关于圆锥曲线中点差法的总结概括与推广
“点差法”在圆锥曲线中的应用与推广
a2 b2
.接下来
我们看看高考真题中的“点差法”及其应用. 例 1 . ( 2015 全 国 卷 II , 理 科 20 ) 已 知 椭 圆
C : 9x2 y2 m2 (m 0) ,直线 l 不过原点 O 且不平行于坐 标轴, l 与 C 有两个交点 A , B ,线段 AB 的中点为 M .
证明:根据椭圆的对称性可知A、B关于原点对称,设
A(x1, y1), B(x2 , y2 ), P(x, y)
x12 a2
y12 b2
x2 1① a2
y2 b2
1②,
①-②可得如下表达式
( x1
x)( x1 a2
x)
( y1
y)( y1 b2
y)
0
,
两
边
同
除
(x1 x)(x1 x)
,
则
k
y2 x2
y1 x1
,
x2
x1
2x0
,
y2
y1
2 y0 .
将点A、B的坐标带入椭圆方程可得,
x12 a2
y12 b2
1
①,
x22 a2
y22 b2
1②
将
②
-
①
可
得: (x2 x1)(x2 x1) ( y2 y1)( y2 y1) 0
a2
b2
2x0 (x2 a2
1 k( )
1
b2
a2
,由点F及A、B中点可求出 k
1 2
圆锥曲线点差法拓展的几个小结论,快速解题
点差法拓展的常考结论点差法拓展的结论有四个,但是推导的方法都是高度一致的。
如下结论1:如下图,直线l 为任意直线,与椭圆22221x y a b+=有两个交点A 、B ,M 为线段AB的中点,则有结论22OM ABb k k a=-推导:根据点差法,设()11,A x y 和()22,B x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭则2212121222121212OM ABy y y y y y k k x x x x x x +--==+-- 又因为2211221x y a b +=和2222221x y a b +=,二者做差可得22221212220x x y y a b--+= 整理得2221222212y y b x x a-=--,即22OM AB b k k a =- 结论2:如下图,直线l 过原点,交椭圆22221x y a b+=于A 、B 两点,C 为椭圆上任意一点,则有结论22CA CBb k k a=-推导:因为直线过原点,所以必有点A 和点B 关于原点对称,因为可设()11,A x y 和()11,B x y --,设()22,C x y则2221212122212121CA CBy y y y y y k k x x x x x x -+-==-+- 剩下的就跟结论1的推导一模一样的,如下又因为2211221x y a b +=和2222221x y a b +=,二者做差可得22221212220x x y y a b--+= 整理得2221222212y y b x x a-=--,即22CA CB b k k a =- 结论3:如下图,l 为任意直线,交双曲线22221x y a b-=于A 、B 两点,M 为AB 的中点,则有结论22OM ABb k k a=推导:与结论1的过程一样。
根据点差法,设()11,A x y 和()22,B x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭则2212121222121212OM ABy y y y y y k k x x x x x x +--==+-- 又因为2211221x y a b -=和2222221x y a b -=,二者做差可得22221212220x x y y a b---= 整理得2221222212y y b x x a-=-,即22OM AB b k k a = 结论4:如下图,直线l 过原点,交双曲线22221x y a b-=于A 、B 两点,点C 为双曲线上任意一点,则有结论22CA CBb k k a=推导:推导与结论2一样。
圆锥曲线知识要点及结论个人总结
《圆锥曲线》知识要点及重要结论一、椭圆1定义 平面内到两定点 F 「F 2的距离的和等于常数 2a(2^|F^2)的点P 的轨迹叫做椭 圆•若2a = F ,F 2,点P 的轨迹是线段F I F 2・若0 ::: 2a ::: F ,F 2,点P 不存在•2 2务 与=1(a b 0),两焦点为 R (_c,0), F 2(c,0). a b2 2=1(a b ■ 0),两焦点为 F i (0,_c), F 2(0,C ).其中 a 2"2 cla b3几何性质椭圆是轴对称图形,有两条对称轴 .椭圆是中心对称图形,对称中心是椭圆的中心椭圆的顶点有四个,长轴长为2a ,短轴长为2b ,椭圆的焦点在长轴上•2 2若椭圆的标准方程为 务•与=1(a b ■ 0),则- a 空x 空a, -b 曲乞b ; a b2 2若椭圆的标准方程为=1(a b 0),则-b 辽x 乞b,-a y 乞a .a 2b 2二、双曲线1定义 平面内到两定点 F 1, F 2的距离之差的绝对值等于常数 2a(0 ::: 2a :::R F ?)的点的轨迹叫做双曲线.若2^|F 1F 2,点P 的轨迹是两条射线.若2^|F 1F 2,点P 不存在.2 22 标准方程 务—£=1(a ■ 0,b0),两焦点为 F 1(-c,0), F 2(C ,0).a b2 2令…占二“ 0,b 0),两焦点为 F 1 (0^c ), F 2(0, c ).其中 c 2 二 a 2 b 2. a b3几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心 双曲线的顶点有两个 A 1, A 2,实轴长为2a ,虚轴长为2b ,双曲线的焦点在实轴上2 2J 壬-1(a 0,b 0),则 x 乞-a 或x — a, y R ;a b2-牛=1(a 0,b 0),则 y — -a 或 y — a, x R .b 22标准方程 若双曲线的标准方程为 若双曲线的标准方程为2a4渐近线双曲线的渐进线是它的重要几何特征, 每一双曲线都对应确定双曲线的渐进线, 组渐进线却对应无数条双曲线 .2 2 2 2与双曲线 笃-与 "(a 0,b ■ 0)共渐进线的双曲线可表示为笃-笃二a ba b定要“消元后的方程的二次项系数=0”和“ .0”同时成5等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线2 2 2 2等轴双曲线的标准方程为 笃一爲=1(a . 0)或爲-笃=1(a .0).a aa a等轴双曲线的渐近线方程为 y= x .6共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线2 2 2 2如:笃-Xr =1(a 0,b - 0)的共轭双曲线为 Xr =1(a 0,b - 0),它们的焦点到 a b b ax 禾廿y = _ a三、抛物线1定义 平面内与一个定点 F 和一条定直线l(F 不在I 上)的距离相等的点的轨迹叫做抛物 线•定点F 叫做抛物线的焦点,定直线 I 叫做抛物线的准线• 2标准方程(1) y 2=2px(p>0),焦点为(#,0),准线方程为x =—号,抛物线张口向右.⑵ y 2- -2px(p0),焦点为(-号,0),准线方程为x =号,抛物线张口向左•⑶x 2=2py(p0),焦点为 硝) ,准线方程为y = 一号,抛物线张口向上.⑷X 2 = -2 py (p 0),焦点为 (0,诗) ,准线方程为y 二号,抛物线张口向下. 其中p 表示焦点到准线的距离. 3几何性质2 2 双曲线x y2-.2ab2 2yx 2.2 a b=1( a 0, b 0)有两条渐近线y=1( a 0, b 0)有两条渐近线y a a x 和yx .即b b 2 2 x y=02■ 2ab22yx2.2ab但对于同直线与双曲线有两个交点的条件,原点的距离相等,因而在以原点为圆心,..a 2 b 2为半径的圆上•且它们的渐近线都是双曲线抛物线是轴对称图形,有一条对称轴.若方程为『=2px(p .0)或y = _2px(p ■ 0),则对称轴是x 轴,若方程为x 2 =2py(p . 0)或x 2 =_2py(p 0),则对称轴是y 轴.若抛物线方程为 2y = 2 px( p . 0),则 x _ 0, y R . 若抛物线方程为 2y - -2 px( p - 0),则 x _ 0, y R . 若抛物线方程为 x = 2 py( p . 0),则 y _ 0,x R .若抛物线方程为 x = -2py (p 0),则 y _ 0, x R .圆锥曲线的一些重要结论【几个重要结论】2 21已知椭圆 笃•与 "(a b 0)的两焦点为Fj-cQEgO),P(x 0,y 0)为椭圆上一a b点,则 PF 」=J(x ° +c)2 +y ; = J(x ° +c)2 +b 2(1 —爭)ms 丿 丿cx 0 cx 0因为 一a 乞 x 0 乞 a , -c 0 _ c,0 ::: a -c 0a c ,aa所以 PF^-cx°+a .同理,PF 2 =2a — PF,| =a —绝.aa2 2已知双曲线 务-占-1(a 0,b 0)的左、右焦点分别为Fj-cQ), F 2(C ,0) ,P(x 0,y 0)为a b双曲线上一点,则PF 1, PF 2 = 也—aaa2 22椭圆 J 七=1(a b 0)的两焦点为F I ,F 2,P 为椭圆上一点,若• F 1PF 2 7,则 a bb 2 sin : ’ 2 丄 b tan 1 cos : 2解:根据椭圆的定义可得 PR + PF 2 =2a ①c X 。
(完整版)圆锥曲线中点差法的应用(归纳)
