(完整word版)整式的乘除提高练习题
(完整版)整式的乘除培优(可编辑修改word版)
![(完整版)整式的乘除培优(可编辑修改word版)](https://img.taocdn.com/s3/m/69a1099f690203d8ce2f0066f5335a8102d2660d.png)
(完整版)整式的乘除培优(可编辑修改word版)整式的乘除培优⼀、选择题:1﹒已知x a=2,x b=3,则x3a+2b 等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y23、已知M=20162,N=2015×2017,则M 与N 的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为()A﹒3 B﹒2 C﹒1 D﹒-15、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平⽅根是()A﹒4 B﹒±4C﹒±6D﹒166、计算-(a -b)4 (b -a)3 的结果为()A、-(a -b)7B、-(a +b)7C、(a-b)7D、(b-a)77、已知a=8131,b=2741,c=961,则a,b,c 的⼤⼩关系是()B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a8、图①是⼀个边长为(m+n)的正⽅形,⼩颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式⼦是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n29、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()=90 pA.4 B.2 C.1 D.810、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8 D.1611、已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1512、在求1+6+62+63+64+65+66+67+68+69 的值时,⼩林发现:从第⼆个加数起每⼀个加数都是前⼀个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的⼩林想:如果把“6”换成字母“a”(a≠0 且a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是()A. B. C. D.a2014﹣1⼆、填空:1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=.3. 已知a+b=8,a2b2=4,则1(a2+b2)-ab=. 2999 p999 , q =119,那么9q (填>,<或=)5.已知10a= 20, 10b=1,则3a÷ 3b= 56.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=)7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n=4. 若225 4 3 2 1 3 1 若关于 x 的多项式 x 2 + nx + 9 是完全平⽅式,则 n=8.计算: 20162 - 2015? 2016 =9. 计算: ?1- 1 ??1- 1 ? ?1- 1 ??1- 1 ? =? 32 ? 992 1002 ? 10.计算: (2 +1)(22 +1)(24 +1)(22n+1)=11、已知:(x +1)5 = a x 5 + a x 4 + a x 3 + a x 2+ a x + a ,则 a + a + a =12、已知: x 2 - (m - 2)x + 36 是完全平⽅式,则 m=13、已知:x 2 + y 2- 6 y = 2x - 10 ,则 x - y =14、已知:13x 2 - 6xy + y 2 - 4x +1 = 0 ,则(x + y )2017 x 2016= 15、若 P = a 2 + 2b 2 + 2a + 4b + 2017 ,则 P 的最⼩值是=16、已知 a =1 2018 x2 + 2018,b = 1 2018 x 2 + 2017,c = 1 2018x 2+ 2016 ,则 a 2 + b 2 + c 2 - ab - bc - ac 的值为17、已知(2016 - a )(2018 - a ) = 2017 ,则(2016 - a )2 + (2018 - a )2 =x - 1 18、已知 x x 2 5,则 x 4+ 1 =19、已知: x 2 - 3x - 1 = 0 ,则 x 2 + 1x2三、解答题:=, x 4 +1=x41、(x 2-2x -1)(x 2+2x -1);②(2m+n ﹣p )(2m ﹣n+p )2、形如 a b c的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为da c = ad - bc ,⽐如 2b d 1 5= 2 ? 3 -1? 5 = 1,请按照上述法则计算 30 5 =-2ab -3ab2a2b(-ab)2的结果。
(完整版)整式的乘除提高练习题(精准校对-课后练习)
![(完整版)整式的乘除提高练习题(精准校对-课后练习)](https://img.taocdn.com/s3/m/b5a36f13590216fc700abb68a98271fe910eaf1d.png)
(完整版)整式的乘除提高练习题(精准校对-课后练习)整式的乘除提高练习题一、填空1.若2a +3b=3,则9a ·27b 的值为_____________.2.若x 3=-8a 9b 6,则x=______________.3.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.4.用科学记数法表示0.000 507,应记作___________.5.a 2+b 2+________=(a+b )2 a 2+b 2+_______=(a -b )2(a -b )2+______=(a+b )26.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)7.设是一个完全平方式,则=_______。
8.已知,那么=_______。
9.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.二.计算:(本题8分)(1)(2)(3))(2x 2y -3xy 2)-(6x 2y -3xy 2)(4)(-32ax 4y 3)÷(-65ax 2y 2)·8a 2y(5)(45a 3-16a 2b+3a )÷(-13a )(6)(23x 2y -6xy )·(12xy )(7)(x -2)(x+2)-(x+1)(x -3)(8)(1-3y )(1+3y )(1+9y 2)12142++mx x m 51=+x x 221xx +()()02201214.3211π--??? ??-+--()()()()233232222x y x xy y x ÷-+-?(9)(ab+1)2-(ab -1)2 (10)(998)2 (11)197×203(12) a 3÷a ·a 2; (13)(-2a )3-(-a )·(3a )2(14)t 8÷(t 2·t 5);(15)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.(16)0.252008×(-4)2009 (17)(a -b) 2·(a -b) 10·(b -a );(18)2(a 4) 3+(a 3) 2·(a 2) 3+a 2a 10 (19)x 3n+4÷(-x n+12) 2÷x n .(20)2202211(2)()()[(2)]22----+---+--;(21)32236222()()()()x x x x x ÷+÷-÷-(22) 333)31()32()9(?-?-;(23) 19981999)532()135(?-.(24)21012()1(3)3π--+---- (25)[5xy 2(x 2-3xy)+(3x 2y 2)3]÷(5xy)2(26)(2m+1)(2m-1)—m ·(3m-2) (27)10002-998×1002 (简便运算)(28) (-2y 3)2+(-4y 2)3-(-2y)2·(-3y 2)2 (29)(3y+2)(y-4)-3(y-2)(y-3)三(本题8分)先化简,再求值:(1),其中,。
