数理逻辑习题离散数学
《离散数学》任务3(数理逻辑部分概念与性质)选择题判断题
第三部分数理逻辑选择题判断题注意:选项A B C D顺序会出现变动!根据选项确定答案!1、设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A. B. C. D.2. 设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是(1, 0, 0 ).A. 0, 0, 0B. 0, 0, 1C. 0, 1, 0D. 1, 0, 03. 下列公式中(⌝A∧⌝B ↔⌝(A∨B))为永真式A. ⌝A∧⌝B ↔⌝A∨⌝BB. ⌝A∧⌝B ↔⌝(A∨B)C. ⌝A∧⌝B ↔A∨BD. ⌝A∧⌝B ↔⌝(A∧B)4. 下列公式( (P→(⌝Q→P))↔(⌝P→(P→Q)) )为重言式A. ⌝P∧⌝Q↔P∨QB. (Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C. (P→(⌝Q→P))↔(⌝P→(P→Q))D. (⌝P∨(P∧Q)) ↔Q5. 下列等价公式成立的为( ⌝P∧P⇔⌝Q∧Q )A. ⌝P∧P⇔⌝Q∧QB. ⌝Q→P⇔P→QC. P∧Q⇔P∨QD. ⌝P∨P⇔Q6. 下列等价公式成立的为( P→(⌝Q→P) ⇔⌝P→(P→Q) )A. ⌝P∧⌝Q⇔P∨QB. P→(⌝Q→P) ⇔⌝P→(P→Q)C. Q→(P∨Q) ⇔⌝Q∧(P∨Q)D. ⌝P∨(P∧Q) ⇔Q7.下列公式成立的为( ⌝P∧(P∨Q)⇒Q)A. ⌝P∧⌝Q ⇔P∨QB. P→⌝Q⇔⌝P→QC. Q→P⇒ PD. ⌝P∧(P∨Q)⇒Q8. 命题公式的析取范式是( ).A. B. C. D.9. 命题公式(P∨Q)→R的析取范式是( (⌝P∧⌝Q)∨R)A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R10. 命题公式(P∨Q)的合取范式是( (P∨Q)).A. (P∧Q)B. (P∧Q)∨(P∨Q)C. (P∨Q)D. ⌝(⌝P∧⌝Q)11. 命题公式P→Q的主合取范式是( ⌝P∨Q ).A. (P∨Q)∧(P∨⌝Q)∧(⌝P∨⌝Q)B. ⌝P∧QC. ⌝P∨QD. P∨⌝Q12. 命题公式(P∨Q)→Q为( 可满足式)A. 矛盾式B. 可满足式C. 重言式D. 合取范式13. 在谓词公式(∀x)(A(x)→B(x)∨C(x,y))中,(x是约束变元,y都是自由变元)A. x,y都是约束变元B. x,y都是自由变元C. x是约束变元,y都是自由变元D. x是自由变元,y都是约束变元14. 表达式中的辖域是(P(x, y)∨Q(z) ).A. P(x, y)B. P(x, y)∨Q(z)C. R(x, y)D. P(x, y)∧R(x, y)15. 设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为((x)(A(x)∧B(x)) )A. (x)(A(x)∧B(x))B. (∀x)(A(x)∧B(x))C. ⌝(∀x)(A(x)→B(x))D. ⌝(x)(A(x)∧⌝B(x))16. 设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为(⌝(∀x)(A(x)→B(x))).A. (x)(A(x)∧B(x))B. ⌝(x)(A(x)∧B(x))C. ⌝(∀x)(A(x)→B(x))D. ⌝(x)(A(x)∧⌝B(x))17、设C(x):x是国家级运动员,G(x):x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为().A. B.C. D.18. 设个体域D={a, b, c},那么谓词公式消去量词后的等值式为((A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(b)))A. (A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(b))B. (A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(b))C. (A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(b))D. (A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(b))19. 谓词公式是(不可满足的)A.不可满足的B. 可满足的C. 有效的D. 蕴含式20、前提条件的有效结论是( ⌝Q).A. PB. ⌝PC. QD. ⌝Q21.设A(x):x 是人,B(x):x 是教师,则命题“有人是教师”可符号化为((ョx)(A(x)∧B(x)) ).A. ¬(ョx)(A(x)∧¬B(x))B.(∀x)(A(x)∧B(x))C. ¬(∀x)(A(x)→B(x))D.(ョx)(A(x)∧B(x))22. 设个体域D是整数集合,则命题∀xョy (x•y = y)的真值是(T ).A. TB.FC.不确定D.以上说法都不是23. 设个体域为整数集,则公式∀xョy(x+y)=0 的解释可为(对任一整数x存在整数y满足x+y=0 ).A. 对任一整数x存在整数y满足x+y=0B. 存在一整数x有整数y满足x+y=0C. 存在一整数x对任意整数y满足x+y=0D. 任一整数x对任意整数y满足x+y=024. 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为(⌝(∀x)(A(x)→B(x)) ).A. (x)(A(x)∧B(x))B. ⌝(x)(A(x)∧B(x))C. ⌝(∀x)(A(x)→B(x))D. ⌝(x)(A(x)∧⌝B(x))二、判断题1. 