离散数学作业标准答案

合集下载

离散数学第1次作业参考答案

离散数学第1次作业参考答案
5解:设p:王小红为班长,q:李强为生活委员,r:丁金为班长,s:王小红为生活委员,t:李强为班长,u:王小红为学习委员.
甲对一半:
乙对一半:
丙对一半: ,
根据题意,只需要求出下列公式的成真赋值:

根据已知条件, , , , ,并且根据已知有三位同学入围,因此, , , 。
所以,归结为 的成真赋值,可得李强为生活委员,丁金为班长,王小红为学习委员。
5 (20分)在某班班委成员的选举中,已知王小红、李强、丁金生三位同学被选进了班委会。该班的甲,乙,丙三名同学预言如下:
甲说:王小红为班长,李强为生活委员。
乙说:丁金生为班长,王小红为生活委员。
丙说:李强为班长,王小红为学习委员。
班委分工名单公布后发现,甲、乙、丙三人都恰好猜对了一半。
问:王小红、李强、丁金生各任何职(用等值演算法求解)?
离散数学第1次作业注:交纸质版作业
学号:姓名:班级:总分:
1 (5分)将下列命题符号化。
小李只能从筐里拿一个苹果或者一个梨。
1解:
设p:小李拿一个苹果,q:小李拿一个梨
原命题符号化为:
2 (25分,每题5分)将下列命题符号化,并指出各命题的真值。(1Fra bibliotek只要 ,就有 。
(2)只有 ,才有 。
(3)除非 ,才有 。
3解:
(1)原子命题符号化:
q: 3是无理数;r: 是无理数;s: 6能被2整除,t: 6能被4整除.
(2)整个论述符号化为:
(3)真值:1
4 (共30分,每题15分)求下列公式的主析取范式和主合取范式,并判断公式的类型(用等值演算法)
(1) ;
(2)
4解:
(1)
主析取范式

《离散数学》作业参考答案

《离散数学》作业参考答案
Q→(P R) (P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R) ( P Q R)(主析取范式)
7 (P→Q) (P→R) ( P Q) ( P R) (合取范式) ( P Q (R R) ( P ( Q Q) R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)(主合取范式)
(P ( Q Q)) (( P P) Q) (P Q) (P Q) ( P Q) (P Q) (P Q) (P Q) ( P Q)(主析取范式) 2.Q→( P R) Q P R(主合取范式) (Q→( P R)) ( P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R)
E
(6)
(8)
E
前提
(9) E E
(7),(8)
8 、A→(C B),B→ A,D→ C A→ D.
证明:
(1) A
附加前提
(2) A→(C B) 前提
(3) C B
(1),(2)
(4) B→ A
前提
(5) B
(1),(4)
(6) C
(3),(5)
(7) D→ C
前提
(8) D
( P (Q Q)) (( P P) Q) ( P Q) ( P Q) ( P Q) (P Q) ( P Q) ( P Q) (P Q)(主析取范式) 4. (P→Q) (R P) ( P Q) (R P) (P Q) (R P)(析取范式) (P Q (R R)) (P ( Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R)(主析取范式) ( (P→Q) (R P)) (P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)

离散数学作业标准答案

离散数学作业标准答案

离散数学作业一、选择题1、下列语句中哪个就是真命题(C )。

A.我正在说谎。

B.如果1+2=3,那么雪就是黑色的。

C.如果1+2=5,那么雪就是白色的。

D.严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 就是( C )。

A 、 恒假的B 、 恒真的C 、 可满足的D 、 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。

A.就是自由变元但不就是约束变元 B.既不就是自由变元又不就是约束变元 C.既就是自由变元又就是约束变元 D.就是约束变元但不就是自由变元4、设A={1,2,3},则下列关系R 不就是等价关系的就是(C ) A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C.R={<1,1>,<2,2>,<3,3>,<1,4>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R,σ(x)= -x 2+2x-1,则σ就是( D )。

