第5章-对流-扩散方程的离散格式

合集下载

热流问题数值计算Chapter 5(1)

热流问题数值计算Chapter 5(1)

主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2007年11月29日, 西安热流问题数值计算第五章有回流的流动与换热第流场数值计算概述5.1.1两类主要流动与两类数值解法5.1.4两种构造对流项离散格式的方法1.两类主要流动2.两类数值求解方法5.1 流场数值计算概述5.1.2强制对流的涡量方程5.1.3一维模型方程5.1.1 两类主要流动与两类数值解法回流型,其基本区别在于是否存在漩涡(vortex)vorticity) 的区别漩涡是一种宏观的流动形态,特点是流体速度发生反转;涡量是粘性流体的基本特性,只要是粘性流体流动中必有涡量。

动力工程中大多为回流型(椭圆型)流动。

本章仅介绍回流型流动的数值解法。

2. 两类数值求解方法数值求解回流型的流动可以大别为原始变量法与涡量流函数法。

原始变量法u,v,p为求解变量,由于不可压缩流体没有关于压力的独立的方程,数值求解时需要做特殊处理;5.1.3一维模型方程为研究离散格式基本特点又不使过程复杂化,5.1.4两种构造对流项离散格式的方法1. Taylor控制容积积分法-给出界面上被求函数的插值方式对同一种格式,如控制容积积分法得可以认为是控制容积内导数积分中5.2.1 中心差分5.2.2 迎风差分5.2.3 混合格式5.2.4 指数格式5.2.5 乘方格式5.2对流扩散方程的离散格式本节中通过将一维模型方程在取分段线性型线,经整理可得:()eexδΓ+−EaWa做如下变化:()e e x δΓ++为保证代数方程迭代求解的收敛性,我们要求计算中质量守恒一定要满足,于是下列两点边值问题:Pe 随当当当得出结果如右。

,4P =100,W φ=5.5.2 一维对流-扩散方程的迎风控制容积法的定义-界面上未知函数永远取上游Patankar教授提出一种专门符号表示FORTRAN 的Max:,X Y,于是有:(),0,0e P e E eu F Fρφφφ=−−类似地有:(),0,0w W w P wu F Fρφφφ=−−3.对流项一阶迎风、扩散项中心差分的离散方程P P E E W Wa a aφφφ=+,0E e ea D F=+−()P E W e wa a a F F=++−,0W w wa D F=+由于0,0E W a a ≥≥因此FUD 总可以得出物理上合理的解(physically plausible solution ),自五十年代提出以来,半个世纪中得到广泛地采用。

第五章对流扩散方程的离散格式

第五章对流扩散方程的离散格式

aP = aE + aW
aE = De – Fe / 2 aW = Dw + Fw / 2
在流场的实际求解过程中, 每一个迭代层次上,即使速度 场尚未收敛,也要保证连续方 程是满足的。
3. 对流项的中心差分与迎风差分
3.2 对流项的中心差分
三点说明:
系数 aE , aW 包含了对流 F 与扩散 D的作用的影响;
对均分网格:
2. 对流项离散格式的重要性及两种离散方式
2.2 构造对流项离散格式的两种方式 (2)控制容积积分
给出界面上被求函数的插值方式
2. 对流项离散格式的重要性及两种离散方式
2.2 构造对流项离散格式的两种方式 (3)两种定义之间的关系
对某种对流项离散格式,都可以用两种方法给出其相应 的定义;
3.1 一维对流-扩散问题模型方程的精确解
上游优势
3. 对流项的中心差分与迎风差分
3.1 一维对流-扩散问题模型方程的精确解
希望所构建的离散方程形式也具有这样的物理特性
3. 对流项的中心差分与迎风差分
3.2 对流项的中心差分 Central Scheme (CS)
分段线性
均分网格

对流项
----界面上的流量
1. 简 介
对流与扩散作用在物理本质上的区别
从物理过程来看,扩散作用与对流作用在传递信息或扰动方面 的特点有很大区别:
扩散是由分子的不规则热运动所致,分子不规则热运动对空间不同方向
的几率都是一样的,因而扩散过程可以把发生在某一地点上的扰动的影响 向各个方向传递。
对流是流体微团宏观的定向运动,带有强烈的方向性。在对流的作用下,
两种定义方式的截断误差阶数是一致的,均为二阶截差 (中心差分,分段线性);

第五章对流扩散问题(假扩散 高阶格式差分方程的求解)