命题公式┐P∧(P∨Q) ⇒Q成立( 对)2. 设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.( 错)3. 设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.( 对)4. 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R)( 对) 5. 命题公式┐P∧(P→┐Q)∨P为永真式. ( 对)6. 设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为(∃x)(P(x)→Q(x)).( 错)7. 下面的推理是否正确.(1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) ( 错)8. 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( 对)9. 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( 错)10. 设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.( 错)11. 谓词命题公式(∀x)(P(x)→Q(x)∨R(x,y))中的约束变元为x.( 对)12. 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( 对)13. 谓词命题公式(∀x)((A(x)∧B(x))∨C(y))中的自由变元为x.( 错)14. 设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).( 错)15. 命题公式┐(P→Q)的主析取范式是P∨┐Q ( 错)16. 设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( 对)17. 谓词公式┐(∀x)P(x) (∃x)┐P(x)成立.( 对)18. 命题公式┐P∧P的真值是T ( 错)19. 设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( 错) 20. 命题公式P→(Q∨P)的真值是T.( 对)。
数理逻辑考试题及答案
“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。
共2分)(0)小刘既不怕吃苦,又爱钻研.解:⌝p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研.(1)只有不怕敌人,才能战胜敌人.解:q→⌝p,其中,P:怕敌人;q:战胜敌人。
(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。
解:⌝r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了.(3)小王与小张是亲戚。
解:p,其中,P:小王与小张是亲戚。
2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题.共1分)(0)A:(⌝(p↔q)→((p∧⌝q)∨(⌝p∧q)))∨ r(1)B:(p∧⌝(q→p)) ∧(r∧q)(2)C:(p↔⌝r)→(q↔r)(3)E:p→(p∨q∨r)(4)F:⌝(q→r) ∧r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。
3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。
共2分)(0)设y=2|x|,x为实数。
推理如下:如y在x=0处可导,则y在x=0处连续。
发现y在x=0处连续,所以,y在x=0处可导。
解:设y=2|x|,x为实数.令P:y在x=0处可导,q:y在x=0处连续。
由此,p为假,q为真。
本题推理符号化为:(p→q)∧q→p。
由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。
(1)若2和3都是素数,则6是奇数。
2是素数,3也是素数.所以,5或6是奇数。
解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。
由此,p=1,q=1,r=1,s=0.本题推理符号化为:((p ∧ q) →s)∧p ∧q) →(r ∨ s)。
计算推理公式真值为真,由此,本题推理正确.二、命题逻辑等值演算(5分)1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。
《离散数学》复习题及答案
页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学 练习-第1部分 数理逻辑(解答)
5、下列命题公式为重言式的是( D ),为矛盾式的是( C )
A、(P→Q)⋀Q⋀R
B、(P→P)→Q
C、(Q⋁R)⋀R
D、((P→Q)⋀(Q→R))→(P→R)
6、命题公式 (P→Q) 的主合取范式中含有( D )个极大项, 主析取范式中含有( B )个极小项 A、0 B、1 C、2 D、3
7、下列式子不正确的是( D ) A、∃xA(x) ⇔ ∀xA(x) B、∃x(A→B(x)) ⇔ A→∃xB(x) C、∀xA(x) ⇔ ∃xA(x) D、∀x(A(x)→B) ⇔ ∀xA(x)→B
以下方案任选一:①A不去,B不去,C去;②A不去,B去,C不去; ③A去,B不去,C去
9、证明下列谓词公式为永真式
(xF( x) yG( y)) (yG( y) xF( x))
证明:题中的谓词公式为 (P Q) (Q P) 的代换实例