圆锥曲线中点差法的应用一、知识点归纳:1、若椭圆的方程为,即焦点在轴上,若直线与椭圆相交,被椭22221(0)x y a b a b+=>>x l 圆所截得弦为,其中点设为,则该直线的斜率与该弦的中点与原点的斜率之积为AB P 常数,即;22l PO b k k a=-A 若椭圆的方程为,即焦点在轴上,若直线与椭圆相交,被椭22221(0)y x a b a b+=>>y l 圆所截得弦为,其中点设为,则该直线的斜率与该弦的中点与原点的斜率之积为AB P 常数,即;22l PO a k k b=-A 2、若双曲线的方程为,即焦点在轴上,若直线与椭圆相交,22221(0,0)x y a b a b-=>>x l 被椭圆所截得弦为,其中点设为,则该直线的斜率与该弦的中点与原点的斜率之AB P 积为常数,即;22l PO b k k a=A 若双曲线的方程为,即焦点在轴上,若直线与椭圆相交,22221(0,0)y x a b a b-=>>y l 被椭圆所截得弦为,其中点设为,则该直线的斜率与该弦的中点与原点的斜率之AB P 积为常数,即;22l PO a k k b=A 二、练习题1、已知双曲线的中心为原点,是的焦点,过F 的直线与相交于A ,B 两E (3,0)P E l E 点,且AB 的中点为,则的方程式为(12,15)N --E (A) (B) (C) (D) 22136x y -=22145x y -=22163x y -=22154x y -=2、已知椭圆:的右焦点为(3,0),过点的直线交于,E )0(12222>>=+b a by a x F F E A两点.若的中点坐标为(1,-1),则的方程为B A B E (A ) (B ) (C ) (D )1364522=+y x 1273622=+y x 1182722=+y x 191822=+y x 3、设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
浅析“点差法”在圆锥曲线中的应用
教学篇•方法展示一、点差法在椭圆中的应用例1.已知点P (4,2)是直线l :x +2y -8=0被焦点在x 轴上的椭圆所截得的线段的中点,求该椭圆的离心率。
解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),直线x +2y -8=0与椭圆交于A ,B 两点,且A (x 1,y 1),B (x 2,y 2),则x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1⎧⎩⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐。
两式相减,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,即y 1-y 2x 1-x 2=-b 2a 2x 1+x 2y 1+y 2。
因为k AB =-12,AB 中点为(x 0,y 0),x 0=4,y 0=2,所以-12=-2b 2a2,即a 2=4b 2。
所以该椭圆的离心率为e =1-b 2a 2√=3√2。
点评:本题在利用“点差法”解决中点弦问题时,运用“设而不求”的方式,降低解题的运算量,优化解题过程,此为本题的亮点一。
亮点二:通过“点差法”建立直线的斜率与弦中点的联系,消去未知量,从而求解。
二、点差法在双曲线中的应用例2.已知双曲线C :2x 2-y 2=2与点P (1,2)。
(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?解:(1)直线l 的方程为y -2=k (x -1),即y =kx +2-k 。
由y =kx +2-k2x 2-y 2=2{,得(k 2-2)x 2-2(k 2-2k )x +k 2-4k +6=0。
因为直线l 与C 有两个公共点,所以得k 2-2≠0Δ=4(k 2-2k )2-4(k 2-2)(k 2-4k +6)>0{解之得:k <32且k ≠±2√,∴k 的取值范围是(-∞,-2√)∪(-2√,2√)∪(2√,32)。
例谈圆锥曲线中的“点差法”之妙用
c:
n
一
0
一 1( a >o , b >o ) 相交 于 B 、 D两点 , 且 B D 的 中 点 为
M( 1, 3 ) 。
十z 和 。 +Y 。, 再结合已知条件求解 , 以 下 从 两 个 方 面 谈 谈 其
基本应用 。 圆 锥 曲线 中弦 的 中点 问题 ( 即中点弦问题 )
新思维 , 收 到 了一定 的 效 果 。
解, 所 挑 选 的那 几 个 普 通 学 生 由 于 得 到 了 外 国 专 家 说 自 己 是 神 童的心理暗示 , 学习劲头倍增 , 一 年 后 学 习成 绩 果 真 位 居 班 级 前 列 。这 一 方 法 很 值 得 我 们 学 习 效 仿 。 因 此 , 只 有 教 师 用 自己 的 情感态度感化学生 , 用积极的心理暗示 去影响学 生 , 在 与 学 生 的 直 接 接 触 中展 现 自我 , 敢于创新 , 不 因循守 旧, 敢 于怀疑 , 勇 于 挑 战, 必 能 以 自 己 的人 格 对 学 生 创 造 人 格 的 形 成 , 产生示 范作 用 , 以 自己 的 人 格 感 染 和 熏 陶学 生 , 从 而 塑 造 学 生 的创 新 人 格 , 挖 掘
\ / \ / ‘;
d\
N … … 、 - ,
解 析 : + 等一 , 薯+ 营一 , 两 式 相 减 X 2 - X 2 一 一 则 一 b 2 = 一
一
・ 糍 =
・ 卿
则 等+ 等一 , 等+ 譬一 , 相 减 得 生 + 2
学生的创新潜能 。 三、 教 师 要 善 于 在 教 学 过 程 中培 养 学 生 的 创 新 思 维
例2 : ( 2 O 1 O全 国 Ⅱ理 2 1 ) 已 知 斜 率 为 1的 直 线 z 与 双 曲 线
浅谈“点差法”在求圆锥曲线范围问题中的应用
浅谈“点差法”在求圆锥曲线范围问题中的应用作者:张伟建来源:《中学教学参考·理科版》2012年第11期圆锥曲线问题是高中数学的难点之一,圆锥曲线的弦的中点有关问题是常考查的内容.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解,过程繁琐,计算量大.“点差法”是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式相减,可得一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率,或借助曲线方程中变量的取值范围求其他变量的范围时,一般都可以用“点差法”来求解.这种方法对有关点的坐标设而不求,充分发挥整体思想在解题中的应用,起到简化和优化解题过程的作用.【例1】已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点A的坐标为(0,-1),且右焦点到直线x-y+22=0的距离为3.(1)求a、b的值;(2)若存在斜率为k的直线l,使l与已知椭圆交于不同两点M、N,且满足|AM|=|AN|,求k的取值范围.解析:由于篇幅有限,常规解法不再赘述.下面使用点差法求解.设M(,),N(,),P(,).当k≠0时,由|AM|=|AN|知:;①;②;③;④---;⑤由①-②得()(-)+3()(-)=0.⑦将③④代入⑦,得-k;⑧将⑧和⑤联立得,-32k,将它们代入⑥得94k2+34解得k∈(-1,1)且k≠0.当k=0时显然成立.故k∈(-1,1).【例2】如图2所示,某椭圆的焦点是(-4,0)、(4,0),过点并垂直于x轴的直线与椭圆的一个交点为B,且,椭圆上不同的两点A(,)、C(,)满足条件:、、成等差数列.(1)求该椭圆方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.解析:(1)由椭圆定义及条件得,∴a=5.又c=4,∴b2=a2-c2=9.故椭圆方程为x25+y29=1.(2)由a=5,c=4知离心率e=ca=45,-,-依焦半径公式:由、、成等差数列,得5--,解得,∴故弦AC中点的横坐标为4.(3)由第(2)问可知弦AC中点的横坐标,再由弦AC的垂直平分线方程,可表示出AC的方程,然后与椭圆方程联立可将k用AC中点坐标表示,再由中点在y=kx+m上,可将m用弦AC中点的纵坐标表示,然后结合弦AC中点在线段BB′上这一条件,求出m的取值范围.故设弦AC中点为P(4,),所以直线AC的方程为:y--1k(x-4)(x≠0).将上式代入椭圆方程得(9k2+25)x2-50()x+25()2-25×9k2=0,∴()9k2+25=8,解得(当k=0时也成立),∵点P(4,)在弦AC的垂直平分线上,∴,∴---∵点P(4,)在线段BB′的内部,于是有-95这道题表面上看与“点差法”没多大联系,第(2)问中既然出现了线段的垂直平分线,当然也就有了弦的中点,“点差法”也就有了用武之地.下面使用点差法求解.设弦AC中点为P(4,),由A(,)、C(,)知;①;②;③;④--;⑤;⑥-95由①-②得()(-)25-()(-)9=0,将③④代入上式得:---2=-1k,解得().又由-95且得-165(注:当k=0时,AC中点为(4,0),此时)综上,m∈(-165,165).圆锥曲线求参数取值范围问题,常有两种解题思路:1.先求出直线的斜率的变化范围,进而求参数的取值范围.2.借助曲线中变量的取值范围求参数的取值范围在椭圆中,直线与椭圆如果有两个交点,则等价于弦的中点在椭圆内部,换句话说,某点在圆锥曲线的内部,则被该点平分的弦一般存在.本题即根据AC的中点P在椭圆内部,求出的取值范围,进一步求出m的范围.由此可见,中点弦问题中判断“中点”的位置非常重要,而“点差法”是解决此类问题当之无愧的“利剑”.参考文献邵丽云.高中数学疑难全解放入书架[M].南京:南京师范大学出版社,2006.[2]曹兵.高中数学难题新题精讲精练300例[M].上海:上海交通大学出版社,2008.。
点差法的解题方法和技巧
点差法的解题方法和技巧
点差法是解决圆锥曲线中点弦问题的一种常用方法。
它的主要思路是将直线和圆锥曲线的交点坐标代入圆锥曲线的方程中,通过对所得两式作差,得到一个与弦的中点和斜率有关的式子。
通过这个式子,可以大大减少运算量,快速地求解问题。
点差法的解题技巧主要包括以下几个方面:
1. 熟悉点差法的基本思想,理解如何将直线和圆锥曲线的交点坐标代入圆锥曲线的方程中。
2. 掌握点差法推导出的公式,特别是弦的中点和斜率之间的关系。
3. 在实际应用中,要学会选择合适的条件,利用点差法来解决圆锥曲线中点弦问题。
4. 加强对点差法的变形和应用,例如将点差法应用于弦长问题、中点位置问题等。
点差法是解决圆锥曲线中点弦问题的一种有效方法,它的技巧性较强,需要同学们在学习中认真掌握。
高考专题——点差法在圆锥曲线中的应用
高考专题——点差法在圆锥曲线中的应用
圆锥曲线在高考中的地位是不言而喻的,而与椭圆弦的中点相关的问题,即中点弦问题是高考的热点,而点差法在解决中点弦问题的时候往往有不错的效果,这次我们就专门就点差法和大家一起来进行复习。
其他有关圆锥曲线的总结,可查阅我的头条号。
点差法:当一条直线与圆锥曲线相交,会产生两个交点,我们将这两个点的坐标(一般是设而不求)带入圆锥曲线方程,并将两个方程做差,可以得到直线的斜率和弦的中点的斜率关系。
