五年级奥数专题三:定义新运算(1)

合集下载

定义新运算(小学数学五年级奥数)

定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+2=8,6×2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

解决定义新运算这类题的关键:是抓住定义的本质——借用“+、-、×、÷”四则运算进行的,解答时要弄清新运算与四则运算的关系。

特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。

例1:设a、b都表示数,规定:a△b =3×a-2×b。

试计算:(1)3△2;(2)2△3。

练习1:1.设a、b都表示数,规定:a○b=5×a-2×b。

试计算3○4。

2.设a、b都表示数,规定:a*b=3×a+2×b。

试计算:5*6例2:对于两个数a与b,规定a△b=3a+2a,试计算2△(3△5)。

练习2:1.对于两个数a与b,规定:a○b=a+3b,试计算4○5○6。

2.对于两个数A与B,规定:A△B=2×A-B,试计算5△6△7。

例3:对于两个数a,b,规定:a⊕b=a×b+a+b,试计算:9⊕。

练习3:1.对于两个数a,b,规定:a⊕b=a×b-(a+b),试计算:6⊕7.2..对于两个数A与B,规定:AθB=A×B÷2,试计算:8θ9。

例4:如果2△3=2+3+4,5△4=5+6+7+8,那么按此规律计算:(1)3△5;(2)8△3。

练习4:1.如果4△2=4×5,2△3=2×3×4,那么按此规律计算:5△4。

小学奥数定义新运算

小学奥数定义新运算

定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4)【考点】定义新运算之直接运算 【难度】2星 【题型】计算【巩固】 设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.例题精讲知识点拨教学目标定义新运算【考点】定义新运算之直接运算 【难度】2星 【题型】计算【巩固】 P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8) 【考点】定义新运算之直接运算 【难度】2星 【题型】计算【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .【考点】定义新运算之直接运算 【难度】3星 【题型】计算【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【考点】定义新运算之直接运算 【难度】2星 【题型】计算【关键词】走美杯,3年级,初赛【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。

小学奥数-定义新运算

小学奥数-定义新运算

小学奥数-定义新运算小学奥数——定义新运算1.定义运算△为a△b=3×a-2×b。

求4△3,3△4,(17△6)△2,17△(6△2)和5△b=5时的b的值。

2.定义运算※为a※b=a×b-(a+b)。

求5※7,7※5,12※(3※4),(12※3)※4和3※(5※x)=3时的x的值。

3.暂无内容。

4.已知4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。

5.定义运算▽为a▽b=a×b+a-b,求5▽8.6.定义运算△为a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。

求1△100的值和5△b=5时的b的值。

7.定义运算为a b3a4b,求(87) 6.8.定义运算⊖为a⊖b=5×a×b-(a+b),求11⊖12.9.定义运算※为a※b=2×a×b-1/4×b,求8※(4※16)。

10.定义运算□为x□y=(x+y)/4,求a□16=10中a的值。

11.定义运算为a b=a×b/(a+b),求21010的值。

12.定义运算※为P※Q=(P+Q)/2,求4※(6※8)和x※(6※8)=6时的x的值。

13.定义运算⊕为x⊕y=(x+1)/y,求3⊕(2⊕4)的值。

14.已知4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3的值。

15.定义运算为a b=(a+3)×(b-5),求5(67)的值。

16.定义运算为x y=6x+5y和△为x△y=3xy,求(23)△4的值。

读一读】狼&羊羊和狼在一起时,狼要吃掉羊,所以我们定义了两种运算,用符号△表示羊和狼的运算,用符号☆表示羊与羊战胜狼的运算。

具体规则见上文。

(完整版)定义新运算(小学数学五年级奥数)

(完整版)定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。

特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。

例1:设a、b都表示数,规定:aAb =3X a— 2X b。

试计算:(1) 3A2; (2) 2A3。

练习1:1. 设a b都表示数,规定:a。

b=5X a— 2X b。

试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。

试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。

练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。

2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。

五年级奥数培优之定义新运算

五年级奥数培优之定义新运算

定义新运算是指用一个符号和已知运算表达式表示一种新的运算。

解答定义新运算关键是要正确理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

例1 设b a,表示两个不同的数,规定b a b a 43.求6)78(.例2 规定:6* 2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。