(P Q) (Q P) (P Q) (Q P) (P Q) (P Q) 1 (A A 1)
(P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) m001 m000 m011 m111 m0 m1 m3 m(7 主析取范式) M2 M4 M5 M(6 主合取范式) (P Q R) (P Q R) (P Q R) (P Q R)
命题“并不是所有汽车都比火车跑得慢”可符号化为( C )
命题“说汽车都比火车快是不对的”可符号化为( C ) A、∃x(F(x)∧∀y(G(y)→H(x,y))) B、∃x∃y(F(x)∧G(y)→H(x,y)) C、∀x∀y(F(x)∧G(y)→H(x,y)) D、∀x(F(x)∧∃y(G(y)→H(x,y)))
数理逻辑习题离散数学
第1章 命题逻辑一、单项选择题1. 下列命题公式等值的是( ) BB A A Q P Q Q P Q B A A B A A QP Q P ),()D (),()C ()(),()B (,)A (∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝2. 设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (3. 命题公式Q Q P →∨)(为 ( ) (A) 矛盾式(B) 仅可满足式 (C) 重言式 (D) 合取范式4 命题公式)(Q P →⌝的主析取范式是( ). (A) Q P ⌝∧ (B) Q P ∧⌝ (C) Q P ∨⌝ (D) Q P ⌝∨ 5. 前提条件P Q P ,⌝→的有效结论是( ). (A) P(B)P(C) Q(D)Q6. 设P :我将去市里,Q :我有时间.命题“我将去市里,仅当我有时间时”符号化为( )Q P Q P Q P PQ ⌝∨⌝↔→→)D ()C ()B ()A (二、填空题1. 设命题公式G :P⌝(Q P ),则使公式G 为假的真值指派是2. 设P :我们划船,G :我们跑步,那么命题“我们不能既划船,又跑步”可符号化为3. 含有三个命题变项P ,Q ,R 的命题公式P Q 的主析取范式是4. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨⌝↔→∧的真值是5. 命题公式P⌝P Q 的类型是 .6. 设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么B A ↔是式(重言式、矛盾式或可满足式)三、解答化简计算题1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2.作命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.3. 试作以下二题:(1) 求命题公式(PQ )(P Q )的成真赋值.(2) 设命题变元P ,Q ,R 的真值指派为(0,1,1),求命题公式))()(()(Q R Q P R P →⌝∨→⌝∧↔的真值.4. 化简下式命题公式))()((P Q P Q P ∧⌝∧⌝∨∧5. 求命题公式))()((Q P P Q P ∧⌝∧→→的主合取范式.6. 求命题公式)()(Q P Q P ⌝→∧→⌝的主析取范式,并求该命题公式的成假赋值.7. 求命题公式)()(Q P Q P ⌝∨⌝∧∧的真值表. 四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()(2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.参考答案一、1. C 2. D 3. B 4. A 5. D 6. B二、1. 1,0;1,1 2. )(Q P ∧⌝或Q P ⌝∨⌝ 3. (P Q R )(P QR )4. 05. 非永真式的可满足式6. 重言 三、1. (1) 是命题,真值为1.(2) 是命题,真值为0. (3), (4)不是命题. (5) 是命题.1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2. 命题公式))(()(P Q P Q P ∨∧→→的真值表 P Q P Q Q P ∧P Q P ∨∧)())(()(P Q P Q P ∨∧→→0 0 1 0 0 0 0 1 1 0 0 0 1111 1 1 1 1 1 原式为可满足式.3. (1) (P Q )(P Q )(P Q )(P Q )(P P )Q Q可见(PQ )(P Q )的成真赋值为(0,1),(1,1).(2) ))()(()(Q R Q P R P →⌝∨⌝→⌝∧↔0))10()01(()10(⇔→∨→∧↔⇔4.))()((P Q P Q P ∧⌝∧⌝∨∧P Q P Q P ∧⌝∧⌝∨∧⇔)()()()(P P Q P Q P ∧⌝∧⌝∨∧∧⇔0)(∨∧⇔Q PQ P ∧⇔5. ))()((Q P P Q P ∧⌝∧→→ ))()((Q P P Q P ∧⌝∧∨⌝∨⌝⇔)())(Q P P Q P Q P ∧⌝∧∨∧⌝∧⌝∨⌝⇔ )00(∧∨⌝⇔P )(Q Q P ⌝∧∨⌝⇔)()(Q P Q P ⌝∨⌝∧∨⌝⇔6. )()()()(Q P Q P Q P Q P ⌝∨⌝∧⌝∧⇔⌝→∧→⌝ Q P ⌝∧⇔因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)7. 作真值表PQ P QPQPQ (P Q )(PQ ) 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 111四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()( ①Q R P②R P③Q T ①,②析取三段论 ④P Q P ⑤P ⌝ T ③,④拒取式 ⑥PS P⑦S ⑤,⑥析取三段论 2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((.