第五章对流扩散问题(假扩散 高阶格式差分方程的求解)
T T u v 0 x y
第五章 对流扩散问题———假扩散
在P点的控制容积上对上边的 NW 微分方程进行积分,则:
1 6 N 5 w P E NE
u(Te Tw ) v(Tn Ts ) 0
W 2 SW
A 迎风格式
u(Te Tw ) v(Tn Ts ) 0 ue / w 0
n bb a EE n a EE WW WW b
第五章 对流扩散问题———假扩散
A5.3 PDMA算法 对五对角阵,有没有类似三对角阵TDMA那样的直接 求解方法呢?实际上对五对角阵,人们也可以找到相 应的直接求解方法,这个方法就是PDMA算法。下边 以一维为例来介绍这个算法。
第五章 对流扩散问题———假扩散
由此可见,对一维而言,所得到的差分方程不再是可以 用TDMA直接求解的三对角矩阵方程,而变成一个五对 角阵方程。对二维或三维而言,逐线联立求解的方程组 也不再是可以用TDMA直接求解的三对角矩阵方程,也
变成一个五对角阵方程。
那么,针对这样一种五对角方程,通常我们如何来求解 它们呢?
假设经过代入后得到的上三角方程为
i Ai i 2 Bi i 1 Ci
*#
问题的关键就变成为:找出系数Ai, Bi与Ci和系数a, b, c, d
, e及f之间的关系。为此,写出i-2点的上三角方程如下:
i 2 Ai 2i Bi 2i 1 Ci 2
****
(****)*(di+ eiBi-2),有:
(di ei Bi 2 )i 1 Ai 1 (di ei Bi 2 )i 1 Bi 1 (di ei Bi 2 )i Ci 1 (di ei Bi 2 )

对流扩散方程解析解

对流扩散方程解析解

对流扩散方程解析解对流扩散,也称为热传导、对流和扩散,是一种复杂的物理现象,可以在实际工程中应用。

热对流扩散方程至关重要,它描述了物质在物理空间内温度、湿度、热量移动的规律。

因而,研究这类问题的求解方法的准确性很重要。

热对流扩散方程是一类不定常偏微分方程,它是由质点和场的耦合微分方程组构成的,有许多参数影响其行为,如热传导率、物理参数等,这些参数很难确定,而且它们可能会根据时间变化而变化。

此外,计算引起的误差也会影响解的准确性。

因此,用解析解法求解这类问题会面临更大的挑战。

热对流扩散方程的解析解是用拉普拉斯、哈密顿等量子力学原理求解这类问题的方法。

首先,将热对流扩散方程转换成称为量子力学椭圆方程的一类偏微分方程,然后利用拉普拉斯或哈密顿方程求该椭圆方程的解。

这样做可以得到关于物质湿度、温度、热量分布的分析解。

热对流扩散方程的解析解可以比数值解更加准确,可以更好地描述物质在物理空间内温度、湿度、热量移动的规律。

此外,可以节省时间和精力,而且也不会出现数值计算求解中的误差。

由此可见,热对流扩散方程的解析解在实际应用中有重要意义,不仅可以准确描述问题的特征,而且可以使研究者们维护更高的计算精度。

然而,在求解热对流扩散方程的解析解时仍然存在一些难点。

首先,热对流扩散方程仍然分为任意维数和无限维数,这种复杂的情况使问题更加复杂,更难求解。

其次,拉普拉斯和哈密顿方程提出的方法也可以解决这类问题,但其中也存在一定的局限性。

最后,热对流扩散方程的解析解要求准确的定义,这可能会带来很大的困难。

因此,热对流扩散方程的解析解仍然面临许多挑战,但随着计算机科学技术的发展,这些难题可以通过改进现有方法和研究新方法来解决。

为此,科学家们也不断探索并推广现有方法,发展新的算法以解决这类问题。

总之,热对流扩散方程的解析解是一项重要的研究,因为它可以更准确地描述物质在物理空间内温度、湿度、热量移动的规律。

它不仅可以帮助我们开发更准确的热对流扩散方程的求解方法,而且能够更好地应用于工程实践中,为解决实际问题提供决策依据。

对流扩散方程clank

对流扩散方程clank

对流扩散方程clank标题:对流扩散方程的概述引言概述:对流扩散方程是数学中常见的描述物质传输过程的方程。

它在众多领域中都有广泛的应用,如流体力学、热传导、质量传输等。

本文将从五个大点出发,详细阐述对流扩散方程的相关内容。

正文内容:1. 对流扩散方程的基本概念1.1 对流扩散方程的定义1.2 对流扩散方程的一般形式1.3 对流扩散方程的物理意义2. 对流项与扩散项的影响2.1 对流项的作用2.2 扩散项的作用2.3 对流项与扩散项的相互作用3. 对流扩散方程的解析解与数值解3.1 解析解的求解方法3.2 数值解的求解方法3.3 解析解与数值解的比较4. 对流扩散方程的边界条件和初值条件4.1 边界条件的选择与影响4.2 初值条件的确定与影响4.3 边界条件和初值条件的耦合效应5. 对流扩散方程的应用领域5.1 流体力学中的应用5.2 热传导中的应用5.3 质量传输中的应用总结:对流扩散方程是描述物质传输过程的重要方程,其基本概念包括方程的定义、形式和物理意义。

