九年级数学全等三角形练习题

合集下载

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021 中考数学专题训练:全等三角形一、选择题1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE△△ACD()A. ∠B=△CB. AD=AEC. BD=CED. BE=CD3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC△△DEC,不能添加的一组条件是()A.BC=EC,△B=△E B.BC=EC,AC=DCC .BC =DC ,△A =△D D .△B =△E ,△A =△D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .26. 如图,已知点A ,B ,C ,D 在同一条直线上,△AEC ≌△DFB.如果AD=37 cm ,BC=15 cm ,那么AB 的长为 ( )A .10 cmB .11 cmC .12 cmD .13 cm7. 如图,AB ⊥BC ,BE ⊥AC ,垂足分别为B ,E ,∠1=∠2,AD=AB ,则下列结论正确的是( )A .∠1=∠EFDB .BE=EC C .BF=CD D .FD ∥BC8. 如图为6个边长相等的正方形的组合图形,则△1+△2+△3等于( )A .90°B .120C .135°D .150°9. 如图,点G 在AB 的延长线上,△GBC ,△BAC 的平分线相交于点F ,BE △CF于点H .若△AFB =40°,则△BCF 的度数为( )A .40°B .50°C .55°D .60°10. 如图,∠AOB =120°,OP平分△AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( ) A . 1个 B . 2个 C . 3个 D . 3个以上二、填空题11. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,请你添加一个适当条件:________,使△AEH△△CEB.12. 如图,已知点B ,C ,F ,E 在同一直线上,△1=△2,△A =△D ,要使△ABC△△DEF ,还需添加一个条件,这个条件可以是____________(只需写出一个).13. 如图,在△ABC中,△C =90°,△CAB =50°,按以下步骤作图:△以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;△分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;△作射线AG ,交BC 边于点D ,则△ADC 的度数为________.14. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC△△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).15. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.16. 如图,在△ABC中,△C=90°,AC=BC,AD是△BAC的平分线,DE△AB,垂足为E.若△DBE的周长为20,则AB=________.17. 如图所示,已知AD△BC,则△1=△2,理由是________________;又知AD =CB,AC为公共边,则△ADC△△CBA,理由是______,则△DCA=△BAC,理由是__________________,则AB△DC,理由是________________________________.18. 如图,P是△ABC外的一点,PD△AB交BA的延长线于点D,PE△AC于点E,PF△BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,△BAC=64°,则△BPC的度数为________.三、解答题19. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.20. 如图,AD△BC,AB△BC于点B,连接AC,过点D作DE△AC于点E,过点B作BF△AC于点F.(1)若△ABF=63°,求△ADE的度数;DE=BF+EF.21. 如图△,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,△1=△2=△BAC.若△ABC的面积为15,求△ABE与△CDF 的面积之和.2021 中考数学 专题训练:全等三角形-答案一、选择题1. 【答案】B [解析]依据SAS 全等判定可得乙三角形与△ABC 全等;依据AAS 全等判定可得丙三角形与△ABC 全等,不能判定甲三角形与△ABC 全等.故选B .2. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.3. 【答案】D [解析]∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD , ∴∠CED=∠AFB=90°,∠A=∠C , 又∵AB=CD ,∴△CED ≌△AFB,∴AF=CE=a ,DE=BF=b ,DF=DE -EF=b -c , ∴AD=AF +DF=a +b -c ,故选D .4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC -BC=DB -BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).7. 【答案】D[解析] 在△AFD 和△AFB 中,∴△AFD ≌△AFB. ∴∠ADF=∠ABF . ∵AB ⊥BC ,BE ⊥AC , ∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.9. 【答案】B[解析] 如图,过点F 分别作FZ△AE 于点Z ,FY△CB 于点Y ,FW△AB于点W.△AF平分△BAC,FZ△AE,FW△AB,△FZ=FW.同理FW=FY.△FZ=FY.又△FZ△AE,FY△CB,△△FCZ=△FCY.由△AFB=40°,易得△ACB=80°.△△ZCY=100°.△△BCF=50°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】AB=DE(答案不唯一)13. 【答案】65°14. 【答案】答案不唯一,如∠C=∠E或AB=FD等15. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB=AE+EB =AB.17. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行18. 【答案】32°[解析] △PD=PE=PF,PD△AB交BA的延长线于点D,PE△AC 于点E,PF△BC交BC的延长线于点F,△CP平分△ACF,BP平分△ABC.△△PCF=12△ACF,△PBF=12△ABC.△△BPC=△PCF-△PBF=12(△ACF-△ABC)=12△BAC=32°.三、解答题19. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD.(2)由(1)知∠BAE=∠DAE.在△BAE与△DAE中,∴△BAE≌△DAE(SAS),∴BE=DE.20. 【答案】解:(1)△AD△BC,AB△BC,△△ABC=△BAD=90°.△DE△AC,BF△AC,△△BFA=△AED=90°.△△ABF+△BAF=△BAF+△DAE=90°.△△DAE =△ABF =63°.△△ADE =27°.(2)证明:由(1)得△DAE =△ABF ,△AED =△BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧△DAE =△ABF ,△AED =△BFA ,AD =BA ,△△DAE△△ABF(AAS). △AE =BF ,DE =AF.△DE =AF =AE +EF =BF +EF.21. 【答案】△△1=△2=△BAC ,且△1=△BAE +△ABE ,△2=△CAF +△ACF ,△BAC =△BAE +△CAF ,△△BAE =△ACF ,△ABE =△CAF.在△ABE 和△CAF 中,⎩⎨⎧△BAE =△ACF ,AB =CA ,△ABE =△CAF ,△△ABE△△CAF(ASA). △S △ABE =S △CAF .△S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . △CD =2BD ,△ABC 的面积为15, △S △ACD =10. △S △ABE +S △CDF =10.。

2021年九年级中考数学 冲刺集训:全等三角形(含答案)

2021年九年级中考数学 冲刺集训:全等三角形(含答案)