前提:Q P R S Q P ,)),((→→→ 结论:S R → 证明:① R附加前提② RP前提引入 ③ P①,②假言推理④P (Q S ) 前提引入 ⑤ Q S ③,④假言推理 ⑥ Q 前提引入⑦ S⑤,⑥假言推理3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式. 证明.方法1.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝⇔∨∧⌝⇔Q R P )(Q R P →∧)(因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同. 3 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.方法2.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝R Q P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔ R Q P Q R P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔→∧)(因为它们的主合取范式相同,可知它们的主析取范式也相同.第2章谓词逻辑一、 单项选择题1. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词x 的辖域是( ) (A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q2. 谓词公式∃xA (x )∧∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型 3 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+∃∀y x y x (B) )0(=+∀∃y x x y(C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) ))),()(()((y x A y J y x L x ∧∃→∀ (C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀5. 设个体域是整数集合,P 代表x y ((x y )(x y 0)),下面4个命题中为真的是( )(A) P 是真命题 (B) P 是逻辑公式,但不是命题 (C) P 是假命题 (D) P 不是逻辑公式6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( )(A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )R (x ,y ) (D) P (x ,y )Q (z )二、 填空题1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .2. 设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为3. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为参考答案一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D二、1. A (1)A (2)(B (1)B (2)) 2. (G (a )(H (a ,a )H (a ,b ))) (G (b )(H (b ,a )H (b ,b )))3. ))()(())()((x N x Z x x Z x N x ⌝∧∃∧→∀。
离散数学-数理逻辑测验试题
数理逻辑测验一.将下列命题符号化(有量词的用谓词符号,没有的用命题符号)1. 没有不犯错误的人。
2. 金子是闪光的,但闪光的不一定是金子。
3.每个人或者喜欢乘汽车,或者喜欢骑自行车。
4.我虽然生病但我仍然去学校。
5.仅当你走,我将留下。
二.令),,(z y x S 表示“x+y=z”,),(y x G 表示“x=y”,),(y x L 表示”x<y”, 其中个体域为自然数集,用以上符号表示命题:(1) 并非对一切x ,都存在y ,使得y x ≤。
(2) (2)对任意的x ,若x+y=x ,当且仅当y=0。
三.简答题1. 写出R Q P →→)(的析取范式,合取范式。
2. 设P :今天下雨。
Q :我去上街。
R :我有空。
用自然语言表达以下命题:)(P R Q ⌝∧↔,)(Q R ∨⌝。
3. 设Q P ,的真值为0,S R ,的真值为1,求以下命题的真值:(1))()(S R Q P∨⌝∧↔,(2))()))(((S R P R QP ⌝∨→⌝∧→∨⌝。
4.n 个原子命题变元12,,,n P P P L 可构成多少个互不等值的命题公式?5. 写出谓词公式 )),()()()(()),()()((z y Q z y P y y x Q x P x ∃∧∃→→∀的前束范式。
四.证明题1.)()(R P Q R Q P→→⇔→→。
2.Q P Q Q P∨⇒→→)(。
3.)()())()((y yQ x xP y Q x P y x ∀→∃⇔→∀∀。
五.计算题a) 求公式)()(Q P Q P ⌝↔→⌝∨⌝的主析取范式,主合取范式。
b) 设12:>P ;3:)(≤x x Q ;6:)(≥x x R ;5=a 。
而且论域为{-2,3,6},求)())()((a R x Q Px ∨→∀的值。