中点弦斜率公式
一、点差法解决中点弦轨迹问题
二、点差法解决相交弦中点轨迹问题
三、点差法求曲线轨迹方程
真题巩固
欢迎大家提出建议和批评,您的建议对我非常重要,希望为大家带来更好的文章!喜欢的朋友可以关注支持一下,往后将继续与大家探索数学方面的知识。
(完整版)解圆锥曲线问题常用方法及性质总结
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
高考数学点差法在圆锥曲线中的应用(解析版)
点差法在圆锥曲线中的应用一、考情分析圆锥曲线中的中点弦问题是高考常见题型,在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为x1,y1、x2,y2,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”.二、解题秘籍(一)求以定点为中点的弦所在直线的方程求解此类问题的方法是设出弦端点坐标,代入曲线方程相减求出斜率,再用点斜式写出直线方程.特别提醒:求以定点为中点的双曲线的弦所在直线的方程,求出直线方程后要检验所求直线与双曲线是否有2个交点.【例1】过椭圆x216+y24=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.【解析】设直线与椭圆的交点为A(x1,y1)、B(x2,y2)∵M(2,1)为AB的中点∴x1+x2=4 y1+y2=2∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16两式相减得(x12−x22)+4(y12−y22)=0于是(x1+x2)(x1−x2)+4(y1+y2)(y1−y2)=0∴y1−y2x1−x2=−x1+x24(y1+y2)=−44×2=−12即k AB=−12,故所求直线的方程为y−1=−12(x−2),即x+2y−4=0.【例2】已知双曲线C:x2a2-y2b2=1(a>0,b>0),离心率e=3,虚轴长为22.(1)求双曲线C的标准方程;(2)过点P1,1能否作直线l,使直线l与双曲线C交于A,B两点,且点P为弦AB的中点?若存在,求出直线l的方程;若不存在,请说明理由.【解析】(1)∵e=ca=3,2b=22,∴c=3a,b=2.∵c2=a2+b2,∴3a2=a2+2.∴a2=1.∴双曲线C的标准方程为x2-y22=1.(2)假设以定点P(1,1)为中点的弦存在,设以定点P(1,1)为中点的弦的端点坐标为A(x1,y1),B(x2,y2)(x1≠x2),可得x1+x2=2,y1+y2=2.由A,B在双曲线上,可得:x21-y212=1 x22-y222=1,两式相减可得以定点P(1,1)为中点的弦所在的直线斜率为:k=y2-y1x2-x1=2(x1+x2)y1+y2=2,则以定点P(1,1)为中点的弦所在的直线方程为y-1=2(x-1).即为y=2x-1,代入双曲线的方程可得2x2-4x+3=0,由Δ=(-4)2-4×2×3=-8<0,所以不存在这样的直线l .(二)求弦中点轨迹方程求弦中点轨迹方程基本类型有2类,一是求平行弦的中点轨迹方程,二是求过定点的直线被圆锥曲线截得的弦的中点轨迹方程.【例3】(2023届湖北省腾云联盟高三上学期10月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 经过点P 0,1 ,且离心率为32.(1)求椭圆C 的标准方程;(2)设过点0,-35的直线l 与椭圆C 交于A ,B 两点,设坐标原点为O ,线段AB 的中点为M ,求MO 的最大值.【解析】(1)∵椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点P (0,1),其离心率为32.∴b =1,c a =32⇒1-b 2a2=34,∴b a =12,∴a =2,故椭圆C 的方程为:x 24+y 2=1;(2)当直线l 斜率不存在时,M 与O 重合,不合题意,当直线l 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有x 0=x 1+x 22,y 0=y 1+y 22,直线l 的斜率为y 1-y 2x 1-x 2=y 0+35x 0,A ,B 两点在椭圆上,有x 124+y 12=1,x 224+y 22=1,两式相减,x 12-x 224=-y 12-y 22 ,即x 1+x 24y 1+y 2 =-y 1-y 2x 1-x 2,得x 04y 0=-y 0+35x 0,化简得x 02=-4y 02-125y 0,MO =x 02+y 02=-3y 02-125y 0=-3y 0+25 2+1225,∴当y 0=-25时,MO 的最大值为235【例4】直线与圆锥曲线相交所得弦的中点问题,是解析几何重要内容之一,也是高考的一个热点问题.引理:设A x 1,y 1 、B x 2,y 2 是二次曲线C :Ax 2+By 2+Cx +Dy +F =0上两点,P x 0,y 0 是弦AB 的中点,且弦AB 的斜率存在,则Ax 21+By 21+Cx 1+Dy 1+F =0⋯⋯(1)Ax 22+By 22+Cx 2+Dy 2+F =0⋯⋯(2)由(1)-(2)得A x 1-x 2 x 1+x 2 +B y 1-y 2 y 1+y 2 +C x 1-x 2 +D y 1-y 2 =0,∵x 0=x 1+x 22,y 0=y 1+y 22,∴x 1+x 2=2x 0,y 1+y 2=2y 0∴2Ax 0x 1-x 2 +2By 0y 1-y 2 +C x 1-x 2 +D y 1-y 2 =0,∴2Ax 0+C x 1-x 2 =-2By 0+D y 1-y 2 ,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-2Ax 0+C2By 0+D2B +D ≠0,x 1≠x 2 .二次曲线也包括了圆、椭圆、双曲线、抛物线等.请根据上述求直线斜率的方法(用其他方法也可)作答下题:已知椭圆x 22+y 2=1.(1)求过点P 12,12且被P 点平分的弦所在直线的方程;(2)过点A 2,1 引椭圆的割线,求截得的弦的中点的轨迹方程.【解析】(1)设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x 0,y 0 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵12=x 1+x 22,12=y 1+y 22,∴x 1+x 2=1,y 1+y 2=1∴x 1-x 2+2y 1-y 2 =0,∴直线AB 的斜率k AB =-12.直线AB 的方程为y -12=-12x -12,即2x +4y -3=0.因为P 12,12在椭圆内部,成立.(2)由题意知:割线的斜率存在,设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x ,y 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1 ,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵x =x 1+x 22,y =y 1+y 22,∴x 1+x 2=2x ,y 1+y 2=2y∴2x x 1-x 2 +4y y 1-y 2 =0,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-x2yx 1≠x 2又k AB =y -1x -2,所以 y -1x -2=-x 2y ,化简得:x 2+2y 2-2x -2y =0-2≤x ≤2 ,所以截得的弦的中点的轨迹方程为x 2+2y 2-2x -2y =0-2≤x ≤2 (三)求直线的斜率一般来说,给出弦中点坐标,可求弦所在直线斜率【例5】已知椭圆C :x 25+y 2=1的左、右焦点分别为F 1,F 2,点M ,N 在椭圆C 上.(1)若线段MN 的中点坐标为2,13,求直线MN 的斜率;(2)若M ,N ,O 三点共线,直线NF 1与椭圆C 交于N ,P 两点,求△PMN 面积的最大值.【解析】(1)设M x 1,y 1 ,N x 2,y 2 ,则x 215+y 21=1,x 225+y 22=1,两式相减,可得x 1+x 2 x 1-x 25+y 1+y 2 y 1-y 2 =0,则4x 1-x 2 5+2y 1-y 2 3=0,解得k MN =y 1-y 2x 1-x 2=-65,即直线MN 的斜率为-65;(2)显然直线NF 1的斜率不为0,设直线NF 1:x =my -2,N x 3,y 3 ,P x 4,y 4 ,联立x =my -2x 25+y 2=1,消去x 整理得m 2+5 y 2-4my -1=0,显然Δ=20m 2+1 >0,故y 3+y 4=4m m 2+5,y 3⋅y 4=-1m 2+5,故△PMN 的面积S △PMN =2S △OPN =2⋅12OF 1 ⋅y 3-y 4=2⋅4m m 2+5 2-4⋅-1m 2+5=45m 2+1m 2+5,令t =m 2+1,t ≥1,则S △PMN =45t t 2+4=45t +4t≤454=5,当且仅当t =2,即m =±3时等号成立,故△PMN 面积的最大值为5.【例6】已知椭圆x 225+y 29=1上不同的三点A x 1,y 1 ,B 4,95,C x 2,y 2 与焦点F 4,0 的距离成等差数列.(1)求证:x 1+x 2=8;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .【解析】(1)证略.(2)解∵x 1+x 2=8,∴设线段AC 的中点为D 4,y 0 .又A 、C 在椭圆上,∴x 1225+y 129=1,(1)x 2225+y 229=1,(2)1 -2 得:x 12-x 2225=-y 12-y 229,∴y 1-y 2x 1-x 2=-9x 1+x 2 25y 1+y 2=-925⋅82y 0=-3625y 0.∴直线DT 的斜率k DT =25y 036,∴直线DT 的方程为y -y 0=25y 036x -4 .令y =0,得x =6425,即T 6425,0 ,∴直线BT 的斜率k =95-04-6425=54.