2021中考数学 冲刺集训:全等三角形一、选择题1. 下列三角形中全等的是()A .①②B .②③C .③④D .①④2. 如图所示,AC ,BD是长方形ABCD 的对角线,过点D 作DE ∥AC 交BC 的延长线于点E ,则图中与△ABC 全等的三角形共有( )A .1个B .2个C .3个D .4个3. 如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF 的是( )A .∠A =∠DB .BC =EFC .∠ACB =∠FD .AC =DF4. 如图,点B ,E 在线段CD 上,若∠C=∠D ,则添加下列条件,不一定能使△ABC ≌△EFD 的是 ( )A .BC=FD ,AC=EDB .∠A=∠DEF ,AC=EDC .AC=ED ,AB=EFD .∠A=∠DEF ,BC=FD5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A.0.5 B.1C.1.5 D.26. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°二、填空题9. 如图,已知DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG =130°,则∠DGF=________°.10. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).11. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.12. 如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,则∠AOB的度数为.13. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.14. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.15. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.16. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题17. 如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=________°.18. 如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.19. 如图,在△ABC 中,AB=AC ,∠BAC=90°,点D 是射线BC 上一动点,连接AD ,以AD 为直角边,在AD 的上方作等腰直角三角形ADF .(1)如图①,当点D 在线段BC 上时(不与点B 重合),求证:△ACF ≌△ABD ; (2)如图②,当点D 在线段BC 的延长线上时,猜想CF 与BD 的数量关系和位置关系,并说明理由.20. (2019•枣庄)在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.2021中考数学 冲刺集训:全等三角形-答案一、选择题1. 【答案】A[解析] ①②符合证明三角形全等的判定方法“SAS”.③④中相等的角所对的边不相等,所以不可能全等.故选A.2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB ,△BAD ,△DCE ,△CDA.3. 【答案】D[解析] 已知∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用“ASA”可得△ABC ≌△DEF ; 添加BC =EF ,利用“SAS”可得△ABC ≌△DEF ; 添加∠ACB =∠F ,利用“AAS”可得△ABC ≌△DEF ; 添加AC =DF ,不能证明△ABC ≌△DEF.故选D.4. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCEADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm ,∴AB==11(cm).7. 【答案】D[解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.二、填空题9. 【答案】150[解析] ∵DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∴AD是∠BAC的平分线.∵∠BAC=40°,∴∠CAD=12∠BAC=20°.∴∠DGF=∠CAD+∠ADG=20°+130°=150°.10. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.11. 【答案】角的内部到角的两边距离相等的点在角的平分线上12. 【答案】120°[解析]如图,设AC,DB的交点为H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,∴△DCB≌△ACE,∴∠CAE=∠CDB,又∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°-∠AOH=120°.13. 【答案】55°[解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎨⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL). ∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.14. 【答案】12[解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°. 在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .15. 【答案】8[解析]∵DC ⊥BC ,∴∠BCD=90°.∵∠ACB=120°, ∴∠ACD=30°.延长CD 到H 使DH=CD , ∵D 为AB 的中点, ∴AD=BD.在△ADH 与△BDC 中,∴△ADH ≌△BDC (SAS), ∴AH=BC=4,∠H=∠BCD=90°. ∵∠ACH=30°, ∴CH=AH=4,∴CD=2,∴△ABC 的面积=2S △BCD =2××4×2=8.16. 【答案】16[解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题17. 【答案】(1)证明:在Rt △ACB 和Rt △BDA 中, ⎩⎨⎧BC =AD AB =BA,(3分) ∴Rt △ACB ≌△Rt △BDA(HL ). (2)20.(6分)【解法提示】∵∠ABC =35°,∴∠CAB =90°-35°=55°,由(1)知∠DAB =∠ABC =35°,∴∠CAO =∠CAB -∠DAB =20°.18. 【答案】证明:连接CD ,如解图,(1分)∵ △ABC 是直角三角形,AC =BC ,D 是AB 的中点, ∴ CD =BD ,∠CDB =90°, ∴∠CDE +∠CDF =90°,∠CDF +∠BDF =90°, ∴∠CDE =∠BDF ,(7分) 在△CDE 和△BDF 中,⎩⎨⎧∠ECD =∠BCD =BD∠CDE =∠BDF, ∴ △CDE ≌△BDF(ASA ),(9分) ∴ DE =DF.(10分)19. 【答案】解:(1)证明:∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠BAD +∠CAD=90°, ∠CAF +∠CAD=90°, ∴∠CAF=∠BAD.在△ACF 和△ABD 中,∴△ACF ≌△ABD (SAS).(2)CF=BD 且CF ⊥BD ,理由如下: ∵∠CAB=∠DAF=90°,∴∠CAB +∠CAD=∠DAF +∠CAD , 即∠CAF=∠BAD.在△ACF 和△ABD 中,∴△ACF ≌△ABD (SAS), ∴CF=BD ,∠ACF=∠ABD. ∵AB=AC ,∠BAC=90°, ∴∠ABD=∠ACB=45°,∴∠BCF=∠ACF +∠ACB=∠ABD +∠ACB=45°+45°=90°,∴CF ⊥BD.20. 【答案】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴2,AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)2)DM DM -=,解得23DM ∴232AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒, 则2AE AB =,45E ∠=︒,∴ME MA =, ∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =, ∴2AB AN AB BE AE AM +=+==.。

三角形全等判定专题训练题

三角形全等判定专题训练题

三角形全等的判定专题训练题1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。

求证:AC ⊥CE 。

2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B=∠C ,(2)BD=CE6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。

求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。

8、如图(8):A 、B 、C 、D 四点在同一直线上,(图1)DC B A F E (图2)D C BA FE (图3)D C B A E(图4)D CB A E (图5)DC B A G FE(图6)D C B AN M(图7)C BA求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

求证:PA=PD 。

12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

求证:EB ∥CF 。

13、如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

九年级中考临考专题训练:全等三角形(含答案)

九年级中考临考专题训练:全等三角形(含答案)

2021中考临考专题训练:全等三角形一、选择题1. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS2. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②4. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A .3B .-3C .2D .-25. (2019•张家界)如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A .4B .3C .2D .16. 如图,已知在四边形ABCD 中,∠BCD=90°,BD 平分∠ABC ,AB=6,BC=9,CD=4,则四边形ABCD 的面积是 ( )A .24B .30C .36D .427. 现已知线段a ,b (a<b ),∠MON=90°,求作Rt △ABO ,使得∠O=90°,OA=a ,AB=b.小惠和小雷的作法分别如下:小惠:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点A 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 小雷:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点O 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 则下列说法中正确的是 ( ) A .小惠的作法正确,小雷的作法错误B .小雷的作法正确,小惠的作法错误C .两人的作法都正确D.两人的作法都错误8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题9. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)10. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.11. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为 .14. 如图,AB ∥CD ,点P 到AB ,BD ,CD 的距离相等,则∠BPD 的度数为________.15. 如图,点O 在△ABC 的内部,且到三边的距离相等.若∠BOC =130°,则∠A=________°.16. (2019•襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).三、解答题17. (2019•泸州)如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.18. 如图所示,在△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗); (2)选择(1)中你写的一个命题,说明它的正确性.19. 如图,四边形ABCD 是正方形,以边AB 为直径作☉O ,点E 在BC 边上,连接AE 交☉O 于点F ,连接BF 并延长交CD 于点G . (1)求证:△ABE ≌△BCG. (2)若∠AEB=55°,OA=3,求的长.(结果保留π)20. (2019•苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.21. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.22. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.23. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.24. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考 临考专题训练:全等三角形-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.4. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.5. 【答案】C【解析】如图,过点D 作DE AB ⊥于E ,∵8AC =,13DC AD =,∴18213CD =⨯=+, ∵90C ∠=︒,BD 平分ABC ∠,∴2DE CD ==,即点D 到AB 的距离为2,故选C .6. 【答案】B[解析]过点D 作DH ⊥AB 交BA 的延长线于H.∵BD 平分∠ABC ,∠BCD=90°, ∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =AB ·DH +BC ·CD=×6×4+×9×4=30.7. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】C[解析] 选项A 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等. 选项C 中,如图①,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE 和CF ,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D 中,如图②,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C ,∴△BDE ≌△CEF .故能判定两个小三角形全等.二、填空题9. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.10. 【答案】∠B =∠D11. 【答案】125[解析] 由题意可得AD 平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】120°[解析]如图,设AC ,DB 的交点为H.∵△ACD ,△BCE 都是等边三角形, ∴CD=CA ,CB=CE ,∠ACD=∠BCE=60°, ∴∠DCB=∠ACE ,在△DCB 和△ACE 中,∴△DCB ≌△ACE , ∴∠CAE=∠CDB ,又∵∠DCH +∠CHD +∠BDC=180°,∠AOH +∠AHO +∠CAE=180°,∠DHC=∠OHA ,∴∠AOH=∠DCH=60°, ∴∠AOB=180°-∠AOH=120°.14. 【答案】90°[解析] ∵点P 到AB ,BD ,CD 的距离相等,∴BP ,DP 分别平分∠ABD ,∠BDC.∵AB ∥CD ,∴∠ABD +∠BDC =180°. ∴∠PBD +∠PDB =90°.故∠BPD =90°.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.三、解答题17. 【答案】∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△,∴OB OC =.18. 【答案】解:(1)如果①③,那么②;如果②③,那么①.(2)对于“如果①③,那么②”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,AD =BC ,所以△ADF ≌△BCE.所以DF =CE.所以DF -EF =CE -EF ,即DE =CF.对于“如果②③,那么①”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.因为DE =CF ,所以DE +EF =CF +EF ,即DF =CE.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,DF =CE ,所以△ADF ≌△BCE ,所以AD =BC.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径,∴∠ABE=∠BCG=∠AFB=90°,AB=BC ,∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°,∴∠EBF=∠BAF ,在△ABE 与△BCG 中,∴△ABE ≌△BCG (ASA).(2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°-55°=35°,∴∠BOF=2∠BAE=70°.∵OA=3, ∴的长==.20. 【答案】 (1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =∠=︒,,∴18065250BAE ∠=︒-︒⨯=︒,∴50FAG ∠=︒,∵BAC EAF △≌△,∴28F C ∠=∠=︒,∴502878FGC ∠=︒+︒=︒.21. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .22. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC , ∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.23. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF , ∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10.∴S △ABE +S △CDF =10.24. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。