六.用形式推理证明 (1)S Q P S R Q R Q P →⇒→→∨⌝∨⌝),(),((2)(()(()())),()(()())x P x Q x R x xP x x P x R x ∀→∧∃⇒∃∧七.符号化下列命题,并用推理理论证明其结论是否有效。
离散数学 数理逻辑练习题
21
6、下列陈述句中不属于排斥或的是_______。 A、李小川生于1990年或1991年 B、4是奇数或是偶数 C、章海燕去过美国或去过加拿大 D、赵远远只能选学英语或只能选学法语
22
7、证明下列公式的等价关系: ( p r ) ( q r ) ( p q) r
8、在自然推理系统中,构造下面推理的证明。 前提: , x( F ( x) (G(a) R( x))) xF (x) 结论:
16
4. 如果王小红努力学习,她一定取得好成绩。 若王小红贪玩或不按时完成作业,她就不能 取得好成绩。所以,如果王小红努力学习, 她就能按时完成作业。 (1) 将命题中的4个简单命题依次符号化为 p,q,r,s; (2) 将命题符号化,即将命题的前提和结论符 号化; (3) 在自然推理系统P中构造命题的推理证明。
9
10
8、下列集合不是连接词极小全功能集的为_____。 A、{¬,∧,∨} B、{¬,→}
C、{↓}
D、{↑}
11
9、下列谓词公式不是命题公式P→Q的代换 实例的是______ A、F ( x) G( y) B、xF ( x, y) yG( x, y)
C、 x( F ( x) G( x)) D、xF ( x) G( x)
17
5、公安人员审查一件盗窃案,已知的事实如下: ① 甲或乙盗窃了录音机; ② 若甲盗窃了录音机,则作案时间不能发生在午夜前; ③ 若乙的证词正确,则午夜时屋里灯光未灭; ④ 若乙的证词不正确,则作案时间发生在午夜之前; ⑤ 午夜时屋里灯光灭了。 试问谁盗窃了录音机?将命题符号化,即将命题的前 提符号化;然后在自然推理系统中构造命题的推理 证明过程。
离散考试复习题题
第一部分:数理逻辑1 下列语句是命题的是( ):A.15能被3整除,3是偶数吗?B.明年5月1日是晴天C.2X+3>0D.我在说谎.2下列叙述中有( )个命题(1)离散数学是计算机科学系的一门必修课 (2) 地球外的星球上也有人(3) 我正在说谎. (4)请不要吸烟A.1个B.2个C. 3个D. 4个3 下列语句中不是..命题的只有()A.这个语句是假的。
B.1+1=1.0C.飞碟来自地球外的星球。
D.凡石头都可练成金。
4 设p:我很累,q:我去学习,命题:“除非我很累,否则我就去学习”的符号化正确的是A.┐p∧q B.┐p→qC.┐p→┐q D.p→┐q5 令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()A. p∧┐q B.p∨┐qC. p∧q D.p→┐q6使用逻辑连接词将下列复合命题符合化:(1)如果天不下雪且我有时间,我就进城;(2)我进城的必要条件是我有时间;(3)天不下雪或我不进城;(4)我进城当且仅当我有时间且天不下雪。
7判断下面一段论述是否为真:“ 是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”11. 将下列命题符号化(1)2或3是素数.(2)4或6是素数.(3)小元元只能拿一个苹果或一个梨.(4)王晓红生于1975年或1976年.8命题公式q ∧(p ∨┐q)的成真赋值是____________9命题公式p ∨(┐p →(q ∨(┐q →r)))的成假赋值是________10 命题公式(p →(q ∧r))∧(┐p →(┐q ∧┐r))的成真赋值是___11 命题公式p →(p ∧(q →r))的成假赋值是____________12..下列命题公式中是重言式的为( )A.q q)p (∧→⌝B. r q p ∧∧)(C.)()(q p q p ⌝∧∨∧D.p p q p ↔→→))((13 命题公式“q p q p →⌝∧∨)(”,是__________。
离散数学综合练习及答案
北京科技大学远程教育学院《离散数学》综合练习(一)参考答案数理逻辑一、判断下列句子是否是命题,若是命题判断真值,并将其符号化。
1、今天天气真好!解:不是命题。
2、王华和张民是同学。
解:是命题。
真值视实际情况而定。
p:王华和张民是同学。
3、我一边吃饭,一边看电视。
解:是命题。
真值视实际情况而定。
p:我吃饭。
q:我看电视。
p∧q 4、没有不呼吸的人。
解:是命题。
真值为1。
M(x):x是人。
F(x):x呼吸。
∀x(M(x)→F(x))二、求命题公式的真值表和成真赋值、成假赋值。
p→∧qr∧→(p])[(r)解:成真赋值:000,001,010,011,101,111;成假赋值100,110三、用真值表、等值演算两种方法判别公式类型。
1、r q q p →∧→])[( 解:rq q p r q q q p r q q p rq q p r q q p r q q p ∨⌝∧⌝∨⇔∨⌝∨⌝∧⌝∨⇔∨⌝∨⌝∧⇔∨⌝∨∨⌝⌝⇔∨∧∨⌝⌝⇔→∧→])[()]()[()()(])[(])[(可满足式2、))((p q p q ∧∨⌝⌝∨ 解:))((p q p q A ∧∨⌝⌝∨=1)()()())((⇔∨⌝∨∨⌝⌝⇔⌝∨∨⌝⌝∨⇔∧∨⌝⌝∨q p q p p q p q p q p q永真式四、求命题公式的主析取范式和成真赋值、成假赋值。
)(r q p →→ 解:∑=→→),,,,,,7543210()(r q p 成真赋值:000,001,010,011,100,101,111;成假赋值110 五、解释I 如下:D 是实数集,特定元素a =0;特定函数f (x ,y )=x -y ;特定谓词F (x ,y ):x<y 。
在解释I 下判别公式真、假。