(四)点差法在轴对称中的应用【例7】(2023届江苏省南京市建邺区高三上学期联合统测)已知O 为坐标原点,点1,62 在椭圆C :x 2a 2+y 2b 2=1a >b >0 上,直线l :y =x +m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为-12.(1)求C 的方程;(2)若m =1,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22 ,k AB =y 1-y 2x 1-x 2=1,k OM=y 1+y 22x 1+x 22=y 1+y 2x 1+x 2=-12∵A x 1,y 1 ,B x 2,y 2 在椭圆上,则x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1两式相减得x 12-x 22a 2+y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=y 1+y 2x 1+x 2×y 1-y 2x 1-x 2=-b 2a 2∴k AB ⋅k OM =-b 2a 2,即-12=-b2a2,则a 2=2b 2又∵点1,62 在椭圆C :x 2a 2+y 2b 2=1上,则1a 2+32b 2=1联立解得a 2=4,b 2=2∴椭圆C 的方程为x 24+y 22=1(2)不存在,理由如下:假定存在P ,Q 两点关于l :y =x +1对称,设直线PQ 与直线l 的交点为N ,则N 为线段PQ 的中点,连接ON∵PQ ⊥l ,则k AB ⋅k PQ =-1,即k PQ =-1由(1)可得k ON ⋅k PQ =-12,则k ON =12,即直线ON :y =12x联立方程y =12x y =x +1,解得x =-2y =-1 即N -2,-1∵-2 24+-1 22=32>1,则N -2,-1 在椭圆C 外∴假定不成立,不存在P ,Q 两点关于l 对称【例8】已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-12.(1)求椭圆C 的标准方程;(2)若椭圆C 上存在P ,Q 两点,使得P ,Q 关于直线l 对称,求实数m 的范围.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A ,B 在椭圆C 上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减得x 1+x 2 x 1-x 2 a 2+y 1+y 2 y 1-y 2 b 2=0,即1a 2+y 1+y 2 y 1-y 2b 2x 1+x 2 x 1-x 2=0,又k AB =y 1-y 2x 1-x 2=1,所以1a 2-12b2=0,即a 2=2b 2.又因为椭圆C 过点1,62 ,所以1a 2+32b2=1,解得a 2=4,b 2=2,所以椭圆C 的标准方程为x 24+y 22=1;(2)设P x 3,y 3 ,Q x 4,y 4 ,PQ 的中点为N x 0,y 0 ,所以x 3+x 4=2x 0,y 3+y 4=2y 0,因为P ,Q 关于直线l 对称,所以k PQ =-1且点N 在直线l 上,即y 0=x 0+m .又因为P ,Q 在椭圆C 上,所以x 234+y 232=1,x 244+y 242=1.两式相减得x 3+x 4 x 3-x 4 4+y 3+y 4 y 3-y 42=0.即x 3+x 44+y 3+y 4 y 3-y 42x 3-x 4=0,所以x 3+x 44=y 3+y 42,即x 0=2y 0.联立x 0=2y 0y 0=x 0+m,解得x 0=-2my 0=-m ,即N (-2m ,-m ).又因为点N 在椭圆C 内,所以(-2m )24+(-m )22<1,所以-63<m <63所以实数m 的范围为-63<m <63.(五)利用点差法可推导的结论在椭圆x 2a 2+y 2b2=1a >b >0 中,若直线l 与该椭圆交于点A ,B ,点P x 0,y 0 为弦AB 中点,O 为坐标原点,则k AB ⋅k OP =b 2a2,对于双曲线、抛物线也有类似结论,求自行总结.【证明】设A x 1,y 1 ,B x 2,y 2 且x 1≠x 2,则x 12a 2+y 12b 2=1,(1)x 22a 2+y 22b2=1,(2)1 -2 得:x 12-x 22a 2=-y 12-y 22b 2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2 ,∴k AB =y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2.又k OP =y 1+y 2x 1+x 2,∴k AB =-b 2a 2⋅1k OP ,∴k AB ⋅k OP =-b 2a 2(定值).【例9】(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),因为P 、Q 在双曲线上,所以x 12a 2-y 12b 2=1,x 22a 2-y 22b2=1,两式作差得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2=2y 0(y 1-y 2)b 2,即y 0(y 1-y 2)x 0(x 1-x 2)=b 2a2,即k 1·k 2=b 2a 2;(2)因为AM PQ=12,所以△APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入x 2a 2-y 2b2=1得,y =±bt 2a 2-1,由|t -a |=b t 2a2-1得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0,即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =a (a 2+b 2)a 2-b 2或a (舍),故直线l 的方程为x =a (a 2+b 2)a 2-b 2;②当直线l 的斜率存在时,设l :y =kx +m ,代入x 2a 2-y 2b2=1,得(b 2-k 2a 2)x 2-2km a 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2km a 2b 2-k 2a 2,x 1x 2=-a 2(m 2+b 2)b 2-k 2a 2;因为AP ⊥AQ ,所以AP ·AQ =0,即(x 1-a ,y 1)·(x 2-a ,y 2)=0,即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0,即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即-2km a 3-k 2a 2b 2-m 2a 2+m 2b 2-k 2a 4b 2-k 2a 2=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0,即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-m (a 2-b 2)a (a 2+b 2)或k =-ma ;当k =-m a 时,直线l 的方程为y =-max +m ,此时经过A ,舍去;当k =-m (a 2-b 2)a (a 2+b 2)时,直线l 的方程为y =-m (a 2-b 2)a (a 2+b 2)x +m ,恒过定点a (a 2+b 2)a 2-b 2,0,经检验满足题意;综上①②,直线l 过定点a (a 2+b 2)a 2-b 2,0.三、跟踪检测1.已知椭圆C :x 22+y 2=1,F 1为右焦点,直线l :y =t (x -1)与椭圆C 相交于A ,B 两点,取A 点关于x 轴的对称点S ,设线段AS 与线段BS 的中垂线交于点Q .(1)当t =2时,求QF 1 ;(2)当t ≠0时,求QF 1|AB |是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,线段AB 的中点M 坐标为x M ,y M ,联立得x 2+2y 2-2=0,y =2(x -1), 消去y 可得:9x 2-16x +6=0,所以x 1+x 2=169,x 1x 2=69,所以x M =89,代入直线AB 方程,求得y M =-29,因为Q 为△ABS 三条中垂线的交点,所以MQ ⊥AB ,有k MQ k AB =-1,直线MQ 方程为y +29=-12×x -89.令y =0,x Q =49,所以Q 49,0 .由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1,相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.2.(2023届重庆市南开中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,上顶点为D ,斜率为k 的直线l 与椭圆C 交于不同的两点A ,B ,M 为线段AB 的中点,当点M 的坐标为(2,1)时,直线l 恰好经过D 点.(1)求椭圆C 的方程:(2)当l 不过点D 时,若直线DM 与直线l 的斜率互为相反数,求k 的取值范围.【解析】(1)由题意知,离心率e =22,所以a =2b =2c ,设A x 1,y 1 ,B x 2,y 2 ,x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1两式相减得k ⋅k OM =-b 2a 2=-12,所以k =-1;所以直线为y -1=-(x -2),即y =-x +3,所以b =c =3,椭圆方程为x 218+y 29=1;(2)设直线为y =kx +m ,由y =kx +mx 2+2y 2=18得1+2k 2 x 2+4km x +2m 2-18=0,则x M =x 1+x 22=-2km 1+2k 2,y M =m1+2k2,�=16k 2m 2-41+2k 2 2m 2-18 =818k 2-m 2+9 >0,所以k DM =y M -3x M -0=6k 2+3-m 2km =-k ,解得m =6k 2+31-2k2,1-2k 2≠0,k ≠±22因为l 不过D 点,则6k 2+31-2k 2≠3,即k ≠0则18k 2+9-6k 2+3 21-2k 22>0,化简得4k 4-4k 2-3>0,解得2k 2-3 2k 2+1 >0,k 2>32,所以k >62或k <-62.3.