压铸件设计规范
压铸件设计规范
2.0
+1 -0.4
表9 推荐铰孔加工余量(mm)
公称孔径D
≤6
铰孔余量
0.05
>6~10 0.1
> 10 ~18 >18 ~30 >30 ~50 >50 ~60
0.15
0.2
0.25
0.3
我司现采用的机加工余量一般取0.3~0.5mm。
②、计算后的最小圆角应符合表2的要求。
2) 脱模斜度
设计压铸件时,就应在结构上 留有结构斜度,无结构斜度时,在需要 之处,必须有脱模的工艺斜度。斜度的 方向,必须与铸件的脱模方向一致。推 荐的脱模斜度见表4。
表4 脱模斜度
合金
锌合金 铝、镁合金
铜合金
配合面的最小脱模 斜度
外表面α 内表面β
0°10′ 0°15′ 0°30′
推荐采用的机加工余量及其偏差值见表8。铰孔余 量见表9。
表8 推荐机加工余量及其偏差(mm)
基本尺寸 每面余量
≤100
0.5
+0.4 -0.1
>100~250
0.75
+0.5 -0.2
> 250 ~400
1.0
+0.5 -0.3
> 400 ~630
1.5
+0.6 -0.4
> 630 ~1000
>500
0.5
1.5
0.8
2.0
0.8
2.0
0.8
1.5
1.0
1.8
1.22.51来自22.51.5
2.0
1.5
2.2
1.8
3.0
1.8
3.0
2.0
2.5
2.0
2.5
压铸件设计规范详解
压铸件设计规范详解压铸件是指利用压铸工艺将熔融金属注入模具中,经过凝固和冷却后得到的零件。
由于该工艺具有生产效率高、成本低、制造精度高等优点,被广泛应用于汽车、航空航天、电子等领域。
为了保证压铸件质量和安全性,需要遵循一系列的设计规范。
下面将详细介绍压铸件设计规范。
一、材料选择1.铝合金:常用的有A380、A383、A360等。
根据使用条件和要求,选择合适的铝合金材料,确保压铸件具有良好的强度和塑性。
2.压铸型腔材料:常用的有铜合金、热处理工具钢等。
要选择适当的材料,以耐高温和磨损。
二、模具设计1.模具设计必须满足压铸件的要求,保证铸件的尺寸精度和表面质量。
2.模腔设计要考虑到铸件收缩率、冷却速度等因素,以避免产生缺陷和变形。
3.合理安排模具冷却系统,保证压铸件内部和表面的冷却均匀。
三、尺寸设计1.压铸件的尺寸设计应符合产品技术要求和工艺要求,确保功能和安装的需要。
2.避免设计尺寸太小或太薄,以免产生破裂和变形。
3.设计保证良好的表面质量,避免设计中出现接触不良、挤压不足等问题。
四、壁厚设计1.壁厚不应过薄,以免影响产品的强度和刚性。
2.避免壁厚过大,以减少成本和缩短冷却时间。
3.边缘和角部应注意壁厚过渡,避免产生应力集中。
五、设计角度和半径1.设计时应根据铝合金的流动性选择合适的角度和半径。
2.避免设计尖锐角度和太小的半径,以免产生气孔和挤压不足。
3.设计角度和半径应保持一定的一致性,避免因设计不当导致铸件变形和收缩不均匀。
六、设计放射状构件1.当压铸件具有放射状构件时,要合理设计放射状梁的位置和数量,以充分利用材料,并减少成本。
2.注意放射状构件的设计不应影响整体结构的强度。
七、设计排气系统1.设计时要考虑到铸件内部的气孔、气泡等气体排出问题。
2.合理安排和设计排气道,以保证良好的注模效果和铸件质量。
八、设计孔和螺纹1.设计孔和螺纹时应遵循标准规范,确保质量和安装的可靠性。
2.孔和螺纹的位置和尺寸应符合产品要求,保证压铸件的功能和使用要求。
铸造件压铸件尺寸公差标准规范
铸造件压铸件尺寸公差标准规范1 适用范围本标准规定了各车型压铸件设计和生产时的尺寸公差、偏差、公差等级的选用、测量条件和测量方法。
本标准主要适用于公司各型车用压铸件。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 3177 光滑工件尺寸的检验GB/T 4458.5-2003 机械制图尺寸公差与配合标注3 定义3.1 基本尺寸设计给定的尺寸。
3.2 实际尺寸通过测量所得的尺寸。
3.3 尺寸公差允许尺寸的变动量。
3.4 尺寸偏差某一尺寸减去基本尺寸所得的代数差。
3.5 错型(错箱)由于合型时错位,铸件的一部分与另一部分在分型面处相互错开。
3.6 拔模斜度为使产品容易从铸型中取出或型芯自芯盒脱出,平行于拔模方向在模样或芯盒的斜度。
3.7 壁厚指由铸型与铸型、铸型与型芯、型芯与型芯之间构成的铸壁厚度。
