初三数学试题

合集下载

初三数学精选试题及答案

初三数学精选试题及答案

初三数学精选试题及答案一、选择题1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 如果一个三角形的两边长分别为3和4,那么第三边长x的取值范围是?A. 1 < x < 7B. 0 < x < 7C. 1 < x < 7 或 x > 7D. 0 < x < 7 或 x > 7答案:A3. 一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A二、填空题4. 计算:(2x - 3)(x + 4) = _______。

答案:2x² + 5x - 125. 一个圆的直径是14cm,那么它的半径是 _______ cm。

答案:7三、解答题6. 已知一个二次函数的图像经过点(1, 2)和(-1, 10),求这个二次函数的解析式。

答案:设二次函数的解析式为y = ax² + bx + c。

将点(1, 2)和(-1, 10)代入得到方程组:\[\begin{cases}a +b +c = 2 \\a -b +c = 10\end{cases}\]解得a = 4, b = -3, c = 1。

因此,二次函数的解析式为y = 4x² - 3x + 1。

7. 一个长方体的长、宽、高分别为a、b、c,已知长方体的体积为V,求长方体的表面积S。

答案:长方体的体积V = abc,表面积S = 2(ab + bc + ac)。

四、证明题8. 证明:勾股定理。

答案:在直角三角形ABC中,∠C为直角,设a、b为直角边,c为斜边。

根据勾股定理,有a² + b² = c²。

可以通过构造一个边长为a+b的正方形,将其划分为两个直角三角形和一个边长为c的正方形,从而证明a² + b² = c²。

五、应用题9. 一个水池的长、宽、高分别为4m、3m、2m,现在要将水池装满水,需要多少立方米的水?答案:水池的体积V = 长× 宽× 高= 4m × 3m × 2m = 24立方米。

初中数学经典试题及答案(初三复习资料)

初中数学经典试题及答案(初三复习资料)

初中数学经典试题一、选择题:1、图 ( 二) 中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角。

关于这七个角的度数关系,下列何者正确( )A.2=4+7B.3=1+6C.1+ 4+ 6=180D.2+ 3+ 5=360答案: C.2、在平行四边形ABCD中, AB= 6, AD= 8,∠ B 是锐角,将△ ACD沿对角线 AC折叠,点D落在△ ABC所在平面内的点 E 处。

如果 AE过 BC的中点,则平行四边形ABCD的面积等于()A、48B、10 6C、127D、24 2BOCFDA答案: C.3、如图,⊙ O中弦 AB、 CD相交于点F, AB= 10,AF= 2。

若 CF∶ DF= 1∶ 4,则 CF的长等于()A、2B、2C、3D、22答案: B.4、如图:△ ABP与△ CDP是两个全等的等边三角形,且PA⊥PD。

有下列四个结论:①∠PBC =150;② AD∥BC;③直线 PC与 AB垂直;④四边形ABCD是轴对称图形。

其中正确结论的个数为()A DPB第10题图CA 、 1B、 2C、 3D、 4答案: D.C5、如图,在等腰Rt△ABC中,∠ C=90o ,AC=8,F 是 AB边上的E中点,点 D、E 分别在 AC、 BC 边上运动,且保持 AD=CE,连接DDE、 DF、 EF。

在此运动变化的过程中,下列结论:A F B① △DFE是等腰直角三角形;②四边形 CDFE不可能为正方形;③ DE 长度的最小值为 4;④四边形 CDFE的面积保持不变;⑤△ CDE 面积的最大值为 8。

其中正确的结论是()A.①②③B.①④⑤C.①③④ D .③④⑤答案: B.二、填空题:6、已知0x1.(1) 若x 2 y 6 ,则y的最小值是;(2). 若x2y2 3 , xy1,则x y =.答案:( 1)-3 ;( 2)-1.7、用 m根火柴可以拼成如图 1 所示的 x 个正方形,还可以拼成如图 2 所示的 2y 个正方形,那么用含 x 的代数式表示y,得 y= _____________ .图1图2答案: y=3x-1.552218、已知m- 5m- 1= 0,则 2m- 5m+m2=.A D 答案: 28.9、 ____________________ 范围内的有理数经过四舍五入得到的近似数.N M答案:大于或等于且小于 .10、如图:正方形 ABCD中,过点 D 作 DP交 AC于点 M、交AB于点 N,交 CB的延长线于点 P,若 MN= 1, PN= 3,P B C第19题图则 DM的长为.答案: 2.11、在平面直角坐标系xOy 中,直线 y x 3 与两坐标轴围成一个△AOB。

初三数学常考试题及答案

初三数学常考试题及答案

初三数学常考试题及答案一、选择题1. 已知一个二次函数的图像经过点A(-1,0)和点B(3,0),且函数的开口向上,则该二次函数的对称轴是()。

A. x = 0B. x = 1C. x = 2D. x = -1答案:B解析:二次函数的对称轴是其顶点的x坐标,由于函数图像经过点A(-1,0)和点B(3,0),且开口向上,根据二次函数的性质,对称轴是这两点x坐标的平均值,即x = (-1 + 3) / 2 = 1。

2. 下列哪个选项是不等式2x - 3 > 0的解集?A. x > 3/2B. x < 3/2C. x > 3D. x < 3答案:A解析:将不等式2x - 3 > 0移项得到2x > 3,再除以2得到x > 3/2,因此选项A是正确的。

二、填空题3. 计算绝对值:|-7| = _______。

答案:7解析:绝对值表示一个数距离0的距离,因此|-7|表示-7距离0的距离,即7。

4. 计算平方根:√9 = _______。

答案:±3解析:平方根是一个数的平方等于给定数的那个数,9的平方根是3,因为3的平方是9。

同时,-3的平方也是9,所以9的平方根是±3。

三、解答题5. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

答案:5解析:根据勾股定理,直角三角形的斜边长度等于两直角边长度的平方和的平方根。

即斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5。

6. 某工厂生产一种零件,每件成本为10元,售价为15元,若该工厂希望获得的利润不低于1000元,问至少需要生产多少件零件?答案:100件解析:设需要生产的零件数量为x件,则总利润为(15 - 10)x = 5x元。

根据题意,5x ≥ 1000,解得x ≥ 200。

因此,至少需要生产200件零件。

四、证明题7. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。

初三数学精选试题(含答案)

初三数学精选试题(含答案)

