原质检)已知数列{an}的前 n 项 和 Sn=2n+1-2,数列{bn}满足 bn=an+an+1(n∈N*).
(1)求数列{bn}的通项公式; (2)若 cn=log2an(n∈N*),求数列{bn·cn}的前 n 项和 Tn. 解:(1)由于 Sn=2n+1-2,n∈N*,
+2n.
[规律方法] 1.在处理一般数列求和时,一定要注意运用转化思 想.把一般的数列求和转化为等差数列或等比数列进行求 和.在利用分组求和法求和时,常常根据需要对项数 n 进行讨论,最后再验证是否可以合并为一个表达式. 2.分组求和的策略:(1)根据等差、等比数列分组; (2)根据正号、负号分组.
从而{an}的通项公式为 an=2n2-1. an
专题三 第二讲:数列的综合应用共39页文档
题型与方法
第二讲
题型一 错位相减法求和 题型概述 等比数列前 n 项和公式的推导方法为错位相减法.
其步骤为将数列的每一项同乘以数列的公比 q,然后将 q 的次数相同的项相减,最后将所得的结果进行求和即可.这 种方法适用于求数列{an·bn}的前 n 项和,其中{an}和{bn}分 别为等差数列和等比数列.
考点与考题
第二讲
5.(2012·课标全国)数列{an}满足 an+1+(-1)nan=2n-1,则{an} 的前 60 项和为________.
解析 ∵an+1+(-1)nan=2n-1, ∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1, a7=2-a1,a8=15-a1,a9=a1,a10=173+a1,a59=2-a1, a60=119-a1, ∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+… +(a57+a58+a59+a60)=10+26+42+…+234 =15×102+234=1 830. 答案 1 830
=2×503=1 006.
考点与考题
第二讲
4.(2012·湖北)定义在(-∞,0)∪(0,+∞)上的函数 f(x),如果
对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称 f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)
上的如下函数:
①f(x)=x2;②f(x)=2x;③f(x)= |x|;④f(x)=ln |x|.
S5=15,则数列ana1n+1的前 100 项和为
()
100 A.101
99 B.101
99 C.100
101 D.100
考点与考题
第二讲
专题三第2讲 数列求和及其综合应用(75张ppt)-备战2021年复习高分冲刺之专题精炼与答题规范
2.如果数列{an}是等差数列,{bn}是等比数列,那么求数列{an·bn}的前n 项和Sn时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数 列的公比为负数的情形;(2)在写出“Sn”和“qSn”的表达式时应特别 注意将两式“错项对齐”,以便准确写出“Sn-qSn”的表达式.
考向1 分组转化法求和 例1 已知在等比数列{an}中,a1=2,且a1,a2,a3-2成等差数列. (1)求数列{an}的通项公式;
考向2 裂项相消法求和 例2 (2020·莆田市第一联盟体学年联考)设数列{an}的前n项和为Sn,且 Sn=n2-2n,{bn}为正项等比数列,且b1=a1+3,b3=6a4+2. (1)求数列{an}和{bn}的通项公式;
解 由Sn=n2-2n,得当n=1时,a1=S1=-1, 当n≥2时,Sn-1=(n-1)2-2(n-1)=n2-4n+3, 所以当n≥2时,an=Sn-Sn-1=2n-3,a1=-1也满足此式. 所以an=2n-3,n∈N*. 又b1=a1+3=2,b3=6a4+2=32, 因为{bn}为正项等比数列,设{bn}的公比为q(q>0). 所以 q2=bb31=16,即 q=4,
解 设等比数列{an}的公比为q,由a1,a2,a3-2成等差数列,得2a2= a1+a3-2, 即4q=2+2q2-2,解得q=2(q=0舍去), 则an=a1qn-1=2n,n∈N*.
(2)若数列{bn}满足 bn=a1n+2log2an-1,求数列{bn}的前 n 项和 Sn. 解 bn=a1n+2log2an-1=21n+2log22n-1=21n+2n-1, 则数列{bn}的前n项和 Sn=12+41+…+21n+(1+3+…+2n-1) =1211--2121n+12n(1+2n-1)=1-21n+n2.
专题3第2讲数列的综合应用
专题三 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
13 (文)已知等比数列{an}的公比 q=3,前 3 项和 S3= . 3 (1)求数列{an}的通项公式; π (2)若函数 f(x)=Asin(2x+φ)(A>0,0<φ<π)在 x= 处取得最大 6 值,且最大值为 a3,求函数 f(x)的解析式.