求7*5例3 设ab b a b a 5.024,求34)14(x 中的未知数x 。

专题:定义新运算1、定义运算?为a ?b =5×)(b a b a .则11?12=2、b a,表示两个数,记为:a ※b =2×b b a 41.则8※(4※16)= .3、设y x,为两个不同的数,规定x □y 4)(y x.求a □16=10中a = 4、有一个符号“?”,使下列算式成立:4?8=16,10?6=26,6?10=22,18?14=50.求7?3=5、如果a △b 表示(a-2)×b ,例如:3△4=(3-2)×4=4,那么当( a △2)△3=12时,a=6、对于数b a,规定运算“▽”为)5()3(b a ba .求)76(57、Q P,表示两个数,P ※Q =2Q P ,如3※4=243=3.5.求4※(6※8);如果x※(6※8)=6,那么x ?. 8、对任意的数a ,b ,定义:f (a )=a2+1, k (b )=2b(1)已知f (m )=26,求m 的值;(2)求f (k (3))+k (f (3))的值9、规定a ⊕)1()2()1(b a a a a b ,(b a,均为自然数,a b ).如果x ⊕10=65,那么x ?10、有A ,B ,C ,D 四种装置,将一个数输入一种装置后会输出另一个数。

装置A ∶将输入的数加上5;装置B ∶将输入的数除以2;装置C ∶将输入的数减去4;装置D ∶将输入的数乘以3。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

五年级奥数:定义新运算

五年级奥数:定义新运算

五年级奥数:定义新运算五年级奥数重难点:定义新运算定义新运算是指使用新的符号来进行运算。

在解题时需要按照所规定的“运算程序”进行运算,以得出最终结果。

不同的题目有不同的规定,我们应该严格按照题目中的规定进行运算。

类型一:直接运算型在这种类型的问题中,我们需要直接根据运算公式进行计算。

例如,对于题目“★”表示一种新运算,规定A★B=5A+7B,求4★5,我们可以直接代入A=4,B=5,然后按照规定进行计算。

练题:1.设a、b都表示数,规定:a○b=6×a-2×b。

试计算3○4.2.“♀”表示一种新的运算,规定A♀B=2A+3B,求0.3♀1.4.3.设a、b都表示数,规定:a*b=3×a+2×b。

试计算:(1)(5*6)*7(2)5*(6*7)4.a、b是自然数,规定a※b=(a+b)÷2,求3※(4※6)5.令A®B=3×A+4×B,试计算:(1)(4®5)®6(2)(1®5)+(2®4)类型二:反解未知数型在这种类型的问题中,我们需要建立方程来求解未知数。

例如,对于题目规定a&b=3a-2b,如果x&4=7,求x的值,我们可以建立方程3x-8=7,然后解方程得到x=5.练题:1.如果规定 ab cd =a×d-b×c,已知126 x2.4=7.2,求x的值。

2.对于任意正整数a,b,规定a※b=a÷b×2+3.若256※a=19,求a的值。

3.对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。

已知x□6=27,求x。

类型三:观察规律型在这种类型的问题中,我们需要观察规律来进行计算。

例如,对于题目如果1※3=1+2+3=6,5※4=5+6+7+8=26,那么9※5=?我们可以发现,每个数的结果都是从第一个数开始加上后面的连续的几个数,因此9※5=9+10+11+12+13=55.练题:1.已知1∆3=1×2×3,6∆5=6×7×8×9×10,求2∆5.2.如果2※3=2+3+4=9,5※4=5+6+7+8=26,按此规则计算:(1)1※x=15(2)x※3=12类型四:综合类型在这种类型的问题中,我们需要综合运用不同的方法来进行计算。