(完整)整式的乘除拔高题.docx
![(完整)整式的乘除拔高题.docx](https://img.taocdn.com/s3/m/27f1429d4b73f242326c5f44.png)
1.算:( 1)( 2+1)( 22+1 )(24+1)⋯(22n+1) +1( n 是正整数);( 2)( 3+1)( 32+1 )(34+1)⋯(32008+1)-34016.22.利用平方差公式算:2009 ×2007 -20082.( 1)利用平方差公式算:22007.2008200720062007 2( 2)利用平方差公式算:.2008 200613.解方程: x( x+2 )+( 2x+1 )( 2x- 1) =5( x2+3 ).1.(律探究)已知x≠1,算( 1+x)( 1- x) =1 - x2,(1- x)( 1+x+x 2) =1- x3,(1- x)( ?1+x+x 2+x 3)=1- x4.(1)察以上各式并猜想:( 1- x)( 1+x+x 2+⋯ +x n) =______.( n 正整数)(2)根据你的猜想算:①(1-2)(1+2+22+2 3+24+25)=______ .② 2+2 2+23+⋯ +2n=______ (n 正整数).③( x- 1)( x99+x 98+x 97+⋯ +x2+x+1 ) =_______ .(3)通以上律你行下面的探索:①( a-b)( a+b)=_______.②( a- b)( a2+ab+b2) =______.③( a- b)( a3+a2b+ab2+b3) =______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m, n 和数字 4.221、已知 m+n -6m+10n+34=0,求 m+n的值2、已知2246130、都是有理数,求yx y x y, x y x 的值。
3.已知(a b)216, ab 4, 求a2b2与 (a b) 2的值。
3练一练1 .已知(a b) 5, ab 3 求 (a b)2与 3(a2b2 ) 的值。
2 .已知a b 6, a b 4 求ab与 a2b2的值。
3、已知a b 4, a2b2 4 求 a2b 2与 (a b) 2的值。
(完整版)整式的乘除提高练习(最新整理)
![(完整版)整式的乘除提高练习(最新整理)](https://img.taocdn.com/s3/m/f10361ac48d7c1c709a14537.png)
《整式的乘除》技巧性习题训练一、逆用幂的运算性质1. .2005200440.25⨯=2.( )2002×(1.5)2003÷(-1)2004=________。
233.若,则 .23n x =6n x =4.已知:,求、的值。
2,3==n m x x n m x 23+n m x 23-5.已知:,,则=________。
a m =2b n =32n m 1032+二、式子变形求值1.若,,则 .10m n +=24mn =22m n +=2.已知,,求的值.9ab =3a b -=-223a ab b ++3.已知,求的值。
0132=+-x x 221x x +4.已知:,则= .()()212-=---y x x x xy y x -+2225.的结果为 .24(21)(21)(21)+++6.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________。
7.若则210,n n +-=3222008_______.n n ++=8.已知,求的值。
099052=-+x x 1019985623+-+x x x9.已知,则代数式的值是_______________。
0258622=+--+b a b a ba ab -10.已知:,则_________,_________。
0106222=+++-y y x x =x =y 11.已知:,,,20072008+=x a 20082008+=x b 20092008+=x c 求的值。
ac bc ab c b a ---++222三、式子变形判断三角形的形状1.已知:、、是三角形的三边,且满足,则a b c 0222=---++ac bc ab c b a 该三角形的形状是_________________________.2.若三角形的三边长分别为、、,满足,则这个三a b c 03222=-+-b c b c a b a 角形是___________________。
(完整word版)整式的乘除测试题(3套)及答案
![(完整word版)整式的乘除测试题(3套)及答案](https://img.taocdn.com/s3/m/ace9e460312b3169a451a47a.png)
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
完整word版整式的乘除提高练习
![完整word版整式的乘除提高练习](https://img.taocdn.com/s3/m/4b3376a9b7360b4c2f3f6479.png)
《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。
【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。
(完整word版)整式的乘除测试题(3套)及答案
![(完整word版)整式的乘除测试题(3套)及答案](https://img.taocdn.com/s3/m/d0cd3beea6c30c2258019ec5.png)
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5 D 。
62.下列计算正确的是 ( ) A 。
8421262x x x =⋅ B 。
()()m mmy y y =÷34C. ()222y x y x +=+ D. 3422=-a a3。
计算()()b a b a +-+的结果是 ( )A 。
22a b -B 。
22b a - C. 222b ab a +-- D 。
222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( )A 。
3252--a a B. 382--a a C 。
532---a a D. 582+-a a5。
下列结果正确的是 ( )A 。
91312-=⎪⎭⎫ ⎝⎛- B 。
0590=⨯ C 。
()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10 B 。
52 C. 20 D. 32 7。
要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15 B 。
xy 15± C 。
xy 30 D 。
xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有 个,多项式有 个。
2。
单项式z y x 425-的系数是 ,次数是 。
3。
多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
专题训练——整式的乘除(提高测试)
![专题训练——整式的乘除(提高测试)](https://img.taocdn.com/s3/m/f1b3d00f7c1cfad6185fa750.png)