已知椭圆x 22+y 2=1.(1)过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程;(2)求斜率为2的平行弦的中点Q 的轨迹方程;(3)求过点M 12,12且被M 平分的弦所在直线的方程.【解析】(1)设弦与椭圆两交点坐标分别为A x 1,y 1 、B x 2,y 2 ,设P x ,y ,当x 1=x 2时,P -1,0 .当x 1≠x 2时,x 22+y 2=1⇒x 2+2y 2=2,x 21+2y 21=2,x 22+2y 22=2, 两式相减得x 1+x 2 x 1-x 2 +2y 1+y 2 y 1-y 2 =0,即1+2⋅y 1+y 2 y 1-y 2 x 1+x 2 x 1-x 2=0(*),因为y 1-y 2x 1-x 2=k FP =yx +1,x 1+x 2=2x ,y 1+y 2=2y ,所以,代入上式并化简得x 2+x +2y 2=0,显然P -1,0 满足方程.所以点P 的轨迹方程为x 2+x +2y 2=0(在椭圆内部分).(2)设Q x ,y ,在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=2,x 1+x 2=2x ,y 1+y 2=2y 代入上式并化简得点Q 的轨迹方程为x +4y =0(在椭圆内部分).所以,点Q 的轨迹方程x +4y =0(在椭圆内部分).(3)在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=k ,x 1+x 2=1,y 1+y 2=1代入上式可求得k =-12.所以直线方程为2x +4y -3=0.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-0.5.(1)求椭圆C 的标准方程;(2)当m =1时,椭圆C 上是否存在P ,Q 两点,使得P ,Q 关于直线l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A,B在椭圆C上,所以x21a2+y21b2=1,x22a2+y22b2=1,两式相减得x1+x2x1-x2a2+y1+y2y1-y2b2=0,即1a2+y1+y2y1-y2b2x1+x2x1-x2=0,又k AB=y1-y2x1-x2=1,所以1a2-12b2=0,即a2=2b2.又因为椭圆C过点1,6 2,所以1a2+32b2=1,解得a2=4,b2=2,所以椭圆C的标准方程为x24+y22=1;(2)由题意可知,直线l的方程为y=x+1.假设椭圆C上存在P,Q两点,使得P,Q关于直线l对称,设P x3,y3,Q x4,y4,PQ的中点为N x0,y0,所以x3+x4=2x0,y3+y4=2y0,因为P,Q关于直线l对称,所以k PQ=-1且点N在直线l上,即y0=x0+1.又因为P,Q在椭圆C上,所以x234+y232=1,x244+y242=1,两式相减得x3+x4x3-x44+y3+y4y3-y42=0,即x3+x44+y3+y4y3-y42x3-x4=0,所以x3+x44=y3+y42,即x0=2y0.联立x0=2y0y0=x0+1,解得x0=-2y0=-1,即N-2,-1.又因为-224+-122>1,即点N在椭圆C外,这与N是弦PQ的中点矛盾,所以椭圆C上不存在点P,Q两点,使得P,Q关于直线l对称.5.(2022届广东省清远市高三上学期期末)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F且斜率为1的直线与抛物线C交于A,B两点,若AB的中点到准线l的距离为4.(1)求抛物线C的方程;(2)设P为l上任意一点,过点P作C的切线,切点为Q,试判断F是否在以PQ为直径的圆上.【解析】(1)设A x1,y1,B x2,y2,则y21=2px1, y22=2px2,所以y21-y22=2p x1-x2,整理得y1-y2x1-x2=2py1+y2=1,所以y1+y2=2p.因为直线AB的方程为y=x-p 2,所以x1+x2=y1+y2+p=3p.因为AB的中点到准线l的距离为4,所以x1+x22+p2=2p=4,得p=2,故抛物线C的方程为y2=4x.(2)设P(-1,t),可知切线PQ的斜率存在且不为0,设切线PQ的方程为x=m(y-t)-1,联立方程组x=m(y-t)-1,y2=4x,得y2-4my+4mt+4=0,由Δ=16m2-16(mt+1)=0,得t=m-1m,即P-1,m-1m,所以方程y 2-4my +4mt +4=y 2-4my +4m 2=0的根为y =2m ,所以x =m 2,即Q m 2,2m .因为FP =-2,m -1m ,FQ =m 2-1,2m ,所以FP ⋅FQ =-2m 2-1 +2m m -1m=0,所以FP ⊥FQ ,即F 在以PQ 为直径的圆上.6.(2022届河南省中原顶级名校高三上学期1月联考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点分别为F 1-1,0 ,F 21,0 ,过点F 1的直线l 1交椭圆C 于A ,B 两点.当直线l 1的斜率为1时,点-47,37是线段AB 的中点.(1)求椭圆C 的标准方程;(2)如图,若过点F 2的直线l 2交椭圆C 于E ,G 两点,且l 1∥l 2,求四边形ABEG 的面积的最大值.【解析】 (1)设A x 1,y 1 ,B x 2,y 2 .由题意可得b 2x 21+a 2y 21-a 2b 2=0,b 2x 22+a 2y 22-a 2b 2=0.∴y 1-y 2x 1-x 2=-b 2a 2⋅x 1+x 2y 1+y 2=-b 2a 2⋅-43,即4b 23a2=1,∴b 2a2=34.∵a 2-b 2=1,∴a 2=4,b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)根据对称性知AB =EG ,AB ∥EG ,∴四边形ABEG 是平行四边形,又S 四边形ABEG =2S △F 2AB ,∴问题可转化为求S △F 2AB 的最大值.设直线l 1的方程为x =my -1,代入x 24+y 23=1,得3m 2+4 y 2-6my -9=0.则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,∴S △F 2AB =12⋅2⋅y 1-y 2 =y 1+y 2 2-4y 1y 2=6m 3m 2+4 2-4⋅-93m 2+4=121+m 23m 2+4.令1+m 2=t ,则t ≥1,且m 2=t 2-1,∴S △F 2AB =12t 3t 2+1=123t +1t .记h t =3t +1tt ≥1 ,易知h t 在1,+∞ 上单调递增.∴h t min =h 1 =4.∴S △F 2AB =123t +1t≤124=3.∴四边形ABEG 的面积的最大值是6.7.如图,AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足,点N 坐标为(-2,-3).(1)求抛物线的方程;(2)求△AOB 的面积(O 为坐标系原点).【解析】 (1)点N (-2,-3)在准线l 上,所以准线l 方程为:x =-2,则p 2=2,解得p =4,所以抛物线的方程为:y 2=8x ;(2)设A x 1,y 1 ,B x 2,y 2 ,由A 、B 在抛物线y 2=8x 上,所以y 21=8x 1y 22=8x 2 ,则y 1-y 2 y 1+y 2 =8x 1-x 2 ,又MN ⊥l ,所以点M 纵坐标为-3,M 是AB 的中点,所以y 1+y 2=-6,所以-6y 1-y 2 =8x 1-x 2 ,即k AB =-43,又知焦点F 坐标为(2,0),则直线AB 的方程为:4x +3y -8=0,联立抛物线的方程y 2=8x ,得y 2+6y -16=0,解得y =2或y =-8,所以y 1-y 2 =10,所以S △AOB =S △AOF +S △BOF =y 1-y 2 =10.8.在平面直角坐标系xOy 中,设点F (1,0),直线l :x =-1,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹E 的方程;(2)过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为M 、N .求直线MN 过定点D 的坐标.【解析】 (1)依题意,点P 在直线l :x =-1上移动,令直线l 交x 轴于点K ,而点F(1,0),又R 是线段PF 与y 轴的交点,当点P 与点K 不重合时,OR ⎳l ,而O 为FK 中点,则点R 是线段FP 的中点,因RQ ⊥FP ,则RQ 是线段FP 的垂直平分线,QP =QF ,又PQ ⊥l 于点P ,即PQ 是点Q到直线l 的距离,当点P 与点K 重合时,点R 与点O 重合,也满足上述结论,于是有点Q 到点F 的距离等于点Q 到直线l 的距离,则动点Q 的轨迹E 是以F为焦点,l 为准线的抛物线,其方程为:y 2=4x ,所以动点Q 的轨迹E 的方程为y 2=4x .(2)显然直线AB 与直线CD 的斜率都存在,且不为0,设直线AB 的方程为y =k(x -1),k ≠0,令A x A ,y A ,B x B ,y B ,M x M ,y M ,N x N ,y N ,由y 2A =4x A y 2B =4x B 两式相减得:(y A +y B )(y A -y B )=4(x A -x B ),则y A +y B =4k,即y M =2k,代入方程y =k (x -1),解得x M =2k 2+1,即点M 的坐标为2k 2+1,2k ,而CD ⊥AB ,直线CD 方程为y =-1k (x -1),同理可得:N 的坐标为(2k 2+1,-2k ),当2k 2+1=2k 2+1,即k =±1时,直线MN :x =3,当k ≠1且k ≠-1时,直线MN 的斜率为k MN =y M -y N x M -x N =k 1-k 2,方程为y +2k =k 1-k 2(x -2k 2-1),整理得y 1k -k =x -3,因此,∀k ∈R ,k ≠0,直线MN :y 1k-k =x -3过点(3,0),所以直线MN 恒过定点D (3,0).9.