小学五年级奥数题及答案:定义新运算

小学五年级奥数题及答案:定义新运算

小学五年级奥数题及答案:定义新运算小学五年级奥数题及答案:定义新运算定义新运算:(高等难度) 规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+ A△3)=96,且A、B均为大于0的自然数A×B的所有取值有( )个。

定义新运算答案:共5种;分类讨论,因为题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。

对于B也有类似,两者合起来共有3×3=9种不同的组合,我们分别讨论。

1) 当A<3,B<3,则(5+B) ×(5+A)=96=6×16=8×12,无解;2) 当3≤A<5,B<3时,则有(5+B)×(5+3)=96,显然无解;3) 当A≥5,B<3时,则有(A+B)×(5+3)=96,则A+B=12.所以有A=10,B=2,此时乘积为20或者A=11,B=1,此时乘积为11。

4) 当A<3,3≤B<5,有(5+3)×(5+A)=96,无解;5) 当3≤A<5,3≤B<5,有(5+3)×(5+3)=96,无解;6) 当A≥5,3≤B<5,有(A+3)×(5+3)=27,则A=9.此时B=3后者B=4。

则他们的乘积有27与36两种;7) 当A<3,B≥5时,有(5+3)×(B+A)=96。

此时A+B=12。

A与B 的乘积有11与20两种;8) 当3≤A<5,B≥5,有(5+3)×(B+3)=96。

此时有B=9.不符;9) 当A≥5,B≥5,有(A+3)×(B+3)=96=8×12。

则A=5,B=9,乘积为45。

所以A与B的乘积有11,20,27,36,45共五种。

五年级上学期奥数:第三讲 定义新运算

五年级上学期奥数:第三讲 定义新运算

第三讲 定义新运算(一)【知识点拨】基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.定义新运算分类1.直接运算型2. 观察规律型3.反解未知数型4.其他类型综合【典例解析】类型一:直接运算型例1.设,a b 表示两个不同的数,规定b a b a ⨯-⨯=∆34.求52∆解:练一练:设,a b 表示两个不同的数,规定b a b a ⨯-⨯=∆34.求84∆例2.设,a b 表示两个不同的数,规定b a b a ⨯-⨯=∆34.求2)34(∆∆解:练一练:设,a b 表示两个不同的数,规定43a b a b ∆=+.求2)34(∆∆例3.y x ,表示两个数,规定新运算“※”及“○”如下:x ※y x y 45+=,x ○xy y 6=.求(3※4)○5的值.解:练一练:1、规定新运算“*”及“△”如下:x*y=x+2y ,x △y=2xy ,求(1△2)*3的值。

2、已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,求[]4(68)(35)⊗⊕⊕⊗=?类型二:观察规律型例4.如果1@3=1+2+3=6,5@4=5+6+7+8=26,求9@6= 。

五年级奥数定义新运算(精)

五年级奥数定义新运算(精)

定义新运算姓名:知识点拨我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?本节课我们就来研究这个问题。

【知识点一】新运算的定义新运算的定义是题目规定的,只在对应题目里有效,相同的符号,在不同的题目里可能有不同的定义。

新定义的运算往往由已学过的四则运算,按照一定的顺序组合而成。

【知识点二】新运算的解答步骤(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、◆、♀、●、Δ、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

【知识点三】定义新运算的分类1、直接运算型2、反解未知数型3、观察规律型4、综合型经典例题类型一、直接运算型【例1】若表示,求的值。

【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4),求的值。

6△(3△4)【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。

那么,(2☆3)+(4☆4)+(7☆5)=?【巩固】 已知a ,b 是任意自然数是任意自然数,,我们规定: a⊕b = a+b 我们规定: a⊕b = a+b-1,-1,,那么那么【巩固】表示【例2】对于任意的整数x 与y 定义新运算“△”:,求2△9。

【巩固】【巩固】 定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6+[4,6]=2+12=14.根据上面定义的运算,18△12= .【例3】规定:符号“】规定:符号“&&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。

奥数新定义运算(精)