初三数学精选试题及答案一、选择题(把下列各题中唯一正确答案的序号填在题后的括号内.本题8个小题,每小题3分,满分24分) 1.3-的倒数是( ) A.13-B.3-C.13D.32.若一个多边形的每个外角都等于45,则它的边数是( ) A.7 B.8 C.9 D.103.下列运算不正确的是( ) A.235aa a =B.()326aa =C.()3328a a -=-D.2242a a a +=4.有4条线段,分别为3cm,4cm ,5cm ,6cm ,从中任取3条,能构成直角三角形的概率是()A.12B.13C.14D.155 ) A.2B.3C.4D.56.分解因式:222x xy y x y -++-的结果是( ) A.()()1x y x y --+ B.()()1x y x y --- C.()()1x y x y +-+D.()()1x y x y +--7.如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120 C.梯形的腰与上底相等D.梯形的底角是608.如右图,某运动员P 从半圆跑道的A 点出发沿AB 匀速前进到达终点B ,若以时间t 为自变量,扇形OAP 的面积S 为函数的图象大致是( )A.B.C.D.二、填空题(本题8个小题,每小题3分,满分24分) 9.计算111234⎛⎫⎛⎫⎛⎫---+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭___________. 10.“太阳从西边出来”所描述的是一个___________事件.11.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为___________部分.(选择A ,B ,C ,D 填空)12.中央电视台大风车栏目图标如图甲,其中心为O ,半圆ACB 固定,其半径为2r ,车轮为中心对称图形,轮片也是半圆形,小红通过观察发现车轮旋转过程中留在半圆ACB 内的轮片面积是不变的(如图乙),这个不变的面积值是___________.13.已知221x y -=,那么:2243x y -+=___________. 14.若双曲线2y x=过两点()11y -,,()23y -,,则有1y ___________2y (可填“>”、“=”、“<”).15.用边长为1的正方形材料制作的七巧板拼成一幅土家摆手舞图案,其中舞者头部占整个身体面积的___________.16.观察一列有规律的数:12,16,112,120,它的第n 个数是___________.三、解答题(本大题9个小题,满分72分) 17.(本小题6分)A CB D A CB O(甲)(乙)OBCA()()()1πsin 60132--3---.18.(本小题6分) 已知分式:221A x =-,1111B x x=++-.()1x ≠±.下面三个结论:①A ,B 相等,②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么?19.(本小题6分)考点办公室设在校园中心O 点,带队老师休息室A 位于O 点的北偏东45,某考室B 位于O 点南偏东60,请在右图中画出射线OA ,OB ,并计算AOB ∠的度数.20.(本小题6分)小明发现把一双筷子摆在一个盘子上,可构成多种不同的轴对称图形,请你按下列要求,各添画一只筷子,完成其中三种图形:21.(本小题9分) 会堂里竖直挂一条幅AB ,小刚从与B 成水平的C 点观察,视角30C=∠,当他沿CB 方北 东西 南 O(1)两只筷子相交 (2)两只筷子平行 (3)两只筷子不平行不相交 ABCD向前进2米到达到D 时,视角45ADB ∠,求条幅AB 的长度.22.(本小题9分)我市某生态果园今年收获了15吨李子和8吨桃子,要租用甲、乙两种货车共6辆,及时运往外地,甲种货车可装李子4吨和桃子1吨,乙种货车可装李子1吨和桃子3吨. (1)共有几种租车方案?(2)若甲种货车每辆需付运费1000元,乙种货车每辆需付运费700元,请选出最佳方案,此方案运费是多少. 23.(本小题9分)初三(1)班男生一次50米短跑测验成绩如下.(单位:秒)6.97.0 7.1 7.2 7.0 7.4 7.3 7.5 7.0 7.4 7.3 6.8 7.0 7.1 7.3 6.9 7.1 7.2 7.4 6.9 7.0 7.2 7.0 7.2 7.6体育老师按0.2秒的组距分段,统计每个成绩段出现的频数,填入频数分布表,并绘制了频数分布直方图.(1)请把频数分布表及频数分布直方图补充完整.(2)请说明哪个成绩段的男生最多?哪个成绩段的男生最少?(秒) 频数分布直方图频数分布表(3)请计算这次短跑测验的合格率(7.5秒及7.5秒以下)和优秀率(6.9秒及6.9秒以下). 24.(本小题9分) 如图,已知ABCD 的对角线AC ,BD 相交于点O ,BD 绕点O 顺时针旋转交AB ,DC 于E ,F . (1)证明:四边形BFDE 是平行四边形.(2)BD 绕点O 顺时针旋转_________度时,平行四边形BFDE 为菱形?请说明理由. 25.(本小题12分)在平面直角坐标系内有两点()20A -,,102B ⎛⎫ ⎪⎝⎭,,CB 所在直线为2y x b =+, (1)求b 与C 的坐标(2)连结AC ,求证:AOC COB △∽△(3)求过A ,B ,C 三点且对称轴平行于y 轴的抛物线解析式(4)在抛物线上是否存在一点P (不与C 重合),使得ABP ABC S S =△△,若存在,请求出P 点坐标,若不存在,请说明理由.张家界市2006年初中毕业学业考试试卷数学参考答案及评分标准说明: (一)《答案》中各行右端所注分数表示正确作完该步应得的累计分数,全卷满分120分. (二)《答案》中的解法只是该题解法的一种或几种,如果考生的解法和本《答案》不同,可参照本《答案》中评分标准的精神,进行评分.(三)评卷时,要坚持每题评阅到底,勿因考生解答有误而中断评阅,如果考生的解答在某一步出现错误,影响后续部分而未改变本题的内容与难度者,视影响程度来决定后面部分的得分,但原则上不超过后面部分满分的一半,如果有严重概念性错误,应不给分.17.(6′)解:原式1112⎛⎫=-+--⎪ ⎪⎝⎭3′2112=+- 4′122=- 32=6′ 18.(6′)解:A B ,互为相反数正确 2′ 因为:1111B x x =-+-3′11(1)(1)(1)(1)x x x x x x -+=-+-+-4′(1)(1)(1)(1)x x x x --+=+-5′221A x -==-- 6′19.(6′)解:3′145260==∠,∠ 180(4560)75AOB ∴=-+=∠6′20.(6′)21.(9′)解:在Rt ADB △中,45ADB =∠.AB DB ∴= 2DC = 那么:2BC BD DC AB =+=+3′在Rt ABC △中,30C =∠ tan ABC BC =∠tan 3023AB AB ∴==+6′得:3AB =+解得:AB ==9′22.(9′)解:(1)设安排甲种货车x 辆,乙种货车(6)x -辆,1′根据题意,得:4(6)1533(6)85x x x x x x +-⎧⎧⇒⎨⎨+-⎩⎩≥≥≥≤ 35x ∴≤≤ 3′ x 取整数有:3,4,5,共有三种方案.4′(2)租车方案及其运费计算如下表.(说明:不列表,用其他形式也可)8′ 答:共有三种租车方案,其中第一种方案最佳,运费是5100元. 9′23.(9′)解: (1)(在图表上完成)(1)两只筷子相交 (2)两只筷子平行 (3)两只筷子不平行不相交2′6′ 4′ABC D45303′ (2)6.95~7.15(秒)段人数最多.7.55~7.75(秒)段人数最少. 6′ (3)合格率0.160.360.280.160.9696=+++==%优秀率0.1616==% 9′24.(9′)(1)证明:四边形ABCD 是平行四边形 OB OD ∴= AB CD ∥ 2′ OBE ODF ∴=∠∠ 3′ 又BOE DOF =∠∠ 4′ BOE DOF ∴△≌△5′ OE OF ∴= 且OB OD = ∴四边形BFDE 是平行四边形6′(2)BD 绕点O 顺时针旋转90度时,平行四边形BFDE 是菱形 7′证明:四边形BFDE 是平行四边形 又90DOF =∠FE BD ∴⊥8′ ∴平行四边形BFDE 是菱形. 9′25.(12′)(1)以102B ⎛⎫ ⎪⎝⎭,代入2y x b =+ 1202b ⨯+= 2′得:1b =- 则有(01)C -,3′(2)OC AB ⊥12OB OC OC OA ==5′ AOC COD ∴△∽△6′(3)设抛物线的解析式为2y ax bx c =++,以三点的坐标代入解析式得方程组:221101223(2)(2)0211a b c a a b c b c c ⎧⎛⎫-++=⎪= ⎪⎧⎝⎭⎪⎪⎪⎪-+-+=⇒=⎨⎨⎪⎪=-=-⎪⎪⎩⎪⎩8′所以2312y x x =+- 9′(4)假设存在点()P x y ,依题意有1||||211||||2ABP ABCAB y S S AB OC ==△△, 得:||||1y OC == 10′①当1y =时,有23112x x +-= 即23202x x +-=解得:1234x -±=, 11′②当1y =- 时, 有23112x x +-=-,即2302x x += 解得:30x =(舍去),432x =-∴存在满足条件的点P ,它的坐标为:333111244⎛⎫⎛⎫-+--⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, 12′。