中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】 (1)设双曲线E 的标准方程为x 2a 2-y 2b2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±b a x ,由题意可得4b a 1+b a2=23,解得b a =3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2 ,由题意可得x 21-y 213=1x 22-y 223=1 ,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 2 3,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.10.己知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为42,短轴长为2,直线l 过点P -2,1 且与椭圆C 交于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 的斜率为1,求弦AB 的长;(3)若过点Q 1,12的直线l 1与椭圆C 交于E 、G 两点,且Q 是弦EG 的中点,求直线l 1的方程.【解析】 (1)依题意,椭圆C 的半焦距c =22,而b =1,则a 2=b 2+c 2=9,所以椭圆C 的方程为:x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),依题意,直线l 的方程为:y =x +3,由y =x +3x 2+9y 2=9消去y 并整理得:5x 2+27x +36=0,解得x 1=-125,x 2=-3,因此,|AB |=1+12⋅|x 1-x 2|=325,所以弦AB 的长是325.(3)显然,点Q 1,12在椭圆C 内,设E (x 3,y 3),G (x 4,y 4),因E 、G 在椭圆C 上,则x 23+9y 23=9x 24+9y 24=9 ,两式相减得:(x 3-x 4)(x 3+x 4)+9(y 3-y 4)(y 3+y 4)=0,而Q 是弦EG 的中点,即x 3+x 4=2且y 3+y 4=1,则有2(x 3-x 4)+9(y 3-y 4)=0,于是得直线l 1的斜率为y 3-y 4x 3-x 4=-29,直线l 1的方程:y -12=-29(x -1),即4x +18y -13=0,所以直线l 1的方程是4x +18y -13=0.11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB 的斜率为k 1,点P 的坐标为1,32(1)求椭圆C 的方程;(2)求证:k 1k 为定值.【解析】(1)由题意知1a 2+94b 2=1,c a =12,a 2=b 2+c 2, 解得a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1.(2)证明:设M x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,由于A ,B 为椭圆C 上的点,所以x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2 x 1-x 2 4=-y 1+y 2 y 1-y 2 3,所以k 1=y 1-y 2x 1-x 2=-3x 1+x 2 4y 1+y 2=-3x 04y 0.又k =y 0x 0,故k 1k =-34,为定值.12.已知双曲线C :2x 2-y 2=2与点P 1,2 .(1)是否存在过点P 的弦AB ,使得AB 的中点为P ;(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,证明:A 、B 、C 、D 四点共圆.【解析】(1)双曲线的标准方程为x 2-y 22=1,∴a 2=1,b 2=2.设存在过点P 的弦AB ,使得AB 的中点为P ,设A x 1,y 1 ,B x 2,y 2 ,x 21-y 212=1,x 22-y 222=1两式相减得y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=b 2a 2,即k AB ⋅21=b 2a2得:k ⋅2=2,∴k =1.∴存在这样的弦.这时直线l 的方程为y =x +1.(2)设CD 直线方程为x +y +m =0,则点P 1,2 在直线CD 上.则m =-3,直线CD 的方程为x +y -3=0,设C x 3,y 3 ,D x 4,y 4 ,CD 的中点为Q x 0,y 0 ,x 23-y 232=1,x 24-y 242=1两式相减得k CD ⋅y 0x 0=b 2a2,则-1⋅y 0x 0=2,则y 0=-2x 0又因为Q x 0,y 0 在直线CD 上有x 0+y 0-3=0,解得Q -3,6 ,x -y +1=02x 2-y 2=2 ,解得A -1,0 ,B 3,4 ,x +y -3=02x 2-y 2=2 ,整理得x 2+6x -11=0,则x 3+x 4=-6x 3⋅x 4=-11则CD =1+k 2x 3-x 4 =410由距离公式得QA =QB =QC =QD =210所以A 、B 、C 、D 四点共圆.13.李华找了一条长度为8的细绳,把它的两端固定于平面上两点F 1,F 2处,|F 1F 2|<8,套上铅笔,拉紧细绳,移动笔尖一周,这时笔尖在平面上留下了轨迹C ,当笔尖运动到点M 处时,经测量此时∠F 1MF 2=π2,且△F 1MF 2的面积为4.(1)以F 1,F 2所在直线为x 轴,以F 1F 2的垂直平分线为y 轴,建立平面直角坐标系,求李华笔尖留下的轨迹C 的方程(铅笔大小忽略不计);(2)若直线l 与轨迹C 交于A ,B 两点,且弦AB 的中点为N (2,1),求△OAB 的面积.【解析】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义知2a =8,故a 2=16.∵在Rt △F 1MF 2中,|F 1F 2|=2c ,假设|MF 1|=x ,|MF 2|=y (x ,y >0),又∵△F 1MF 2的面积为4cm 2,x +y =8xy =8 ,故4c 2=x 2+y 2=(x +y )2-2xy =48,∴c 2=12,b 2=a 2-c 2=4,∴椭圆的标准方程为x 216+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),∵弦AB 的中点为N (2,1),∴x 1+x 2=4,y 1+y 2=2 且 x 1≠x 2.又∵A ,B 均在椭圆上,∴x 21+4y 21=16x 22+4y 22=16,得x 21-x 22=-4(y 21-y 22),即(x 1+x 2)⋅(x 1-x 2)=-4(y 1+y 2)⋅(y 1-y 2).∴(x 1-x 2)=-2(y 1-y 2).∵x 1≠x 2,∴k AB =y 1-y 2x 1-x 2=-12故直线AB 的方程为:x +2y -4=0.联立 x +2y -4=0x 2+4y 2-16=0,整理得x 2-4x =0.得 x 1=0,x 2=4,∴A (0,2),B (4,0),∴S △OAB =12×2×4=4.∴△OAB 的面积为4cm 2.14.若抛物线C :y 2=x 上存在不同的两点关于直线l :y =m x -3 对称,求实数m 的取值范围.【解析】当m =0时,显然满足.当m ≠0时,设抛物线C 上关于直线l :y =m x -3 对称的两点分别为P x 1,y 1 、Q x 2,y 2 ,且PQ 的中点为M x 0,y 0 ,则y 12=x 1,(1)y 22=x 2,(2)1 -2 得:y 12-y 22=x 1-x 2,∴k PQ =y 1-y 2x 1-x 2=1y 1+y 2=12y 0,又k PQ =-1m ,∴y 0=-m 2.∵中点M x 0,y 0 在直线l :y =m x -3 上,∴y 0=m x 0-3 ,于是x 0=52.∵中点M 在抛物线y 2=x 区域内∴y 02<x 0,即-m 2 2<52,解得-10<m <10.综上可知,所求实数m 的取值范围是-10,10 .。
圆锥曲线知识要点及结论个人总结
《圆锥曲线》知识要点及重要结论、椭圆1定义 平面内到两定点 F 「F 2的距离的和等于常数2a(2^|F^2)的点P 的轨迹叫做椭圆•若2a = F ,F 2,点P 的轨迹是线段F I F 2・若0 ::: 2a ::: F ,F 2,点P 不存在•2 2务 与=1(a b 0),两焦点为 R (_c,0), F 2(c,0). a b2 2X2 =1(ab ■ 0),两焦点为 F i (0,_c), F 2(0,C ).其中 a 2"2 cla b3几何性质椭圆是轴对称图形,有两条对称轴 .椭圆是中心对称图形,对称中心是椭圆的中心椭圆的顶点有四个,长轴长为2a ,短轴长为2b ,椭圆的焦点在长轴上•2 2若椭圆的标准方程为 务•与=1(a b ■ 0),则- a 空x 空a, -b 曲乞b ; a b2 2若椭圆的标准方程为 =1(a b 0),则-b 辽x 乞b,-a y 乞a .a 2b 2二、双曲线1定义 平面内到两定点 F 1, F 2的距离之差的绝对值等于常数 2a(0 ::: 2a :::R F ?)的点的轨迹叫做双曲线.若2^|F 1F 2,点P 的轨迹是两条射线.若2^|F 1F 2,点P 不存在.2 22 标准方程务 一―1(a ■ 0,b0),两焦点为 F 1(-c,0), F 2(C ,0).a b2 2令…占二“ 0,b 0),两焦点为 F 1 (0^c ), F 2(0, c ).其中 c 2 二 a 2 b 2. a b 3几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心 双曲线的顶点有两个 A 1, A 2,实轴长为2a ,虚轴长为2b ,双曲线的焦点在实轴上2 2J 壬-1(a 0,b 0),则 x 乞-a 或x — a, y R ;a b2-牛=1(a 0,b 0),则 y — -a 或 y — a, x R .b 22标准方程 若双曲线的标准方程为 若双曲线的标准方程为2a4渐近线双曲线的渐进线是它的重要几何特征, 每一双曲线都对应确定双曲线的渐进线, 但对于同组渐进线却对应无数条双曲线 •2 2 2 2与双曲线 笃-与 "(a 0,b ■ 0)共渐进线的双曲线可表示为 笃一笃=,(・=0).a ba b直线与双曲线有两个交点的条件,一定要“消元后的方程的二次项系数 同时成立•5等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线•2 2 2 2等轴双曲线的标准方程为 务一爲=1(a . 