1、)])(([x y x f F y x ,,⌝∀∀ 解:)])[()])(([)]([)])(([x y x y x x y x y x x y x F y x x y x f F y x ≥-∀∀⇔<-⌝∀∀⇔-⌝∀∀⇔⌝∀∀,,,真值为假2、)]()([)({z y f z x f F y x F z y x ,,,,→∀∀∀ 解:)]()()[()]}()([)({z y z x y x z y x z y f z x f F y x F z y x -<-→<∀∀∀⇔→∀∀∀,,,,真值为真 六、1、求前束范式)()(y x yG x xF ,∀→⌝∃ 解:)]()([)()()()()()(y t G x F y x y t yG x xF y x yG x xF y x yG x xF ,,,,∨∀∃⇔∀∨∃⇔∀∨∃⇔∀→⌝∃2、证明:B x xA B x A x →∀⇔→∃)())(( 证明:Bx xA Bx xA B x A x B x A x B x A x →∀⇔∨⌝∀⇔∨⌝∃⇔∨⌝∃⇔→∃)()()())(())((七、写出下面推理的证明,要求写出前提、结论,并注明推理规则。
(完整word版)离散数学第二版 屈婉玲 1-5章(答案)
《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:RοR ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。
离散数学及其应用数理逻辑部分课后习题答案
作业答案:数理逻辑部分P14:习题一1、下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(3 答:简单命题,真命题。
(9)吸烟请到吸烟室去! 答:不是命题。
(12)8是偶数的充分必要条件是8能被3整除。
答:复合命题,假命题。
14、讲下列命题符号化。
(6)王强与刘威都学过法语。
答::p 王强学过法语;:q 刘威学过法语。
符号化为:p q ∧(10)除非天下大雨,他就乘班车上班。
答::p 天下大雨;:q 他乘班车上班。
符号化为:p q →(13)“2或4是素数,这是不对的”是不对的。
答::p 2是素数;:q 4是素数。
符号化为:(())p q ⌝⌝∨15、设:p 2+3=5. :q 大熊猫产在中国。
:r 太阳从西方升起。
求下列复合命题的真值。
(2)(())r p q p →∧↔⌝(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解答: p 真值为1;q 真值为1;r 真值为0.(2)p q ∧真值为1;()r p q →∧真值为1;p ⌝真值为0;所以(())r p q p →∧↔⌝真值为0.(4)p q r ∧∧⌝真值为1,p q ⌝∨⌝真值为0,()p q r ⌝∨⌝→真值为1;所以()(())p q r p q r ∧∧⌝↔⌝∨⌝→真值为1.19、用真值表判断下列公式的类型。
(4)()()p q q p →→⌝→⌝所以为重言式。
(7)所以为可满足式。
P36:习题二3、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出其成真赋值。
(1)()p q q ⌝∧→ 解答:()(())(())()10p q q p q q p q q p q q ⌝∧→⇔⌝⌝∧∨⇔⌝⌝∨⌝∨⇔⌝⌝∨⌝∨⇔⌝⇔所以为永假式。
(2)(())()p p q p r →∨∨→ 解答:(())()(())()()()1()1p p q p r p p q p r p p q p r p r →∨∨→⇔⌝∨∨∨⌝∨⇔⌝∨∨∨⌝∨⇔∨⌝∨⇔ 所以因为永真式。
离散数学命题逻辑练习题及答案
离散数学命题逻辑练习题及答案1. 命题逻辑基础1.1 命题逻辑概念1.什么是命题?答案:命题是可以判断真假的陈述句。
2.命题的两个基本操作是什么?答案:命题的两个基本操作是合取和析取。
1.2 命题逻辑表达式3.将以下中缀表达式转换为后缀表达式:((P ∧ Q) → (R ∨ S)) ∨ T答案:后缀表达式为P Q ∧ R S ∨ → T ∨4.使用真值表验证以下命题逻辑公式是否为重言式(永远为真):(P ∨ Q) ∧ (¬P ∨ Q) ⟺ Q答案:P Q(P ∨ Q) ∧ (¬P ∨ Q)QT T T TT F T FF T T TF F F F结论:命题逻辑公式(P ∨ Q) ∧ (¬P ∨ Q)是重言式。
1.3 命题逻辑推理5.使用命题逻辑进行推理,判断以下论断是否成立(推理过程可用真值表验证):P → Q, Q → R ∈ L, ∴ P → R答案:P Q R P → Q Q → R P → R T T T T T TT T F T F FT F T F T TT F F F T FF T T T T TF T F T F TF F T T T TF F F T T T结论:论断P → R成立。
2. 命题逻辑的应用2.1 命题逻辑在计算机科学中的应用6.命题逻辑在计算机科学中有哪些应用?答案:命题逻辑在计算机科学中的应用包括逻辑电路设计、计算机程序的正确性验证、控制流分析等。
7.请简要说明命题逻辑在逻辑电路设计中的应用。
答案:命题逻辑在逻辑电路设计中用于描述逻辑电路的功能和工作原理。
通过使用命题逻辑符号和逻辑运算,可以建立逻辑电路的逻辑模型,进而进行电路的设计、优化和验证。
2.2 命题逻辑推理的应用8.请举一个命题逻辑推理在实际生活中的应用例子。
答案:命题逻辑推理在实际生活中的一个应用例子是法庭判案。
法庭根据掌握的事实和证据,通过进行命题逻辑推理来确定被告是否犯罪或无罪,从而作出最终的判决。
离散数学复习题(请参考课件)
离散数学Part1_数理逻辑部分1.将下列命题符号化。