初三数学考试题讲解及答案

初三数学考试题讲解及答案

初三数学考试题讲解及答案【试题一】题目:已知函数f(x) = 2x^2 + 3x - 5,求f(x)的顶点坐标。

解题步骤:1. 将二次函数f(x) = 2x^2 + 3x - 5写成顶点式的形式。

2. 利用顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。

3. 将给定的函数与顶点式进行比较,得到h和k的值。

答案解析:f(x) = 2(x^2 + 3/2x) - 5= 2(x^2 + 3/2x + 9/16 - 9/16) - 5= 2((x + 3/4)^2 - 9/16) - 5= 2(x + 3/4)^2 - 9/8 - 5= 2(x + 3/4)^2 - 49/8所以,顶点坐标为(-3/4, -49/8)。

【试题二】题目:若a、b、c为实数,且a + b + c = 6,a^2 + b^2 + c^2 = 12,求a^3 + b^3 + c^3的值。

解题步骤:1. 利用已知条件a + b + c = 6,a^2 + b^2 + c^2 = 12。

2. 根据立方和公式(a^3 + b^3 + c^3) = (a + b + c)(a^2 + b^2 +c^2 - ab - bc - ca) + 3abc。

3. 利用已知条件求出ab + bc + ca的值。

4. 代入立方和公式求出a^3 + b^3 + c^3的值。

答案解析:已知a + b + c = 6,(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) = 36。

所以,ab + bc + ca = 36 - 12 = 24。

将ab + bc + ca的值代入立方和公式:a^3 + b^3 + c^3 = (6)(12 - 24) + 3abc = -72 + 3abc。

由于题目没有给出abc的具体值,我们无法求出a^3 + b^3 + c^3的确切值。

【试题三】题目:在直角三角形ABC中,∠C = 90°,AC = 6,BC = 8,求斜边AB的长度。

中考数学试卷含答案初三九年级数学试题

中考数学试卷含答案初三九年级数学试题

中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a =+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为 3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH===2.4,∴AH==3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF x,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),=÷,=÷,=•,=.当a =+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=,∴OD=OC﹣CD=4﹣,∴AD=OA+OD=8+4﹣=12﹣,在Rt△ADP中,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=,∴FM=FC﹣CM=4﹣2,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=,∵DN==,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l 的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3+4=7C.(a6)2÷(a4)3=0D.(a3)2•a4=a96.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.。

初三数学试题及答案

初三数学试题及答案

初三数学试题及答案一、选择题1. 已知直角三角形ABC,∠B=90°,AC=5cm,BC=12cm,求AB 的长度。

A) 7cmB) 13cmC) 17cmD) 169cm答案:A2. 若m∠A=75°,求余角的度数。

A) 15°B) 25°C) 75°D) 105°答案:D3. 已知圆的半径为r,圆周长的计算公式是:A) C=πr²B) C=2πrC) C=πrD) C=r²答案:B4. 如果两角的和是90°,则这两个角一定是:A) 对顶角B) 锐角C) 直角D) 钝角答案:C5. 下面哪一个数不是正整数?A) 1B) 0C) 5D) 100答案:B二、填空题1. 线段AB的长度为________cm。

答案:略2. 30°的补角度数为________。

答案:60°3. 将一个圆的半径增加50%,则圆的周长增加________。

答案:75%4. 下一个比0.456大的数是________。

答案:0.4575. 若一个正整数的个位数是5,十位数是3,求这个数。

答案:35三、解答题1. 根据图,求正方形的周长。

答案:正方形的周长等于四条边的长度之和。

根据图可知,每条边的长度为3cm,因此正方形的周长为4 × 3cm = 12cm。

2. 小红拥有500元,她分别花了25%、30%和40%的钱购买了三件物品,请计算她剩余的金额。

答案:小红花掉的钱总数为500 × (25% + 30% + 40%) = 500 × 0.95 = 475元。

她剩余的金额为500 - 475 = 25元。

3. 有一根长为8cm的铁丝,将其剪成两段,一段是3cm,求另一段的长度。

答案:另一段的长度等于总长度减去已知长度,即8cm - 3cm = 5cm。

四、综合题某班有60名学生,其中有男生和女生两种。

初三数学试题卷及答案

初三数学试题卷及答案

初三数学试题卷及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333D. √42. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 24. 以下哪个是二次方程的一般形式?A. ax^2 + bx + c = 0B. ax + b = 0C. x^2 + ax + b = 0D. ax^2 + c = 05. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是_________。

7. 如果一个数的立方根是2,那么这个数是_________。

8. 一个直角三角形的两个锐角的度数之和是_________。

9. 一个数的倒数是1/3,那么这个数是_________。

10. 如果一个数的平方是16,那么这个数是_________。

三、解答题(共80分)11. 已知一个长方体的长、宽、高分别是5cm、4cm、3cm,求这个长方体的体积。

(10分)12. 一个圆的半径是7cm,求这个圆的周长和面积。

(10分)13. 解方程:3x - 5 = 20。

(10分)14. 一个直角三角形的两条直角边分别是6cm和8cm,求斜边的长度。

(10分)15. 已知一个二次方程x^2 - 5x + 6 = 0,求它的根。

(20分)16. 一个数列的前三项是2, 4, 6,这个数列是等差数列,求第10项的值。

(10分)17. 一个函数f(x) = 2x - 3,求f(5)的值。

(10分)四、附加题(10分)18. 一个数的平方根和它的立方根相等,求这个数。

答案:一、选择题1. B2. A3. A4. A5. B二、填空题6. 非负数7. 88. 90°9. 310. ±4三、解答题11. 60cm³12. 周长:44π cm,面积:49π cm²13. x = 25/314. 10cm15. x = 2 或 x = 316. 2017. 7四、附加题18. 这个数是1。

初三数学试卷的试题及答案

初三数学试卷的试题及答案

一、选择题(每题4分,共40分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a² + b²的值为:A. 1B. 4C. 5D. 62. 在直角坐标系中,点A(2,3)关于x轴的对称点为:A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)3. 若sinθ = 0.8,且θ在第二象限,则cosθ的值为:A. -0.6B. 0.6C. -0.9D. 0.94. 下列函数中,y = x² - 4x + 4的图像是:A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 圆5. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数为:A. 40°B. 50°C. 60°D. 70°6. 若x + y = 5,xy = 6,则x² + y²的值为:A. 17B. 25C. 26D. 357. 下列不等式中,正确的是:A. 3x > 2xB. 2x < 3xC. 3x ≥ 2xD. 2x ≤ 3x8. 若a、b、c是等差数列,且a + b + c = 15,a² + b² + c² = 45,则ab + bc + ca的值为:A. 15B. 25C. 35D. 459. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 一般三角形10. 若x² - 2x - 3 = 0,则x² - 5x + 6的值为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若sinα = 0.6,cosα = 0.8,则tanα = _______。

12. 若等差数列{an}中,a1 = 3,公差d = 2,则第10项an = _______。

初三数学试卷(含答案)

初三数学试卷(含答案)