对流项和扩散项是方程中的两个关键因素,它们分别对物质传输起到对流和扩散的作用,并且相互作用影响着传输过程。

对流扩散方程的求解可以采用解析解和数值解两种方法,它们各有优劣,需要根据具体情况选择。

边界条件和初值条件是方程求解中必要的条件,它们的选择与确定对结果有重要影响。

对流扩散方程在流体力学、热传导和质量传输等领域都有广泛应用,它为我们理解和解决实际问题提供了重要的数学工具。

总之,对流扩散方程是一个复杂而重要的数学方程,它在物质传输过程中起着关键作用。

深入理解和研究对流扩散方程,对于解决实际问题具有重要意义。

第5章-对流-扩散方程的离散格式

第5章-对流-扩散方程的离散格式
Pe
uL

0
Pe表示对流与扩散作用 的相对大小。
0
4/59
传热与流体流动的数值计算
二、对流项的中心差分
d d d u 采用控制容积积分法 对方程 dx dx dx e u e w u w P 2 2 x w x e
aE De Fe ,0 , aW Dw Fw ,0
对流项一阶迎风:
aW i 1 aE i 1 P ,0 1 P ,0 P D D



12/59
传热与流体流动的数值计算
A P P
B P A P P A P P ,0 P B P A P P ,0
24/59
传热与流体流动的数值计算
四、aE、aW的通用表达式
* Je B Pe P A Pe E
J d J P D d x x
*
18/59
传热与流体流动的数值计算
一、通量密度及其离散表达式(续)
J*的离散表达式:
J * Bi Ai 1
Behind Ahead 界面后的项 界面前的项 以坐标轴正方向为依据的“前”、“后”。
19/59
传热与流体流动的数值计算
负系数会导致物理上不真实的解。
7/59
传热与流体流动的数值计算
三、对流项的迎风格式
Taylor展开法
d i i 1 , ui 0 dx i x
i 1 i , ui 0 x
控制容积积分法 e界面 ue 0 , P ; ue 0 , E w界面 uw 0 , W ; uw 0 , P

对流扩散方程解析解

对流扩散方程解析解

对流扩散方程解析解对流扩散方程(CDE)是用来描述流动物质或能量在物理系统中的流动的基础的方程,它是热力学的基础,被广泛应用于大气科学、流体力学、热力学和非均匀物质动力学领域。

它的核心思想是基于大自然中的物理原理,探讨流体的对流和扩散过程,并可以帮助我们更好地理解和研究物理系统。

CDE属于非线性方程,它包含一个变量和三个参数,它在相应区域内表示流体物质的分布。

它有三种不同的形式:经典、非独立和独立。

经典和非独立的形式是在空间中的,独立形式是在时间中的。

由于CDE的复杂性,一般情况下不能用微分方程的定性法来解决,而是需要采用数学解析方法,以解决其解析问题。

解析法是从方程解析出给定条件下物质分布的解,方程的解通常是指方程的普通解,它包含位置和时间,而其求解方法又叫解析解法,是一种以求解物质分布,描述流体运动情况的精确方法。

然而,由于CDE的公差与方程的解析解有很高的复杂性,所以一般来说,解析解法只能求解出较简单的CDE。

为了求解CDE,然而,采用迭代收敛法是一种有用的解析解方法。

在这种方法中,首先假设一个物质分布,这是一种接近解的分布,然后,将这个分布代入CDE,求出初始的物质分布,再根据初始物质分布求出更加精确的物质分布,最终得到CDE的解析解。

此外,可以将CDE进行小扰动分析,以研究它在空间上的分布特性及其影响。

在这种分析中,假设CDE中参数存在较小的变化,即将CDE的解看作基本解加上一个微小的扰动,从而证明CDE的解可以在特定条件下发生变化。

最后,可以采用谱方法来求解CDE,它是在不同频率下求解CDE 的一种有效方法,它可以很好地描述CDE的物质分布的解的特性,并有助于分析CDE的影响。

总而言之,解析解是求解CDE最有效的方法之一,它可以根据不同的方法来求出CDE的解析解,为研究CDE的影响提供有力支持。

第五章对流扩散问题(假扩散)

第五章对流扩散问题(假扩散)