专题训练——整式的乘除(一)填空题(每小题2分,共计24分)1.a 6·a 2÷(-a 2)3=________.2.( )2=a 6b 4n -2.3. ______·x m -1=x m +n +1.4.(2x 2-4x -10xy )÷( )=21x -1-25y . 5.x 2n -x n +________=( )2.6.若3m ·3n =1,则m +n =_________.7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =_______.8.若x +y =8,x 2y 2=4,则x 2+y 2=_________.9.若3x =a ,3y =b ,则3x -y =_________.10.[3(a +b )2-a -b ]÷(a +b )=_________.11.若2×3×9m =2×311,则m =___________.12.代数式4x 2+3mx +9是完全平方式则m =___________.(二)选择题(每小题2分,共计16分)13.计算(-a )3·(a 2)3·(-a )2的结果正确的是……………………………( )(A )a 11 (B )a 11 (C )-a 10 (D)a 1314.下列计算正确的是………………………………………………………………( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2(C)x 10÷(x 7÷x 2)=x 5 (D)x 4n ÷x 2n ·x 2n =115.4m ·4n 的结果是……………………………………………………………………( )(A )22(m +n ) (B)16mn (C )4mn (D )16m +n16.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………( )(A )5 (B )25 (C )25 (D )10 17.下列算式中,正确的是…………………………………………………………( ) (A )(a 2b 3)5÷(ab 2)10=ab 5 (B)(31)-2=231=91 (C)(0。
整式的乘除提高练习题
![整式的乘除提高练习题](https://img.taocdn.com/s3/m/b7b8dbf3a300a6c30d229fc5.png)
整式的乘除之阳早格格创做例1:已知2017)2018()2016(=-⋅-a a ,供22)2018()2016(a a -+-的值. 剖析:类比“2=⋅n m ,4=-n m ,供22n m +的值”那类题的解法. 训练:1、已知7)(2=+b a ,3)(2=-b a ,则=++ab b a 22.2、已知2522=+y x ,7=+y x 且y x >,则=-y x .3、已知32=-a a ,32=-b b 且b a ≠,则=-b a .例2:已知201738+=x a ,201838+=x b ,201938+=x c ,供bc ac ab c b a ---++222的值.训练:1、若1232=++c b a ,且bc ac ab c b a ++=++222,则=++32c b a .2、已知014642222=+-+-++z y x z y x ,则=--2018)(z y x .3、假如x 没有为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小闭系是.4、估计2222222210099654321-++-+-+- =.例3:若多项式1634-++nx mx x 能被)2)(1(--x x 整除,供m 、n 的值.训练:1、若3223+-kx x 被12+x 除后余2,则=k .2、若多项式b x ax x x +++-73224能被22-+x x 整除,则a=,b=. 三、1、瞅察下列算式:①1432312-=-=-⨯②1983422-=-=-⨯③116154532-=-=-⨯④……(1)请您按以上顺序写出第4个算式;(2)把那个顺序用含字母的式子表示出去;(3)您认为(2)中所写的式子一定创制吗?并证明缘由.2、如果一个正整数能表示为二个连绝奇数的仄圆好,那么称那个正整数为“神秘数”.如:22024-=,222412-=,224620-=,果此4、12、20皆是“神秘数.(1)28战2012那二个数是“神秘数”吗?为什么?(2)设二个连绝奇数为22+k 战k 2(其中k 与非背整数),由那二个连绝奇数构制的神秘数是4的倍数吗?为什么?3、如表是由从1启初的连绝自然数组成,瞅察顺序并完毕各题的解问.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36(1)表中第8止的末尾一个数是,它是自然数的仄圆,第8止同有个数.(2)用含n 的代数式表示:第n 止的第一个数是,末尾一个数是,第n 止同有个数;(3)供第n 止各数之战.。
整式的乘除提高练习题
![整式的乘除提高练习题](https://img.taocdn.com/s3/m/3db313f6cc1755270622083a.png)
整式的乘除例1:已知2017)2018()2016(=-⋅-a a ,求22)2018()2016(a a -+-的值. 解析:类比“2=⋅n m ,4=-n m ,求22n m +的值”这类题的解法. 演习:1.已知7)(2=+b a ,3)(2=-b a ,则=++ab b a 22.2.已知2522=+y x ,7=+y x 且y x >,则=-y x .3.已知32=-a a ,32=-b b 且b a ≠,则=-b a .例2:已知201738+=x a ,201838+=x b ,201938+=x c ,求bc ac ab c b a ---++222的值. 演习:1.若1232=++c b a ,且bc ac ab c b a ++=++222,则=++32c b a .2.已知014642222=+-+-++z y x z y x ,则=--2018)(z y x .3.若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小关系是.4.盘算2222222210099654321-++-+-+- =.例3:若多项式1634-++nx mx x 能被)2)(1(--x x 整除,求m.n 的值. 演习:1.若3223+-kx x 被12+x 除后余2,则=k .2.若多项式b x ax x x +++-73224能被22-+x x 整除,则a=,b=. 三.1.不雅察下列算式:①1432312-=-=-⨯②1983422-=-=-⨯③116154532-=-=-⨯④……(1)请你按以上纪律写出第4个算式;(2)把这个纪律用含字母的式子暗示出来;(3)你以为(2)中所写的式子必定成立吗?并解释来由.2.假如一个正整数能暗示为两个持续偶数的平方差,那么称这个正整数为“神秘数”.如:22024-=,222412-=,224620-=,是以4.12.20都是“神秘数.(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个持续偶数为22+k 和k 2(个中k 取非负整数),由这两个持续偶数结构的神秘数是4的倍数吗?为什么?3.如表是由从1开端的持续天然数构成,不雅察纪律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36(1)表中第8行的最后一个数是,它是天然数的平方,第8行共有个数.(2)用含n 的代数式暗示:第n 行的第一个数是,最后一个数是 ,第n 行共有个数;(3)求第n 行各数之和.。
(完整word版)《整式的乘除》提高练习
![(完整word版)《整式的乘除》提高练习](https://img.taocdn.com/s3/m/a8789f88b52acfc788ebc942.png)