九年级数学试题一、选择题1.一元二次方程x 2-4=0的根为 ( )A. x = 2B. x =-2C. x 1= 2,x 2 =-2D. x = 162.用配方法解方程x 2+4x +3=0时,配方后得到的方程为 ( )A .(x +2)2 = 1B .( x +2)2 =3C .(x -2)2 = 3D .( x -2)2 = 13. 如图,点A 、B 、C 是⊙O 上的三点,若∠A =40º,则∠BOC 的度数是( )A .100ºB .80º C.60º D.40º4.下列关于x 的一元二次方程有实数根的是 ( )A .x 2+1=0B .x 2+x -1= 0C .2x 2 -2x +1= 0D .2x 2 -3x +4= 05.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10.以B 为圆心作圆与AC 相切,则该圆的半径为()A .5B .4C .10D .86.已知t 是方程x 2-2x -1=0的一个根,则代数式2t 2-4t 的值等于 ( )A .1B .2C .3D .47.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,4),则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 的⊙O 上C .点P 在⊙O 外D .无法确定8. 如图,以AB 为直径的半圆O 上有两点D 、E ,ED 与BA 的延长线交于点C ,且有DC =OE ,若∠C =20°,则∠EOB 的度数是 ( )A .60° B.80° C.100° D.120°二、填空题9.方程x 2 = 3x 的解是_______________.10.已知扇形的面积为6π,半径为4,则该扇形的弧长为_______ .B OC A ( 第3题 )B AC (第5题) ( 第8题 )11.若关于x的一元二次方程x2 -4x +m = 0有两个相等的实数根,则m =______.12.用半径为30,圆心角为120 º的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为_________.13.若一元二次方程ax2+c=0(ac<0)的一根x1为4,则另一根x2=_________.三、解答题14.解下列方程(1)(x-1)2-5=0 (2)x2 -4x=2(3) 2x2 +5x-2=0(用配方法.....)...) (4) 9x2-(x-1)2=0(用因式分解法15.已知关于x的一元二次方程(a+1)x2-x+a2-2a-2=0有一根是1,求a的值16.已知关于x的一元二次方程x2-6x+a-2=0.(1)如果该方程有实数根,求实数a的取值范围;(2)如果该方程有两个相等的实数根,求出这两个根.21.如图,已知AB是⊙O的直径,弦AC∥OD..(1)求证:BD CD(2)若AC的度数为58 º,求∠AOD的度数.22. 如图,已知四边形ABCD内接于圆O,∠A=105°,BD=CD.(1)求∠DBC的度数;(2)若⊙O的半径为3,求BC的长.23. 如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.九年级数学参考答案一、选择题(本题共8题,每题3分,共24分)1. C2.A3. B4.B5.D6.B7.C8.A二、填空题(每小题3分,共24分)9. 0;310.3π11.412.1013.-4 14.24315.20%16. 2π﹣4三、解答题(共102分)17.解下列方程(每题4分,共8分)(1) 15± (2) 26±18.用指定方法....解下列方程(每题5分,共10分) (1) 5414-±(用配方法...) (2) 112x =-;214x =(用因式分解法.....) 19.解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0解得:a 1=-1,a 2=2.……………………………………………5分∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………8分20.(1) 11a ≤…………………………………………………………………………4分(2) 123x x ==……………………………………………………………………8分21.(1)证明:连接OC .∵OA=OC,∴∠OAC=∠ACO.(1分)∵AC∥OD,∴∠OAC=∠BOD.∴∠DOC=∠ACO.∴∠BOD=∠COD.(2分)∴BD CD =.(4分)(2)∵BD CD =,∴CD =0001(18058)612AC CB ==-=,(4分) 000(6158)119ACD =+=,∠AOD=119度(8分)22.解:(1)∵四边形ABCD 内接于圆O ,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;…………………………………………………………………………4分(2)连接BO 、CO ,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.…………………………………………………………………8分23.证明:(1)连接AD ;∵AB 是⊙O 的直径,∴∠ADB=90°.又∵DC=BD,∴AD 是BC 的中垂线.∴AB=AC.(2)连接OD ;∵OA=OB,CD=BD ,∴OD∥AC.∴∠O DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE 是⊙O 的切线.24.解:设宽为x m ,则长为(20-2x ) m .…………………………………………2分 由题意,得x ·(20﹣2x ) = 48,4分解得x 1 = 4,x 2 = 6.5分当x = 4时,20-2×4 = 12>9 (舍去),7分当x =6时,20-2×6= 8.9分答:围成矩形的长为8 m 、宽为6 m .10分25.7k =………………4分,43k =………………7分,43k =-,此时根为负值,不符合题意舍去……9分综上,7k =或43k =……………10分26.(1)证明:∵ED 与⊙O 相切于D ,∴OD⊥DE,∵F 为弦AC 中点,∴OD⊥AC,∴AC∥DE.…………………………………4分(2)解:作DM⊥OA 于M ,连接CD ,CO ,AD .∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,……6分∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=1,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=,…………8分∴平行四边形ACDE面积=.……………10分。

数学初三试题及答案

数学初三试题及答案

数学初三试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. πC. 0.5D. √42. 一个数的相反数是它本身的是:A. 0B. 1C. -1D. 23. 如果一个角是直角的一半,那么这个角是:A. 45°B. 90°C. 180°D. 360°4. 一个等腰三角形的顶角是100°,那么它的底角是:A. 40°B. 50°C. 60°D. 80°5. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 一个数的平方等于它本身,那么这个数是:A. 1或-1B. 0或1C. 0或-1D. 1或07. 一个数的立方等于它本身,那么这个数是:A. 1B. -1C. 0D. 1或-1或08. 一个数的倒数是它本身,那么这个数是:A. 1B. -1C. 0D. 1或-19. 一个数的平方根是它本身,那么这个数是:A. 0B. 1C. -1D. 0或110. 一个数的立方根是它本身,那么这个数是:A. 0B. 1C. -1D. 0或1或-1二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

2. 一个数的立方是-27,这个数是______。

3. 一个角的补角是135°,那么这个角是______。

4. 一个数的绝对值是5,这个数可以是______。

5. 一个数的倒数是1/2,那么这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的底边长为10cm,高为6cm,求这个三角形的周长。

2. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求这个三角形的斜边长。

3. 已知一个角的余角是30°,求这个角的度数。

4. 已知一个数的平方根是4,求这个数。

5. 已知一个数的立方根是2,求这个数。

初三数学第一章测试题(含答案)

初三数学第一章测试题(含答案)

初三数学第一章测试题(含答案)一、选择题(每小题2分,共30分)1. 设 a+b=5,a-b=3,那么a和b的值分别是多少?A. a=4, b=1B. a=3, b=-2C. a=2, b=3D. a=1, b=4 (答案:A)2. 已知正方形面积为36平方厘米,那么正方形的边长是多少?A. 4厘米B. 6厘米C. 9厘米D. 12厘米 (答案:C)3. 一架飞机从A地出发,每小时飞行400千米,飞了2个小时后到达B地,B地与A地相距多少千米?A. 400千米B. 600千米C. 800千米D. 1000千米 (答案:B)4. 有一个长为8厘米的木棍,现需切割成5段,每段长为多少厘米?A. 1厘米B. 2厘米C. 4厘米D. 8厘米 (答案:C)5. 如果80%的学生喜欢数学,且班级共有40名学生,那么班级有多少名学生喜欢数学?A. 8名学生B. 16名学生C. 32名学生D. 64名学生 (答案:B)二、填空题(每空2分,共20分)1. 已知一个数字是3的倍数,则这个数字最小是___。

答案:32. 圆的半径与直径的关系是___。

答案:半径与直径的关系是直径的两倍。

3. 在一部小说中,第一天读了全书的1/4,第二天读了余下的3/4中的一半,剩下的20页需要第三天才能读完,这本小说共有___页。

答案:80页4. 一年有___个月。

答案:12个月5. 设正方形的边长为x,那么它的周长是___。

答案:4x三、解答题(每题10分,共30分)1. 请用代数解方程:已知一个数的五倍减去2等于13,求这个数。

答案:令这个数为x,则方程为5x - 2 = 13,解得 x = 3。

2. 一个数的1/5等于15,这个数是多少?答案:令这个数为x,则方程为x/5 = 15,解得 x = 75。

3. 请用文字说明如何计算一个长方体的体积。

答案:长方体的体积可以通过将长、宽、高相乘来计算,公式为 V = 长 * 宽 * 高。

初三数学周测试题及答案

初三数学周测试题及答案

初三数学周测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.1010010001…(每两个1之间0的个数逐次增加)D. -52. 一次函数y=2x+1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 一个正数的倒数是1/2,那么这个数是:A. 1/2B. 2C. 1/3D. 34. 一个三角形的两边长分别是3和4,第三边长x满足的不等式是:A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 计算(-2)^3的结果是:B. 8C. -2D. 26. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对7. 一个圆的直径是10cm,那么这个圆的周长是:A. 31.4cmB. 15.7cmC. 10cmD. 5cm8. 一个等腰三角形的顶角是90度,那么它的底角是:A. 45度B. 60度C. 30度D. 90度9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对10. 计算(-3)^2的结果是:A. -9C. -3D. 3二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身,这个数是_________。