A.单射而非满射B.满射而非单射C.双射D.既不就是单射,也不就是满射 6、下列二元运算在所给的集合上不封闭的就是( D ) A 、 S={2x-1|x ∈Z +},S 关于普通的乘法运算 B 、 S={0,1},S 关于普通的乘法运算 C 、 整数集合Z 与普通的减法运算D 、 S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b b b a a a b a * a b b b a a b a *8( A )A B C D 9、下列各组数中,能构成无向图的度数列就是( D ) A.1,1,1,2,4 B.1,2,3,4,5 C.0,1,0,2,4 D.1,2,3,3,510、一棵树有2个4度顶点,3个3度顶点,其余都就是树叶,则该树中树叶的个数就是( B )A 、8B 、9C 、 10D 、 11 11、“所有的人都就是要死的。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

《离散数学》题库及标准答案

《离散数学》题库及标准答案

《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。

在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

A(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

(2)解:a) A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。

离散数学习题解答(祝清顺版)

离散数学习题解答(祝清顺版)
2
(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误. 10. (1) {d}; (2) {a, c, e}; (3) {a, b, c, e}; (4) {b, d, e}. 11. 各集合的文氏图如图所示(阴影部分).
5
195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0 所以, gcd(934, 195) = 1. 代回去, 有 gcd(540, 168) = 1 = 31 3 ∙ 10 = 31 3 ∙ (41 1∙31) = 4 ∙ 31 3 ∙ 41 = 4 ∙ (154 3 ∙ 41) 3 ∙ 41 = 4 ∙ 154 15 ∙ 41 = 4 ∙ 154 15 ∙ (1951 ∙ 154) = 19 ∙ 154 15 ∙ 195 = 19 ∙ (934 4 ∙ 195) 15 ∙ 195 = 19 ∙ 934 91 ∙ 195 故 gcd(540, 168) = 19 ∙ 934 91 ∙ 195, 其中 m=19, n = 91. (2) 方法同(1). 计算可得: gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 59 ∙ 25, 其中 m=4, n = 59. (3) 方法同(1). 计算可得: gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 1 ∙ 1287, 其中 n=8, m = 1. (4) 方法同(1). 计算可得: gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 2 ∙ 256, 其中 n=8, m = 1. 32. 由定理 1.3.8, 可得 ab=lcm(a, b)gcd(a, b)=24 ∙ 144. 由已知条件 a+b=120, 根据根与 系数的关系可构造一个一元二次方程 x2120x+24 ∙ 144=0 解之得, x1=72, x2=48. 由此可得 a=72, b=48 或 a=48, b=72. 33. (1) 运用辗转相除法可得 10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0 所以, gcd(934, 195) = 84. (2) 对于(1)中各式回代过去, 有 gcd(10920, 8316) = 84 = 2604 5 ∙ 504 = 2604 5 ∙ (8316 3 ∙ 2604) = 16 ∙ 2604 5 ∙ 8316 = 16 ∙ (10920 1 ∙ 8316) 5 ∙ 8316 = 16 ∙ 10920 21 ∙ 8316 故 gcd(10920, 8316) = 21 ∙ 8316+16 ∙ 10920, 其中 m = 21, n=16. (3) 由最大公因子与最小公倍数的关系, 有 ab 8316 10920 =1081080. lcm(a, b) gcd(a, b) 84

(完整版)离散数学习题答案

(完整版)离散数学习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r∧→15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0,,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q→⌝→⌝解:列出公式的真值表,如下所示:p qp⌝q⌝()p p →⌝()p p q→⌝→⌝001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)()p q q⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧,此即公式的主析取范式,()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式,此即公式的主合取范式,()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔所以成假赋值为100。

离散数学参考答案

离散数学参考答案

大 连 理 工 大 学课 程 名 称: 离散数学 试 卷: A 授课院 (系): 软件学院 考试日期: 04 年 1 月 3 日 试卷共 4 页1、 简答下列各问(每小题2分共20分)1) 一个可满足的公式一定是永真式。