0)或爲-笃 "(a ■ 0).a aa a等轴双曲线的渐近线方程为 y =「x .6共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线2 2 2 2如:笃-与=1(a0,b - 0)的共轭双曲线为 每-务=1(a0,b - 0),它们的焦点到a bb a原点的距离相等,因而在以原点为圆心,.a 2 b 2为半径的圆上.且它们的渐近线都是b b y x 和 y x .aa三、抛物线1定义 平面内与一个定点 F 和一条定直线l(F 不在I 上)的距离相等的点的轨迹叫做抛物 线.定点F 叫做抛物线的焦点,定直线 I 叫做抛物线的准线. 2标准方程(1) y 2 =2px(p 0),焦点为(号,0),准线方程为x = -号,抛物线张口向右.⑵y 2 =-2px(p 0),焦点为(-p,0),准线方程为x =号,抛物线张口向左.⑶x 2 =2py (p 0),焦点为 (0导 ,准线方程为y = 一号,抛物线张口向上.⑷X 2 - -2 py (p 0),焦点为 (0』) ,准线方程为y = _p ,抛物线张口向下. 其中p 表示焦点到准线的距离. 3几何性质抛物线是轴对称图形,有一条对称轴.若方程为y 2 = 2 px( p - 0)或y 2 = -2 px( p - 0),2 2双曲线x y2 -.2ab2 2yx 2.2 a b=1(a 0, b 0)有两条渐近线y=1( a 0, b 0)有两条渐近线y a a x 和yx .即b b 2 2x y=02■ 2ab22yx2.2ab=0” 和“二.0双曲线则对称轴是x 轴,若方程为x 2 =2py(p . 0)或x 2 =_2py(p 0),则对称轴是y 轴.若抛物线方程为y 2 =2 px( p 0),则x 亠0, y 尸R . 若抛物线方程为y 2 - -2 px( p .0),则x _ 0, y• R .2若抛物线方程为x =2py(p . 0),则y_0,x ・R . 若抛物线方程为x 2 - -2 py( p .0),贝V y 込0, x 三R .圆锥曲线的一些重要结论【几个重要结论】2 21已知椭圆 笃•与 "(a b 0)的两焦点为F !^c,0),F 2(c,0),P(x °,y °)为椭圆上一a b点,则I PF.H c)*2冷冷心讪1一予)ms 丿 丿cx 0 cx 0因为 一a _ x 0 _ a , -c 仝乞 c,0 ::: a -c 0 a c ,aa所以 |PF^-cx ° +a .同理,PF 2 =2a — PF,| =a —也.a a. b sin a 2a L F!PF 2的面积为b tan .1 +cos^2解:根据椭圆的定义可得|PF_, +|PF 2| =2a ①由余弦定理可得 4c 2 = F J F 2 2 =|PFj 2 +|PF 2 2 — 2PF 」PF 2 COS 。
(完整版)圆锥曲线解题方法技巧归纳
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线专题点差法
点差法的应用技巧
定义:点差法是一种通过将两点坐标代入方程,然后相减来消元,简化计算的方法
应用场景:适用于求圆锥曲线中点坐标的问题
步骤:设两点坐标,代入圆锥曲线方程并相减,整理得到中点坐标的表达式
注意事项:需确保两点确实在圆锥曲线上,否则计算结果可能不准确
设两个点$P_1(x_1,y_1)$和 $P_2(x_2,y_2)$在圆锥曲线上
将两点代入圆锥曲线方程,得到两个等 式
将两个等式相减,消除$x_1, y_1, x_2, y_2$中的任意三个
整理得到一个关于$x_1, y_1, x_2, y_2$的二次方程
利用二次方程的性质,求出所求点的坐 标
点差法在圆锥曲线 中的应用
适用范围:点差法适 用于求两条平行直线 间的距离
解题步骤:利用点差法 求出两条平行直线间的 中点坐标,然后利用距 离公式求出距离
注意事项:在应用点差 法求距离时,需要注意 平行直线的斜率相等, 并且中点坐标的求解要 准确
实例解析:通过具体实 例解析点差法在求距离 中的应用,并给出相应 的解题步骤和答案
圆锥曲线专题点差法
汇报人:XX
目录
添加目录标题
点差法的基本原理
点差法在圆锥曲线 中的应用
点差法的应用技巧
点差法的注意事项
添加章节标题
点差法的基本原理
点差法是一种通 过将两个相交曲 线的交点坐标代 入方程,然后相 减来消去变量, 简化计算的方法。
点差法适用于解 决与中点、斜率 等有关的圆锥曲 线问题ቤተ መጻሕፍቲ ባይዱ尤其在 处理弦的斜率和 中点问题时非常 方便。
点差法的核心思想 是利用点差法公式 将两个交点的坐标 代入方程后相减, 得到一个关于斜率 的等式,从而解决 问题。
例谈圆锥曲线中的定比点差法
例谈圆锥曲线中的定比点差法胡贵平(甘肃省白银市第一中学ꎬ甘肃白银730900)摘㊀要:直线与圆锥曲线相交弦涉及定比分点问题ꎬ常规解法是把比例关系用坐标表示ꎬ计算量较大ꎬ如果涉及的定点并非中点ꎬ是否还能运用点差法呢?本文对定比点差法的应用进行了一些举例与拓展探究.关键词:圆锥曲线ꎻ定比ꎻ点差法中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)10-0007-05收稿日期:2023-01-05作者简介:胡贵平(1978-)ꎬ男ꎬ甘肃省天水人ꎬ本科ꎬ中学高级教师ꎬ从事中学数学教学研究.㊀㊀直线与曲线相交涉及中点弦问题ꎬ常用点差法ꎬ该法计算量小ꎬ模式化强ꎬ易于掌握ꎬ若相交弦涉及AMң=λMBң的定比分点问题时ꎬ也可以用点差法的升级版 定比点差法ꎬ解法快捷.1求直线方程例1㊀已知椭圆C:x2a2+y2b2=1(a>b>0)过点M(3ꎬ12)ꎬ且离心率为32.(1)求椭圆C的方程ꎻ(2)设点M在x轴上的射影为点Nꎬ过点N的直线l与椭圆C交于AꎬB两点ꎬ且NBң=-3NAңꎬ求直线l的方程.解析㊀(1)椭圆C的方程x24+y2=1ꎬ过程略.(2)设点A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ由题意得N(3ꎬ0).因为NBң=-3NAңꎬ所以(x2-3ꎬy2)=-3(x1-3ꎬy1).即3x1+x2=43ꎬ3y1+y2=0.因为点AꎬB在椭圆上ꎬ所以x214+y21=1ꎬx224+y22=1ꎬìîíïïïï即9 x214+9y21=9ꎬx224+y22=1ꎬìîíïïïï两式相减ꎬ得(3x1+x2)(3x1-x2)4+(3y1+y2)(3y1-y2)=8.整理ꎬ得3x1-x2=833.所以x1=1039ꎬx2=233ꎬy2=ʃ63.所以直线l的斜率k=y0x2-3=ʃ2.所以直线l的方程为y=ʃ2(x-3).2求最值例2㊀(2021年浙江)已知点P(0ꎬ1)ꎬ椭圆x247+y2=m(m>1)上两点AꎬB满足APң=2PBңꎬ则当m=时ꎬ点B横坐标的绝对值最大.解析㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ由P(0ꎬ1)ꎬAPң=2PBңꎬ可得-x1=2x2ꎬ1-y1=2(y2-1).即x1+2x2=0ꎬy1+2y2=3.因为点AꎬB在椭圆上ꎬ所以x214+y21=mꎬx224+y22=m.ìîíïïïï即x214+y21=mꎬ4x224+4y22=4m.ìîíïïïï两式相减ꎬ得x1+2x2()x1-2x2()4+y1+2y2()y1-2y2()=-3m.整理ꎬ得y1-2y2=-m.联立y1+2y2=3ꎬy1-2y2=-mꎬ{解得y1=3-m2ꎬy2=3+m4.所以m=x22+(3-m2)2.即x22=m-(3-m2)2=-m2+10m-94=-(m-5)2+164.所以m=5时ꎬx22有最大值4ꎬ即点B横坐标的绝对值最大.3求斜率例3㊀(2018年北京文)已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为63ꎬ焦距为22.斜率为k的直线l与椭圆M有两个不同的交点AꎬB.(1)求椭圆M的方程ꎻ(2)若k=1ꎬ求|AB|的最大值ꎻ(3)设P(-2ꎬ0)ꎬ直线PA与椭圆M的另一个交点为Cꎬ直线PB与椭圆M的另一个交点为D.若CꎬD和点Q(-74ꎬ12)共线ꎬ求k.解析㊀(1)椭圆M的方程为x23+y2=1.(2)|AB|的最大值为6ꎬ过程略.(3)设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬC(x3ꎬy3)ꎬD(x4ꎬy4)ꎬ设APң=λPCңꎬ得Px1+λx31+λꎬy1+λy31+λæèçöø÷=(-2ꎬ0).设BPң=μPDңꎬ得Px2+μx41+μꎬy2+μy41+μæèçöø÷=(-2ꎬ0).因为点AꎬC在椭圆上ꎬ所以x213+y21=1ꎬx233+y23=1.ìîíïïïï即x213+y21=1ꎬλ2x233+λ2y23=λ2.ìîíïïïï两式相减ꎬ得x1+λx3()x1-λx3()3+y1+λy3()y1-λy3()=1-λ2.即x1+λx3()x1-λx3()3(1+λ)(1-λ)+y1+λy3()y1-λy3()(1+λ)(1-λ)=1.即-2x1-λx3()3(1-λ)=1.所以x1-λx31-λ=-32.由x1-λx31-λ=-32ꎬx1+λx31+λ=-2ꎬìîíïïïï8解得x1=-λ4-74ꎬx3=-14λ-74.ìîíïïïï同理可得x2=-μ4-74ꎬx4=-14μ-74.ìîíïïïï故x1-x2=-14(λ-μ)ꎬ同时y3=y1-λꎬy4=y2-μ.ìîíïïïï若点CꎬD和点Q(-74ꎬ12)共线ꎬ则y3-14x3+74=y4-14x4+74.所以y1-λ-14-14λ=y2-μ-14-14μ.故y1-y2=-14(λ-μ).从而y1-y2x1-x2=1ꎬ即k=1.4求轨迹例4㊀设椭圆C:x2a2+y2b2=1(a>b>0)过点M(2ꎬ1)ꎬ离心率为22.(1)求椭圆C的方程ꎻ(2)当过点P(4ꎬ1)的动直线l与椭圆C相交于两不同点AꎬB时ꎬ在线段AB上取点Qꎬ满足APңPBң=AQңQBң=λꎬ证明:点Q的轨迹与λ无关.解析㊀(1)椭圆C的方程为x24+y22=1.