2. 一个数的相反数是-2,那么这个数是_________。

3. 一个数的平方是36,那么这个数是_________。

4. 一个三角形的两边长分别是5和12,第三边长x满足的不等式是_________。

5. 一个圆的半径是7cm,那么这个圆的面积是_________。

6. 一个等腰三角形的顶角是30度,那么它的底角是_________。

7. 一个数的立方是-27,那么这个数是_________。

8. 一个数的绝对值是它相反数的2倍,那么这个数是_________。

初三数学试卷试题及答案

初三数学试卷试题及答案

初三数学试卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 2D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 计算下列哪个表达式的结果为0?A. 3+2B. 4-4C. 5×0D. 8÷8答案:C4. 以下哪个图形不是轴对称图形?A. 圆形B. 等边三角形C. 正方形D. 平行四边形答案:D5. 一个等腰三角形的两个底角相等,如果一个底角为40°,那么顶角的度数为:A. 100°B. 80°C. 60°D. 40°答案:B6. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 0答案:C7. 以下哪个选项是不等式2x-3>0的解?A. x=1B. x=2C. x=0D. x=-1答案:B8. 一个长方体的长、宽、高分别为3cm、2cm、1cm,那么它的体积是:A. 6cm³B. 5cm³C. 12cm³D. 4cm³答案:A9. 一个圆的半径为5cm,那么它的周长是:A. 10π cmB. 5π cmC. 25π cmD. 15π cm答案:C10. 计算下列哪个表达式的结果为1?A. (-2)²B. (-1)³C. 2²D. 3²答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是_________。

答案:±512. 一个数的立方等于-8,这个数是_________。

答案:-213. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是_________。

答案:5cm14. 一个等腰三角形的顶角为120°,那么它的底角是_________。

答案:30°15. 一个数的倒数是2,这个数是_________。

初三考试数学试题及答案

初三考试数学试题及答案

初三考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 22/7B. πC. 0.33333...D. √4答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B3. 如果一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0,3)B. (3,0)C. (-3/2,0)D. (0,-3)答案:C5. 下列哪个选项不是单项式?A. 3x^2B. -5yC. 7D. x^2y答案:D6. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是多少?A. 24B. 12C. 8D. 6答案:A8. 一个二次函数的图象开口向上,且顶点坐标为(1, -4),那么这个二次函数的一般形式是什么?A. y = a(x-1)^2 - 4B. y = a(x+1)^2 - 4C. y = a(x-1)^2 + 4D. y = a(x+1)^2 + 4答案:A9. 一个数的立方根是2,那么这个数是多少?A. 8B. 2C. 4D. 1/8答案:A10. 一个角的补角是120°,那么这个角是多少度?A. 60°B. 30°C. 120°D. 180°答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 如果一个角的余角是30°,那么这个角是______。

答案:60°13. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。

答案:1714. 一个二次函数y=ax^2+bx+c的顶点坐标是(2,1),那么b的值是______。

初三学生数学试题及答案

初三学生数学试题及答案

初三学生数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 2答案:B2. 一次函数y=kx+b的图象经过点(1,2),则k+b的值是:A. 1B. 2C. 3D. 4答案:C3. 已知a=2,b=-3,则a+b的值是:A. -1B. 1C. -5D. 5答案:A4. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1答案:A5. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 0答案:C6. 一个角的补角是它的余角的3倍,这个角的度数是:A. 45°B. 30°C. 60°D. 90°答案:B7. 一个等腰三角形的两边长分别为3和6,那么这个三角形的周长是:A. 9B. 12C. 15D. 不能构成三角形答案:D8. 已知一个等腰三角形的底角为45°,那么这个三角形的顶角是:A. 45°B. 60°C. 90°D. 135°答案:C9. 一个数的立方根是-2,这个数是:A. 8B. -8C. 4D. -4答案:B10. 一个数的平方根是2,这个数是:A. 4B. -4C. 2D. -2答案:A二、填空题(每题3分,共30分)11. 一个数的平方是25,这个数是______。

答案:±512. 一个数的倒数是2,这个数是______。

答案:1/213. 一个数的绝对值是3,这个数是______。

答案:±314. 一个角的补角是120°,这个角的度数是______。

答案:60°15. 一个角的余角是30°,这个角的度数是______。

答案:60°16. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。

答案:1617. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是______。

初三数学经典试题及答案

初三数学经典试题及答案

初中数学试例一、填空题:6、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.7、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51.8、已知m 2-5m -1=0,则2m 2-5m +1m 2= .答案:28.9、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.10、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.11、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。

现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53. 12、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。

由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。

若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 答案:30.13、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 . 答案:6.14、某同学在使用计算器求20个数的平均数时,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 . 答案:-4.… ……图1 图2第19题图P N M DCB A15、在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆, (1)当r 时,圆O与坐标轴有1个交点; (2)当r 时,圆O 与坐标轴有2个交点; (3)当r 时,圆O 与坐标轴有3个交点; (4)当r 时,圆O 与坐标轴有4个交点; 答案:(1)r=3; (2)3<r <4; (3)r=4或5; (4)r >4且r ≠5.二、选择题:1、图(二)中有四条互相不平行的直线L 1、L2、L3、L 4所截出的七个角。

初三数学试题大全

初三数学试题大全

初三数学试题答案及解析1.(12分)如图,直线y=x-1和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求抛物线的解析式;密封线内请不要答题(2)求不等式x2+bx+c<x-1的解集(直接写出答案). (3)设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程)【答案】见解析【解析】(1)将A(1,0),B(3,2)代入y=x2+bx+c得∴∴y=x2-3x+2(2)由图可知,当1<x<3,不等式x2+bx+c<x-1(3)y=x2-3x+2的对称轴方程为x=设P点坐标为(如果等腰△PBD中PB=PD那么即(同理PB=BD,PD=BD2. .若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角为度.【答案】120【解析】2πr=,解得n=120°,侧面展开图的圆心角为120度.3.在直角梯形中,,为边上一点,,且.连接交对角线于,连接.下列结论:①;②为等边三角形;③;④其中结论正确的是()A.只有①②B.只有①②④C.只有③④D.①②③④【答案】B【解析】略4.建设新农村,农村大变样.向阳村建起了天然气供应站,气站根据实际情况,每天从零点开始至凌晨4点,只打开进气阀,在以后的16小时(4∶00-20∶00),同时打开进气阀和供气阀,20∶00-24∶00只打开供气阀,已知气站每小时进气量和供气量是一定的,下图反映了某天储气量与(小时)之间的关系.【1】求0∶00-20∶00之间气站每小时增加的储气量;【答案】(1)根据图形:0∶00-20∶00之间气站每小时增加的储气量为:(238-30)÷20=10.4(米3/小时)【2】求20∶00-24∶00时,与的函数关系式,并画出函数图象;【答案】设气站每小时进气量为米3,每小时供气量为米3,根据题意,得解得:……(4分)在20∶00-24∶00只打开供气阀门,到24:00时,气站的储气量为238-4×49.5=40,即当时,;又当时,……(5分)设20∶00-24∶00时,与的函数关系式为,则解得:………………………(7分)所以,图形如图所示【3】照此规律运行,从这天零点起三昼夜内,经过__小时气站储气量达到最大?最大值为___.(请把答案直接写在在横线上,不必写过程)【答案】68小时,2585.(本小题8分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.【答案】【解析】略6.如图所示,△ABC中,DE∥BC,AD=5,BD=10,DE=6,则BC的值为A.6B.12C.18D.24【答案】C【解析】略7.(本题满分10分)如图.AB是⊙O的直径,AD是弦,∠DBC=∠A.【1】(1)求证:BC与⊙O相切.【答案】(1)略【2】(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.【答案】(2)AD=8.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为___________。