中考数学全等三角形证明经典50题(含答案)+经典因式分解练习题100道

中考数学全等三角形证明经典50题(含答案)+经典因式分解练习题100道

全等三角形经典证明题50道1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .FAEDC B4.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA5.(5分)如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.PCEDBA6.(6分)如图①,E、F分别为线段AC上的两个动点,且DE ⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCB AFE D CB A25、如图:DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

证明:∵DF=CE , ∵DF-EF=CE-EF , 即DE=CF ,在∵AED 和∵BFC 中,∵ AD=BC , ∵D=∵C ,DE=CF ∵∵AED ∵∵BFC (SAS )26、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。

中考数学复习专项之三角形全等 (含答案)

中考数学复习专项之三角形全等 (含答案)

30°ABOCl D 第1题图C A P B D三角形全等一、选择题1、(2022年安徽省模拟六)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是…………【 】 A .AC = A ′C ′ B.BC = B ′C ′ C.∠B =∠B ′ D.∠C =∠C ′.答案:B2、(2022年江苏南京一模)如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .7 答案:D3.(2022郑州外国语预测卷)如图,两个等圆⊙A 、⊙B 分别与直线l 相切于点C 、D ,连接AB 与直线l 相交于点O ,∠AOB =30°,连接AC 、BD ,若AB =4,则这两个等圆的半径为( ) A .21B .1C .3D .2 答案:B4、(2022河南沁阳市九年级第一次质量检测) 如图,把△ABC 绕着点C 顺时针旋转30°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是【 】A.30°B.50°C.60°D.80°C5、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D6、 (2022年湖北宜昌调研)如图,AC ,BD 交于点E ,AE=CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( ) (A )BE=DE (B )AB ∥CD (C )∠A=∠C (D )AB=CDabclEABCD答案:D7、(2022年唐山市二模)在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ②当∠ABC =60°时,MN ∥BC ③ BN =2AN ④AN︰AB =AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个答案:C8.(2022年上海闵行区二摸)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是 (A )AC = A ′C ′; (B )BC = B ′C ′; (C )∠B =∠B ′; (D )∠C =∠C ′.答案:B二、填空题1、(2022云南勐捧中学二模)如图,AB CD ,相交于点O ,AO=CO ,试添加一个条件使得AOD COB △≌△,你添加的条件是 (只需写一个). 【答案】∠A= ∠C 、∠D= ∠B 、OD=OB (答案不唯一)2.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP . 答案:①②③④三、解答题1、(2022年湖北荆州模拟5)(本题满分8分)将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN 逆时针旋转90°,得到图(2),图(2)中除△ABC ≌△CED 、△BCN ≌△ACF 外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.AC BDO第1题答案:解:△FCM ≌△NCM ,理由如下: ∵把图中的△BCN 逆时针旋转90°, ∴∠FCN=90°,CN=CF , ∵∠MCN=45°, ∴∠FCM=90°-45°=45°, 在△FCM 和△NCM 中∵CM=CM ,∠FCM=∠NCM , FC=CN∴△FCM ≌△NCM (SAS ).2、(2022年湖北荆州模拟6)(本题满分8分)如图,正方形ABCD 和BEFG 在直线AB 的同侧,连接AG 、EC ,易证AG=EC ,现在将正方形BEFG 顺时针旋转30°,那么AG=EC 还成立吗?请作出旋转后的图形,并证明你的结论. 答案:解:成立. 理由如下:在ΔABG 与ΔCBE 中,0120AB CB ABG CBE BG BE =⎧⎪∠=∠=⎨⎪=⎩∴ ΔABG ≌ΔCBE ∴ AG=CE3、(2022年江苏南京一模)(7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由. 答案:(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分 且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分第1题图第2题图第2题解答CACBB第2题图14.(2022年北京房山区一模)如图,点C、B、E在同一条直线上,AB∥DE,∠ACB=∠CDE,AC=CD.求证:AB=CD .答案:证明:∵AB∥DE∴∠ABC=∠E ------------------------------1分∵∠ACB=∠CDE,AC=CD --------------------- --------3分∴△ABC≌△CED -------------------------4分∴AB=CD--------------------------5分5.(2022年北京房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE = AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.答案:(1)证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CE=CD,∠ACB=∠DCE=60°∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴BE=AD--------------1分(2)①②③都正确--------------4分(3)证明:在PE上截取PM=PC,联结CM由(1)可知,△BCE≌△ACD(SAS)EDC BA第1题图ADAB∴∠1=∠2设CD 与BE 交于点G ,,在△CGE 和△PGD 中 ∵∠1=∠2,∠CGE =∠PGD∴∠DPG =∠ECG =60°同理∠CPE =60° ∴△CPM 是等边三角形--------------5分 ∴CP =CM ,∠PMC =60° ∴∠CPD =∠CME =120°∵∠1=∠2,∴△CPD ≌△CME (AAS )---6分 ∴PD =ME∴BE =PB +PM +ME =PB +PC +PD . -------7分即PB+PC+PD=BE .6.(2022年北京龙文教育一模)已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF . 答案:证明: AF=DE , ∴ AF-EF=DE –EF . 即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分 ∴ BE =CF .…………….5分7. (2022年北京龙文教育一模)阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.FE ACDB第3题图答案:解:(1)22=BD . ……………………………… ………………………1分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE , ∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………2分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………3分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………4分∴在Rt △ABG 中,22=AB . ……………………………………………5分 8.(2022年北京平谷区一模)已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .答案:证明:∵ AB //CD ,∴B DCE ∠=∠.………………… ………………………1分在△ABC 和△ECD 中,= =B DCE AB EC BC CD ∠∠⎧⎪=⎨⎪⎩,,, ∴ △ABC ≌△ECD . …………………… ………………4分∴ AC =ED .………………………… ……………………5分9.(2022年北京顺义区一模)已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.答案:证明:∵CA 平分BCD∠∴ ACB DCE ∠=∠ ……………1分在ABC ∆和DEC ∆中∵BC EC ACB DCE AC DC =⎧⎪∠=∠⎨⎪=⎩……………3分 ∴ABC ∆≌DEC ∆ …………………………………………… 4分 ∴A D ∠=∠ ……………………………………………5分10.(2022年北京平谷区一模)(1)如图(1),△ABC 是等边三角形,D 、E 分别是 AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P . 请你补全图形,并直接写出∠APD 的度数;= (2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是 AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.答案:解:(1)60° (2)45° ………………………………..2分 证明:作AE ⊥AB 且AE CN BM ==. 可证EAM MBC ∆≅∆. ……………………………..3分 ∴ ,.ME MC AME BCM =∠=∠∵ 90,CMB MCB ∠+∠=︒∴ 90.CMB AME ∠+∠=︒∴ 90.EMC ∠=︒∴ EMC ∆是等腰直角三角形,45.MCE ∠=︒ ……………….5分又△AEC ≌△CAN (s , a , s )∴ .ECA NAC ∠=∠ ∴ EC ∥AN.∴ 45.APM ECM ∠=∠=︒…………………………………………………………………..7分EDCBA第6题图第7题图11.(2022浙江东阳吴宇模拟题)(本题12分) 如图,平面直角坐标系中,点A (0,4),B (3,0),D 、E 在x 轴上,F 为平面上一点,且EF ⊥x 轴,直线DF 与直线AB 互相垂直,垂足为H ,△AOB ≌△DEF ,设BD =h 。