该问题的数值解如下:
1 n i
u t n u t n (1 ) i i 1 x x
MUD : du d ux d (( ) ) dx dx 2 dx
第五章 对流扩散问题———假扩散
由图可以看出,在区间 P 2 ,中心差分格式预报的 P 值优于迎风格式的预报值。对比这两种格式,其扩散项 的处理是完全相同的,所不同的仅仅是对流项的处理上 ,在中心差分格式中对流项的差分格式具有二阶精度, 而在迎风格式中对流项的差分格式只具有一阶精度。在 区间 P 2 ,两种格式预报 P值所表现出的差异性恰恰是 这两种格式精度不同的体现。观察上图,迎风格式所预 报的 P值具有该高不高和该低不低的特点,这一特点正 是由一阶精度迎风格式所引起的扩散系数为 ux / 2 的 假扩散项造成的。也反映了假扩散项的影响。
n n ux ut 2 n ( ) i u( ) i (1 )( 2 ) i O( x 2 , t 2 ) t x 2 x x
由此可以看出,我们前边得到的差分方程所逼近的是 一个非稳态对流扩散问题,而非原型问题所要求的非 稳态对流问题。
第五章 对流扩散问题———假扩散
1 n (1 P
ut n ut n ) P W x x
用编号法表示
1 n i
1 n , n 在点 (i, n) i i 1
u t n u t n (1 ) i i 1 x x
做Taylor展开
n n u 2 n 1 2 n ( ) i u( ) i ( 2 ) i x ( 2 ) i t O( x 2 , t 2 ) t x 2 x 2! t
第五章 对流扩散问题———假扩散
将 i 1 和 i 1 台劳 级数展开代入

对流扩散方程.

对流扩散方程.

A对流扩散方程的求解对流扩散问题的有效数值解法一直是计算数学中重要的研究内容,求解对流扩散方程的数值方法主要是有限差分法(FDM)、有限元法(FEM)、有限体积法(FVM)、有限解析法(FAM)、边界元法(BEM)、谱方法(SM) 等多种方法。

但是对于对流占优问题,用通常的差分法或有限元法进行求解将出现数值震荡。

为了克服数值震荡,80年代,J.Douglas,Jr.和T.F.Russell 等提出特征修正技术求解对流扩散占优的对流扩散问题,与其它方法相结合,提出了特征有限元方法、特征有限差分方法、特征混合元方法;T.J.Hughes和A.Brooks提出过一种沿流线方向附加人工黏性的间断有限元法,称为流线扩散方法(SDM)。

有限差分法、有限元法、有限体积法是工程应用中的主要方法。

对流扩散方程的特点对流扩散方程右端第一项为扩散项,左端第二项则是对流项。

由于其方程本身的特点,给建立准确有效的数值求解方法带来一定的困难。

对流和扩散给流体中由流体携带的某种物理量的变化过程,可以通过一个无量纲的特征参数(Peclet数)来描述,Peclet数Pe的定义为:Pe=|ν|L/D。

这里v是来流速度,L是特征长度,D是物质的扩散系数。

如果Pe数较小,即对流效应相对较弱,这类问题中,扩散占主导地位,方程是椭圆型或抛物线型;如果Pe数较大,即溶质分子的扩散相对于流体速度而言是缓慢的,这类问题中,对流占优,方程具有双曲型方程的特点。

对于对流占优问题的求解,采用常规的Galerkin有限元方法,为了避免求解结果产生数值振荡,获得稳定解,则应使每个单元的局部Peclet数,Peh=|ν|h/D≤2,这里h为单元的最大尺寸,|v|为单元中的最大速度分量值。

因此,用本文方法求解对流占优对流扩散问题,要得到稳定解,则要通过加密有限元网格来实现。

对流扩散方程有限差分方法

对流扩散方程有限差分方法

对流扩散方程有限差分方法流扩散方程是描述流体内部物质的扩散过程的方程,它可以用于描述溶质的扩散、热量的传导以及动量的传递。

在许多工程和科学领域中,比如地球科学、生物医学和工程学等,流扩散方程都有着广泛的应用。

在数值计算中,有限差分方法是一种常用的数值解法,可以非常有效地解决流扩散方程。

下面将详细介绍对流扩散方程有限差分方法的原理和步骤。

首先,考虑一维流扩散方程的一般形式:∂C/∂t=D∂²C/∂x²-V∂C/∂x其中,C是扩散物质的浓度,t是时间,x是空间位置,D是扩散系数,V是对流速度。

为了使用有限差分方法求解上述方程,我们需要将时间和空间分布离散化,得到方程在网格点上的近似表示。

首先,将时间轴分为n个等间隔的时间步长Δt,空间轴分为m个等间隔的网格点,网格点之间的间距为Δx。

然后,我们使用数值方法来逼近方程中的各个导数项,采用中心差分公式:∂C/∂t≈(C_i^(n+1)-C_i^n)/Δt∂²C/∂x²≈(C_i+1^n-2C_i^n+C_i-1^n)/Δx²∂C/∂x≈(C_i+1^n-C_i-1^n)/(2Δx)将上述近似代入流扩散方程,可以得到:(C_i^(n+1)-C_i^n)/Δt=D(C_i+1^n-2C_i^n+C_i-1^n)/Δx²-V(C_i+1^n-C_i-1^n)/(2Δx)整理上式,可以得到对流扩散方程的有限差分方程:C_i^(n+1)=C_i^n+(DΔt/Δx²)(C_i+1^n-2C_i^n+C_i-1^n)-(VΔt/2Δx)(C_i+1^n-C_i-1^n)上述方程给出了方程在时刻n+1时刻网格点i的值,即C_i^(n+1),它的值通过已知时刻n时刻各个网格点的值C_i^n来计算。