初三数学经典试题及答案

初三数学经典试题及答案

初三数学经典试题及答案一、选择题1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:A2. 一个数的平方等于36,这个数是:A. 6B. -6C. 6 或 -6D. 以上都不对答案:C3. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题4. 一个数的立方等于-27,这个数是______。

答案:-35. 一个三角形的两边长分别为3厘米和4厘米,第三边长是奇数,那么第三边长可能是______。

答案:5厘米三、解答题6. 已知一个直角三角形的两条直角边长分别为3厘米和4厘米,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(3² + 4²) = √(9 + 16) =√25 = 5厘米。

7. 一个数的一半加上3等于10,求这个数。

答案:设这个数为x,则有(1/2)x + 3 = 10,解得x = 14。

四、证明题8. 证明:如果一个三角形的两边长分别为a和b,且a > b,那么这个三角形的周长大于2b。

答案:设第三边为c,根据三角形的三边关系,有a + b > c,a + c > b,b + c > a。

将这三个不等式相加,得到2(a + b + c) > 2(a + b),即a + b + c > a + b,所以三角形的周长a + b + c > 2b。

五、应用题9. 一个工厂生产了100个零件,其中10%是次品。

如果从这100个零件中随机抽取5个,求至少抽到一个次品的概率。

答案:首先计算抽到5个都是正品的概率,即(90/100) × (89/99)× (88/98) × (87/97) × (86/96)。

至少抽到一个次品的概率为1减去抽到5个都是正品的概率。

六、综合题10. 一个长方体的长、宽、高分别为a、b、c,已知 a = 2b,c = 3a,求长方体的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学试题(一)6 .小明想用扇形纸片围成一个圆锥,已知扇形的半径为的圆锥的高度是()A . 5cmB . 4cmC . 3cmD .不能确定7 .小王从家出发前往博物馆.乘车行进一段路程之后,由于塞车,汽车无法通行.过了一会儿小王决定步行前往(步行的速度小于乘车的速度).则能表示他离开家的距离s 题号-一- -二二三总分得分21 22 23 24 25 26 27 28分,满分分)①(-扩(-2吐3)2=4 ②(-3)0 =1 2 2 2③(a -b) = a -b④.4^6=4a b⑤3x2 -4x -_x,其中计算正确的是()A.①②③ B . ①②④C. ③④⑤D.②④⑤3. 15.如图,在使点A与点Rt △ ABC中,/ C=90° ,AC=6,BC=3.将B重合,折痕为DE,则tan / CBE的值为△ ABC折叠,4.O O是厶ABC的外接圆,A . 1B . 25.在一个不透明的袋子中装有若OC.4个除颜色外完全相同的小球,1个球,两次都摸到红球的概率是D. 18O 的半径为2,/ B=30 °2,2 D. 2、3则AC的长是(红球2个,摸出1个球不放回,再摸出1 o 1 1A . B. C.-2 3 6其中白球1个,黄球(个,)5cm,弧长是6 n cm,那么围成( )1.下列各式:2.下列名车标志中,是中心对称图形但不是轴对称图形的是A(千米)与时间t (分钟)之间函数关系的大致图象是 (&如图所示的二次函数 y = ax 2• bx • c 的图象中,观察得出了下面五条信息:①b :: 0 :②abc 0 :③a-b ,c 0 :④2a c >o ; D . 5个9.现有游客150人欲同时租用 A 、B 、C 三种型号客车去鹤乡观鹤,其中A 、B 、C 三 种型号客车载客量分别为 50人、30人、10人,要求每辆车必须满载,其中 A 型客车 最多租两辆,则游客们一次性到达鹤乡的租车方案有()10 .如图,梯形 ABCD 中,AD// BC,AD=1,BC=3,AB=1.5.将梯形 ABCD 沿 AF 翻折,使点B 落在AD 的延长线上的点 CD 于点G.则下列结论中正确的有 ()①四边形ABFE 是菱形;②DE : AD=1: 3③ △ DEG W^ FCG 的面积比为1 : 3 ④ △ ABF 与厶FCG 的面积比为4 : 3A . 1个B . 2个C . 3个D . 4个二、填空题(每小题 3分,满分30分)11.函数y=^^-J 厂:中,自变量x 的取值范围是 ___________________________ .x + 212 . 2011年3月11日发生的地震及海啸可能会给日本带来16万亿日元到25万亿日元的经济损失.25万亿日元用科学记数法表示是 __________________ 日元.13 . 一组数据5, 7, 7, a 的平均数与中位数相等,则 a 的值为 ______________14 .分式方程 匕的解是正数,则a 的取值范围x-2 2是 _________ . ______15 .如图所示,O O 的半径为3, OA 的长为6, AB 切O O于点B,弦BC// OA 连接AC,则图中阴影部分的面积 为 .16 .等腰三角形 ABC 的边AB=6 , AC 、BC 的长是方程AC 的长为__________________⑤0 > b2-4ac ,其中正确信息的个数有(A . 3种B . 4种C . 5种D . 6种2x T0x • m = 0的根,则S/千C "分钟1OA15题图直角坐标系中的位置如图所示并直接写出点 A 1的坐标;将厶A 1B 1C 1绕原点O 逆时针旋转90 ,得到△ A 2B 2C 2,请画出△ A 2B 2C 2,并求出点C 17. 如图,反比例函数与正比例函数的图象交于 A B 两点.过点A 作AC 丄y 轴于点。