一个永真式一定是可满足的。

哪一句为真? 后一句为真2) 一个偏序一定是一个全序。

一个全序一定是一个偏序。

哪一句为真? 后一句为真3) 一个划分一定是一个覆盖。

一个覆盖一定是一个划分。

哪一句为假? 后一句为假4) 同余关系一定是等价关系。

等价关系一定是同余关系,哪一句为真? 前一句为真5) Y 盖复x ,则一定有x ≤y 。

若x ≤y ,则一定有Y 盖复x 。

哪一句为假?(≤为偏序)后一句为假 6) 一个单射、满射函数一定是一个双射函数。

一个双射函数一定是一个满射函数?哪一句为假?都不为假7) 一个分配格一定是一个布尔代数。

一个布尔代数一定是一个分配格。

哪一句为假?前一句为假8) 设T=<n,m>是一棵具有n 个结点m 条边的树,试给出结点n 和边m 的关系式: m =n-19) 设R 是集合X 中的二元关系,试给出R 的对称闭包:s( R)=R ⋃R10) 数理逻辑中介绍了哪8条推理规则?P 、T 、CP 、F 、UG 、US 、EG 、ES 规则姓名:学号: 院系: 级 班装订线2、 试证在完全二元有向树中,边的总数为2(n t –1).其中n t 为树叶数。

(6分)证明:因为是完全二元树,所以每个结点的度数为2或0。

设度数为2的结点数为n 2 ,于是边数为m=2 n 2. 在树中边数m 和结点数n 有关系式 m=n-1即2 n 2.= n 2+n t -1而n= n 2+ n t 由上式得:m=n 2+ n t -1=m/2+ n t -1 整理得:m=2(n t –1).3、 若无向树T 有两个顶点度为2,一个顶点度为3,3个顶点度为4,则T 有几片树叶?(6分)证明:设无向树有n 个结点,于是n=n 2+n 3+n 4+n t (1)其中:n 2,n 3, n 4 ,n t 分别代表度为2,为3,为4及叶结点。

《离散数学》试题及标准答案解析

《离散数学》试题及标准答案解析

《离散数学》试题及标准答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)= __________________________ .2. 设有限集合A, |A| = n, 则 |ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1= {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2? R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A =__________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。

离散数学答案版(全)

离散数学答案版(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2. 熟练掌握常用的基本等价式及其应用。

3. 熟练掌握(主)析/合取范式的求法及其应用。

4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5. 熟练掌握形式演绎的方法。

教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。

127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。

西交20秋《离散数学》在线作业【标准答案】

西交20秋《离散数学》在线作业【标准答案】

西交《离散数学》在线作业
试卷总分:100 得分:100
一、单选题 (共 20 道试题,共 40 分)
1.设集合A={a,b,c},2A上的包含关系是()。

A.自反的、反对称的、传递的
B.自反的、对称的、传递的
C.反自反的、对称的、传递的
D.反自反的、对称的、非传递的
答案:A
2.{图}
A.A
B.B
C.C
D.D
答案:D
3.下列各命题中。

哪个是真命题?()
A.若一个有向图是强连通图,则是有向欧拉图。

B.n(n &ge; 1)阶无向完全图Kn都是欧拉图。

C.n(n &ge; 1)阶有向完全图都是有向欧拉图。

D.二分图G=〈V1, V2, E〉必不是欧拉图。

答案:C
4.{图} ( )
A.=
B.∈
C.{图}
D.{图}
答案:D
5.域和整环的关系为()。

A.整环是域
B.域是整环
C.整环不是域
D.域不是整环
答案:B
6.整数集合Z关于数的加法“+”和乘法“·”构成的代数系统<Z, +,·>是()
A.域
B.域和整环
C.整环
D.有零因子环
答案:C。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学参考答案

离散数学参考答案

1.(单选题)A.明年“五一”是晴天。

B.这朵花多好看呀!。

C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。

C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。

B.天气多好呀!C.x=3。

D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。

Q:刘平用功。

在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。

离散数学习题与参考答案

离散数学习题与参考答案

习题六格与布尔代数
一、填空题
1、设是偏序集,如果_________, 则称<A, ≤>是(偏序)格.
2、设〈B,∧,∨,′,0,1〉是布尔代数,对任意的a∈B,有a∨a′=____,a∧a′=______.
3、一个格称为布尔代数,如果它是______格和______格.
4、设<>是有界格,a,b L,若a b=0,则a=b=_____;若a b=1,则a=b=____.
二、证明题
1、设<L, ≤>是格,a,b,c,d∈L。