2021年九年级中考数学 一轮知识点专练:全等三角形(含答案)

2021年九年级中考数学 一轮知识点专练:全等三角形(含答案)

2021中考数学一轮知识点专练:全等三角形一、选择题1. 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,BC=7,BD=4,则点D到AB的距离是()A.3 B.4C.5 D.72. 如图所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定Rt△ABC≌Rt△ABD成立,还需要添加的条件是 ()A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.AC=BD3. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC4. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD5. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个6. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°7. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 68. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).10. 如图,AB=DE,∠1=∠2,添加一个适当的条件,使△ABC≌△DEC,则需添加的条件是__________(不添加任何辅助线,填一个即可).11. 如图,已知点B,C,F,E在同一直线上,∠1=∠2,∠A=∠D,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是____________(只需写出一个).12. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.14. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题15. 如图,D是BC上一点,△ABC≌△ADE,AB=AD.求证:∠CDE=∠BAD.16. 如图,已知AD,AF分别是钝角三角形ABC和钝角三角形ABE的高,如果AD=AF,AC=AE,求证:BC=BE.17. 如图,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为题设,余下的一个论断为结论,使之组成一个真命题,并写出证明过程.18. 如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB,垂足分别为E,F,且PE=PF.Q是射线OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为M,N,则QM与QN相等吗?请证明你的结论.2021中考数学一轮知识点专练:全等三角形-答案一、选择题1. 【答案】A2. 【答案】B[解析] 要添加的条件为BC=BD或AC=AD.理由:若添加的条件为BC=BD,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL).3. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.4. 【答案】C[解析] A.添加BC=FD,AC=ED,可利用“SAS”判定△ABC≌△EFD;B.添加∠A=∠DEF,AC=ED,可利用“ASA”判定△ABC≌△EFD;C.添加AC=ED,AB=EF,不能判定△ABC≌△EFD;D.添加∠A=∠DEF,BC=FD,可利用“AAS”判定△ABC≌△EFD.5. 【答案】A[解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.6. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.7. 【答案】B【解析】如解图,连接OC,由已知条件易得∠A=∠OCE,CO=AO,∠DOE=∠COA,∴∠DOE-∠COD=∠COA-∠COD,即∠AOD=∠COE,∴△AOD≌△COE(ASA),∴AD=CE,进而得CD+CE=CD+AD=AC=22AB=3,故选B.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.10. 【答案】答案不唯一,如∠B=∠E11. 【答案】AB=DE(答案不唯一)12. 【答案】答案不唯一,如∠C=∠E或AB=FD等13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】7[解析] 过点P作PF⊥BC于点F,PG⊥AB于点G,连接AP.∵△ABC的两条外角平分线BP,CP相交于点P,∴PF=PG=PE=2.∵S△BPC=2,∴BC·2=2,解得BC=2.∵△ABC的周长为11,∴AC+AB=11-2=9.∴S△ABC =S△ACP+S△ABP-S△BPC=AC·PE+AB·PG-S△BPC=×9×2-2=7.三、解答题15. 【答案】证明:∵△ABC≌△ADE,∴∠B=∠ADE.由三角形的外角性质,得∠ADC=∠B+∠BAD.又∵∠ADC=∠ADE+∠CDE,∴∠CDE=∠BAD.16. 【答案】证明:∵AD,AF分别是钝角三角形ABC和钝角三角形ABE的高,∴∠D=∠F=90°.在Rt △ADC 和Rt △AFE 中,⎩⎨⎧AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE(HL).∴CD =EF. 在Rt △ABD 和Rt △ABF 中,⎩⎨⎧AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF(HL). ∴BD =BF.∴BD -CD =BF -EF , 即BC =BE.17. 【答案】解:若要组成真命题,则论断(4)必须作为条件.因此可组成以下三个真命题: 命题①:若(1)(2)(4),则(3);命题②:若(1)(3)(4),则(2);命题③:若(2)(3)(4),则(1).下面以命题①为例进行证明:∵AD ⊥DC ,AE ⊥BE ,∴∠D =∠E =90°. 在Rt △ABE 和Rt △ACD 中,⎩⎨⎧AB =AC ,AE =AD ,∴Rt △ABE ≌Rt △ACD(HL). ∴∠BAE =∠CAD.∴∠BAE -∠BAC =∠CAD -∠BAC , 即∠EAN =∠DAM.在△ADM 和△AEN 中,⎩⎨⎧∠DAM =∠EAN ,AD =AE ,∠D =∠E ,∴△ADM ≌△AEN(ASA). ∴AM =AN.18. 【答案】解:QM =QN.证明:∵PE ⊥OA ,PF ⊥OB ,PE =PF , ∴OP 是∠AOB 的平分线.又∵Q是射线OP上的任意一点,QM⊥OA,QN⊥OB,∴QM=QN.。

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。

中考数学专题《全等三角形》

中考数学专题《全等三角形》

专题01 全等三角形一、单选题1.(2021·全国)在ABC V 中,B C ∠=∠,与ABC V 全等的三角形有一个角是100︒,那么在ABC V 中与这100︒角对应相等的角是( )A .A ∠B .BÐC .C ∠D .B Ð或C ∠2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF =C .AC DF =D .ABC DEF △≌△3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是()A .①②③B .①②④C .①③D .②③4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒V V ≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣57.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅V V ,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒8.(2021·全国七年级课时练习)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30°9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF V 全等,则AG 的长为( )A .2B .3C .2或3D .2或610.(2021·全国)如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D //EB ′//BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=180°C .α+β=150°D .β﹣α=60°11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC V 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B Ð的度数是______度.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.15.(2021·全国)如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ANM ≌△ADM ,AN =_____cm ,NM =_____cm ,∠NAB =_______.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.19.(2021·辽宁本溪市·七年级期末)如图,∠A=∠B=90°,AB=80,点E和点F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,点E和点F运动速度之比为2:3,运动到某时刻点E和点F同时停止运动,在射线AC 上取一点G,使△AEG与△BEF全等,则AG的长为________.20.(2021·全国)如图,在△ABC中,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==V V ≌,求线段CF 的长.22.(2020·铜陵市第二中学八年级月考)如图,ABF V ≌CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .试说明AD =BE ;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,(等边三角形的性质)∴∠ACD = (等式的性质)∴△ACD 绕点C 按逆时针方向旋转 度,能够与 重合∴△ACD ≌ (旋转变换的性质)∴AD =BE ( );(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB 的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可). 24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠V V ≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.25.(2021·河南伊川县·七年级期末)如图,点A、B、C、D在同一直线上,△ACE≌△DBF,AD =8,BC=2.(1)求AC的长;(2)求证:CE∥BF,AE∥DF.⊥于点B,26.(2021·辽宁铁西区·)如图,点B,C,E,F在同一直线上,AB BCCE=.BC=,3DEF ABCV V≌,且6(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM V 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM V 全等?28.(2020·浙江浙江省·)在56⨯的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE V ,使ADE V 与ABC V 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC V 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA V 的面积等于ABC V 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC V 中,90ACB ∠=︒,45BAC ∠=︒,ADE V 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM V 与AND △全等,求相应的t 、x 的值.。