P48(1)豆沙包是由面粉和红小豆做成的.(2)苹果树和梨树都是落叶乔木.(3)王小红或李大明是物理组成员.(4)王小红或李大明中的一人是物理组成员.(5)由于交通阻塞,他迟到了.(6)如果交通不阻塞,他就不会迟到.(7)他没迟到,所以交通没阻塞.(8)除非交通阻塞,否则他不会迟到.(9)他迟到当且仅当交通阻塞.分清复合命题与简单命题分清相容或与排斥或分清必要与充分条件及必要充分条件答案:(1)是简单命题(2)是合取式(3)是析取式(相容或)(4)是析取式(排斥或)请分别写出(1)—(4)的符号化形式设p: 交通阻塞,q: 他迟到(5)p→q, (6)⌝p→⌝q或q→p(7)⌝q→⌝p或p→q, (8)q→p或⌝p→⌝q(9)p↔q或⌝p↔⌝q可见(5)与(7),(6)与(8)相同(等值)3.用真值表判断下面公式的类型P51(1)p∧r∧⌝(q→p)(2)((p→q) →(⌝q→⌝p)) ∨r(3)(p→q) ↔(p→r)按层次写真值表,由最后一列判类型答案:(1)为矛盾式,(2)为重言式,(3)为可满足式例用等值演算法判断下列公式的类型P59(1)q∧⌝(p→q)(2)(p→q)↔(⌝q→⌝p)(3)((p∧q)∨(p∧⌝q))∧r)解(1)q∧⌝(p→q)⇔q∧⌝(⌝p∨q) (蕴涵等值式)⇔q∧(p∧⌝q) (德摩根律)⇔p∧(q∧⌝q) (交换律,结合律)⇔p∧0 (矛盾律)⇔ 0 (零律)由最后一步可知,(1)为矛盾式.(2)(p→q)↔(⌝q→⌝p)⇔ (⌝p∨q)↔(q∨⌝p) (蕴涵等值式)⇔ (⌝p∨q)↔(⌝p∨q) (交换律)⇔ 1由最后一步可知,(2)为重言式.问:最后一步为什么等值于1?说明:(2)的演算步骤可长可短,以上演算最省.(3)((p∧q)∨(p∧⌝q))∧r)⇔ (p∧(q∨⌝q))∧r(分配律)⇔p∧1∧r(排中律)⇔p∧r(同一律)由最后一步可知,(3)不是矛盾式,也不是重言式,它是可满足式,其实101, 111是成真赋值,000, 010等是成假赋值.总结:从此例可看出A为矛盾式当且仅当A ⇔ 0A为重言式当且仅当A ⇔ 1例求公式A=(p→⌝q)→r的主析取范式与主合取范式. P71(1)求主析取范式(p→⌝q)→r⇔ (p∧q)∨r(析取范式)①(p∧q)⇔ (p∧q)∧(⌝r∨r)⇔ (p∧q∧⌝r)∨(p∧q∧r)⇔m6∨m7②r⇔ (⌝p∨p)∧(⌝q∨q)∧r⇔ (⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r) ⇔m1∨m3∨m5∨m7 ③②, ③代入①并排序,得(p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7 (主析取范式)(2)求A的主合取范式(p→⌝q)→r⇔ (p∨r)∧(q∨r) (合取范式)①p∨r⇔p∨(q∧⌝q)∨r⇔ (p∨q∨r)∧(p∨⌝q∨r)⇔M0∧M2 ②q∨r⇔ (p∧⌝p)∨q∨r⇔ (p∨q∨r)∧(⌝p∨q∨r)⇔M0∧M4 ③②, ③代入①并排序,得(p→⌝q)→r⇔M0∧M2∧M4 (主合取范式1.设A与B均为含n个命题变项的公式,判断下列命题是否为真?P85 (1)A⇔B当且仅当A与B有相同的主析取范式(2)若A为重言式,则A的主合取范式为0(3)若A为矛盾式,则A的主析取范式为1(4)任何公式都能等值地化成{∧, ∨}中的公式(5)任何公式都能等值地化成{⌝, →, ∧}中的公式(1)为真,这是显然的(2)为假. 注意, 任何公式与它的主范式是等值的,显然重言式不能与0等值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 命题逻辑
一、单项选择题
1. 下列命题公式等值的是( ) B
B A A Q P Q Q P Q B A A B A A Q
P Q P ),()D (),()C ()
(),()B (,)A (∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝
2. 设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,
Q ,R 赋值分别是 ( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (
3. 命题公式Q Q P →∨)(为 ( ) .
(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式 4 命题公式)(Q P →⌝的主析取范式是( ).
(A) Q P ⌝∧ (B) Q P ∧⌝ (C) Q P ∨⌝ (D) Q P ⌝∨
5. 前提条件P Q P ,⌝→的有效结论是( ). (A) P (B) P (C) Q (D)Q
6. 设P :我将去市里,Q :我有时间.命题“我将去市里,仅当我有时间时”符号化为( )
Q P Q P Q P P
Q ⌝∨⌝↔→→)D ()C ()B ()A (
二、填空题
,
1. 设命题公式G :P ⌝(Q P ),则使公式G 为假的真值指派是
2. 设P :我们划船,G :我们跑步,那么命题“我们不能既划船,又跑步”可符号化为
3. 含有三个命题变项P ,Q ,R 的命题公式P Q 的主析取范式是
4. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨⌝↔→∧的
真值是
5. 命题公式P ⌝P Q 的类型是 .
6. 设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么B A ↔是 式(重言式、矛盾式或可满足式)
三、解答化简计算题 [ 1. 判别下列语句是否命题如果是命题,指出其真值.
(1) 中国是一个人口众多的国家. (2) 存在最大的质数. (3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.
2.作命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.