试证:若a≤b且c≤d,则
a∧c≤b∧d
2、证明:在有补分配格中,每个元素的补元一定唯一。

3、设<S,⊕,⊙,′,0,1>是一布尔代数,则
R={<a,b> | a⊕b=b}是S上的偏序关系
4、若<A,≤>是一个格,则对任意a、b 、c∈A,有若a≤c且b≤c,则a∨b ≤c。

5、若<A,≤>是一个格,则对于任意a,b∈A,证明以下两个公式等价;(1)a≤b
(2)a∨b =b
6、证明:如果格中交对并是分配的,那么并对交也是分配的,反之亦然。

7、如果<A,≤>是有界格,全上界和全下界分别是1和0,则对任意元素a∈A,证明:
a∨1=1∨a=1 ,a∨0=0∨a=a。

离散数学习题及答案

离散数学习题及答案

离散数学习题及答案一、选择题:1、下列命题正确的是( A )。

A .φ⋂{φ}=φB .φ⋃{φ}=φC .{a}∈{a ,b ,c}D .φ∈{a ,b ,c}2、设集合},{y x X =,则=)(x ρ( C )。

}}.,{},{},{{.}};,{},{},{,{.}};{},{,{.}};{},{{.y x y x D y x y x C y x B y x A φφ3、下列式子中正确的有( B )。

..};,{.};{.;0.φφφφφφ∈∈∈=D b a C B A4、某个集合的元数为10,可以构成( D )个子集。

A 、10B 、20C 、210D 、1025、下列命题正确的有( A )A 、}},{,,{},{b a b a b a ⊆B 、}},,{,,{},{c b a b a b a ∈C 、}}},{{,{},{b a a b a ⊆D 、}}},{{,,{},{b a b a b a ∈6、集合A={a ,b ,c},A 上的关系R={(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(c ,c )},则R 具有关系的( B )性质。

A 、自反性B 、对称性C 、反对称性D 、传递性7、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。

A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射8、下列语句中,( C )是命题。

A .下午有会吗?B .这朵花多好看呀!C .2是常数。

D .请把门关上。

9、一个公式在等价意义下,下面哪个写法是唯一的( C )。

A .析取范式B .合取范式C .主析取范式D .以上答案都不对10、通过约束变元的换名规则,可以将 ∀x(P(x)→R(x, y))∧Q(x, y) 改写为( C )A 、∀x(P(x)→R(u, y)∧Q(x, y)B 、∀x(P(y)→R(y, y)∧Q(x, y)C 、∀z(P(z)→R(z, y))∧Q(x, y)D 、∀z(P(z)→R(z, y))∧Q(z, y)11、∃x(P(x)∨(∀y)R(y))→Q(x)中∃x 的辖域是( C )。

大学离散数学作业答案

大学离散数学作业答案

12014241708 兰亚伟计混一班
19.用真值表判断下列公式的类型。

(2)(p→⌝p)→⌝q.
解公式的真值表是
由上式可得公式的类型是可满足式。

(3)⌝(q→r)∧r.
解公式的真值表是:
由上式的公式的类型为矛盾式。

(6)((p→q)∧(q→r)→(p→r).
解公式的真值表是:
由上式的公式的类型为永真式。

27.设A,B都是含命题变向p1,p2,……pn的公式,证明:A∧B 是重言式当且仅当A与B都是重言式,
证明:(1)、充分性;
∵A ˄ B是重言式
∴A ˄ B的真值为1,且所有可能的赋值共有2n个。

∴由合取式定义得,A的真值为1,B的真值也为1,且在A ˄ B所有可能的2n个赋值下,A与B的真值都为1
∴A与B都为重言式。

(2)、必要性:已知A与B都是含命题变项P1,P2,…P n
重言式。

∴在A与B所有可能的2n个赋值下,A与B的真值都为1
∴A ˄ B在命题变项P1,P2,…P n所有可能的2n个赋值下的真值也为1
∴A ˄ B是重言式。

28、设A、B都是含命题变项P1,P2,…P n的公式,已知A ˄ B是矛盾式,能得出A与B都是矛盾式的结论吗?为什么?
解A、B、A ˄ B的真值表如下所示:
由真值表可以得出当A ˄ B的真值为0时所对应的A与B真值有三种情况,分别是00、01、10。