2021年九年级数学中考复习分类专题:全等三角形的判定综合练

2021年九年级数学中考复习分类专题:全等三角形的判定综合练

2021年九年级数学中考复习分类专题:全等三角形的判定综合练一.选择题1.在△ABC和△DEF中,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④∠A=∠D,∠B=∠E,∠C=∠F;其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组2.下列说法正确的是()A.全等三角形是指面积相等的三角形B.全等三角形是指能完全重合的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形3.下列各图中a、b、c为△ABC的边长,根据图中标注数据,判断甲、乙、丙、丁四个三角形和如图△ABC不一定全等的是()A.B.C.D.4.如图,△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不正确的是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.AC=DC,∠A=∠D D.BC=EC,∠A=∠D5.已知:如图,AC=DE,∠1=∠2,要使△ABC≌△DFE,需添加一个条件,则添加的条件以及相应的判定定理合适的是()A.∠A=∠D(ASA)B.AB=DF(SAS)C.BC=FE(SSA)D.∠B=∠F(ASA)6.点D、E分别在线段AB、AC上,CD与BE相交于点O,已知AE=AD,添加以下哪一个条件不能判定△ABE≌△ACD()A.∠B=∠C B.∠BEA=∠CDA C.BE=CD D.AB=AC7.如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论:①EM=NF;②NC=FN;③∠FAN =∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个8.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个9.如图,AC=BC,AD=BD,这个图形叫做“筝形”,数学兴趣小组几名同学探究出关于它的如下结论:①△ACD≌△BCD;②AO=BO;③AB⊥CD;④△AOC≌△BOC;⑤“筝形”是轴对称图形.其中正确的结论有()A.2个B.3个C.4个D.5个10.如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.2 B.3 C.4 D.5二.填空题11.如图,点B、F、C、E在一条直线上,已知AB=DE,AC=DF,请你添加一个适当的条件,根据SSS可判定△ABC≌△DEF.12.如图,已知AB=DE,∠B=∠E,添加下列哪个条件可以利用SAS判断△ABC≌△DEC.正确的是:.①∠A=∠D;②BC=EC;③AC=DC;④∠BCE=∠ACD.13.在平面直角坐标系中,已知点A,B的坐标分别是(2,0),(4,2),若在x轴下方有一点P,使以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是.14.如图,在△ABC中,点E、F分别是AB、AC边上的点,EF∥BC,点D在BC边上,连接DE、DF,请你添加一个条件,使△BED≌△FDE.15.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.16.在直角坐标系中,已知A(6,0)、F(3,0),C(0,2),在△AOC的边上取两点P、Q(点Q是不同于点F的点),若以O、P、Q为顶点的三角形与△OFP全等,则符合条件的点P的坐标为.三.解答题17.在△ABC中,AB=AC,BD=CE,CD⊥AB于点D,BE⊥AC于点E.(1)如图1,求证:△ABE≌△ACD;(2)如图2,BE与CD交于点O,连接AO,直接写出图中所有的全等三角形(△ABE≌△ACD除外).18.已知:点A,D,C在同一条直线上,AB∥CE,AC=CE,∠ACB=∠E,求证:△ABC≌△CDE.19.如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,连结BD、CE;求证:△ABD与△ACE全等.20.如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.(1)如图1,求证:AG=AF;(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.21.如图,在△ABC中,AB=AC,D是边BC延长线上一点,连结AD.AE∥BD,∠BAC=∠DAE,连接CE交AD于点F.(1)若∠D=36°,求∠B的度数;(2)若CA平分∠BCE,求证:△ABD≌△ACE.参考答案一.选择题1.解:①AB=DE,BC=EF,AC=DF,可根据SSS判定△ABC≌△DEF;②AB=DE,∠B=∠E,BC=EF,可根据SAS判定△ABC≌△DEF;③∠B=∠E,BC=EF,∠C=∠F,可根据ASA判定△ABC≌△DEF;④∠A=∠D,∠B=∠E,∠C=∠F,不能判定△ABC≌△DEF;故选:C.2.解:A、面积相等的两个三角形不一定是全等三角形,本说法错误;B、全等三角形是指能完全重合的三角形,故本选项正确;C、所有周长相等的三角形不一定都是全等三角形,本说法错误;D、所有的等边三角形形状都相同,大小与边长有关,边长不相等,则不能够重合,所以不一定是全等三角形,本说法错误;故选:B.3.解:∵∠B=70°,∠C=50°,∴∠A=180°﹣70°﹣50°=60°,根据“SAS”判断图乙中的三角形与△ABC全等;根据“AAS”判断图丙中的三角形与△ABC全等;根据“SSS”判断图丙中的三角形与△ABC全等.根据“SSA”无法判断图甲中的三角形与△ABC全等.故选:A.4.解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故C可以;当BC=EC,∠A=∠D时,在△ABC中是ASS,在△DEC中是ASS,故不能证明△ABC≌△DEC,故D不可以;故选:D.5.解:A、添加条件∠A=∠D判定△ABC≌△DFE用的判定方法是ASA,故原题说法正确;B、添加条件AB=DF不能判定△ABC≌△DFE,故原题说法错误;C、添加条件BC=FE判定△ABC≌△DFE用的判定方法是SAS,故原题说法错误;D、添加条件∠B=∠F判定△ABC≌△DFE用的判定方法是AAS,故原题说法错误;故选:A.6.解:A.由AE=AD、∠A=∠A、∠B=∠C可依据“AAS”判定△ABE≌△ACD,此选项不符合题意;B.