3. 试作以下二题:(1) 求命题公式(P Q )(P Q )的成真赋值. (2) 设命题变元P ,Q ,R 的真值指派为(0,1,1),求命题公式
))()(()(Q R Q P R P →⌝∨→⌝∧↔的真值. 4. 化简下式命题公式))()((P Q P Q P ∧⌝∧⌝∨∧
'
5. 求命题公式))()((Q P P Q P ∧⌝∧→→的主合取范式.
6. 求命题公式)()(Q P Q P ⌝→∧→⌝的主析取范式,并求该命题公式的成假赋值.
7. 求命题公式)()(Q P Q P ⌝∨⌝∧∧的真值表. 四、证明题
1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()(
2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((
3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.
}
参考答案
一、1. C 2. D 3. B 4. A 5. D 6. B
二、1. 1,0;1,1 2. )(Q P ∧⌝或Q P ⌝∨⌝ 3. (P Q R )(P Q
R )
4. 0
5. 非永真式的可满足式
6. 重言
三、1. (1) 是命题,真值为1. (2) 是命题,真值为0. (3), (4)不是命题. (5) 是命题. 1. 判别下列语句是否命题如果是命题,指出其真值.
(1) 中国是一个人口众多的国家. (2) 存在最大的质数. (3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.
!
命题公式的真值表 P Q P Q Q P ∧ P Q P ∨∧)(
))(()(P Q P Q P ∨∧→→
0 ) 0
1 0 0 0 0 1 1 、 0
0 0 1 0 0 0 1
!
1 1 1 1 1 1
1
;
原式为可满足式.
3. (1) (P Q )(P Q )(P Q )(P Q )(P P )Q Q 可见(P Q )(P Q )的成真赋值为(0,1),(1,1). (2) ))()(()(Q R Q P R P →⌝∨⌝→⌝∧↔
0))10()01(()10(⇔→∨→∧↔⇔
4. ))()((P Q P Q P ∧⌝∧⌝∨∧ P Q P Q P ∧⌝∧⌝∨∧⇔)()(
)()(P P Q P Q P ∧⌝∧⌝∨∧∧⇔
:
0)(∨∧⇔Q P
Q P ∧⇔
5. ))()((Q P P Q P ∧⌝∧→→ ))()((Q P P Q P ∧⌝∧∨⌝∨⌝⇔
)())(Q P P Q P Q P ∧⌝∧∨∧⌝∧⌝∨⌝⇔ )00(∧∨⌝⇔P )(Q Q P ⌝∧∨⌝⇔
)()(Q P Q P ⌝∨⌝∧∨⌝⇔
>
6. )()()()(Q P Q P Q P Q P ⌝∨⌝∧⌝∧⇔⌝→∧→⌝
Q P ⌝∧⇔
因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)
7. 作真值表
P
Q P Q
^
P
Q P
Q (P Q )(P
Q )
0 0 0 1 ,
1 1 0 0 1 0 1 0
{
1 0 1 0 0 0 1 1
¥
0 1
1
1
/
四、证明题
1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()(
①Q R P ②R P
③Q T ①,②析取三段论 ④P Q P ⑤P ⌝ T ③,④拒取式 ⑥P S P
^
⑦S ⑤,⑥析取三段论 2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((
.前提:Q P R S Q P ,)),((→→→
结论:S R →
证明:① R 附加前提
② R P 前提引入 ③ P ①,②假言推理 ④P (Q S ) 前提引入 。
⑤ Q S ③,④假言推理 ⑥ Q 前提引入 ⑦ S ⑤,⑥假言推理
3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式. 证明.方法1.
)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝ ⇔∨∧⌝⇔Q R P )(Q R P →∧)(
…
因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同. 3 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式. 方法2.
)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝
R Q P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔ R Q P Q R P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔→∧)(
因为它们的主合取范式相同,可知它们的主析取范式也相同.
.
第2章谓词逻辑
一、 单项选择题
1. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词x 的辖域是( ) (A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q
2. 谓词公式∃xA (x )∧∃xA (x )的类型是( ) (A) 永真式 (B) 矛盾式
(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型 3 设个体域为整数集,下列公式中其真值为1的是( )
(A) )0(=+∃∀y x y x (B) )0(=+∀∃y x x y
(C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x
4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) ))),()(()((y x A y J y x L x ∧∃→∀
(C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀
5. 设个体域是整数集合,P 代表x y ((x y )(x y 0)),下面4个命题中为真的是( )
(A) P 是真命题 (B) P 是逻辑公式,但不是命题 (C) P 是假命题 (D) P 不是逻辑公式
6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( )
(A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )R (x ,y ) (D) P (x ,y )Q (z ) 二、 填空题
1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .
2. 设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为
3. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为
参考答案
一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D
二、1. A (1)A (2)(B (1)B (2)) 2. (G (a )(H (a ,a )H (a ,b ))) (G (b )(H (b ,a )H (b ,b )))
3. ))()(())()((x N x Z x x Z x N x ⌝∧∃∧→∀。