,若厶ABC 的面积为4, 则反比例函数的解析式为 ___________________ .18. 由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个 数可能是 ________________________ .21 219.抛物线y=x -2x-2与x 轴的一个交点为(a,0),则代数式a-a 2010的值 “2为 _________________ .20.如图,点A 在横轴正半轴上,点 B 在纵轴正半轴上, O 为坐标原点,OA=OB=1,过点O 作O M 1丄AB 于 点M 1;过点M 1作M 1A 1丄OA 于点A 1 ;过点A 1作A 1M 2丄AB 于点M 2;过点M 2作M 2 A 2丄OA 于点A ?; ”依此类推 ,点M n 的坐标为 _________________ ; _______ . 三、解答题(满分60分)21.(本小题满分5分)先化简,再求值:三 2,其中 a "an45 .a 6a 9 2a 622.(本小题满分6分)每个小方格都是边长为1个单位长度的小正方形, △ ABC 在平面(1)将厶ABC 先向上平移2个单位,再向右平移 1个单位,得到△ A 1B 1C 1,请画出△ A 1B 1C 1,在(1)、(2)两次变换中所经过的路径总长yc/ \ x0 J r \zA视力频数(人) 频率4.0< x<4.3 10 0.10 4.3< x<4.6 20 b 4.6< x<4.9 35 0.35 4.9< x<5.2a0.30 5.2 < x<5.550.0523.(本小题满分6分)抛物线y=ax 2+bx+c 经过点A (-1 , 0), B (0,-5),并经过 点(1, -8).(1) 求此抛物线的解析式;(2) 在抛物线的对称轴上存在一点C,使得 AC+BC 的值最小,求点C 的坐标.24. (本小题满分7分)某校在800名初三学生体检过程中对学生视力进行了一次抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1) 在频数分布表中,a 的值为 ______ , b 的值为 ______ ,并将频数分布直方图补充完整; (2) 甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?⑶若视力在4.9以上洽4.9)均属正常,则视力正常的人数占被统计人数的百分比是___ ____ ;并根据上述信息估计全校初三学生中视力正常的学生约有多少人25. (本小题满分8分)甲、(每组数据含最小值,不含最大值)乙两车同时从A地出发去往E地,甲车3小时到达,乙车始终以每小时60千米的速度匀速行驶•下图表示的是两车之间的距离y (千米)与乙车行驶时间(小时)的函数关系图象.(1)求甲车的速度及A、E两地的距离;(2)求NP的解析式并写出自变量的取值范围;(3)直接写出乙车出发几小时两车相距15千米?26.(本小题满分8分)在厶ABC中,/ C=90° ,AC=BC.如图1,AD平分/ BAC,交BC于点D,易证:AC+CD=AB(1)如图2,AD平分△ ABC的外角/ FAC交BC的延长线于点D,AC、CD与AB有怎样的数量关系?请写出你的猜想并加以证明;(2)如图3,AD、AE分别平分/ BAC和厶ABC的外角/ FAC,交BC及BC的延长线于点D 与于点E,请你猜想CE CD与AB有怎样的数量关系?只写出猜想,不需证明.图1图2图327.(本小题满分10分)某商店决定购进A、B两种商品.若购进A种商品100件,B种商品50 件,需要10000 元;若购进A 种商品50 件,B 种商品30 件,需要5500 元.(1)求A、B 两种商品每件各需多少元?(2)若该商店决定拿出2 万元全部用来购进这两种商品,考虑到市场需求,要求购进A 种商品的数量不少于B种商品数量的8倍,且少于B种商品数量的10倍,那么该商店共有几种进货方案?(3)若销售每件A 种商品可获利润20 元,每件B 种商品可获利润30 元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?28.(本小题满分10分)如图,在平面直角坐标系中,四边形AOCB是直角梯形,点A的2坐标为(0, 4), AB OC(ABc OC的长是一元二次方程x _11x+28 = 0的两根.(1)求点B、C的坐标;(2)过点B的直线BD交线段OC于点D,且四边形AODB勺面积与△ BDC的面积比为6 : 5, 求直线BD的解析式;(3)点P在直线BD上,点Q在y轴上,是否存在点P、Q使得以P、Q B、C为顶点的四边形为平行四边形?若存在,请直接写出P点的坐标;若不存在,请说明理由.4•将方程X2 -6X - 2 =0配方得到的方程是初三数学试题(二)题号-一--二二三总分得分21 22 23 24 25 26 27 28一、选择题(每小题3分,满分30分)1.下列计算中,正确的是(2 .3 2 1 2z 3 2 6 2A. 2a2 -3a3= -aB. a ■- a aC. (a b) = a ba-(-a3) =a3.在直径为A. 2 3B. 4 3C.8D. 8 313A. (x 3)2=11B. (x -3)2=2C. 2 2(x -3) =11 D. (x 3)=2A.8,8B.8 ,7.5C.6.5 ,8D.7.56.如图摆放的两个正方形,各有-个顶点在反比例函数形(阴影部分)的边长等于A. 5 -1B. . 5 -2C. V 5D.(),84y 的图象上,则图中小正方x())D.262.下列图形中,既是中心对称图形又是轴对称图形的是B DC8的圆中,垂直平分某一条半径的弦长是5. 一组数据5,6,7,8,8,9 的中位数与众数分别是第6题图第10题图7.一个有若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是如图所示的“田”字形,则小正方体的个数是()A.6 或 7 或 8B.6C.7D.88.下列各图是在同一直角坐标系内的一次函数y = ax • c 和二次函数y = ax 2 cx c9.若关于x 的分式方程 匕己_3 有解,那么m 应满足的条件为( )x-2 x-2A. m = 2B. m = 3C. m 2D. m :: 310.如图所示,已知△ ABC 中,AB=AC / BAC=90,直角/ EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB AC 于点E 、F ,下列结论(1) AE=CF (2)^ EFP 是等腰直角1三角形;(3) S 四边形AEPF =— S A ABC ; ( 4) EF=AP 其中正确的有()2A.1个B.2 个C.3 个D.4 个二、填空题(每小题 3分,满分30分)11.2010年9月30日是广州亚运会、亚残运会志愿者报名最后一天,没想到再次掀起了报名热潮,报名人数达到 1 512 331 人,1 512 331 这个数字用科学记数法表示为 ______________ (保留三个有效数字)12.函数y=—— 中,自变量x 的取值范围是 __________________l x —113.如图,点 B 在 AE 上, / CAB 玄 DAB 要使△ ABC^A ABD可补充的一个条件是(写出一个即可) ___________________第13题图14. 在2、3、4、a (a 是正整数)这四个数字中任意取出三个,以此为边长能组成三角形的3概率3,贝y a 的值为 _______________________ .415.函数y 二ax 2-axC E •D3x 1的图象与x轴有且只有一个公共点,则a=16.已知AB是O O 的直径,弦CDL AB, AC=2J2 , BC=1.贝U sin / BCD= ______________ .17.如图所示,在厶MBN中,BM=6,点A、C、D分别在MB NB MN上,四边形ABCD为平行四边形,/ NDC M MDA则MBCD的周长是________________________第17题图 第18题图18. 点E 、F 分别在一张长方形纸条 ABCD 勺边AD BC 上,将这张纸条沿直线 EF 折叠后如图,BF 与DE 交于点G,如果/ BGE=30°,长方形纸条的宽 AB=2cm 那么这张纸条对 折后的重叠部分的面积 S A GEF = ______________________ cm 2.19. 如图,O O 的半径为3, PA PB CD 分别与O O 相切于点A 、点B 和点E , CD 分别与 PA PB 交于点 C 点D, OP=7则厶PCD 的周长为 ___________________ .20. 如图,等腰△ ABC 中,AC=BC CD 是底边上的高,/ A=30°,过点 D 作DD 丄BC,垂足为D ,作D ID 丄AB,垂足为D 2,作D 2D 3丄BC,垂足为D 3,作D 3D 丄AB,垂足为D 4,,,,作D 2n-1D 2n 丄AB,垂足为Dn ,若CD=a ,那么6-16= ____________________ .(用含有a 和门的代数 式表示)三.解答题(满分60分)把x = - ::2011错抄成x =、2011,但他的计算结果仍是正确的, 请你说明这是为什么?21.(本小题满分5分)某同学在计算4x _ x 2 4x—)<- 2 J4x 22 ,其中 x -4P22.(本小题满分6分)△ ABC在平面直角坐标系中的位置如图所示(1)将厶ABC向下平移9个单位长度,画出平移后的厶A i BQ;(2)作出△ ABC关于原点0对称的△ A2B2C2;(3)求出△ CCC2的面积.1°23.(本小题满分6分)如图,已知二次函数目一 x2 bx C的图象经过点A(2,20)、B( 0,-6)两点.(1)求这个二次函数的解析式;(2)设这个二次函数的图象的对称轴与24.