∴已知A ˄ B是矛盾式,不能得出A与B都是矛盾式的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学作业一、选择题1、下列语句中哪个是真命题(C )。

A .我正在说谎。

B .如果1+2=3,那么雪是黑色的。

C .如果1+2=5,那么雪是白色的。

D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。

A. 恒假的B. 恒真的C. 可满足的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。

A .是自由变元但不是约束变元 B .既不是自由变元又不是约束变元 C .既是自由变元又是约束变元 D .是约束变元但不是自由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射=RR ,(x )= -x 2+2x-1,则是( D )。

A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射 6、下列二元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算B. S={0,1},S 关于普通的乘法运算C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D8、下列图中是欧拉图的是( A )。

A B C D 9、下列各组数中,能构成无向图的度数列是( D ) A .1,1,1,2,4 B .1,2,3,4,5 C .0,1,0,2,4 D .1,2,3,3,510、一棵树有2个4度顶点,3个3度顶点,其余都是树叶,则该树中树叶的个数是( B )A .8 B.9 C. 10 D. 11 11、“所有的人都是要死的。

苏格拉底是人,所以苏格拉底是要死的。

”则该句话(B )A .不是命题B .是真命题C .是假命题D .是悖论12、一个公式在等价意义下,下面哪个写法是唯一的( C )。

A .析取范式 B .合取范式 C .主析取范式 D .以上答案都不对 13、设论域E={a, b},且P(a,a)=1 P(a,b)=0 P(b,a)=1 P(b,b)=0 则在下列公式中真值为1的是( D )A.$x"yP(x,y)B."x"yP(x,y)C."xP(x,x)D. "x$yP(x,y) 14、设集合A={1, 2, 3 },A 上的关系R={<1, 1 >,<2, 2 > },则R 不具有( A )性质。

A.自反性B.对称性C.传递性D. 反对称性 15、设集合A={a,b,c,d},B={1,2,3,4},则从A 到B 的函数f={<a,2>,<b,1>,<c,3 >,<d,2 >}是( D )。

A. 双射函数 B. 单射函数C. 满射函数D. 即不是满射又是不是单射函数 16、下面给出的一阶逻辑等值式中,( B )是错的。

A.);()())()((x xB x xA x B x A x ∃∨∃⇔∨∃ B.);()())()((x xB x xA x B x A x ∀∨∀⇔∨∀ C.));(()(x A x x xA ⌝∃⇔⌝∀D.)).(()(x B A x x xB A →∀⇔∀→17、下列各代数系统中,不含零元素的是 ( C )A .>*<),(R M n , )(R M n 是全体n 阶实矩阵集合,*是矩阵乘法运算。

B .><Y ),(S p ,)(S p 是集合S 的幂集合,Y 是集合的并运算。

C .>+<,R ,R 是有理数集,+是数的加法运算。

D .><ο,I ,I 是整数集,ο是数的乘法运算。

18、 设图G 是有6个顶点的连通图,总度数为20,则从G 中删去( B )边后使之变成树。

A .10 B. 5 C. 3 D. 2 19、在具有n 个结点的无向连通图中,(B )。

A. 恰好有n 条边B. 恰好有n-1条边C. 最多有n 条边D. 至少有n 条边 20、下列图是欧拉图的是( C )21. 半群、群及独异点的关系是………………………………………………( D )(A ){群}⊂{独异点}⊂{半群} (B ){独异点}⊂{半群}⊂{群} (C ){独异点}⊂{群}⊂{半群} (D ){半群}⊂{独异点}⊂{群}22. 设集合A={1, 2, 3 },A 上的关系R={<1, 1 >,<2, 2 >,<3,3>},则R 不具有下列性质中的……………………………………………………………… (D ) (A) 自反性 (B) 对称性 (C) 传递性 (D) 反自反性 23. 以下图中哪个是欧拉图…………………………………………… (D )24.*运算如下表所示,哪个能使<{a,b },*>成为含幺元半群…………(D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *(A) (B) (C) (D)25. 设P:张三可以做这件事,Q:李四可以做这件事。