《整式的乘除》拔高题专项练习【题型1】1、若0352=-+y x ,则y x 324⋅的值为 .2、如果3147927381m m m +++⨯÷=,那么m =_________.【变式练习】1、若5x -3y -2=0,则531010x y ÷=_________.2、若8127931122=÷⋅++a a ,求a 的值.3、如果2221682=⨯⨯x x ,则x 的值为 .【题型2】1、若23103,10210m n m n +==,则的值为 .2、若()4323nn a a ,则=的值为 .3、已知()nn n xy y x 245,则,=== .4、若3m =6,9n =2,求32m-4n +1的值。
【变式练习】1、已知n m n m 2324232-==,则,的值为 .2、若y x x x 2254,32+==,则的值为 .3、己知2n =a ,3n =b ,则6n =_____________4、若84,32==n m ,则1232-+n m = .【题型3】1、若x 2m +1÷x 2=x 5,则m 的值为 ( )A .0B .1C .2D .3 2、已知()9322=x ,则x = .【变式练习】1、求下列各式中的x : ①321(0,1)x x aa a a ++=≠≠;②62(0,1)x x p p p p p ⋅=≠≠.2、已知93222=⋅x ,则x 的值是 .【题型4】1、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 .【变式练习】1. 当k = 时,多项式8313322+---xy y kxy x 中不含xy 项.2、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q .【题型5】1、若3622=+=-y x y x ,,则y x -= .2、已知()()71122=-=+b a b a ,,则ab 的值是 .3、已知2235b a ab b a +==+,则,的值为 .4、已知2131⎪⎭⎫ ⎝⎛-=+x x x x ,则的值为 .5、-+2)23(y x =2)23(y x -.6、若()232b a b a ab -=+=,则,的值为 .【变式练习】1、已知()()xy y x y x ,则,5922=-=+的值为 .2.若10m n +=,24mn =,则22m n += .3、若22110y xy x xy y x +--==+,则,的值为 .4、若10,8==-xy y x ,则22y x += .5、若x x x 204412,则=+-的值为 .6.已知11=-a a ,则221aa += ;441a a += .【题型6】1、计算()()2222b ab a bab a +-++的结果是 .【变式练习】1、计算()()123123-++-y x y x 的结果为 .【题型7】1、若942++mx x 是一个完全平方式,则m 的值为 .2、若代数式5021422++-+y x y x 的值为0,则=x ,=y .【变式练习】1、已知22124m x x +-是一个完全平方式,则m 的值为 .2、若16)3(22+-+m x 是关于x 的完全平方式,则________=m .3、若6242322-++=+n mn m n m ,则的值为 .4、若016822=+-+-n n m ,则______________,==n m 。
(完整word)《整式的乘除》提高测试题加答案
![(完整word)《整式的乘除》提高测试题加答案](https://img.taocdn.com/s3/m/7f12ca87b52acfc788ebc958.png)
整式的乘除 提高测试(二)选择题(每小题2分,共计16分)13.计算(-a )3·(a 2)3·(-a )2的结果正确的是……………………………( )(A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2(C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =115.4m ·4n 的结果是……………………………………………………………………() (A )22(m +n ) (B )16mn (C )4mn (D )16m +n16.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………() (A )5 (B )25(C )25 (D )1017.下列算式中,正确的是………………………………………………………………() (A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91(C )(0.00001)0=(9999)0 (D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………() (A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题5分,共10分)23.9972-1001×999.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.(五)解答题(每小题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x 的值.24.已知(a -1)(b -2)-a (b -3)=3,求代数式222b a -ab 的值.25.已知x 2+x -1=0,求x 3+2x 2+3的值.26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题5分,共10分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1=10002+6000+9-10002+.【答案】-5990.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值. 【提示】用平方差公式化简,原式=(1-21)(1+21)(1-31)(1+31)…(1-91)(1+91)(1-101)(1+101)=21·23·32·34·43…·89·910·1011=21·1·1·1·…·1011. 【答案】2011. (五)解答题(每小题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x的值. 【提示】x 2+21x =(x +x 1)2-2=2,x 4+41x =(x 2+21x )2-2=2.【答案】2,2. 24.【答案】由已知得a -b =1,原式=2)(2b a -=21,或用a =b +1代入求值. 25.已知x 2+x -1=0,求x 3+2x 2+3的值.【答案】4.【提示】将x 2+x -1=0变形为(1)x 2+x =1,(2)x 2=1-x ,将x 3+2x 2+3凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3项系数应为零,得⎩⎨⎧=--=-.03202p q p ∴ p =2,q =7.。
(完整版)整式的乘除测试题(提高)
![(完整版)整式的乘除测试题(提高)](https://img.taocdn.com/s3/m/ce005c6f33d4b14e84246840.png)