4 尺寸公差、偏差的规定4.1 尺寸公差等级及数值尺寸公差等级分为2级,每级公差数值按表1规定。
4.2 拔模斜度公差拔模斜度公差为±40′。
4.3 平面度公差平面度公差的数值按表2的规定。
表 1 (mm)注:(基本尺寸-25)÷25,取整数。
表2(mm)注:(基本尺寸-75)÷25,取整数。
4.4 位置度公差位置度公差的数值按表3的规定。
4.5 同轴度公差同轴度公差的数值按表4的规定。
(mm)注:(基本尺寸-75)÷25,取整数。
4.6 角度尺寸公差对于两个面之间有角度要求的,角度尺寸公差为±20′。
4.7 公差带的位置一般情况下,公差带应相对于基本尺寸对称分布,即一半在基本尺寸之上,一半在基本尺寸之下。
根据实际需要,公差带也可以不对称分布,在此情况下,公差应单独标注在基本尺寸的后面。
压铸件结构设计
压铸件结构设计压铸件结构创新设计(经验)压铸件零件设计的注意事项⼀、压铸件的设计涉及四个⽅⾯的内容:a、即压⼒铸造对零件形状结构的要求;b、压铸件的⼯艺性能;c、压铸件的尺⼨精度及表⾯要求;d、压铸件分型⾯的确定;压铸件的零件设计是压铸⽣产技术中的重要部分,设计时必须考虑以下问题:模具分型⾯的选择、浇⼝的开设、顶杆位置的选择、铸件的收缩、铸件的尺⼨精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加⼯余量的⼤⼩等⽅⾯;⼆、压铸件的设计原则是:a、正确选择压铸件的材料,b、合理确定压铸件的尺⼨精度;c、尽量使壁厚分布均匀;d、各转⾓处增加⼯艺园⾓,避免尖⾓。
三、压铸件按使⽤要求可分为两⼤类,⼀类承受较⼤载荷的零件或有较⾼相对运动速度的零件,检查的项⽬有尺⼨、表⾯质量、化学成分、⼒学性能(抗拉强度、伸长率、硬度);另⼀类为其它零件,检查的项⽬有尺⼨、表⾯质量及化学成分。
在设计压铸件时,还应该注意零件应满⾜压铸的⼯艺要求。
压铸的⼯艺性从分型⾯的位置、顶⾯推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加⼯余量的⼤⼩等⽅⾯考虑。
合理确定压铸⾯的分型⾯,不但能简化压铸型的结构,还能保证铸件的质量。
压铸件零件设计的要求⼀、压铸件的形状结构要求:a、消除内部侧凹;b、避免或减少抽芯部位;c、避免型芯交叉;合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量,⼆、铸件设计的壁厚要求:压铸件壁厚度(通常称壁厚)是压铸⼯艺中⼀个具有特殊意义的因素,壁厚与整个⼯艺规范有着密切关系,如填充时间的计算、内浇⼝速度的选择、凝固时间的计算、模具温度梯度的分析、压⼒(最终⽐压)的作⽤、留模时间的长短、铸件顶出温度的⾼低及操作效率;a、零件壁厚偏厚会使压铸件的⼒学性能明显下降,薄壁铸件致密性好,相对提⾼了铸件强度及耐压性;b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合⾦熔接不好,铸件表⾯易产⽣冷隔等缺陷,并给压铸⼯艺带来困难;压铸件随壁厚的增加,其内部⽓孔、缩孔等缺陷增加,故在保证铸件有⾜够强度和刚度的前提下,应尽量减⼩铸件壁厚并保持截⾯的厚薄均匀⼀致,为了避免缩松等缺陷,对铸件的厚壁处应减厚(减料),增加筋;对于⼤⾯积的平板类厚壁铸件,设置筋以减少铸件壁厚;根据压铸件的表⾯积,铝合⾦压铸件的合理壁厚如下:压铸件表⾯积/mm2 壁厚S/mm≤25 1.0~3.0>25~100 1.5~4.5>100~400 2.5~5.0>400 3.5~6.0三、铸件设计筋的要求:筋的作⽤是壁厚改薄后,⽤以提⾼零件的强度和刚性,防⽌减少铸件收缩变形,以及避免⼯件从模具内顶出时发⽣变形,填充时⽤以作⽤辅助回路(⾦属流动的通路),压铸件筋的厚度应⼩于所在壁的厚度,⼀般取该处的厚度的2/3~3/4;四、铸件设计的圆⾓要求:压铸件上凡是壁与壁的连接,不论直⾓、锐⾓或钝⾓、盲孔和凹槽的根部,都应设计成圆⾓,只有当预计确定为分型⾯的部位上,才不采⽤圆⾓连接,其余部位⼀般必须为圆⾓,圆⾓不宜过⼤或过⼩,过⼩压铸件易产⽣裂纹,过⼤易产⽣疏松缩孔,压铸件圆⾓⼀般取:1/2壁厚≤R≤壁厚;圆⾓的作⽤是有助于⾦属的流动,减少涡流或湍流;避免零件上因有圆⾓的存在⽽产⽣应⼒集中⽽导致开裂;当零件要进⾏电镀或涂覆时,圆⾓可获得均匀镀层,防⽌尖⾓处沉积;可以延长压铸模的使⽤寿命,不致因模具型腔尖⾓的存在⽽导致崩⾓或开裂;五、压铸件设计的铸造斜度要求:斜度作⽤是减少铸件与模具型腔的摩擦,容易取出铸件;保证铸件表⾯不拉伤;延长压铸模使⽤寿命,铝合⾦压铸件⼀般最⼩铸造斜度如下:铝合⾦压铸件最⼩的铸造斜度外表⾯内表⾯型芯孔(单边)1°1°30′2°铸件的结构⼯艺性铸件中的基础件都是箱体形结构,并增设了很多加强筋,致使铸件结构形状较为复杂。