命题“张三或李四可以做这件事”符号化为…………………………………………………(A)(A) Q(~~QP∨~ P∨ (B) QP~∨ (C) QP↔ (D) )26.27. G是连通的平面图,有5个顶点,6个面,则G的边数为……………(C)(A) 6 (B) 5 (C) 9 (D) 1128.下列句子中是命题的有……………………………………………(D)(A) 上课时请不要说话! (B) 我在说谎.(C)你吃饭了吗?(D)上海是中国的首都.29. 以下命题公式中,为永假式的是( C )(A) p→(p∨q∨r) (B) (p→┐p)→┐p(C)┐(q→q)∧p (D)┐(q∨┐p)→(p∧┐p) 30. 图的生成子图为……………………………(C)(A) (B) (C) (D)31.如下图所示的有界格中,元素b的补元是( D )(A)a(B)0(C)c(D)d32. 设A={a,b,c},则下列是集合A的划分的是( D )(A) {{b,c},{c}} (B){{a,b},{a,c}} (C){{a,b},c} (D){{a},{b,c}}33. 整数集合Z上“<”关系的自反闭包是关系(D)(A) = (B)≠ (C)> (D) ≤34. 下列式子正确的是 ( B )(A) ∅∈∅ (B)∅⊆∅ (C){∅}⊆∅ (D){∅}∈∅35.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( A )(A )<{1},·> (B )〈{-1},·〉 (C )〈{i},·〉 (D )〈{-i},·〉 36.集合A={1,2}的幂集P(A)的基数是…………………………………………( D )(A ) 0 (B ) 1 (C ) 2 (D ) 437. 下列哪个联结词运算不可交换?………………………………………(A ) (A) → (B) ↔ (C) ∨ (D) ∧38. 设集合A={1,2,3,…,10},下列定义的哪种运算关于集合A 是不封闭的 (D ) (A) x*y=max{x,y} (B) x*y=(x,y) 即x,y 的最大公约数(C) x*y=min{x,y} (D) x*y=[x,y] 即x,y 的最小公倍数 39.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B )A .满射函数B .单射函数C .双射函数D .非单射非满射40. 若<A ,*>是一个代数系统,且满足结合律,则<A ,*>必为…………………(A ) (A) 半群 (B) 独异点 (C) 群 (D) 交换群41. 设R 是A 上的等价关系,即R 是……………………………………………(D ) (A )反自反的,对称的,传递的 (B )自反的,反对称的, 传递的 (C )反自反的,反对称的,传递的 (D ) 自反的,对称的,传递的42.下列哪一组命题公式是等价的……………………………………………(B ) (A) Q P ~~∧,Q P ∨ (B) )(A B A →→,)~(~B A A →→ (C) )(Q P Q ∨→,)(~Q P Q ∨∧ (D) )(~B A A ∧∨,B43.设S={0,1},则S ……………………………………………………………(A ) (A )在普通乘法下封闭,在普通加法下不封闭; (B )在普通加法和乘法下都封闭;(C )在普通加法下封闭,在普通乘法下不封闭; (D )在普通加法和乘法下都不封闭;44. 下面谓词公式是前束范式的是 ( A )A. ))(),((z A y x B z y x →∃∀∀B. ),((y x B y x ∃⌝∀C. ))(),((z A y x B z y x ∧⌝∃∀∃D. ))(),((y yB y x B x ∃→∀ 45. 整数集合Z 上“<”关系的自反闭包是关系(D )(A)= (B)≠ (C)> (D)≤11.下列图既是欧拉图,又是哈密顿图的是………………………………(C )46. 设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( C )(A) R ∪IA (B) R (C) R ∪{〈c,a 〉} (D) R ∩IA 47. 下列式子正确的是( B ) (A) ∅∈∅ (B)∅⊆∅(C) {∅}⊆∅ (D) {∅}∈∅48. 下列句子是命题的是( C )(A) 水开了吗? (B) 这朵花多好看呀! (C) 2是常数。

相关文档
最新文档