数学幂的运算测试卷(提高卷)一、选择题(每题3分,共15分)1.下列各式中(n 为正整数),错误的有 ( )①a n +a n =2 a 2n ;②a n ·a n =2a 2n ;③a n +a n = a 2n ;④a n ·a n =a 2nA .4个B .3个C .2个D .1个2.下列计算错误的是 ( )A .(-a )2·(-a )=-a 3B .(xy 2) 2=x 2y 4C .a 7÷a 7=1D .2a 4·3a 2=6a 43.x 15÷x 3等于 ( )A .x 5B .x 45C .x 12D .x 184.计算2009201220111-2332)()()(??的结果是 ( )A .23 B .32 C .-23 D .-32二、填空题(每题3分,共21分)6.计算:a 2·a ·a 3 =___________;(x 2) 3÷(x ·x 2) 2=__________.7.计算:[(-n 3)] 2=__________;92×9×81-310=___________.8.若2a +3b=3,则9a ·27b 的值为_____________.9.若x 3=-8a 9b 6,则x=______________.10.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.11.用科学记数法表示0.000 507,应记作___________.二、解答题(共64分)13.(本题满分12分)计算:(1) a 3÷a ·a 2; (2)(-2a )3-(-a )·(3a )2(3)t 8÷(t 2·t 5); (4)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.14.(本题满分16分)计算:(1)0.252008×(-4)2009 (2)(a -b) 2·(a -b) 10·(b -a );(3)2(a 4)3+(a 3) 2·(a 2) 3+a 2a 10 (4)x3n+4÷(-x n+12) 2÷x n .15.(本题满分16分)计算:(1).2202211(2)()()[(2)]22;(2)32236222()()()()x x x x x(3)333)31()32()9(;(4)19981999)532()135(.17.(本题满分4分)一般地,我们说地震的震级为10级,是指地震的强度是1010,地震的震级为8级,是指地震的强度是108.1992年4月,荷兰发生了5级地震,其后12天加利福尼亚发生了7级地震.问加利福尼亚的地震强度是荷兰地震强度的多少倍?18.(本题满分6分)已知5m =2,5n =4,求52m -n 和25m+n 的值.19.(本题满分4分)观察、分析、猜想并对猜想的正确性予以说明.1×2×3×4+l =52 2×3×4×5+1=112 3×4×5×6+1=1924×5×6×7+1=292 n(n+1)(n+2)(n+3)+1=__________(n 为整数).。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
![难点突破“整式乘除(提高)”压轴题50道(含详细解析)](https://img.taocdn.com/s3/m/91d21966fc4ffe473268ab36.png)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+;33312336++=,而2(123)36++=,3332123(123)∴++=++;33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= .根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.难点突破“整式乘除(提高)”压轴题50道(含详细解析)参考答案与试题解析一.选择题(共1小题)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 【解答】解:令23201215555S =++++⋯+,则2320122013555555S =+++⋯++,2013515S S -=-+,2013451S =-, 则2013514S -=. 故选:D .二.填空题(共6小题)2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 510 .【解答】解:222122015(1)(1)(1)1510m m m -+-+⋯+-=,1m ,2m ,⋯,2015m 是从0,1,2这三个数中取值的一列数,1m ∴,2m ,⋯,2015m 中为1的个数是20151510505-=,1220151525m m m ++⋯+=,2∴的个数为(1525505)2510-÷=个.故答案为:510.3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 1- . 【解答】解:a bad bcc d=-, ∴原式(1)(23)2(1)3x x x x x =+---=-,2440x x -+=,2(2)0x ∴-=,解得2x =,∴原式341=-=-.4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 2或0 .【解答】解:2()(2)(2)2x m x x m x m +-=-+-+x m +与2x -的乘积是一个关于x 的二次二项式,20m ∴-=或20m =,解得2m =或0.故答案为:2或0.5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --= 2【解答】解:2222(20172018)[(2017)(2018)]15(2017)(2018)222a a a a a a -+---+----=-=-=. 故答案是:2.6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= 12017-. 【解答】解:6192x =,32192y =,6192326x ∴==⨯,32192326y ==⨯,1632x -∴=,1326y -=,11(6)6x y --∴=,(1)(1)1x y ∴--=,(1)(1)211(2017)(2017)2017x y ----∴-=-=- 7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= 49; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)【解答】解:(1)h (1)23=,()()()h m n h m h n +=, h ∴(2)224(11)339h =+=⨯=; (2)h (1)(0)k k =≠,()()()h m n h m h n +=,20172017()(2017)n n h n h k k k +∴==. 故答案为:49;2017n k +. 三.解答题(共43小题)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= 9025 ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.【解答】解:(1)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯, 295910100259025∴=⨯⨯+=.(2)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯,2(105)(1)10025100(1)25a a a a a ∴+=⨯+⨯+=++.(3)①219519201002538025=⨯⨯+=.②8981⨯ (854)(854)=+⨯- 22854=-891002516=⨯⨯+- 72002516=+- 7209=故答案为:9025、100(1)25a a ++. 9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数; (2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).【解答】解:(1)当1n =时,多项式1()a b +的展开式是一次二项式,此时第三项的系数为:1002⨯=, 当2n =时,多项式2()a b +的展开式是二次三项式,此时第三项的系数为:2112⨯=, 当3n =时,多项式3()a b +的展开式是三次四项式,此时第三项的系数为:3232⨯=, 当4n =时,多项式4()a b +的展开式是四次五项式,此时第三项的系数为:4362⨯=, ⋯∴多项式()n a b +的展开式是一个n 次1n +项式,第三项的系数为:(1)2n n -;(2)预测一下多项式()n a b +展开式的各项系数之和为:2n ;(3)当1n =时,多项式1()a b +展开式的各项系数之和为:11122+==, 当2n =时,多项式2()a b +展开式的各项系数之和为:212142++==, 当3n =时,多项式3()a b +展开式的各项系数之和为:3133182+++==, 当4n =时,多项式4()a b +展开式的各项系数之和为:414641162++++==,⋯∴多项式()n a b +展开式的各项系数之和:2n S =.10.