由AE=AD、∠A=∠A、∠BEA=∠CDA可依据“ASA”判定△ABE≌△ACD,此选项不符合题意;C.由BE=CD、AE=AD、∠A=∠A不能判定△ABE≌△ACD,此选项符合题意;D.由AE=AD、∠A=∠A、AB=AC可依据“SAS”判定△ABE≌△ACD,此选项不符合题意;故选:C.7.解:在△AEB和△AFC中,,∴△AEB≌△AFC(AAS),∴∠EAB=∠FAC,EB=CF,AB=AC,∴∠EAM=∠FAN,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN(ASA),∴EM=FN,AM=AN,故①正确,∵AC=AB,∴CM=BN,得不出△ANC与△AFN全等,故②错误,在△ACN和△ABM中,,∴△ACN≌△ABM,故④正确,故①③④正确,故选:C.8.解:如图所示:一共有7个符合题意的点.故选:D.9.解:在△ACD和△BCD中,,∴△ACD≌△BCD(SSS),①结论正确;∵AC=BC,AD=BD,∴CD是线段AB的垂直平分线,∴AO=BO,AB⊥CD,②③结论正确;在△AOC和△BOC中,,∴△AOC≌△BOC(SSS),④结论正确;“筝形”沿直线CD折叠,直线两旁的部分能够互相重合,∴“筝形”是轴对称图形,⑤结论正确;故选:D.10.解:∵△ADE、△DFG,△ABC为等边三角形,∴DA=DE,DG=DG,∠ADE=∠FGD=∠AED=∠ACB=∠DAE=∠BAC=60°,∴∠ADG=∠EDF,∠DAB=∠CAE,∴△ADG≌△EDF(SAS),故①正确∴∠DEF=∠DAG,∵∠DEF+∠AED=∠EAC+∠ACE=∠EAC+∠ABC﹣∠BCF,∴∠EAC﹣∠DEF=∠BCF,∵∠BAG=∠DAB﹣∠DAG=∠CAE﹣∠DEF,∴∠BAG=∠BCF,故④正确,∵DF+EG=DG+GE≥DE,∴DF+GE≠AD,故③错误.设AG交CF于点O,DG交CF于K.∵△ADG≌△EDF,∴∠OGK=∠FKD,EF=AG,∵∠GKO=∠FKD,∴∠GOK=∠FDK=60°,∴∠AOC=∠GOK=∠ABC=60°,∴∠BAG=∠BCE,∵EF=CE,∴AG=CE,∵AB=CB,∴△BAG≌△BCE(SAS),∴BG=BE,∠ABG=∠CBE,∴∠EBC=∠ABC=60°,∴△EBG是等边三角形,∴∠EGB=60°,故⑤正确,无法判断AC=EC或AE=EC或AE=EC,故△ACE不一定是等腰三角形,故②错误,故选:B.二.填空题(共6小题)11.解:适合的条件是BC=EF,理由是:∵在△ABC和△DEF中,∴△ABC≌△DEF(SSS),故答案为:BC=EF.12.解:∵AB=DE,∠B=∠E,∴添加①∠A=∠D,利用ASA得出△ABC≌△DEC;∴添加②BC=EC,利用SAS得出△ABC≌△DEC;∴添加④∠BCE=∠ACD,得出∠ACB=∠DCE,利用AAS得出△ABC≌△DEC;故答案为:②.13.解:如图所示:在x轴下方有一点P,使以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是:(﹣2,﹣2)或(4,﹣2).故答案为:(﹣2,﹣2)或(4,﹣2).14.解:由题意:DE=ED,∠DEF=∠EDB,∴根据SAS可以添加DB=EF,根据AAS,ASA可以添加∠BED=∠EDF或DF∥AB或∠B=∠EFD,故答案为BD=EF(或∠BED=∠EDF或DF∥AB或∠B=∠EFD)15.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.16.解:①如图1,过点F作FP⊥OA,垂足为P,过点P作PQ⊥OC,垂足为Q,连接OP,此时△OFP≌PQO,∵A(6,0)、F(3,0),∴PF、PQ是△OAC的中位线,∴PQ=OA=3,PF=OC=,∴P(3,),②如图2,由①可知,点P、Q位置互换,亦满足题意,此时,P(0,),③如图3,作∠AOC的平分线交AC于点P,在OC上截取OQ=OF=3,连接PF、PQ,此时△OFP≌OQP,过点P作PM⊥OA,垂足为M,PN⊥OC,垂足为N,则PM=PN,由三角形面积公式得,OA•PM+OC•PN=AO•OC,即,6PM+2PM=6×2,∴PM=PN=3﹣3,∴点P(3﹣3,3﹣3),④如图4,在AC上截取AP=6=OA,取AP的中点Q,则PQ=OF=3,过点P作PB⊥OA,垂足为B,在Rt△ABP中,PB=AP=3,AB=×AP=3,∴OB=OA﹣AB=6﹣3,∴点P(6﹣3,3),故答案为:(3,)或(0,)或(3﹣3,3﹣3)或(6﹣3,3).三.解答题(共5小题)17.(1)证明:∵AB=AC,BD=CE,∴AB﹣BD﹣AC﹣CE,∴AD=AE,∵CD⊥AB,BE⊥AC,∴∠AEB=∠ADC=90°,在Rt△ABE和Rt△ACD中,∴Rt△ABE≌Rt△ACD(HL);(2)解:∵Rt△ABE≌Rt△ACD,∴∠ABE=∠ACD,在△DOB和△EOC中,∴△DOB≌△EOC(AAS),∴OB=OC,DO=EO,∴∠EBC=∠DCB,OD+OC=OE+OB,∴DC=BE,在△BEC和△CDB中,∴△BEC≌△CDB(SAS),在△ABOHE△ACO中,∴△ABO≌△ACO(SSS),在△ADO和△AEO中,∴△ADO≌△AEO(SSS),即全等三角形有:△DOB≌△EOC,△BEC≌△CDB,△ABO≌△ACO,△ADO≌△AEO.18.证明:∵AB∥CE,∴∠A=∠ECD.∵在△ABC和△CDE中,,∴△ABC≌△CDE(ASA).19.证明:∵△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∴∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),即△ABD与△ACE全等.20.证明:(1)∵BD、CE分别是AC、AB两条边上的高,∴∠AEC=∠ADB=90°,∴∠ABD+∠BAD=∠ACE+∠CAE=90°,∴∠ABD=∠ACG,在△AGC与△FAB中,,∴△AGC≌△FAB(SAS),∴AG=AF;(2)图中全等三角形有△AGC≌△FAB,由得出△CGH≌△BAD,由得出Rt△AGH≌Rt△FAD,△ABD≌△CBD;△CBD≌△GCH.21.解:(1)∵AE∥BD,∴∠DAE=∠BAC,∵∠DAE=∠BAC,∴∠D=∠BAC=36°,∵AB=AC,∴∠B=∠ACB,∴∠B===72°.(2)证明:∵CA平分∠BCE,∴∠BCA=∠ACE,∵∠B=∠ACB,∴∠B=∠ACE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA).。