专题三 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
法 2:不妨令 an=2n.
n ①因为 f(x)=x2, 所以 f(an)=a2 n=4 .显然{f(an)}是首项为 4,
公比为 4 的等比数列. ②因为 f(x)=2x, 所以 f(a1)=f(2)=22,f(a2)=f(4)=24, f(a3)=f(8)=28, fa2 24 fa3 28 所以 = 2=4≠ = 4=16, fa1 2 fa2 2 所以{f(an)}不是等比数列.
Sn Sn1
等差数列通项及 an Sn Sn1
3
15 4 2017年 12
选择题
填空题 选择题 选择题
等差数列通项、性质
等差数列通项、性质 等差数列性质 创新题型,求和
5分
5分 5分Sn5分源自专题三 第二讲走向高考 ·二轮专题复习 ·新课标版 ·数学
命题角度聚焦
从近五年全国卷一考查内容分析,数列部分题型与考查的
专题三 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
课后强化作业
新定义题型
定义在(-∞,0)∪(0,+∞)上的函数 f(x),如果 对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称 f(x) 为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的 如下函数: ①f(x)=x2; ③f(x)= |x|; ②f(x)=2x; ④f(x)=ln|x|. )
专题三 第二讲 数列的综合应用
解析: 两点坐标代入f(x)得 解析:将A、B两点坐标代入 得 、 两点坐标代入 1 1 =ab2 a= = 2 ,解得 8 , 1=ab3 b=2 = = 1 1 - ∴f(x)= ·2x,∴f(n)= ·2n=2n 3, = = 8 8 ∴an=log2f(n)=n-3. = - , - ≤ , ≤ 令an≤0,即n-3≤0,n≤3. 项小于或等于零, ∴数列前3项小于或等于零,故S3或S2最小. 数列前 项小于或等于零 最小. S3=a1+a2+a3=- +(-1)+0=- =-2+ - + =- =-3.
+
nban-1 an-1+n-1 -
[解] 解
nban-1 (1)∵a1=b>0,an= ∵ > , , an-1+n-1 -
- n 1 1 n-1 ∴ a = b+ b· , an-1 n n 1 1 令cn=a ,则cn=b+bcn-1, n 1 1 ①当b=1时,cn=1+cn-1,且c1=a =b=1 = 时 +
解答题
数列的实际 数列的实际应用问题一般是等差数列或等比 解答题为 应用 数列通项、求和问题,题目难度一般较大 数列通项、求和问题,题目难度一般较大. 主
[联知识 串点成面 联知识 串点成面] 数列求和的方法技巧: 数列求和的方法技巧: (1)转化法: 转化法: 转化法 有些数列,既不是等差数列,也不是等比数列, 有些数列,既不是等差数列,也不是等比数列,若将数 列通项拆开或变形,可转化为几个等差、 列通项拆开或变形,可转化为几个等差、等比数列或常 见的数列,即先分别求和,然后再合并. 见的数列,即先分别求和,然后再合并.
(2)Tn=1×2+4×5+42×8+…+4n-1(3n-1),① × + × + + - ,
-
二轮复习专题三数列第2讲数列求和及综合应用课件(39张)
.
解析:因为数列{2n-1}是以 1 为首项,以 2 为公差的等差数列.数列{3n-2}是以 1 为首
项,以 3 为公差的等差数列.所以这两个数列的公共项所构成的新数列{an}是以 1 为
首项,以 6 为公差的等差数列,所以 an=6n-5,n∈N*.故 Sn=
答案:3n2-2n
+-
×n=3n2-2n.
典例 1
(2022·山东潍坊一中模拟预测)已知数列{an}满足 + +…+ = .
*
(2)对任意的 n∈N ,令 bn=
解:(2)由(1)知 bn=
,为奇数,
-
求数列{bn}的前 n 项和 Sn.
,为偶数,
-,为奇数,
- ,为偶数.
当 n≥2 时,可得 + +…+ =,①
- -
- -
+ +…+
=
,②
由①-②,得 =-
- -
-
= ,an=2-n,
当 n=1 时,a1=2-1=1 也符合,所以数列{an}的通项公式为 an=2-n,n∈N*.
-
-
=2k+k-2,当 k=6 时,2k+k-
2=68,当 k=7 时,2k+k-2=133,
所以 a6=b68,a7=b133,且 b69=b70=…=b100=1.