压铸件设计规范(2013)V1.0
压铸件设计规范目录铸圆脱铸缘压铸压铸内压铸压铸级压铸压铸一、壁厚1、压铸件的壁厚对铸件质量有很大的影响。
以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。
因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。
2、铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。
厚壁压铸件,其壁中心层的晶粒粗大,易产生缩孔、缩松等缺陷,同样降低铸件的强度。
3、压铸件的壁厚一般以2.5~4mm为宜,同一压铸件内昀大壁厚与昀小壁厚之比不要大于3∶1,壁厚超过6mm的零件不宜采用压铸。
推荐值见表1。
我司的铝压铸件,按如下要求选取壁厚:散热齿一般取2.0~2.5mm,(自然散热)间距取10~12mm,(强迫风冷)间距取8~10mm.其余壁厚取4.5~5.0mm;螺纹孔为M3的PCB支撑柱,直径取6.5~7.5mm;接地螺纹孔处的壁厚取:M4 9.5~10.5mm, M5 10.5~11mm。
表1 压铸件的最小壁厚和正常壁厚二、铸造圆角和脱模斜度1、铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。
对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。
压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。
铸造圆角半径的计算见表3。
我司铝压铸件的圆角一般取R1.0mm,无配合处最小取R3.0mm(有外观要求的除外)。
表2 压铸件的最小圆角半径(mm)①、对锌合金铸件,K=1/4;对铝、镁合金铸件, K=1/2。
②、计算后的最小圆角应符合表2的要求。
表3 铸造圆角半径的计算(mm)2、脱模斜度设计压铸件时,就应在结构上留有脱模斜度,无脱模斜度时,在需要之处,必须有脱模的工艺斜度。
斜度的方向,必须与铸件的脱模方向一致。
推荐的脱模斜度见表4。
我司现采用的脱模斜度一般取前模1.5°,后模1.0°。
铝合金压铸结构设计规范
一、压铸件的结构要素
合理的压铸件结构不仅能简化压铸型的结构,降低 制造成本,同时也改善铸件质量。
1、铸件设计的结构要求 (1)消除内部侧凹,如:
(2)、避免或减少抽芯部位 压铸抽芯过程示意
避免和减少抽芯的方法:①非重要部位,由压铸完 成后的后续工序完成;②改进结构设计,以满足功 能而牺牲外观。如:
4. 锌(Zn) 锌在铝合金中能提高流动性,增加热脆性,降低耐蚀 性,故应控制锌的含量在规定范围中。 5. 铁(Fe) 在所有铝合金中都含有害杂质。因铝合金中含铁量太 高时,铁以FeAl3、Fe2Al7和Al-Si-Fe的片状或针 状组织存在于合金中,降低机械性能,这种组织还会 使合金的流动性减低,热裂性增大,但由于铝合金对 模具的粘附作用十分强烈,当铁含量在0.6%以下时 尤为强烈。当超过0.6%后,粘模现象便大为减轻, 故含铁量一般应控制在0.6~1%范围内对压铸是有好 处的,但最高不能超过 1.5%。
6、铸孔和孔到边缘的最小距离 1)铸孔:压铸件的孔径和孔深,对要求不高的孔可以直接
压出,可按下表关系。
Фd Фd
h1
最小孔径d/mm 铸件合 金 经济上 合理的
孔的深度(≤)
锌合金 铝合金 镁合金
1.5 2.5 2.0
不通孔 技术上可 能的 孔径 孔径 d>5mm d≤5mm 0.8 6d 4d 4d 3d 2.0 1.5 5d 4d
(3)避免型芯交叉,如:
2、铸件设计的壁厚要求 压铸件设计的特点之一是壁厚设计。合理的壁厚取决 于铸件的具体结构、合金性能和压铸工艺等因素。为 了满足各方面的要求,以正常、均匀壁厚为佳。薄壁 铸件致密性好,相对提高了铸件强度及耐压性。但壁 不能太薄,太薄使合金熔接不好,易产生缺陷,并给 工艺带来困难,特别是大面积的薄壁成型更困难。 厚壁或壁厚的严重不均匀则易产生缩孔、气孔等缺陷, 使压铸件的力学性能明显下降,图3-2表示出锌合金、 铝合金,镁合金的强度增减百分比与铸件壁厚的关系。