对于任何实数,我们规定符号a cb d的意义是:a c ad bcb d=-.按照这个规定请你计算:当2310x x -+=时,1231x x xx +--的值.【解答】解:13(1)(1)3(2)21x xx x x x x x +=+-----,22136x x x =--+, 2261x x =-+-,2310x x -+=, 231x x ∴-=-,∴原式22(3)1211x x =---=-=.11.根据以下10个乘积,回答问题:1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯; 1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-; 222020200⨯=- ⋯(4分)例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-. (或221129(209)(209)209⨯=-+=-(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯(3)①若40a b +=,a ,b 是自然数,则220400ab =. ②若40a b +=,则220400ab =. ⋯(8分)③若a b m +=,a ,b 是自然数,则2()2mab .④若a b m +=,则2()2mab .⑤若a ,b 的和为定值,则ab 的最大值为2()2a b +. ⑥若11223340n n a b a b a b a b +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⋯(10分) ⑦若112233n n a b a b a b a b m +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⑧若a b m +=,a ,b 差的绝对值越大,则它们的积就越小.说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分); 给出结论⑥、⑦或⑧之一的得(3分). 12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯; 1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-;222020200⨯=-.(4分) 例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-.(5分) (或221129(209)(209)209⨯=-+=-.5分)(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯.(7分)(3)①若40a b +=,a 、b 是自然数,则220400ab =.(8分) ②若40a b +=,则220400ab =.(8分)③若a b m +=,a 、b 是自然数,则2()2mab .(9分)④若a b m +=,则2()2mab .(9分)⑤若11223340n n a b a b a b a b +=+=+=+=.且 112233||||||||n n a b a b a b a b ----,则112233n n a b a b a b a b .(10分)⑥若112233n n a b a b a b a b m +=+=+=+=.且112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯.(10分)说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分); 给出结论⑤或⑥之一的得(3分).13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?【解答】解:(1)设28和2012都是“神秘数”,设28是x 和2x -两数的平方差得到, 则22(2)28x x --=, 解得:8x =,26x ∴-=, 即222886=-,设2012是y 和2y -两数的平方差得到, 则22(2)2012y y --=, 解得:504y =, 2502y -=,即222012504502=-, 所以28,2012都是神秘数.(2)22(22)(2)(222)(222)4(21)k k k k k k k +-=+-++=+, ∴由22k +和2k 构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为21k +和21k -, 则22(21)(21)842k k k k +--==⨯,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方; (2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值. 【解答】解:(1)242x x -+的三种配方分别为:2242(2)2x x x -+=--,2242(4)x x x x -+=+-,22242x x x -+=-;(2)222()a ab b a b ab ++=+-,222213()24a ab b a b b ++=++;(3)222324a b c ab b c ++---+,222213()(33)(21)44a ab b b b c c =-++-++-+,222213()(44)(21)44a ab b b b c c =-++-++-+,22213()(2)(1)024a b b c =-+-+-=,从而有102a b -=,20b -=,10c -=,即1a =,2b =,1c =,4a b c ∴++=.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: 22(2)(2)252a b a b a ab b ++=++. .(2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块,块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=【解答】解:(1)图③可以解释为等式:2222(2)(2)242252a b a b a ab ab b a ab b ++=+++=++ 故答案为:22(2)(2)252a b a b a ab b ++=++. (2)22(3)(2)273a b a b a ab b ++=++ 故答案为:2;7;3. (3)224m n xy -= ∴①正确;x y m +=∴②正确;x y m +=,x y n -=()()x y x y mn ∴+-=,即22x y mn -=,故③正确;22222222()()222()m n x y x y x y x y +=++-=+=+∴④正确.故答案为:①②③④.16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= 2 ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想. 【解答】解:(1)2log 42=,2log 164=,2log 646=;(2)222log 4log 16log 64+=;(3)猜想log log log ()a a a M N MN +=.证明:设1log a M b =,2log a N b =,则1b a M =,2b a N =, 故可得1212b b b b MN a a a +==,12log ()a b b MN +=, 即log log log ()a a a M N MN +=. 