最后,我们可以使用迭代的方法,从初始条件C_i^0开始,依次计算下一个时刻的网格点C_i^(n+1),直到达到所需的计算精度或者计算到需要的时间步长。

第五章对流扩散方程

第五章对流扩散方程
• 用四条线逼近准确解,十分接近指数格式 的结果,但计算量小得多
• 比混合格式复杂,计算量增加,但准确性 提高
• 稳定性:若用中心差分格式不能体现对流 项的物理本质,常会引起数值解的振荡
• 经济性:若用高阶格式,无数值振荡,但 格式复杂,求解相对困难,机时消耗较多
5.2 一维稳态对流扩散问题
d (u)
dx
d dx
d
dx
5.2.1 模型方程的精确解
d (u)
dx
d dx
d
dx
边界条件:
x 0, 0;x L, L
采用迎风思想:从来流上游方向找依赖区
在界面e上,若 ue 0,则e P ;若 ue 0,则e E ; 在界面w上,若 uw 0,则w W ;若 uw 0,则w P
界面流量
• 引入符号 • 对流:
a1, a2 max(a1, a2 )
(u)e Fee P Fe,0 E Fe,0 , (u)w Fww W Fw,0 P Fw,0
• 控制方程变为: dJ 0; 或 J const dx
J
F
0
0 L
exp(Pe) 1
界面上通量
Jw
Fw
W
W P
exp(Pw )
1Hale Waihona Puke JeFeP
P
exp(
E
Pe )
1
Fe exp( exp(Pe
Pe )
) 1
Fw exp(Pw )
1 P
Fe exp(Pe )
1E
Fw exp(Pw exp(Pw )
) 1
W
合并整理结果
aPP aEE aWW
• 系数
aE

对流扩散方程

对流扩散方程
即 r 2 1,此时有r 1,(r 2) r 2自然成立。
所 以 迎 风 格 式 的 稳 定 性条 件 是
h2 2 ah
当a 0时 , 情 况 类 似 , 稳 定 性条 件 是
h2 2 a h
也可以利用中心显格式来讨论稳定性,于是将上面格式改为:
u n1 j
u
n j
a
un j 1
只需验证 G 1,由于 1 cos wh 0,条件转化为:
4 4 2 (1 cos wh) r 2 (1 cos wh) 0
即 4 - 2r 2 (4 2 r 2 )(1 cos wh) 0
由于 1 cos wh 0,1,上述不等式转化为
2
4 2r 2 0, 4 2r 2 2(r 2 4 2 ) 0
为了简单方便,设a>0,先对方程作扰动,得到另外一对流
扩散方程
u t
a u x
1
1 R
2u x 2
其中R 1 ha
2
对上面的方程构造迎风格式
u n1 j
u
n j
a
u
n j
u
n j 1
h
1
1 R
un j 1
2u
n j
h2
u
n j 1
称为逼近对流扩散方程的Samarskii格式.
n j
u n1 j
2 得到如下差分格式:
u n1 j
u
n j
a
u
n j 1
u
n j 1
2h

2
a
2)u
n j 1
2u
n j
h2
u
n j 1
稳 定 性 分 析 完 全 类 似 于中 心 差 分 格 式 , 显 然 有

第五章 对流-扩散方程的离散格式

第五章 对流-扩散方程的离散格式

令 F u ,D (扩导)则上式可变为: x
aP P aE E aW W
aE 1 1 De Fe aW Dw Fw 2 2
式⑴
a p aE aW
在数值计算中,若连续性方程始终得到满 足,aP仍为相邻各系数的和。aE, aW包括了 扩散与对流作用的影响。
对于坐标系I,C位于界面之后,而D位 于界面之前,于是: J * B( P )C A( P ) D 对于坐标系II,D位于界面之后,而C 位于界面之前,于是:
J B( P ) D A( P )C
*

由于
J J
*
*'
C [ B( P ) A( P )] D [ A( P ) B( P )]
动量方程的压力梯度项处理涉及到 压力与速度的耦合问题。
5.1.1 对流项离散格式的重要性 对流项离散格式是否合适将会影响: ⑴ 数值解的准确性(假扩散误差) ; ⑵ 数值解的稳定性 ; ⑶ 数值解的经济性 。
5.1.2 构造对流项离散格式的两种方式
1、Taylor展开方式 对于节点上的一阶导数给出其相应的离散 方式,如表5-1。
aW (i 1) a E (i) 1 1 (1 P ) (1 P ) P D D 2 2
迎风差分(FUD):
aW Dw Fw ,0 Dw 1 Pw ,0
aE De Fe ,0 De 1 Pe ,0
exp( Pe ) 1
Fe ;
Fw exp( Pw ) aW exp( Pw ) 1
aP aE aW ( Fe Fw )
5.3.4 乘方格式(Power-law scheme)