压铸件结构设计规范
压铸件结构设计压铸件结构设计是压铸工作的第一步。
设计的合理性和工艺适应性将会影响到后续工作的顺利进行,如分型面选择、内浇口开设、推出机构布置、模具结构及制造难易、合金凝固收缩规律、铸件精度保证、缺陷的种类等,都会以压铸件本身工艺性的优劣为前提。
1、压铸件零件设计的注意事项⑴、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;⑵、压铸件的设计原则是:a、正确选择压铸件的材料;b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。
⑶、压铸件分类按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。
在设计压铸件时,还应该注意零件应满足压铸的工艺要求。
压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。
合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。
⑷、压铸件结构的工艺性:1)尽量消除铸件内部侧凹,使模具结构简单。
2)尽量使铸件壁厚均匀,可利用筋减少壁厚,减少铸件气孔、缩孔、变形等缺陷。
3)尽量消除铸件上深孔、深腔。
因为细小型芯易弯曲、折断,深腔处充填和排气不良。
4)设计的铸件要便于脱模、抽芯。
5)肉厚的均一性是必要的。
6)避免尖角。
7)注意拔模角度。
8)注意产品之公差标注。
9)太厚太薄皆不宜。
10)避免死角倒角(能少则少)。
11)考虑后加工的难易度。
压铸件结构设计规范
压铸件结构设计规范压铸件是一种常见的金属制品,它具有成本低、生产效率高以及复杂形状和良好的表面质量等优点。
在压铸件的结构设计中,需要遵循一定的规范和要求,以确保产品的质量和性能。
以下是压铸件结构设计的一些常见规范:1.材料选择:在压铸件结构设计中,需要选择适合的材料,以确保产品的强度和耐用性。
常用的铸造材料包括铝合金、镁合金和锌合金等。
在选择材料时,需要考虑产品的功能要求、工作环境和制造工艺等因素。
2.壁厚设计:在压铸件的结构设计中,需要合理确定壁厚。
过薄的壁厚容易导致产品变形和脆性,而过厚的壁厚会增加产品的重量和生产成本。
一般来说,压铸件的壁厚应根据材料的强度、铸造工艺和表面质量要求等因素进行合理计算和选择。
3.强化设计:在压铸件结构设计中,需要考虑强化结构,以增加产品的刚性和耐用性。
常用的强化结构包括加强肋、加强筋和加强板等。
强化结构可以提高产品的抗拉强度和抗扭强度,减少变形和裂纹的产生。
4.浇注系统设计:在压铸件的结构设计中,需要合理设计浇注系统,以确保熔融金属能够均匀地充满模腔,并排除气体和杂质。
浇注系统设计包括喷嘴和浇口的位置、大小和形状等因素。
合理的浇注系统设计可以提高产品的充型性能和表面质量。
5.模具设计:在压铸件结构设计中,需要合理设计模具,以确保产品的精度和一致性。
模具设计包括型腔结构、型芯结构和冷却系统等。
合理的模具设计可以减少缺陷和变形的产生,提高产品的尺寸精度和表面质量。
综上所述,压铸件的结构设计需要遵循一定的规范和要求,以确保产品的质量和性能。
这些规范包括材料选择、壁厚设计、强化设计、浇注系统设计和模具设计等。
通过合理设计和优化,可以提高产品的制造效率、降低成本,并满足不同应用领域的需求。
压铸产品的结构设计
随着越来越多的产品追求更好看的外观,更高的工艺水平。
压铸在产品中应用的越来越多,比如手机,监视器,灯,甚至特斯拉汽车外壳,随着这些工艺的发展,越来越多的产品会使用到压铸件,因此本文就介绍一下压铸产品的结构设计。
一,了解一下压铸的工艺压铸是一种金属铸造工艺,其特点是利用模具腔对融化的金属施加高压。
根据压铸类型的不同,需要使用冷室压铸机或者热室压铸机。
铸造设备和模具的造价高昂,因此压铸工艺普通只会用于批量创造大量产品。
压铸特殊适合创造大量的中小型铸件,因此压铸是各种铸造工艺中使用最广泛的一种。
同其他铸造技术相比,压铸的表面更为平整,拥有更高的尺寸一致性。
压铸分为热室压铸与冷室压铸。