奥数新定义运算(精)
(1)8▽1.25 (2(4▽2.5▽7
【例2】已知2*3=2+22+222=246,3*4=3+33+333+3333=3702.
求:(13*3;(24*5;(3若1*x=123,求x.
【分析与解】观察两个已知等式可以发现,“*”定义的是连加运算,第一个加数是“*”前边的数,且后一个加数都比前一个加数多一位,但数字相同,而“*”后边的数恰好是加数的个数。
以上运算的意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了,小朋友总是希望羊能战胜狼。所以我们规定另一种运算,用符号“☆”表示:羊☆羊=羊,羊☆狼=羊,狼☆羊=羊,狼☆狼=狼。
这个运算的意思是羊和羊在一起还是羊,狼和狼在一起还是狼,但由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走而剩下羊了。
【理一理】
新定义运算注意的问题:
(1新定义运算一般不满足运算定律
如:a△b≠b△a a△(b△c≠(a△b△c
(a*b△c≠(a△c*(b△c
(2“+”“-”“×”“÷”仍然是通常的运算符号,完全符合四则运算顺序.
四、练一练
1、规定a*b=4a-3b,计算:(1.5*0.8)*0.5
2、设a,b都表示自然数,规定a☆b=3a+b÷2,计算:
=[20÷2] △29 =[5△9] △6
=10△29 =[(5+9÷2] △6
=(10+29÷2 =7△6
=39÷2 =(7+6÷2
=19.5 =6.5
【试一试】
1、A,B表示两个数,定义A*B=2×A-B.试求:
(1(8.5×6.9*5 (2(119.8-29.8*(13.65+12.35

奥数新定义运算

奥数新定义运算

奥数新定义运算奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗,现在我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符,号,如:*、?、?、◎、、Δ、?、?等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释例1、对于任意数a,b,定义运算“*”: a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ? b = ( a + b )? b 。

求 8 ? 5 。

分析与解:该题的新运算被定义为: a ? b等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a代表数字8,b代表数字5。

8 ? 5 = (8 + 5)? 5 = 2.6例3、如果a◎b=a×b-(a+b)。

求6◎(9◎2)。

分析与解:根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案3定义新运算、通项归纳(一)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案3定义新运算、通项归纳(一)

年级五年级学科奥数版本通用版课程标题定义新运算定义新运算是奥数题中一类常考的、难度较低的计算题。

在一道定义新运算的题目中,会“发明”新的运算符号,解题的关键是先看清新符号的运算规则,再代入数值准确计算。

注意运算顺序:注意新符号是对多少个数值进行计算(常见的是对两个数值进行计算)。

题目有可能给出计算规则和计算结果要求反推未知数。

题目有可能不给出计算规则而是要求观察规律确定计算规则。

题目中的加、减、乘、除号有可能不同于普通的定义。

例1. (1)若A*B表示(A+3B)×(A+B),求5*7的值;(2)[A]表示小于A的最大质数,计算[[45]+[23]]。

【分析与解】以上两道题就属于直接计算型问题。

=+⨯⨯+=(1)5*7(537)(57)312+=+==(2)[[45][23]][4319][62]61例2. 已知a,b是任意自然数,我们规定:a#b=a+b-1,a*b=a×b+1,试计算[(5*3)#(2*5)]*(6#6)【分析与解】与例1的区别是多了一种计算的符号,但本质上还是直接计算型问题。

本题可按顺序分步计算。

(5*3)=53+1=16(2*5)25111[16#11]1611126(6#6)6611126*1126111=287⨯=⨯+==+-==+-==⨯+例3. 如果a △b 表示(a -2)×b ,例如3△4=4,那么,当a △5=30时,a = 。

【分析与解】把定义的运算新法则代入a △5=30中可得a △5=(a -2)×5=30解得a -2=6a =8例4. 若有新运算a#b ,a#b 表示a 、b 中较大数除以较小数后的余数。