数值传热第五章课件2陶文铨

数值传热第五章课件2陶文铨

主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER2010年10月18日, 西安数值传热学第五章对流扩散方程的离散格式(2)对流项离散格式的重要性及两种离散方式5.5.1假扩散的含义与成因5.5.2一阶截差格式引起严重假扩散举例1.本来的含义2.扩充的含义3.Taylor 展开法的分析5.5关于假扩散的讨论5.5.3网格倾斜交叉引起的计算误差5.5.4 非常数源项引起的假扩散5.5.5 两个名例以一维非稳态纯对流过程为例俩分析,其中有两n nφφ2(,O x φΔΔ其中关于时间的二阶导数项可做如下变化:时才没有这部分的计算误差。

2. 扩充的含义现有文献中常常将较大的计算误差都称为假扩散,大致有以下几项原因:(1) 一阶导数的一阶截差格式;(2) 流动方向与网格线呈倾斜交叉;(3) 离散格式未计及非常数源项的影响。

5.5.2一阶截差格式引起严重假扩散举例1.一维稳态对流扩散问题对流项用FUD,扩散项用CD,当Pe较大时,数值计算结果严重偏离精确解。

Physically plausible solution纯对流传递纯对流传递由离散方程:1n−1此时只有对流,没有扩散!时则有严重假扩散!0.8C =0.8C =当时,产生了严重的扩散作此种误差称为流向假扩散Γ≠Γ气流01. 设UE对P 控制容积,有2. 设控制容积,此时:计算误差纯对流传递三个对流问题的归纳这就是假扩散纯对流传递3)网格倾斜交叉引起的计算误差E冷热流体之间产生了温度均匀化的过程,即交叉5.5.5 已知流场计算温度场232(1),2(1)u y x v x y =−=−−参考解xT严重假扩散2) Leonard细高方腔中的自然对流换热5.6.1采用高阶格式克服流向假扩散5.6可以克服或减轻假扩散的格式与方法5.2.2 克服、减轻交叉假扩散的方法1. 采用二阶迎风2.采用三阶迎风3. 采用QUICK 格式1. 采用有效扩散系数2.采用自适应网格4. 采用SGSD 格式可以克服或减轻假扩散的格式与方法相当于界面上的中心差分)W WWxφ+Δ如型线上凹,则(2) FVM向上游取两点定义界面插值2.采用三阶迎风展开定义-一阶导数的三阶偏差分格式3. 采用定义-界面的插值在中心差分基础上考虑曲中心差分插值率修正?需要满足两个条件:插值的正确修正:相邻(2)0W PE φφφ−+<型线下凹8Cur −对e-界面u e 小于零时,取,,W P φφφu e 大于零时,取怎样相邻的三点?QUICK(2)e φφ=1/2w i φφ−=有:4. 采用CD条件稳定,但没有二阶假扩散;二阶迎风绝对稳定,组合起来,但是:如何确定值,特别是如何由计算结果来5. 高阶格式实施中的问题f u f计算边界:固o2) 代数方程的求解:等时,5.6.2用减小扩散系采用自适应网格(以减轻流5.7 对流-扩散方程离散形式稳定性分析5.7.1 数值计算中常见的三种不稳定性5.7.2 分析对流项格式不稳定性的“符号不变原则”5.7.3 稳定性分析结果讨论5.7.4 对流项格式问题讨论小结2.“符号不变”原则的基本思想3. “符号不变”原则的实施步骤4. “符号不变”原则的实施例子1. 研究背景扩散方程离散形式稳定性分析也会产生振荡的解,称为对流项离散格式的不稳态定性,研究目的是,找出产生振荡的临界Peclet 数。

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

乘方 | 0, (1 0.1| P |)5 |
中心
混合
P
§ 5-4
原始的假扩散概念
关于假扩散的讨论
一维非稳态对流方程(纯对流,没有扩散)
u t x
显示迎风差分格式
in1 in
t
u
in in 1
x
, o(x, t )
将上式在(i,n)点做Taylar级数展开,保留二阶。
Pe x T T0 exp( cux / k ) 1 exp( L ) 1 TL T0 exp( cuL / k ) 1 exp( Pe ) 1
贝克立数 Pe
cuL
k

cuAT
kA T L
对流传热量/导热量
TL
1
纯导热 P e 0 上游信息对流到下游, 纯对流 下游信息无法通过扩 P e
Pe 10
aE Pe DE aE (1 0.1Pe )5 Pe DE aE (1 0.1Pe )5 DE aE 0 DE
10 Pe 0
0 Pe 10
Pe 10
(f)
aE [| 0, (1 0.1| Pe |)5 |] [| 0, Pe |] De 讨论