热室压铸,有时也被称作鹅颈压铸,它的金属池内是熔融状态的液态、半液态金属,这些金属在压力作用下填充模具。
当压铸无法用于热室压铸工艺的金属时可以采用冷室压铸,包括铝、镁、铜以及含铝量较高的锌合金。
压铸模的使用寿命普通是 3 万-8 万次。
压铸模的精度要求越低,合用寿命越长。
二,合用于压铸的材料以及材料的相关特点锌最容易压铸的金属,创造小型部件时很经济,容易镀膜,抗压强度、塑性高,铸造寿命长。
如家具配件、建造装饰、浴室配件、灯饰零件、玩具、领带夹、皮带扣、各种金属饰扣等铝质量轻、创造复杂和薄壁铸件时尺寸稳定性高,耐腐蚀性强,机械性能好,高导热以及导电性,高温下强度依然很高。
铝合金压铸类产品主要用于交通信号灯外壳、拉手、渔轮配件、户外锁、电器产品、通信器材、厨具配件、摩托车散热器及喇叭罩、 LED 灯外壳、照像机器材、散热片、汽车配件、电子通讯器材、电子游戏机外壳等行业,一些高性能、高精度、高韧性的优质铝合金产品也被用于大型飞机、船舶等要求比较高的行业中。
镁易于进行机械加工,强度分量比高,常用压铸金属中最轻。
镁合金有优良的压铸工艺性能:镁合金液粘度低,流动性好,易于充满复杂型腔。
用镁合金可以很容易地生产壁厚 1.0mm~2.0mm 的压铸件,现在最小壁厚可达 0.6mm。
压铸件设计规范
压铸件设计规范相关知识压铸件设计规范相关知识一、壁厚压铸件的壁厚对铸件质量有很大的影响。
以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。
因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。
铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。
随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。
压铸件的壁厚一般以2.5~4mm为宜,壁厚超过6mm的零件不宜采用压铸。
推荐采用的最小壁厚和正常壁厚见表1。
表1 压铸件的最小壁厚和正常壁厚二、铸造圆角和脱模斜度1)铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。
对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。
压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。
铸造圆角半径的计算见表3。
表2 压铸件的最小圆角半径(mm)我司现采用的圆角一般取R1.5。
表3 铸造圆角半径的计算(mm)说明:①、对锌合金铸件,K=1/4;对铝、镁、合金铸件,K=1/2。
②、计算后的最小圆角应符合表2的要求。
2) 脱模斜度设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。
斜度的方向,必须与铸件的脱模方向一致。
推荐的脱模斜度见表4。
表4 脱模斜度说明:①、由此斜度而引起的铸件尺寸偏差,不计入尺寸公差值内。
②、表中数值仅适用型腔深度或型芯高度≤50mm,表面粗糙度在Ra0.1,大端与小端尺寸的单面差的最小值为0.03mm。
当深度或高度>50mm,或表面粗糙度超过Ra0.1时,则脱模斜度可适当增加。
我司现采用的脱模斜度一般取1.5°。
一般采用的加强筋的尺寸按图1选取:t1=2 t /3~t;t2=3 t /4~t;R≥t/2~t;h≤5t;r≤0.5mm(t—压铸件壁厚,最大不超过6~8mm)。
压铸件结构设计规范
压铸件结构设计压铸件结构设计是压铸工作的第一步.设计的合理性和工艺适应性将会影响到后续工作的顺利进行,如分型面选择、内浇口开设、推出机构布置、模具结构及制造难易、合金凝固收缩规律、铸件精度保证、缺陷的种类等,都会以压铸件本身工艺性的优劣为前提。
1、压铸件零件设计的注意事项⑴、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;⑵、压铸件的设计原则是:a、正确选择压铸件的材料;b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角.⑶、压铸件分类按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。