17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2)(34)53i i i ++-=-. (1)填空:3i = i - ,4i = . (2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值.(4)试一试:请利用以前学习的有关知识将11ii+-化简成a bi +的形式. 【解答】解:(1)21i =-, 321i i i i i ∴==-=-,4221(1)1i i i ==--=,(2)①2(2)(2)4145i i i +-=-+=+=; ②22(2)4414434i i i i i +=++=-++=+;(3)()3(1)x y i x yi ++=--, 1x y x ∴+=-,3y =-,2x ∴=,3y =-;(4)21(1)(1)(1)21(1)(1)22i i i i i i i i i ++++====--+.18.阅读理解题 阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数) 则该数可表示为10a b +,另一因数可表示为10(10)a b +-. 两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.) 问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 10a a + .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数) (3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出. 如:100(1)(10)a a b b ++-的运算式.【解答】解:(1)47432⨯+=,4312⨯=,44733212∴⨯=.(2)十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为10a a +, 另一因数的十位数字是b ,则该数可以表示为10(10)b b +-. 故答案为10a a +、10(10)b b +-.(3)设其中一个因数的十位数字为a ,个位数字也是a 则该数可表示为10a a +,设另一因数的十位数字是b ,则该数可以表示为10(10)(b b a +-,b 表示1到9的整数). 两数相乘可得:(10)[10(10)]10010(10)10(10)a a b b ab a b ab a b ++-=+-++- 100100(10)ab a a b =++- 100(1)(10)a b a b =++-.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:。
整式的乘除提高练习
![整式的乘除提高练习](https://img.taocdn.com/s3/m/44a76187a98271fe900ef998.png)
《整式的乘除》本领性习题锻炼之阳早格格创做一、顺用幂的运算本量12.(23)2002×(1.5)2003÷(-1)2004=________.34.5两、式子变形供值12.3.45.6.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________.78.9.已知,则代数式的值是_______________.10.已知:,则_________,11.三、式子变形推断三角形的形状1.已知:、、是三角形的三边,且谦脚,则该三角形的形状是_________________________.2.则那个三角形是___________________.3.已知、、是△ABC 的三边,且谦脚闭系式△ABC 的形状. 四、其余1.已知:m2=n +2,n2=m +2(m ≠n),供:m3-2mn +n3的值.2.3.(3+1)(32+1)(34+1)…(32008+14.估计:(1)2009×2007-20082 (2(3)5.您能证明为什么对付于任性自然数n,代数式n(n+7)-(n-3)(n-2)的值皆能被6整除吗?五、“真足思维”正在整式运算中的使用“真足思维”是中教数教中的一种要害思维,贯脱于中教数教的齐历程,有些问题局部供解各个打破,无法办理,而从齐部着眼,真足思索,会使问题化繁为简,化易为易,思路浑淅,演算简朴,搀纯问题迎刃而解,现便“真足思维”正在整式运算中的使用,略举几例剖析如下,供共教们参照:17时,.2、已知,,,供:代数式.34M取六、真足仄圆公式变形的应用真足仄办法罕睹的变形有:1.已知()5,3a b ab -==供2()a b +取223()a b +的值.2.已知6,4a b a b +=-=供ab 取22a b +的值.3. 已知224,4a b a b +=+=供22a b 取2()a b -的值.课后锻炼1.已知2264x kxy y ++是一个真足式,则k 的值是( )A .8B .±8C .16D .±162.设a 、b 、c 为真数,,则x 、y 、z 中,起码有一个值( )A .大于0B .等于0C .没有大于0D .小于03.若(x +m )(x -8)中没有含x 的一次项,则m 的值为( )(A )8(B )-8 (C )0 (D )8或者-84.已知a +b =10,ab =24,则a2+b2的值是( )(A )148(B )76(C )58(D )525.已知:A=1234567×1234569,B=12345682,比较A 、B 的大小,则AB.2522=+y x ,7=+y x ,且y x >,则=-y x7.已知3m=4,3m+2n=36,供2013n的值.8.已知3x=8,供3x+3.9.估计:(1)(2)(3)(4)(5)(x2-2x-1)(x2+2x-1)(6)[(a-b)(a+b)]2÷(a2-2ab+b2)-2ab(7(810.已知a2+b2﹣8a﹣10b+41=0,供5a﹣b2+25的值11.已知(2017﹣a)•(2015﹣a)=2016,供(2017﹣a)2+(2015﹣a)2的值.12.若x+y=a+b且x﹣y=a﹣b.试证明:x2+y2=a2+b2.13.代数式(a+1)(a+2)(a+3)(a+4)+1是一个真足仄办法吗?请证明您的缘由.14.已知x2,供x2x415.已知x2+x-1=0,供x3+2x2+3的值.。
第一章-整式的乘除(提高卷)(原卷版)
![第一章-整式的乘除(提高卷)(原卷版)](https://img.taocdn.com/s3/m/198ae84191c69ec3d5bbfd0a79563c1ec5dad72d.png)
第一章整式的乘除(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,计算正确的是()A.x(2x﹣1)=2x2﹣1B.(a+2b)(a﹣2b)=a2﹣4b2C.(a+2)2=a2+4D.(x+2)(x﹣3)=x2+x﹣62.已知a+b=5,ab=6,则a2+b2的值等于()A.13B.12C.11D.103.若多项式9x2+mx+1是一个完全平方式,则m的值是()A.±3B.±6C.3D.±94.如果单项式﹣3m a﹣2b n2a+b与m3n8b是同类项,那么这两个单项式的积是()A.﹣3m6n16B.﹣3m6n32C.﹣3m3n8D.﹣9m6n165.下列运算中,正确的有()(1)0.22×(﹣)=1;(2)24+24=25;(3)﹣(﹣3)2=9;(4)(﹣)2007×102008=﹣10.A.1个B.2个C.3个D.4个6.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从小到大排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d7.