2
3
5
-
-
因此 T100=S6+(2×1+2 ×1+2 ×1+…+2 ×1)+32×1= ×(3+13)+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②
热点分类突破
考点三 裂项相消求和法 2Sn 例3 (2013· 广东)设数列{an}的前n项和为Sn,已知a1=1, n 1 2 2 =an+1- n -n- ,n∈N*. 3 3
本 讲 栏 目 开 关
(1)求a2的值; (2)求数列{an}的通项公式; 1 1 1 7 (3)证明:对一切正整数n,有 + +„+a < . a1 a2 n 4 1 2 (1)解 2S1=a2-3-1-3,又 S1=a1=1,所以 a2=4. 1 3 2 2 (2)解 当 n≥2 时,2Sn=nan+1-3n -n -3n, 1 2 3 2 2Sn-1=(n-1)an-3(n-1) -(n-1) -3(n-1),
热点分类突破
设数列{an}满足 a1=2,an+1-an=3· 22 n 1 .
-
(1)求数列{an}的通项公式; (2)令 bn=nan,求数列{bn}的前 n 项和 Sn.
本 解 (1)由已知,得当 n≥1 时, 讲 栏 an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)] +a1 目 开 2n-1 关 =3(2 +22n-3+„+2)+2=22(n+1)-1.
本 讲 栏 目 开 关
主干知识梳理
(2)等比模型:如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比. (3)混合模型:在一个问题中同时涉及等差数列和等比数列的
本 讲 栏 目 开 关
模型. (4)生长模型:如果某一个量,每一期以一个固定的百分数增 加(或减少),同时又以一个固定的具体量增加(或减少)时,我 们称该模型为生长模型.如分期付款问题,树木的生长与砍 伐问题等. (5)递推模型:如果容易找到该数列任意一项an与它的前一项 an-1(或前n项)间的递推关系式,我们可以用递推数列的知识 来解决问题.
① ②
热点分类突破
(2)由题意知,Tn=λ-
∴当 n≥2 时,
n-1 n-2 bn=Tn-Tn-1=λ- n-1-λ- n-2 = n-1 . 2 2 2
2
n-1,
n
n
本 n-1 * 讲 ∴cn=b2n= n-1 (n∈N ). 4 栏 n-1 1 2 目 ∴Rn=c1+c2+„+cn-1+cn=0+ + 2+„+ n-1 4 4 4 开 关 1 n-2 n-1 1 2
热点分类突破
1 2 两式相减得 2an=nan+1-(n-1)an- (3n -3n+1)-(2n-1) 3 2 - , 3
本 讲 栏 目 开 关
整理得(n+1)an=nan+1-n(n+1), an+1 an a2 a1 即 - n =1,又 2 - 1 =1, n+1
a1 an 故数列 n 是首项为 1 =1,公差为1的等差数列,
(2)S1+S2+„+S100=________.
1 当 n 为偶数时,an-1=- n, 2 1 当 n 为奇数时,2an+an-1= n, 2 1 1 ∴当 n=4 时,a3=- 4=- . 2 16
热点分类突破
根据以上{an}的关系式及递推式可求. 1 1 1 1 a1=-22,a3=-24,a5=-26,a7=-28, 1 1 1 1 a2=22,a4=24,a6=26,a8=28. 1 1 1 ∴a2-a1=2,a4-a3=23,a6-a5=25,„, ∴S1 + S2 + „ + S100 = (a2 - a1) + (a4 - a3) + „ + (a100 - a99) - 1 1 1 1 + 2+ 3+„+ 100 2 2 2 2
① ②
4Rn=42+43+„+ 4n-1 + 4n
①-②得: n-1 3 1 1 1 4Rn=4+42+„+4n-1- 4n
热点分类突破
1 1 1 - - n 1 4 1 4 n-1 1 n- 1 = - n = 1-4n-1- n 1 4 3 4 1- 4
主干知识梳理
常见的拆项公式: 1 1 1 ① = - ; nn+1 n n+1 1 11 1 ② = ( - ); nn+k k n n+k 1 1 1 1 ③ = ( - ); 2 2n-12n+1 2n-1 2n+1 1 1 ④ =k( n+k- n). n+ n+k 2.数列应用题的模型 (1)等差模型:如果增加(或减少)的量是一个固定量时,该 模型是等差模型,增加(或减少)的量就是公差.
而a1=2,符合上式, 所以数列{an}的通项公式为 an=22n-1.
热点分类突破
(2)由 bn=nan=n· 22n-1 知 Sn=1· 2+2· 23+3· 25+„+n· 22n-1.
本 讲 栏 目 开 关
①
从而 22· Sn=1· 23+2· 25+3· 27+„+n· 22n+1. ①-②得(1-22)Sn=2+23+25+„+22n-1-n· 22n+1, 1 + 即 Sn= [(3n-1)22n 1+2] . 9
1 1 1 1 1 1 1 1 =2+23+„+299-2+22+„+2100 =32100-1.