(B卷)初中数学专项练习《全等三角形》100道选择题包含答案

(B卷)初中数学专项练习《全等三角形》100道选择题包含答案

初中数学专项练习《全等三角形》100道选择题包含答案一、选择题(共100题)1、已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.142、如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:①△BMD≌△DFE;②△NBE∽△DBC;③AC=2DF;④EF AB=CF BC,其中正确结论的个数是()A.1B.2C.3D.43、如图,已知∠AOB,以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D,再分别以C,D为圆心,以大于CD长为半径画弧,两弧交于点F,作射线OF,点P为OF上一点,PE⊥OB,垂足为点E,若PE=5,则点P到OA 的距离为()A.5B.4C.3D.4、如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DFB.BF=DEC.AE=CFD.∠1=∠25、如图,AB∥CD,BC平分∠ABE, ∠C=34°,则∠BED的度数等于()A. B. C. D.6、如图,正方形中,点E在边上,连接,过点A作交的延长线于点F,连接平分分别交于点,连接.则下列结论中:① ;②;③ ;④ ;⑤若,则,其中正确的结论有()A. 个B. 个C. 个D. 个7、如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是( )A.①②B.②③C.①③D.①②③8、如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.259、到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点10、如图,AD⊥BC,垂足为D,BD=DC,则图中全等的三角形共有()A.1对B.2对C.3对D.4对11、如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P 点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.5B.5或10C.10D.6或1012、如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.813、已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②④B.①②③C.②③④D.①②③④14、成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http:∥www.cdqzstu.com”中的“cdqzstu.com”时,不小心调换了两个字母的位置,则可能出现的错误种数是()A.90B.45C.88D.4415、如图,AB交于CD于点O,点O分别是AB与CD的中点,则下列结论中错误的是()A.∠A=∠BB.AC=BDC.∠A+∠B=90°D.AC∥BD16、一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E 2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B 1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.()2016B.()2017C.()2016D.()201717、如图,中,是角平分线,是中的中线,若的面积是,,,则的面积是()A.15B.12C.7.5D.618、如图,,点在边上,线段与交于点D.若,,则的度数()A. B. C. D.19、如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=6cm,如果点C是OB上一个动点,则PC的最小值为( )A.3B.C.6D.20、如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD 绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=10°,则∠ABE是()A.75°B.78°C.80°D.92°21、如图,已知,点O为与的平分线的交点,且于D.若,则四边形的面积是()A. B. C. D.22、如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CAC.AB=ADD.∠B=∠D23、如图,△ ≌△ ,那么下列结论错误的是()A. B. C. ∥ D. ∥24、如图,AD是△ABC的角平分线,DE⊥AC垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF 正确的个数是()A.1个B.2个C.3个D.4个25、已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x ﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.8个B.4个C.5个D.6个26、如图,在中,,,直角的顶点是的中点,两边,分别交,于点,.现给出以下四个结论:① ;② 是等腰直角三角形;③ ;④.当在内绕顶点旋转时(点不与点,重合),上述结论中始终正确的是()A.①②③B.①②④C.②③④D.①③④27、下列说法正确的个数为()(1)用一张像底片冲出来的10张一寸照片是全等形(2)我国国旗商店四颗小五角星是全等形(3)所有的正六边形是全等形(4)面积相等的两个正方形是全等形A.1个B.2个C.3个D.4个28、如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC 的面积是()A.10B.8C.6D.429、如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°30、如图,中,,利用尺规在,上分别截取,,使;分别以D,E为圆心、以大于为长的半径作弧,两弧在内交于点F;作射线交于点G,若,P为上一动点,则的最小值为()A.无法确定B.C.1D.231、如图,在中,于,于,与交于点.请你添加一个适当的条件,使≌ .下列添加的条件错误的是()A. B. C. D.32、如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.3B.4C.5D.633、如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E 运动到点A时,点F运动的路径长是()A.8B.10C.D.1234、已知,作的平分线,在射线上截取线段,分别以O、C为圆心,大于的长为半径画弧,两弧相交于E,F.画直线,分别交于D,交于G.那么,一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形35、如图,在四边形ABCD中,E是BC的中点,连接DE并延长,交AB的延长线于点F,AB=BF,添加一个条件,使四边形ABCD是平行四边形.下列条件中正确的是()A. AD=BCB. CD=BFC.∠ F=∠ CDED.∠ A=∠ C36、已知线段a,求作等边三角形ABC,使AB=a,作法如下:①作射线AM;②连结AC、BC;③分别以点A和点B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB,使AB=a.其合理顺序为()A.①②③④B.①④②③C.①④③②D.②①④③37、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC 三条高所在直线的交点D.△ABC三边的中垂线的交点38、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A. B. C. D.39、如图,将绕点按逆时针方向旋转得到(点的对应点是点,点的对应点是点),连接,若,则的度数为()A. B. C. D.40、如图,,,≌ ,与交于点D.若,,则的面积为().A.6B.12C.18D.3641、如图,在△ABC中,PM、QN分别是AB、AC的垂直平分线,∠BAC=100°那么∠PAQ等于( )A.50°B.40°C.30°D.20°42、如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OE,使OD=OE;②分别以D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSSB.ASAC.AASD.SAS43、如图,已知△ABC中,AC=3,BC=5,AB=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条44、已知上海到美国洛杉矶的海底电缆共有15个接点.某次从上海发出一个信息时,某个接点发生故障,为了尽快断定故障发生点,排除故障,至少需要检查的接点个数是()A.3B.4C.5D.645、如图,OA=OC,OB=OD,则图中全等三角形共有()A.2对B.3对C.4对D.5对46、如图:△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB 于E,且AC=6cm,则DE+BD等于()A.5cmB.4cmC.6cmD.7cm47、如图,△ 中,、的角平分线、交于点,延长、,,,则下列结论中正确的个数是()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB④若PM⊥BE,PN⊥BC,则AM+CN=AC;A.1个B.2个C.3个D.4个48、如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是()A.∠B=∠CB.∠AEB=∠ADCC.AE=ADD.BE=DC49、已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③直角三角形斜边上的中线等于斜边的一半.④菱形的对角线互相垂直.其中原命题与逆命题均为真命题的个数是()A.4B.3C.2D.150、如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么x的值是().A. B. C. D.51、下列图形具有稳定性的是()A.梯形B.长方形C.直角三角形D.平行四边形52、张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是()A.带Ⅰ去B.带Ⅱ去C.带Ⅲ去D.三块全带去53、如图,一块三角形玻璃不小心摔碎成如图三片,只需带上其中的一片,玻璃店的师傅就能重新配一块与原来相同的三角形玻璃,你知道应带碎玻璃.()A.③B.②C.①D.都不行54、如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是()A. B. C. D.55、已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为()秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或756、有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A.2个B.3个C.4个D.5个57、已知,如图,为线段上一动点(不与点,重合),在同侧分别作等边三角形和等边三角形,与交于点,与交于点,与交于点,连结,,,以下四个结论:① ;②三角形是等边三角形;③ ;④ 平分,其中正确的结论是()A.①②B.③④C.①②③D.①②④58、如图,AB交于CD于点O,点O分别是AB与CD的中点,则下列结论中错误的是()A.∠A=∠BB.AC=BDC.∠A+∠B=90°D.AC∥BD59、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°;②AC=BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的有()A.4个B.3个C.2个D.1个60、如图,在中,,是的平分线,若,,则()A. B. C. D.61、如图,AD是△ABC的中线,E,P分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌OCDE;④BF∥CE;⑤CE=AE。

2021年九年级中考数学 几何专题训练:全等三角形(含答案)

2021年九年级中考数学 几何专题训练:全等三角形(含答案)