(2)设点Q(xꎬy)ꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ由题设APңPBң=AQңQBң=λꎬ则λ>0ꎬλʂ1.又PꎬAꎬQꎬB四点共线ꎬ可得APң=-λPBңꎬAQң=λQBңꎬ于是4=x1-λx1-λꎬ1=y1-λy1-λꎬ①x=x1+λx21+λꎬy=y1+λy21+λ.②因为点AꎬB在椭圆上ꎬ所以x214+y212=1ꎬx224+y222=1.ìîíïïïï即x214+y212=1ꎬλ2x224+λ2y222=λ2.ìîíïïïï两式相减ꎬ得x1+λx2()x1-λx2()4+y1+λy2()y1-λy2()2=1-λ2.即14 x1+λx21+λ x1-λx21-λ+12 y1+λy21+λy1-λy21-λ=1ꎬ将①②分别代入上式ꎬ得x+12y=1.即2x+y-2=0.所以点Q(xꎬy)总在定直线2x+y-2=0上.即点Q的轨迹与λ无关.5求离心率例5㊀已知椭圆E:x2a2+y2b2=1(a>b>0)内有一定点P(1ꎬ1)ꎬ过点P的两条直线l1ꎬl2分别与椭圆E交于AꎬC和BꎬD两点ꎬ且满足APң=λPCңꎬBPң=λPDңꎬ若λ变化时ꎬ直线CD的斜率总为-14ꎬ则椭圆E的离心率为.解析㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬC(x3ꎬy3)ꎬ9D(x4ꎬy4)ꎬ由APң=λPCңꎬ即(1-x1ꎬ1-y1)=λ(x3-1ꎬy3-1).则x1+λx3=1+λꎬy1+λy3=1+λ.由BPң=λPDңꎬ同理可得x2+λx4=1+λꎬy2+λy4=1+λ.因为点AꎬC在椭圆上ꎬ所以x21a2+y21b2=1ꎬx23a2+y23b2=1.ìîíïïïï即x21a2+y21b2=1ꎬλ2x23a2+λ2y23b2=λ2.ìîíïïïï两式相减ꎬ得x1+λx3()x1-λx3()a2+y1+λy3()y1-λy3()b2=1-λ2.即1+λ()x1-λx3()a2+1+λ()y1-λy3()b2=1-λ2因为1+λʂ0ꎬ所以x1-λx3a2+y1-λy3b2=1-λ.③同理可得x2-λx4a2+y2-λy4b2=1-λ.④③-④ꎬ得1a2(x1-x2)-λ(x3-x4)[]+1b2(y1-y2)-λ(y3-y4)[]=0.⑤由APң=λPCңꎬBPң=λPDңꎬ可得ABʊCD.所以kAB=kCD=-14.所以y1-y2x1-x2=y3-y4x3-x4=-14.代入⑤ꎬ得(1a2-14b2)(x1-x2)-λ(x3-x4)[]=0.若(x1-x2)-λ(x3-x4)=0ꎬ则x1-λx3=x2-λx4.又由x1+λx3=1+λꎬx2+λx4=1+λꎬ知x1+λx3=x2+λx4.两式相加ꎬ得x1=x2ꎬ这与kAB=-14矛盾.从而1a2-14b2=0ꎬ即a2=4b2.所以椭圆的离心率e=ca=1-b2a2=32.6求两点距离例6㊀在平面直角坐标系xOy中ꎬ抛物线C的顶点在原点ꎬ经过点A(2ꎬ2)ꎬ其焦点F在x轴上.(1)求抛物线C的标准方程ꎻ(2)求过点Fꎬ且与直线OA垂直的直线的方程ꎻ(3)如图1ꎬ设过点M(mꎬ0)(m>0)的直线交抛物线C于DꎬE两点ꎬME=2DMꎬ记D和E两点间的距离为f(m)ꎬ求f(m)关于m的表达式.图1解析㊀(1)抛物线C的标准方程为y2=2x.(2)过点Fꎬ且与直线OA垂直的直线的方程为x+y-12=0ꎬ过程略.(3)设点D(x1ꎬy1)ꎬE(x2ꎬy2)ꎬ由题意得M(mꎬ0)ꎬEMң=2MDң.所以(m-x2ꎬ-y2)=2(x1-mꎬy1).即2x1+x2=3mꎬ2y1+y2=0.因为点DꎬE在抛物线上ꎬ所以y21=2x1ꎬy22=2x2.{即4y21=4ˑ2x1ꎬy22=2x2.{两式相减ꎬ得(2y1+y2)(2y1-y2)=2(4x1-x2).所以4x1-x2=0.联立2x1+x2=3mꎬ4x1-x2=0ꎬ{解得x1=m2ꎬx2=2m.01因此ꎬD和E两点间的距离为f(m)=(x1-x2)2+(y1-y2)2=(x1-x2)2+(y1+2y1)2=(m2-2m)2+9y21=94m2+9m=32m2+4m(m>0).7拓展探究若AMң=λMBң且ANң=-λNBңꎬ则称MꎬN调和分割AꎬBꎬ根据定义ꎬ那么AꎬB也调和分割MꎬN.定比点差法在圆锥曲线中的结论:结论1㊀设AꎬB为椭圆x2a2+y2b2=1(a>0ꎬb>0)上的两点ꎬ若存在PꎬQ两点ꎬ满足APң=λPBңꎬAQң=-λQBңꎬ一定有xPxQa2+yPyQb2=1.证明㊀㊀若Ax1ꎬy1()ꎬBx2ꎬy2()ꎬ由APң=λPBңꎬ得Px1+λx21+λꎬy1+λy21+λæèçöø÷.由AQң=-λQBңꎬ得Qx1-λx21-λꎬy1-λy21-λæèçöø÷.因为点AꎬB在椭圆上ꎬ所以x21a2+y21b2=1ꎬx22a2+y22b2=1.ìîíïïïï即x21a2+y21b2=1ꎬλ2x22a2+λ2y22b2=λ2.ìîíïïïï两式相减ꎬ得x1+λx2()x1-λx2()a2+y1+λy2()y1-λy2()b2=1-λ2.即1a2 x1+λx21+λ x1-λx21-λ+1b2 y1+λy21+λy1-λy21-λ=1.所以xPxQa2+yPyQb2=1.结论2㊀㊀设AꎬB为双曲线x2a2-y2b2=1(a>0ꎬb>0)上的两点ꎬ若存在PꎬQ两点ꎬ满足APң=λPBңꎬAQң=-λQBңꎬ一定有xPxQa2-yPyQb2=1.结论3㊀设AꎬB为抛物线y2=2px上的两点.若存在PꎬQ两点ꎬ满足APң=λPBңꎬAQң=-λQBңꎬ一定有yPyQ=p(xP+xQ).证明㊀设Ax1ꎬy1()ꎬBx2ꎬy2()ꎬ由APң=λPBңꎬ得Px1+λx21+λꎬy1+λy21+λæèçöø÷.由AQң=-λQBңꎬ得Qx1-λx21-λꎬy1-λy21-λæèçöø÷.因为点AꎬB在抛物线上ꎬ所以y21=2px1ꎬy22=2px2.{即y21=2px1ꎬλ2y22=2λ2px2.{两式相减ꎬ得y21-λ2y22=p(x1+x1-λ2x2-λ2x2).即(y1+λy2)(y1-λy2)=p(x1+λx2+x1-λx2+λx1-λ2x2-λx1-λ2x2).所以(y1+λy2)(y1-λy2)(1+λ)(1-λ)=p(x1+λx2)(1-λ)(1-λ)(1+λ)+p(x1-λx2)(1+λ)(1-λ)(1+λ).所以yPyQ=p(xP+xQ).参考文献:[1]刘海涛.例谈 定比点差法 在解析几何问题中的应用[J].中学数学研究ꎬ2021(07):25-27.[责任编辑:李㊀璟]11。
圆锥曲线技巧--点差法
x12 4 x22
4
y12 2 y22 2
1 1
两式相减得
x12
x22 4
=
y2
2
y2
,即
y1 y2 x1 x2
1
=
2
×
x1 y1
x2 y2
.
又线段
AB
的中点坐标是
1 2
,
1
,因此
x1+x2=1,y1+y2=(-1)×2=-2,
所以
y1 x1
y2 x2
=-
1 4
,即直线
AB
技巧 1 点差法在椭圆在的应用
【例 1】(1)(2020·全国高三专题练习)直线 y kx 1与椭圆 x2 y2 1相交于 A, B 两点,若 AB 中 4
点的横坐标为1,则 k =( )
A. 2
B. 1
C. 1 2
D.1
(2)2.(2020·高密市教育科学研究院高三其他模拟)已知椭圆
G
则 x1 x2 2x0 , y1 y2 2 y0 .
因为 A , B 两点在椭圆上,所以 x12
y12 4
1, x22
y22 4
1.
两式相减得:
x12
x22
1 4
y12 y22
0,
x1
x2
x1
x2
1 4
y1
y2
y1
y2
0
,
2 x0
x1
x2
1 2
y0
y1
y2
0,2
1 2
y0 y1 x0 x1
(3).(2020·黑龙江哈尔滨市·哈九中高三三模(文))已知斜率为 k1
k1 0
高考数学中圆锥曲线重要结论的最全总结概要
高考数学圆锥曲线重要结论一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。
第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0<e<1)的点的轨迹,定点叫椭圆的焦点,定直线叫椭圆的准线;引申定义:⒈若一个圆C1内含于另一个圆C2,则与大圆内切与小圆外切的圆的圆心的轨迹为一椭圆,两圆的圆心为焦点,其长轴长为两圆半径之和;⒉在一个圆内有一点,则过该点且与已知圆相切的圆的圆心的点的轨迹为一椭圆,且其长轴长为已知圆的半径。
⒊过两点的两条直线的斜率之积为一负常数m的点的轨迹为一椭圆(两点除外)。
两定点为椭圆的顶点,两定点间的距离为长轴长。
(-1<m<0时,焦点在x轴上;当m<-1时,焦点在y轴上)例:过点(-8,0),(8,0)的两直线11,12的斜率之积为-3/8,求其交点的轨迹。
⒋将圆的横坐标(或纵坐标)拉伸或缩短为原来的m倍,该圆变成椭圆;⒌连接圆内一定点与圆上任一点的线段的垂直平分线与圆上该点到圆心的连线的交点的轨迹为一椭圆。
方椭圆的长半轴与圆的半径长相等;⒍两个同心圆较大圆上任一点与圆心的连线与小圆交于一点,从大圆上该点作x轴的垂线,则过小圆交点向该垂线作垂线,其垂足的点的轨迹为椭圆。
对应练习:⑴在椭圆上任一点M与焦点F1F2构成△MF1F2,I为该三角形的内心,连MI交长轴于N点,则MI/IN的值为多少?⑤若过点P作∠F1PF2的平分线交过点F1作其平分线的垂线于M,交PF2于N点,则有PF1=PN,所以有⑶在椭圆上任一点P求:·的最大值(a2-c2),PF1×PF2的最大值a2,点P到对应顶点的最短距离为a-c.⑷若在椭圆内部有一点M,要求作一点P使该点到右焦点F的距离与到该定点的距离和最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于圆锥曲线中点差法的总结概括与推广
2018届江苏省淮州中学高三某学生
圆锥曲线中的点差法应用广泛,我在读了了很多文章后,发现其灵活巧妙,尤其是圆锥曲线中的中点弦问题,而与此同时,我想就其中一个定理提出自己的总结发现,当然这定理不是我自创,因而我只是加以总结提炼,还有就是这篇文章是我所写,绝无抄袭。
下面直切正题。
我们先来看这样几个例子。
1.在任意圆中,如⊙A:x2+y2=r2(r>0)中有一条不经过圆心的直线l与⊙A交于M、N两点,连接AM、AN、MN,取MN中点P,连接AP,在初中时我们便知道垂径定理的应用,所以我们不难得出MN⊥AP,即k MN∙k AP=-1
如图所示,这是在圆中的例子我们先放在这,注意我说了直线不过圆心,否则不存在直线AP了。
x²y²。