例如;2#7=1,8#3=2,9#16=7,21#2=1。

若(21#(21#x ))=5,则x 可以是________(x 小于50)。

【分析与解】反推未知数型。

21#x 可能是8、16、26、47,又因为必须小于21,所以只能是8、16。

五年级奥数--定义新运算

五年级奥数--定义新运算

定义新运算
1、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

2、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?
3、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

4、规定:6※2=6+66=72, 2※3=2+22+222=246, 1※4=1+11+111+1111=1234. 7※5=
5、甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:
甲:“丙第一名,我第三名.”
乙:“我第一名,丁第四名.”
丙:“丁第二名,我第三名.”
丁没说话.
最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人
的名次.
甲是第名,乙是第名,丙是第名,丁是第名.
6、王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面
几句话:
陈:“我没做这件事.殷华也没做这件事.”
王:“我没做这件事.陈刚也没做这件事.”
殷:“我没做这件事.也不知道谁做了这件事.”
当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .。

【精选】小学五年级奥数__定义新运算一图文百度文库

【精选】小学五年级奥数__定义新运算一图文百度文库

【精选】小学五年级奥数__定义新运算一图文百度文库一、拓展提优试题1.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.如图,从A到B,有条不同的路线.(不能重复经过同一个点)4.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)5.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.6.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;7.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.8.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.9.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.10.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.11.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)12.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.13.观察下表中的数的规律,可知第8行中,从左向右第5个数是.14.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.15.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.【参考答案】一、拓展提优试题1.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A =x 2y ,B =x 2y 2,C =x 2,则x 2y +x 2y 2+x 2=79,无解.故答案为441. 2.2800 [解答] 设两地之间距离为S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数专题三:定义新运算(1)
关键词:运算四则四则运算定义奥数符号意义这些表示年级
我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

例1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32。

根据以上的规定,求10△6的值。

3,x>=2,求x的值。

分析与解:按照定义的运算,
<1,2,3,x>=2,
x=6。

由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。

新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。

如例1中,
a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。

分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。

四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。

按通常的规则从左至右进行运算。

分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得
35=3+33+333+3333+33333=37035。

从例5知,有时新运算的规定不是很明显,需要先找规律,然后才能进行运算。

例6 对于任意自然数,定义:n!=1×2×… ×n。

例如4!=1×2×3×4。

那么1!+2!+3!+…+100!的个位数字是几?
分析与解:1!=1,
2!=1×2=2,
3!=1×2×3=6,
4!=1×2×3×4=24,
5!=1×2×3×4×5=120,
6!=1×2×3×4×5×6=720,
……
由此可推知,从5!开始,以后6!,7!,8!,…,100!的末位数字都是0
所以,要求1!+2!+3!+…+100!的个位数字,只要把1!至4!的个位数字相加便可求得:1+2+6+4=13。

所求的个位数字是3。

例7 如果m,n表示两个数,那么规定:m¤n=4n-(m+n)÷2。

求3¤(4¤6)¤12的值。

解:3¤(4¤6)¤12
=3¤[4×6-(4+6)÷2]¤12
=3¤19¤12
=[4×19-(3+19)÷2]¤12
=65¤12
=4×12-(65+12)÷2
=9.5。

练习3
1.对于任意的两个数a和b,规定a*b=3×a-b÷3。

求8*9的值。

2.已知a b表示a除以3的余数再乘以b,求134的值。

3.已知a b表示(a-b)÷(a+b),试计算:(53)(106)。

4.规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值。

5.假定m◇n表示m的3倍减去n的2倍,即m◇n=3m-2n。

(2)已知x◇(4◇1)=7,求x的值。

7.对于任意的两个数P,Q,规定P☆Q=(P×Q)÷4。

例如:2☆8=(2×8)÷4。

已知x☆(8☆5)=10,求x的值。

8.定义:a△b=ab-3b,a b=4a-b/a。

计算:(4△3)△(2b)。

9.已知:23=2×3×4,
45=4×5×6×7×8,
……
求(44)÷(33)的值。

相关文档
最新文档