aPP aEE aWW
Fe Fw exp( Pw ) aE , aW exp( Pe ) 1 exp( Pw ) 1
(D)
aP aE aW (Fe Fw )
区别就在函数 aE和aW
aE De
Pe aE De exp( Pe ) 1
aE Pe De
上述若对任何成立必得根据对称特性可以说明为什么前面讨论格式特性只研究函数ab系数性质的含义根据对称及和差特性我们仅须知道红线的值即在0105中心迎风混合指数乘方10迎风指数乘方中心混合54关于假扩散的讨论原始的假扩散概念一维非稳态对流方程纯对流没有扩散差分格式没有考虑非常数源项的影响

对流扩散方程有限差分方式

对流扩散方程有限差分方式

对流扩散方程有限差分方式求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。

3.1 中心差分格式时刻导数用向前差商、空间导数用中心差商来逼近,那么就取得了(1)式的中心差分格式]6[21111122h u u u vhu u au u nj n j n j nj n j n jn j -+-+++-=-+-τ(3)假设令 haτλ=,2h vτμ=,那么(3)式可改写为)2()(2111111nj n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4)从上式咱们看到,在新的时刻层1+n 上只包括了一个未知量1+n j u ,它能够由时刻层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。

因此,中心差分格式是求解对流扩散方程的显示格式。

假定),(t x u 是定解问题的充分滑腻的解,将1+n j u ,n j u 1+,nj u 1-别离在),(n j t x 处进行Taylor 展开:)(),(),(211ττO t u t x u t x u unjn j n j n j+⎥⎦⎤⎢⎣⎡∂∂+==++)(2),(),(322211h O x u h x u h t x u t x u u nj nj n j n j n j +⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂+==++ )(2),(),(322211h O x u h x u h t x u t x u u njnj n j n j n j +⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂-==--代入(4)式,有 21111122),(hu u u vhu u au u t x T nj n j n j nj n j n jn j n j -+-+++---+-=τ)()()(2222h O v x u v h O a x u a O t u nj nj nj ⋅-⎥⎦⎤⎢⎣⎡∂∂-⋅+⎥⎦⎤⎢⎣⎡∂∂++⎥⎦⎤⎢⎣⎡∂∂=τ )()()(222h O v a O x u v x u a t u njnj nj ⋅-++⎥⎦⎤⎢⎣⎡∂∂-⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂=τ )(2h O +=τ显然,当0→τ,0→h 时,0),(→n j t x T ,即中心差分格式与定解问题是相容的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11/59
传热与流体流动的数值计算
§5.3 对流-扩散方程的混合格式及乘方格式
一、系数aE与aW 之间的内在联系
aE(i)与aW (i+1)共享同一个界面。 对流项中心差分:
Fe Fw aE De , aW Dw 2 2 aW i 1 aE i P P 1 1 P D D 2 2
A P P
B P A P P A P P ,0 P B P A P P ,0
24/59
传热与流体流动的数值计算
四、aE、aW的通用表达式
* Je B Pe P A Pe E
23/59
传热与流体流动的数值计算
三、系数特性的重要推论(续)
证明:
P 0 , A P A P 0
P 0 , A P B P P A P P
A P A P P ,0
16/59
传热与流体流动的数值计算
五、5种3点格式系数汇总
格式 中心差分 定
aE 只需给出 定义式 De