(本小题满分7分)某中学对毕业年级全体学生的体育达标情况进行了调查,小明所在班级的学生达标情况如图1所示,其他班级学生的达标情况如图2扇形统计图所示,请根据图中所提供的信息,解答下列问题:(每组成绩不含最大值,含最小值)•(1)若成绩不低于60分的为合格,则小明所在班级的合格率是多少?(2)若成绩不低于80分的为优秀,全学年有121人成绩优秀,全学年共有多少名学生?(3)在(2)的条件下,全学年的成绩的中位数应在图2中的三个分数段内的哪个分数段?(直接写出结论即可)25.(本小题满分8分) 甲乙二人分别从A、B两地同时出发,相向而行,甲到B地后马上按原速原路返回,x ( h)表示甲走的时间,y i(km)、y ( km)分别表示甲乙二人离开A地的距离,y与x之间的函数图象如图所示.(1 )求二人的速度;(2)求出二人何时相遇;y(3)请直接写出二人何时相距15km ?26.(本小题满分8分)在厶ABC中,AB=AC CGL BA交BA的延长线于点G.一等腰直角三角形按图1的位置摆放,该等腰直角三角形的直角顶点为F, —条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中,猜想并证明BF与CG之间满足的数量关系;(2)当该等腰直角三角形沿AC方向平移到图2的位置时,一条直角边仍与AC边在一条直线上,另一条直角边交BC于点D,过D作DEL BA于点E,猜想并证明DE DF与CG之间满足的数量关系;(3)当该等腰直角三角形在(2)的基础上沿AC方向继续平移到图3的所示位置(点F在线段AC上,且点F与点C不重合)时,(2)中的结论是否仍然成立?(若成立,不用说明理由,若不成立,请直接写出DE DF与CG之间满足的数量关系).GB D图227. (本小题满分10 分)某汽车制造股份有限公司为满足人们日益增长的消费需求,经过市场调查,决定增加一项新车型的生产计划,计划生产 A 、B 两种型号的越野车共40 辆投放到市场试销,已知A 型越野车每辆的成本是34 万元,售价为39 万元,B 型越野车每辆的成本是42 万元,售价为50 万元.(1)若该公司经过市场预测,准备对此项计划投资不低于1536 万元,但不高于1552 万元该公司有哪几种生产方案?(2)按照(1)中的生产方案,这批越野车全部售出至少可获得利润多少万元?(3)假如该公司将6 辆越野车捐赠给了某公益组织,而其余的越野车全部售出,这样该公司仅获利27 万元,请判断该公司售出A 、B 两种型号的越野车各多少辆?捐赠的 6 辆越野车中A 、B 两种型号的各几辆?28.(本小题满分10分)在直角梯形OABC 中CB//OA , / COA=9 0°, CB=3 , 0A=6 ,BA= 3x,5,分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2BE,直线DE交x轴于点F,求直线DE的解析式;(3)点M是直线DE上的一个动点,在x轴上方的平面内是否存在点N,使得以O、D、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由•£V初三数学试题(三)题号-一- -二二三总分2122 23 24 25 26 27 28得分一、选择题(每小题分,满分分)1.下列运算正确的是()A 5 2 3 f10.2 5 ^25 7A. x -x xB. x - x xC. (2x) 2xD. x x x26.对抛物线y = -X • 2x -3而言,下列结论正确的是A.与x轴有两个交点B.开口向上C.与y轴的交点是(0, 3)D.顶点坐标是3.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动分针的夹角会随着时间的变化与变化.设时针与分针的夹角为(分),当时间从12 : 00开始到12 : 30止,0.5 °在运行过程中,时针与y (度),运行时间为ty与t之间的函数图象是4.如下左图,的是(小正方形的边长均为)1,则下列图中的三角形(阴影部分)与厶ABC 相似(1,C.3A.4B.4. D.2(-2)7•如图,过y 轴正半轴上的任意一点 P ,作x 轴的平行线,分别与反比例42函数y 和y的图象交于点 A 和点B .点C 是x 轴上任意xx点,连接AC 、BC ,则△ ABC 的面积为( )8. 如图,O O 的半径1, A 、B 、C 是圆周上的三点,/ BAC=36°,则劣弧BC 的长为()n2兀3兀4兀 A. —B.C.D.5 55529. X =O 能使关于x 的方程(a —1)x +x + a —1=0成立,则实数a 的值为 ()A. — 1B. 0C.1D. — 1 或 110. 如图,在直角梯形 ABCD 中,AD // BC ,Z BCD=90° , BC=CD=2AD , E 、F 分别是 BC 、CD 边的中点,连接 BF 、DE 交于点P ,连接CP 并延长CP 交AB 于点Q ,连接AF ,则下列结论:①CP 平分/ BCD :②四边形ABED 为平行四边形;③ CQ 将直角梯 形ABCD 分为面积相等的两部分; ④厶ABF 为等腰三角形.其中正确的个数是 ( ) A.1个B.2个C.3个D.4个二填空题(每小题 3分,满分30分) 11. 已知地球上海洋面积约为 361 000 000km 2, 361 000 000用科学记数法表示为 _________ . 12. 在函数y中,自变量x 的取值范围为 _________ .点+313. 如图,四边形ABCD 为平行四边形,添加一个条件 _______________,可使它成为矩形.3 214.因式分解: a -10a 25a = _______________15. 如图,AB 、AC 都是圆 O 的弦,OM 丄AB,ON 丄AC,如果 MN=4,贝U BC= _____16. 齐齐哈尔市在 绿博会”期间市府街摆放有若干盆甲、乙、丙三种造型 的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景 由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭A.3B. 4D第17题图C.5第8题图第13题图第15题图配而成.这些盆景共用了2900朵红花,3750朵紫花,则黄花一共用了____________ 朵.17.Rt △ ABC 中,已知/ C=90°/B=40°点 D 在边 BC 上,BD=2CD (如图)•把△ ABC 绕点 D 逆时针旋转 m (0 v m v 180)度后,如果点 B 恰好落在初始 Rt △ ABC 的边上,那 么 m= __________ .18. 在等腰 Rt △ ABC 中,/ C=90° ,AC=1,过点C 作直线I // AB ,F 是I 上一点,且AB=AF ,则点F 到直线BC 的距离为 _____________ .19. 已知正方形 ABCD 的边长为2,点P 是直线CD 上一点,若DP=1.5 ,贝U tan / BPC= _______ 20. 如图,三个半圆依次相外切,它们的圆心都在x 轴的:3正半轴上并与直线 yx 相切,设半圆 C 1、半圆 3C 2、…、半圆C n 的半径分别是「1、「2、…、r n ,如果口=1 ,贝廿rn= ___ .三.解答题(满分60分)求(a 3)( a -3) 2 的值.22.(本小题满分6分)如图,在6X8的网格中,每个小正方形的边 长均为1,点O 和厶ABC 的顶点均为小正方形的顶点.(1) 以O 点为位似中心,在网格中作△ A B',(使△ A B 和,△ ABC位似,且位似比为 1: 2;(2) 连接(1)中的AA 、CC ,求四边形AA' C'啲周长.(结果保留根号)21.£x (本小题满分5分)已知」 y=2是关于 =-.5y 的二元一次方程 ..5^ y a 的解,23.(本小题满分 6分)如图,二次函数 y - -X 22x m 的图象与x 轴的一个交点为 在随机调查了本市全部 5000名司机中的部分司机后, 个统计图,根据以上信息解答下列问题:(1 )补全条形统计图,并计算扇形统计图中m = _______(2) 该市支持选项C 的司机大约有多少人?(3) 若要从该市支持选项 C 的司机中随机选择100名,请他们签定 永不酒驾”保证书, 则支持该选项的司机小李被选中的概率是多少?A (3,0),另一个交点为B ,且与(1) 求m 的值及点B 的坐y 轴交于点 C.24.(本小题满分7分)为更好地宣传开车不喝酒,喝酒不开车 ”的驾车理念,某市一家报社设计了如下的调查问卷(单选)克服酒驾一一你认为哪一种方式更好?II 司机酒驾,乘客有责,让乘客帮助监督B 、 在汽车上张贴“请勿酒驾”的提醒标志 IIC 、 签定“永不酒驾”保证书 IID 、 希望交警加大检查力度IIE 、 查出酒驾,追究就餐饭店的连带责任统计整理并制作了如右上方的两D ( X , y ),使 S ^ABD =S调查结果条形统计图调查结果扇形统计图25.(本小题满分8分)如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是该容器容积的-(容器各面的厚度忽4略不计),现以速度V (单位:cm3/s)均匀地向容器注水,直至注满为止.图2是注水全过程中容器水面高度h (单位:cm)与注水时间t(单位:s)的函数图象.(1)在注水过程中,注满A所用的时间为_______ s,再注满B又用了_______ s;(2)求A的高度h A及注水速度v ;(3)求注满容器所需时间及容器的高度26.(本小题满分8分)在厶ABC中,/ ACB=90°,/ ABC=30°,将△ ABC绕顶点C顺时针旋转,旋转角为Q (0°< e< 180°,得到△ A B'.(1)如图1,当AB // CB时,设A B与CB相交于点D .猜测△ A CD是什么特殊三角形,并说明理由;(2)如图2,连接A'A, B'B,求证:S A ACA: S^BCB,= 1 : 3;中点为E, A B中点为P, AC = a,连接EP,当二= 。

相关文档
最新文档