在设计压铸件时,还应该注意零件应满足压铸的工艺要求.压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑.合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。
⑷、压铸件结构的工艺性:1)尽量消除铸件内部侧凹,使模具结构简单。
2)尽量使铸件壁厚均匀,可利用筋减少壁厚,减少铸件气孔、缩孔、变形等缺陷.3)尽量消除铸件上深孔、深腔.因为细小型芯易弯曲、折断,深腔处充填和排气不良。
4)设计的铸件要便于脱模、抽芯。
5)肉厚的均一性是必要的.6)避免尖角。
7)注意拔模角度。
8)注意产品之公差标注。
9)太厚太薄皆不宜。
10)避免死角倒角(能少则少)。
11)考虑后加工的难易度。
详解压铸零件结构设计-精
压铸件设计规范目录铸圆脱铸缘压铸压铸内压铸压铸级压铸压铸一、壁厚1、压铸件的壁厚对铸件质量有很大的影响。
以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。
因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。
2、铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。
厚壁压铸件,其壁中心层的晶粒粗大,易产生缩孔、缩松等缺陷,同样降低铸件的强度。
3、压铸件的壁厚一般以2.5~4mm为宜,同一压铸件内昀大壁厚与昀小壁厚之比不要大于3∶1,壁厚超过6mm的零件不宜采用压铸。
推荐值见表1。
我司的铝压铸件,按如下要求选取壁厚:散热齿一般取2.0~2.5mm,(自然散热)间距取10~12mm,(强迫风冷)间距取8~10mm.其余壁厚取4.5~5.0mm;螺纹孔为M3的PCB支撑柱,直径取6.5~7.5mm;接地螺纹孔处的壁厚取:M4 9.5~10.5mm, M5 10.5~11mm。
表1 压铸件的最小壁厚和正常壁厚二、铸造圆角和脱模斜度1、铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。
对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。
压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。
铸造圆角半径的计算见表3。
我司铝压铸件的圆角一般取R1.0mm,无配合处最小取R3.0mm(有外观要求的除外)。
表2 压铸件的最小圆角半径(mm)①、对锌合金铸件,K=1/4;对铝、镁合金铸件, K=1/2。
②、计算后的最小圆角应符合表2的要求。
表3 铸造圆角半径的计算(mm)2、脱模斜度设计压铸件时,就应在结构上留有脱模斜度,无脱模斜度时,在需要之处,必须有脱模的工艺斜度。
斜度的方向,必须与铸件的脱模方向一致。
推荐的脱模斜度见表4。
我司现采用的脱模斜度一般取前模1.5°,后模1.0°。
铝合金压铸结构设计规范
33
压铸件圆角与应力集中的关系
34
35
铝合金压铸件的圆角半径R一般不宜小于1mm,最小圆角半 径为0.5 mm,见表2。铸造圆角半径的计算见图3。
表2 压铸件的最小圆角半径(mm)
压铸合金 圆角半径R 压铸合金 圆角半径R
锌合金
0.5
铝、镁合金
1.0
铝锡合金
0.5
铜合金
1.5
10
压铸铝合金中各元素的作用和影响
1. 硅(Si) 硅是大多数压铸铝合金的主要元素。它能改善合金 的铸造性能。硅与铝能组成固溶体。在577℃时, 硅在铝中的溶解度为1.65%,室温时为0.2%、含 硅量至11.7%时,硅与铝形成共晶体。提高合金的 高温造型性,减少收缩率,无热裂倾向。当合金中 含硅量超过共晶成分,而铜、铁等杂质又多时,即 出现游离硅的硬质点,使切削加工困难,高硅铝合 金对铸件坩埚的熔蚀作用严重。
12
4. 锌(Zn)
锌在铝合金中能提高流动性,增加热脆性,降低耐蚀 性,故应控制锌的含量在规定范围中。
5. 铁(Fe)
在所有铝合金中都含有害杂质。因铝合金中含铁量太 高时,铁以FeAl3、Fe2Al7和Al-Si-Fe的片状或针 状组织存在于合金中,降低机械性能,这种组织还会 使合金的流动性减低,热裂性增大,但由于铝合金对 模具的粘附作用十分强烈,当铁含量在0.6%以下时 尤为强烈。当超过0.6%后,粘模现象便大为减轻, 故含铁量一般应控制在0.6~1%范围内对压铸是有好 处的,但最高不能超过 1.5%。