如图所示,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后得到的图形,佳佳将阴影部分通过割拼,拼成了图①和图②两种新的图形,其中能够验证平方差公式的是()A.①B.②C.①②都能D.①②都不能8.如图,长方形ABCD中放入一个边长为6的大正方形ALMN和两个边长为4的小正方形DEFG及正方形HIJK.3个阴影部分的面积满足2S3+S1﹣S2=19,则长方形ABCD的面积为()A.73B.69C.63D.599.已知关于x、y的二元一次方程组给出下列结论:①当k=2时,此方程组无解;②若k=1,则代数式22x•4y=;③当a=0时,此方程组一定有八组整数解(k为整数),其中正确的是()A.①②③B.①③C.②③D.①②10.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1B.264﹣2C.264+1D.264+2二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.若a+b=1,则a2﹣b2+2b﹣2=.12.一个氧原子的直径为0.000000000148m,用科学记数法表示为m.13.已知(x+a)(x2﹣x)的展开式中不含x2项,则a=.14.如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.若(3,5)=a,(3,6)=b,(3,m)=2a﹣b,则m=.15.如图所示,如图,边长分别为a和b的两个正方形拼接在一起,则图中阴影部分的面积为.16.(1)已知x+y=5,xy=3,则x2+y2的值为;(2)已知x﹣y=5,x2+y2=51,则(x+y)2的值为;(3)已知x+y+z=1,x2+y2﹣3z2+4z=7,则xy﹣z(x+y)值为﹣.三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.化简:(1)(a+b)2+(a﹣b)(a+b)﹣2ab;(2)(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.18.计算:(1)|﹣2|﹣(2﹣π)0+()﹣1;(2)(3+2x)(3﹣2x)+(2x)3÷x.19.(1)已知m+2n=4,求2m•4n的值.(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.20.请认真观察图形,解答下列问题:(1)根据图①中条件,请用两种不同方法表示两个阴影图形的面积的和;(2)在(1)的条件下,如图②,两个正方形边长分别为a,b,如果a+b=ab=9,求阴影部分的面积.21.(1)计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填写下面的空格.(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(3)利用该规律计算:1+5+52+53+ (52020)22.探究活动:(1)如图①,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是(写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式.知识应用:运用你得到的公式解决以下问题(4)计算:(a+b﹣2c)(a+b+2c);(5)若4x2﹣9y2=10,4x+6y=4,求2x﹣3y的值.23.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2,得2S=2+22+23+24+25+…+22013+22014.将下式减去上式,得2S﹣S=22014一1即S=22014一1,即1+2+22+23+24+…+22013=22014一1仿照此法计算:(1)1+3+32+33+…+3100(2)1++…+.24.阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2.则(2020﹣x)2+(x﹣2016)2=;(2)若x满足(2021﹣x)2+(x﹣2018)2=2020,求(2021﹣x)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E.F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为平方单位.25.我囻古代数学的许多发现都曾位居世界前列,如杨辉三角就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数降幂排列)的系数规律例如,在角形中第一行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3ab+3ab2+b3展开式中的系数.结合对杨辉三角的理解完成以下问题(1)(a+b)2展开式a2+2ab+b2中每一项的次数都是次;(a+b)3展开式a3+3a2b+3ab2+b3中每一项的次数都是次;那么(a+b)n展开式中每一项的次数都是次.(2)写出(a+1)4的展开式.(3)拓展应用:计算(x+1)5+(x﹣1)6+(x+1)7的结果中,x5项的系数为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除
例1:已知2017)2018()2016(=-⋅-a a ,求22)2018()2016(a a -+-的值。
解析:类比“2=⋅n m ,4=-n m ,求22n m +的值”这类题的解法。
练习:1、已知7)(2=+b a ,3)(2=-b a ,则=++ab b a 22 。
2、已知2522=+y x ,7=+y x 且y x >,则=-y x 。
3、已知32=-a a ,32=-b b 且b a ≠,则=-b a 。
例2:已知201738+=x a ,201838+=x b ,20193
8+=x c ,求bc ac ab c b a ---++222的值。
练习:1、若1232=++c b a ,且bc ac ab c b a ++=++222,则=++32c b a 。
2、已知014642222=+-+-++z y x z y x ,则=--2018)(z y x 。
3、若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,
)1)(1(22+-++=x x x x N ,则M 与N 的大小关系是 。
4、计算2222222210099654321-++-+-+-Λ= 。
例3:若多项式1634-++nx mx x 能被)2)(1(--x x 整除,求m 、n 的值。
练习:1、若3223+-kx x 被12+x 除后余2,则=k 。
2、若多项式b x ax x x +++-73224能被22-+x x 整除,则a= ,b= . 三、1、观察下列算式:
① 1432312-=-=-⨯ ② 1983422-=-=-⨯
③ 116154532-=-=-⨯
④ …… (1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写的式子一定成立吗?并说明理由。
2、如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”。
如:22024-=,222412-=,224620-=,因此4、12、20都是“神秘数。
(1)28和2012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为22+k 和k 2(其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
3、如表是由从1开始的连续自然数组成,观察规律并完成各题的解答。
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数。
(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;
(3)求第n 行各数之和。