2021中考数学几何专题训练:全等三角形一、选择题(本大题共10道小题)1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC3. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②5. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC6. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.BC2D.39. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个10. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题(本大题共8道小题)11. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.12. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).13. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.14. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.15. 如图,点O在△ABC的内部,且到三边的距离相等.若∠BOC=130°,则∠A =________°.16. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.17. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.18. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题(本大题共4道小题)19. 如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC 于点F,△ABC的面积是142.5 cm2,AB=20 cm,AC=18 cm,求DE的长.20. 如图所示,BE=CF,DE⊥AM于点E,DF⊥AN于点F,点B,C分别在AM,AN上,且BD=CD,AD是∠BAC的平分线吗?为什么?21. 如图,在菱形ABCD中,AB=5,sin∠ABD=55,点P是射线BC上一点,连接AP交菱形对角线BD于点E,连接EC.(1)求证:△ABE≌△CBE;(2)如图①,当点P在线段BC上时,且BP=2,求△PEC的面积;(3)如图②,当点P在线段BC的延长线上时,若CE⊥EP,求线段BP的长.22. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.2021中考数学几何专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析]依据SAS全等判定可得乙三角形与△ABC全等;依据AAS全等判定可得丙三角形与△ABC全等,不能判定甲三角形与△ABC全等.故选B.2. 【答案】C[解析] 当添加条件A时,可用“ASA”证明△ABD≌△ACD;当添加条件B时,可用“AAS”证明△ABD≌△ACD;当添加条件D时,可用“SAS”证明△ABD≌△ACD;当添加条件C时,不能证明△ABD≌△ACD.3. 【答案】D4. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.6. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.7. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴∴BC=BD+CD=2A.9. 【答案】A[解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.10. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.二、填空题(本大题共8道小题)11. 【答案】角的内部到角的两边距离相等的点在角的平分线上12. 【答案】②[解析] ∵已知∠ABC=∠DCB,且BC=CB,∴若添加①∠A=∠D,则可由“AAS”判定△ABC≌△DCB;若添加②AC=DB,则属于“SSA”,不能判定△ABC≌△DCB;若添加③AB=DC,则可由“SAS”判定△ABC≌△DCB.13. 【答案】∠A=∠C或∠B=∠D或AB∥CD(答案不唯一)[解析] 由题意可知∠AOB=∠COD,AB=CD.∵AB是∠AOB的对边,CD是∠COD的对边,∴只能添加角相等,故可添加∠A =∠C或∠B=∠D或AB∥CD.14. 【答案】12[解析] 如图,连接BE.∵D为Rt△ABC中斜边BC上的一点,过点D作BC的垂线,交AC于点E,∴∠A=∠BDE=90°.在Rt△DBE和Rt△ABE中,∴Rt△DBE≌Rt△ABE(HL).∴DE=AE.∵AE=12 cm,∴DE=12 cm.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】70【解析】∵∠ABC=90°,AB=AC ,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.17. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°. ∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).18. 【答案】16[解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题(本大题共4道小题)19. 【答案】解:∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF.设DE =x cm ,则S △ABD =12AB·DE =12×20x =10x(cm 2),S △ACD =12AC·DF =12×18x =9x(cm 2).∵S △ABC =S △ABD +S △ACD ,∴10x +9x =142.5, 解得x =7.5,∴DE =7.5 cm.20. 【答案】解:AD 是∠BAC 的平分线.理由:∵DE ⊥AM 于点E ,DF ⊥AN 于点F , ∴∠DEB =∠DFC =90°.在Rt △DBE 与Rt △DCF 中,⎩⎨⎧BE =CF ,BD =CD ,∴Rt △DBE ≌Rt △DCF(HL). ∴DE =DF.又∵DE ⊥AM ,DF ⊥AN , ∴AD 是∠BAC 的平分线.21. 【答案】(1)证明:∵四边形ABCD 是菱形, ∴AB =BC ,∠ABE =∠CBE .在△ABE 和△CBE 中,AB =BC ,∠ABE =∠CBE ,BE =BE , ∴△ABE ≌△CBE (SAS);(2)解:如解图①,连接AC 交BD 于点O ,分别过点A 、E 作BC 的垂线,垂足分别为点H 、F ,解图①∵四边形ABCD 是菱形, ∴AC ⊥BD ,∵AB =5,sin ∠ABD =55, ∴AO =OC =5,∴BO =OD =25,∴AC =25,BD =45,∵12AC ·BD =BC ·AH ,即12×25×45=5AH ,∴AH =4,∵AD ∥BC ,∴△AED ∽△PEB ,∴AE PE =AD BP, ∴AE +PE PE =AD +BP BP ,即AP PE =5+22=72,∴AP =72PE ,又∵EF ∥AH ,∴△EFP ∽△AHP ,∴EF AH =PE AP ,∴EF =PE AP ·AH =PE 72PE×4=87,∴S △PEC =12PC ·EF =12×(5-2)×87=127;(3)解:如解图②,连接AC 交BD 于点O ,解图②∵△ABE ≌△CBE ,CE ⊥PE ,∴∠AEB =∠CEB =45°,∴AO =OE =5,∴DE =OD -OE =25-5=5,BE =3 5.∵AD ∥BP ,∴△ADE ∽△PBE ,∴AD BP =DE BE ,∴5BP =535, ∴BP =15.22. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD .∵CD =2BD ,△ABC 的面积为15,∴S △ACD =10.∴S △ABE +S △CDF =10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形全等——学习卷
学校 姓名
(一)三角形全等的识别方法
1、如图:△ABC 与△DEF 中
2、如图:△ABC 与△DEF 中
∵⎪⎩⎪⎨⎧===__________________________________________________________ ∵⎪⎩

⎨⎧===__________________________________________________________ ∴△ABC ≌△DEF ( ) ∴△ABC ≌△DEF ( )
3、如图:△ABC 与△DEF 中
4、如图:△ABC 与△DEF 中
∵⎪⎩⎪⎨⎧===__________________________________________________________ ∵⎪⎩

⎨⎧===__________________________________________________________ ∴△ABC ≌△DEF ( ) ∴△ABC ≌△DEF ( )
5、如图:Rt △ABC 与Rt △DEF 中,∠____=∠_____=90°
∵⎩⎨⎧==______________________________________ ∴Rt △ABC≌Rt △DEF( )
(二)全等三角形的特征 ∵△ABC ≌△DEF
∴AB= ,AC= BC= ,
(全等三角形的对应边 ) ∠A= ,∠B= ,∠C= ; (全等三角形的对应边 )
(三)填空题
1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;
2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm , ∠A=25°∠B=48°;那么DE= cm ,EC= cm , ∠C= 度;∠D= 度;
3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,
则∠DCB= 度;
(第4小题) 第5小题
4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);
5、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,
(1)若以“SAS ”为依据,还须添加的一个条件为 ; (2)若以“ASA ”为依据,还须添加的一个条件为 ; (3)若以“AAS ”为依据,还须添加的一个条件为 ;
6、如图,平行四边形ABCD 中,图中的全等三角形 是 ;
7、如图,已知∠CAB=∠DBA ,要使△ABC≌△B AD ,只需 增加的一个条件是 ; (只需填写一个你认为适合的条件)
F
E D
C B
A E
D C B A
C
B
A
D
C B A
8、分别根据下列已知条件,再补充一个条件使得下图中的△ABD 和△ACE 全等; (1)AB AC =,A A ∠=∠, ; (2)AB AC =,B C ∠=∠, ; (3)AD AE =, ,DB CE =;
9、如图,AC =BD ,BC =AD ,说明△ABC 和△BAD 全等的理由. 证明:在△ABC 与△BAD 中,
∵()
()()______________________________________________= ⎧⎪
= ⎨⎪
=⎩ ∴△ABC ≌△BAD ( )
10、如图, CE=DE ,EA=EB ,CA=DB ,求证:△ABC ≌△BAD . 证明∵CE=DE , EA=EB ∴________=________
在△ABC 和△BAD .中,
∵()()()
⎪⎩

⎨⎧===_________________________
______________
_______已证已知
∴△ABC ≌△BAD .( )
(四)解答题:
1、如图,已知AC=AB ,∠1=∠2;求证:BD=CE
2
1
A
B
E D
A
C
D
E
D
B
A
2、点M 是等腰梯形ABCD 底边AB 的中点,△AMD 和△BMC 全等吗?为什么?
3、已知:如图,AB∥CD,AB =CD ,BE∥DF; 求证:BE =DF ;
(选做题)
4、在△ABC 中∠BAC 是锐角,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ; (1)求证:AH=2BD ;
(2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证明;若不成立,请说明理由;
F O D
E
C
B
A H
E
A
B。

相关文档
最新文档