本 讲 栏 目 开 关
答案
1 (1)-16
1பைடு நூலகம் 1 (2)32100-1
热点分类突破
考点二 例2 错位相减求和法
(2013· 山东)设等差数列{an}的前 n 项和为 Sn, 且 S4=4S2,
an 所以 n =1+(n-1)×1=n,所以 an=n2, 所以数列{an}的通项公式为 an=n2,n∈N*.
热点分类突破
1 1 1 1 1 1 1 1 (3)证明 + + +„+a =1+ + 2+ 2+„+ 2 a1 a2 a3 4 3 4 n n 1 1 1 1 <1+ + + +„+ 4 2×3 3×4 nn-1
第2讲
本 讲 栏 目 开 关
数列求和及数列的综合应用
【高考考情解读】 高考对本节知识主要以解答题的形式考查以下两个问题: 1.以递推公式或图、表形式给出条件,求通项公式,考查学 生用等差、等比数列知识分析问题和探究创新的能力,属 中档题. 2. 通过分组、 错位相减等转化为等差或等比数列的求和问题, 考查等差、等比数列求和公式及转化与化归思想的应用, 属中档题.
热点分类突破
数列求和的方法:(1)一般地,数列求和应从通项 入手,若无通项,就先求通项,然后通过对通项变形,转化
本 讲 栏 目 开 关
为与特殊数列有关或具备适用某种特殊方法的形式,从而选 择合适的方法求和得解.(2)已知数列前n项和Sn或者前n项和 Sn与通项公式an的关系式,求通项通常利用an= S1n=1 .已知数列递推式求通项,主要掌握“先猜 Sn-Sn-1n≥2 后证法”“化归法”“累加(乘)法”等.
本 讲 栏 目 开 关
1-3n n 当n为偶数时,Sn=2× + ln 3 1-3 2 n n =3 +2ln 3-1; n-1 1-3n 当n为奇数时,Sn=2× -(ln 2-ln 3)+ - n ln 3 2 1-3 n-1 n =3 - 2 ln 3-ln 2-1. n n n为偶数, 3 +2ln 3-1, 综上所述,Sn= 3n-n-1ln 3-ln 2-1, n为奇数. 2
本 讲 栏 目 开 关
3n+1 1 = 1- n , 3 4
3n+1 3n+1 4 1 ∴Rn= 1- n = 4- n-1 . 9 4 9 4
热点分类突破
错位相减法求数列的前 n 项和是一类重要方法.在
本 讲 栏 目 开 关
应用这种方法时, 一定要抓住数列的特征, 即数列的项可以看 作是由一个等差数列和一个等比数列对应项相乘所得数列的 求和问题.
热点分类突破
在处理一般数列求和时,一定要注意使用转化思 想.把一般的数列求和转化为等差数列或等比数列进行求和,
本 在求和时要分析清楚哪些项构成等差数列, 哪些项构成等比数 讲 栏 列,清晰正确地求解.在利用分组求和法求和时,由于数列的 目 开 各项是正负交替的,所以一般需要对项数 n 进行讨论,最后 关
主干知识梳理
1.数列求和的方法技巧
本 讲 栏 目 开 关
(1)分组转化法 有些数列,既不是等差数列,也不是等比数列,若将数列 通项拆开或变形,可转化为几个等差、等比数列或常见的 数列,即先分别求和,然后再合并. (2)错位相减法 这是在推导等比数列的前 n 项和公式时所用的方法,这种 方法主要用于求数列{an· bn}的前 n 项和,其中{an},{bn}分 别是等差数列和等比数列.
再验证是否可以合并为一个公式.
热点分类突破
(2013· 湖南)设Sn为数列{an}的前n项和,Sn=(-1)nan 1 - n,n∈N*,则: 2 (1)a3=________;
本 讲 解析 ∵a =S -S =(-1)na - 1 -(-1)n-1a + 1 , n n n-1 n n-1 栏 2n 2n-1 目 1 开 n n-1 关 ∴an=(-1) an-(-1) an-1+2n.
热点分类突破
考点一 例1
本 讲 栏 目 开 关
分组转化求和法
等比数列{an}中,a1,a2,a3 分别是下表第一、二、三行
中的某一个数,且 a1,a2,a3 中的任何两个数不在下表的同 一列. 第一列 第二列 第三列 第一行 第二行 第三行 3 6 9 2 4 8 10 14 18
热点分类突破
(1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前n项 和Sn.
a2n=2an+1.
本 讲 栏 目 开 关
(1)求数列{an}的通项公式; an+1 (2)设数列{bn}的前 n 项和为 Tn,且 Tn+ n =λ(λ 为常 2 数).令 cn=b2n,n∈N*,求数列{cn}的前 n 项和 Rn.