5d
4d
通孔
孔径
孔径
d>5mm d≤5mm
12d
8d
8d
6d
10d
压铸件结构设计规范方案
压铸件结构设计规范方案压铸件是一种常见的金属制品,广泛应用于汽车、电子、航空航天、军工等领域。
在压铸件的结构设计中,需要考虑安全性、可靠性、质量控制和经济性等多个方面的要求。
下面是一些压铸件结构设计的规范方案:1.结构设计原则:设计师应遵循结构设计的基本原则,包括坚固性、合理性和安全性。
压铸件在使用过程中需经受各种力的作用,因此结构需要具有足够的强度和刚度,同时保持合理的重量和尺寸,以确保产品的性能和可靠性。
2.材料选择:压铸件一般使用铝合金、镁合金和锌合金制造,根据具体使用条件和要求选择适合的材料。
在材料选择过程中,需要考虑材料的特性、成本、可塑性以及耐磨性等因素。
3.壁厚设计:压铸件的壁厚对于产品的强度和质量至关重要。
过厚的壁厚会增加材料的用量和制造成本,同时也会降低产品的制造精度和性能;而过薄的壁厚会导致产品强度不足,容易发生变形和破裂。
因此,壁厚的设计需要综合考虑产品的用途和要求,确保最佳的壁厚。
4.结构设计和冷却系统设计:压铸件在制造过程中需要通过冷却系统进行冷却,以确保产品的质量和性能。
合理的结构设计和冷却系统设计可以提高产品的制造精度和表面质量,减少材料的收缩和变形,同时也可以确保冷却介质的循环流动,提高冷却效果。
5.模具设计:压铸件的形状和尺寸需要通过模具来实现。
模具设计需要考虑产品的尺寸、形状、结构和材料特性等多个因素,确保产品可以准确复制并保持良好的质量。
同时,模具设计也需要考虑到产品的成本和制造工艺的可行性。
6.表面处理和热处理:压铸件在制造完成后需要进行表面处理,以提高产品的表面质量和耐腐蚀性。
表面处理可以选择镀铬、喷涂、阳极氧化等方式,根据产品的具体要求进行选择。
另外,部分压铸件还需要进行热处理,以改善材料的性能和强度。
7.质量控制:压铸件的质量控制是确保产品质量和性能的重要环节。
在生产过程中,需要对原材料、模具和工艺进行严格的检验和控制,以确保产品的符合设计要求。
同时,还需要建立完善的质量管理体系和检验机制,对成品进行检验和测试,以确保产品的质量和可靠性。
铝合金压铸结构设计规范
1. 产品质量好 铸件尺寸精度高,一般相当于6~7级,甚至可达4 级;表面光洁度好,一般相当于5~8级;强度和 硬度较高,强度一般比砂型铸造提高25~30%, 但延伸率降低约70%;尺寸稳定,互换性好;可 压铸薄壁复杂的铸件。例如,当前锌合金压铸件 最小壁厚可达0.3mm;铝合金铸件可达0.5mm; 最小铸出孔径为0.7mm;最小螺距为0.75mm。
当镍含量在1~1.5%时,铸件经抛光能获得光洁的 表面。由于镍的来源缺乏,应尽量少采用含镍的铝 合金。
8. 钛(Ti) 铝合金中加入微量的钛,能显著细化铝合金的晶粒 组织,提高合金的机械性能,降低合金的热裂倾向。
§2、铝合金压铸件的设计
压铸件对压铸工艺的符合性,是防止不良品的发 生并以低成本大批量生产的保证。良好的压铸件 设计可以保证模具的寿命和生产的可靠性以及高 的良品率。 压铸件的设计原则是:正确选择压铸件的材料; 合理确定压铸件的尺寸精度;尽量使壁厚分布均 匀;避免尖角。 压铸件按使用要求可分为两大类,一类承受较大 载荷的零件或有较高相对运动速度的零件,检查 的项目有尺寸、表面质量、化学成分、力学性能 (抗拉强度、伸长率、硬度)。另一类为其它零 件,检查的项目有尺寸、表面质量及化学成分。
压铸件上的长方形孔和槽的设计推荐按表7 采用。 表7 长方形孔和槽(mm)
铝合金压铸件的圆角半径R一般不宜小于1mm,最小圆角半 径为0.5 mm,见表2。铸造圆角半径的计算见图3。 表2 压铸件的最小圆角半径(mm)
压铸合金 锌合金 铝锡合金
圆角半径R 0.5 0.5
压铸合金 铝、镁合金 铜合金
圆角半径R 1.0 1.5
图3:铸造圆角半径的计算(mm)
说明:计算后的最小圆角应符合表2的要求。
由于在实际生产中,直径2mm以下的型针极易变形弯曲以及断针,所以 对以2mm以下的型针建议直接做成引孔针,后续由加工保证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•压铸件设计规范
•一、壁厚