Pe 1 2
1 Pe , 0
迎风格式
混合格式 乘方格式 指数格式
Pe , 1 0.5Pe , 0
0 , 1 0.1 P 5 + 0 , P e e Pe exp Pe 1
J d J P D d x x
*
18/59
传热与流体流动的数值计算
一、通量密度及其离散表达式(续)
J*的离散表达式:
J * Bi Ai 1
Behind Ahead 界面后的项 界面前的项 以坐标轴正方向为依据的“前”、“后”。
19/59
传热与流体流动的数值计算
在数值计算过程中,如果连续性方程始终得到满足, 则: aP aE aW 在求解过程中,始终保持连续性方程满足非常重要。 常物性条件下均分网格: 1 0.5P E 1 0.5P W P
2
6/59
传热与流体流动的数值计算
二、对流项的中心差分(续)
例:在一维模型方程离散求解的 均分网格中,已知W =100, E =200。试对P =0,1,2及4 四种情况按中心差分格式计算 P之值。
二、系数A、B间的关系
1、和差特性 当 i i 1 时,界面上的扩散通量为零,于是:
J * Pi Pi 1 J * Bi Ai 1 Pi Pi 1
B A P
20/59
传热与流体流动的数值计算
二、系数A、B间的关系(续)
2、对称特性 坐标系I: J * B P C A P D 坐标系II: J * B P D A P C 因为: J * J * 于是:
8/59
传热与流体流动的数值计算
三、对流项的迎风格式(续)
e界面
ue 0 , P ; ue 0 , E
u e Fee P max Fe , 0 E max Fe , 0
w界面
P Fe ,0 E Fe ,0
uw 0 , W ; uw 0 , P
u w Fww W max Fw , 0 P max Fw , 0
W Fw ,0 P Fw ,0
9/59
传热与流体流动的数值计算
三、对流项的迎风格式(续)
2/59
两种定义截差阶数一致,但截差首项系数有所不同。
传热与流体流动的数值计算
§5.2 对流项的中心差分与迎风格式
一、一维对流-扩散问题模型方程的精确解
d d d u dx dx dx
边界条件: x 0 , 0 ; x L , L
17/59
传热与流体流动的数值计算
§5.4 对流-扩散方程5种3点格式系数特性的分析
一、通量密度及其离散表达式
d d d u dx dx dx
总通量密度J:单位时间内、单位面积上由扩散 及对流作用而引起的某一物理量的总转移量。 d d J u P dx x d x x
二、混合格式(Spalding,1971)
0 aE 1 0.5Pe De Pe , Pe 2 , , 2 Pe 2 Pe 2
aE Pe , 1 0.5Pe , 0 De
13/59
传热与流体流动的数值计算
三、指数格式
0 5 aE 1 0.1Pe De 1 0.1P 5 P e e Pe
, Pe 10
, 0 Pe 10 , 10 Pe 0 , Pe 10
5 aE 0 , 1 0.1 Pe + 0 , Pe De
B P C A P D B P D A P C B P A P C A P B P D
B P A P 0 即 B P A P A P B P 0 即 A P B P
Pe
uL

0
Pe表示对流与扩散作用 的相对大小。
0
4/59
传热与流体流动的数值计算
二、对流项的中心差分
d d d u 采用控制容积积分法 对方程 dx dx dx e u e w u w P 2 2 x w x e
21/59
传热与流体流动的数值计算
二、系数A、B间的关系(续)
指数格式系数A、B间的关系 P exp P P B P , A P exp P 1 exp P 1
22/59
传热与流体流动的数值计算
三、系数特性的重要推论
BP 和差特性: A P P 对称特性: B P A P , A P B P 重要推论: 对5种3点格式的任何一种,若在P>0时, P P P A(P的计算式为已知,则在 的范围内A(P、 B(P的计算式均可得出。
Fw exp Pw Fe aE , aW exp Pe 1 exp Pw 1 aP a E aW Fe Fw
14/59
传热与流体流动的数值计算
三、指数格式(续)
15/59
传热与流体流动的数值计算
四、乘方格式(Patankar,1979)
传热与流体流动的数值计算
第5章 对流-扩散方程的离散格式
2009年3月13日
1/59
传热与流体流动的数值计算
§5.1 对流项离散格式的重要性 及两种离散方式 一、对流项离散格式的重要性
1、数值解的准确性(假扩散) 2、数值解的稳定性 3、数值解的经济性
二、构造离散格式的两种方式
1、Taylor展开法 2、控制容积积分法
利用精确解得到相邻节点间符合精确解的关系式。
Fe exp Pe Fw P exp Pe 1 exp Pw 1 Fw exp Pw Fe E W exp Pe 1 exp Pw 1
aPP aEE aWW
aE De Fe ,0 , aW Dw Fw ,0
对流项一阶迎风:
aW i 1 aE i 1 P ,0 1 P ,0 P D D



12/59
传热与流体流动的数值计算
d


udx


C
C2
ln C1
ux
C1eux C2
3/59
传热与流体流动的数值计算
一、一维对流-扩散问题模型方程的精确解(续)
0 eux 1 e Pex L 1 uL Pe L 0 e 1 e 1
Peclet数:
e w u e u w E W 2 2 x e x w
记:F = u 通过界面的流量。 D= x 界面上单位面积扩散阻力的倒数(扩导)。 F u u x = P D x 5/59
传热与流体流动的数值计算
二、对流项的中心差分(续)
Fe Fw Fe Fw De Dw P De E Dw W 2 2 2 2 aPP aEE aWW
aP aE aW Fe Fw Fe Fw , aE De , aW Dw 2 2
B Pe A Pe Pe A Pe Pe ,0 B Pw A Pw Pw A Pw Pw ,0
负系数会导致物理上不真实的解。
ห้องสมุดไป่ตู้7/59
传热与流体流动的数值计算
三、对流项的迎风格式
Taylor展开法
d i i 1 , ui 0 dx i x
i 1 i , ui 0 x
控制容积积分法 e界面 ue 0 , P ; ue 0 , E w界面 uw 0 , W ; uw 0 , P
迎风格式离散形式:
aPP aEE aWW
a E De Fe , 0 aW Dw Fw , 0 a P a E aW Fe Fw
相关文档
最新文档