压铸件的壁厚对铸件质量有很大的影响。
以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。
因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。
铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。
随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。
压铸件的壁厚一般以2.5~4mm为宜,壁厚超过6mm的零件不宜采用压铸。
推荐采用的最小壁厚和正常壁厚见表1。
表1 压铸件的最小壁厚和正常壁厚
我司现使用的绝大多数为铝压铸件,其壁厚一般控制在2.0~2.5mm。
二、铸造圆角和脱模斜度
1)铸造圆角
压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。
对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。
压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。
铸造圆角半径的计算见表3。
表2 压铸件的最小圆角半径(mm)
我司现采用的圆角一般取R1.5。
表3 铸造圆角半径的计算(mm)
说明:①、对锌合金铸件,K=1/4;对铝、镁、合金铸件,K=1/2。
②、计算后的最小圆角应符合表2的要求。
2) 脱模斜度
设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。
斜度的方向,必须与铸件的脱模方向一致。
推荐的脱模斜度见表4。
表4 脱模斜度
说明:①、由此斜度而引起的铸件尺寸偏差,不计入尺寸公差值内。
②、表中数值仅适用型腔深度或型芯高度≤50mm,表面粗糙度在Ra0.1,大端与小端尺寸的单面差的最小值为0.03mm。
当深度或高度>50mm,或表面粗糙度超过Ra0.1时,则脱模斜度可适当增加。
我司现采用的脱模斜度一般取1.5°。
一般采用的加强筋的尺寸按图1选取:
t1=2 t /3~t;t2=3 t /4~t;
R≥t/2~t;
h≤5t;r≤0.5mm
(t—压铸件壁厚,最大不超过6~8mm)。
四、铸孔和孔到边缘的最小距离
1)铸孔
压铸件的孔径和孔深,对要求不高的孔可以直接压出,按表5。
表5 最小孔径和最大孔深
说明:①、表内深度系指固定型芯而言,,对于活动的单个型芯其深度还可以适当增加。
②、对于较大的孔径,精度要求不高时,孔的深度亦可超出上述范围。
对于压铸件自攻螺钉用的底孔,推荐采用的底孔直径见表6。
表6 自攻螺钉用底孔直径(mm)
我司现较为常用的自攻螺钉规格为M4与M5,其采用的底孔直径如下表:
2) 铸孔到边缘的最小距离为了保证铸件有良好的成型条件,铸孔到铸件边缘应保持一定的壁厚,见图2。
b≥(1/4~1/3)t
当t<4.5时,b≥1.5mm
五、压铸件上的长方形孔和槽
压铸件上的长方形孔和槽的设计推荐按表7 采用。
表7 长方形孔和槽(mm)
说明:宽度b在具有铸造斜度时,表内值为小端部位值。
六、压铸件内的嵌件
压铸件内采用嵌件的目的:
①改善和提高铸件上局部的工艺性能,如强度、硬度、耐磨性等;
②铸件的某些部分过于复杂,如孔深、内侧凹等无法脱出型芯而采用嵌件;
③可以将几个部件铸成一体。
设计带嵌件的压铸件的注意事项:
①嵌件与压铸件的连接必须牢固,要求在嵌件上开槽、凸起、滚花等;
②嵌件必须避免有尖角,以利安放并防止铸件应力集中;
③必须考虑嵌件在模具上定位的稳固性,满足模具内配合要求;
④外包嵌件的金属层不应小于1.5~2mm;
⑤铸件上的嵌件数量不宜太多;
⑥铸件和嵌件之间如有严重的电化腐蚀作用,则嵌件表面需要镀层保护;
⑦有嵌件的铸件应避免热处理,以免因两种金属的相变而引起体积变化,使嵌件松动。
七、压铸件的加工余量
压铸件由于尺寸精度或形位公差达不到产品图纸要求时,应首先考虑采用精整加工方法,如校正、拉光、挤压、整形等。
必须采用机加工时应考虑选用较小的加工余量,并尽量以不受分型面及活动成型影响的表面为毛坯基准面。
推荐采用的机加工余量及其偏差值见表8。
铰孔余量见表9。
表8 推荐机加工余量及其偏差(mm)
表9 推荐铰孔加工余量(mm)
我司现采用的机加工余量一般取0.3~0.5mm。