轴对称典型试题和画图试题

合集下载

初二轴对称经典题目

初二轴对称经典题目

初二轴对称经典题目一、等腰三角形的性质与判定相关题目1. 已知:在△ABC中,AB = AC,∠A = 36°,BD平分∠ABC交AC于点D。

- 求证:AD = BD = BC。

- 解析:- 因为AB = AC,∠A = 36°,根据等腰三角形两底角相等,可得∠ABC=∠C=(180° - 36°)÷2 = 72°。

- 又因为BD平分∠ABC,所以∠ABD = ∠DBC=72°÷2 = 36°。

- 在△ABD中,∠A = ∠ABD = 36°,根据等角对等边,可得AD = BD。

- 在△BDC中,∠BDC = 180° - ∠DBC - ∠C=180° - 36° - 72° = 72°,所以∠BDC = ∠C,根据等角对等边,可得BD = BC。

- 综上,AD = BD = BC。

2. 如图,在△ABC中,AD是高,点E在AD上,且BE = AC,求证:△BDE≌△ADC。

- 解析:- 因为AD是高,所以∠ADB = ∠ADC = 90°。

- 在Rt△BDE和Rt△ADC中,已知BE = AC,又因为∠BDE = ∠ADC = 90°,且∠BED和∠C都是∠EBD的余角,根据同角的余角相等,可得∠BED = ∠C。

- 根据AAS(两角及其中一角的对边对应相等),可证得△BDE≌△ADC。

二、线段垂直平分线相关题目1. 如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC = 15cm,△BCE的周长等于25cm。

- 求BC的长。

- 解析:- 因为MN是AB的垂直平分线,根据线段垂直平分线上的点到线段两端的距离相等,可得AE = BE。

- 因为△BCE的周长=BE + EC+BC = 25cm,又因为AE = BE,AC = AE+EC = 15cm。

四年级数学-图形的运动-轴对称习题(有答案)

四年级数学-图形的运动-轴对称习题(有答案)

图形的运动第1节轴对称测试题一、画图题(在方格纸上画出对称图形的另一半)二、找出下面的轴对称图形,并画出对称轴。

三、判断题。

1、正方形有四条对称轴。

()2、平行四边形是轴对称图形。

()3、长方形有4条对称轴。

()4、五角星是轴对称图形。

()5、轴对称图形沿着对称轴折叠后能够完全重合。

()四、选择题。

1、圆有()条对称轴。

A、1条B、10条C、100条D、无数条2、正18边形有()条对称轴。

A、1条B、18条C、100条D、无数条3、下列图形中对称轴最多的是()A、正方形B、平行四边形C、等腰梯形D、正六边形4、下列图形是轴对称图形的是哪一种()5、下列图形中有三条对称轴的是()6、下列关于轴对称的说法正确的是( ) A 一个轴对称图形只能有一条对称轴。

B 轴对称图形可以有多条对称轴。

C 所有的三角形都是轴对称图形。

D 所有四边形都是轴对称图形。

7、下列汉字那个不是轴对称图形( )A天 B大A甲 D 龙8、下列图标不是轴对称图形的是( )A BC D9、下列有关轴对称的说法正确的是( ) A 所有三角形都是轴对称图形 B 轴对称图形一定有一条对称轴 C 等腰梯形是轴对称图形 D 直角梯形是轴对称图形10、下列有关轴对称图形的说法正确的是( ) A 轴对称图形折叠后可以重合 B 轴对称图形一定只有一条对称轴 C 轴对称图形的对称轴一定经过该图形 D 英文字母中有20个英文字母 五、简答题。

1、想一想你学过的那些声母的大写字母是轴对称图形?2、1到20这些阿拉伯数字中,那些数字式轴对称图形?【参考答案】一、画图题。

二、找出下面的轴对称图形,并画出对称轴。

是轴对称图形,有8条对称轴不是轴对称图形是轴对称图形,有1条对称轴。

是轴对称图形,有4条对称轴。

是轴对称图形,有1条对称轴。

是轴对称图形,有1条对称轴。

三、判断题1、√2、×3、×4、√5、√四、选择题。

1、D;2、B;3、D;4、A;5、C;6、B;7、D;8、C;9、C;10、C1、答:ABCDEHIKMOTUVWXY2、答:1;3;8;11;13;18。

初二数学上册:画轴对称图形经典例题(含答案)

初二数学上册:画轴对称图形经典例题(含答案)

初二数学上册:画轴对称图形经典例题(含答案)一、单选题1.下列剪纸图案中,能通过轴对称变换得到的有(C)2.下列说法错误的是(B)A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有(C)A.3种B.4种C.5种D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法(C)A.2种B.3种C.4种D.5种6.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B)7.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。

小明用下面的方法作P的对称点:先以l1为对称轴作点P 关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……,如此继续,得到一系列点P1,P2,P3,…,。

若与P重合,则n的最小值是(B)A.5B.6C.7D.8二、填空题8.轴对称变换不改图形的形状和大小解析:试题分析:根据轴对称图形的性质即可得到结果。

专题12 轴对称30大高频考点(期末真题精选)(原卷版)

专题12 轴对称30大高频考点(期末真题精选)(原卷版)

专题12 轴对称30大高频考点一.生活中轴对称1.如图,桌球的桌面上有M,N两个球,若要将M球射向桌面的一边,反弹一次后击中N球,则A,B,C,D,4个点中,可以反弹击中N球的是点.2.数的运算中含有一些有趣的对称形式,如12×231=132×21,按照此等式的形式填空:12×462=×;×891=×81.二.轴对称图形的辨析3.在“线段、角、直角三角形、等边三角形”这四个图形中,对称轴最多的图形是.4.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.5.线段是轴对称图形,它的对称轴是;角是轴对称图形,它的对称轴是.三.镜面对称6.有两面可绕一立轴转动的立式镜,我站在这两面镜手前的一个点上,这个点位于镜面夹角的角平分面上.若两镜面的夹角为50°,我将可以看到自己的镜像数为()A.10B.8C.6D.4四.剪纸类7.将一个正方形纸片对折后对折再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.8.如图,从△ABC的纸片中剪去△CED,得到四边形ABDE.若∠1+∠2=230°,则∠C=()A.230°B.130°C.50°D.110°五.设计轴对称图案9.如图是5个小正方形纸片拼成的图形,现将其中一个小正方形纸片平移,使它与原图中剩下的小正方形纸片有一条或两条边重合后拼成一个轴对称图形,在拼出的所有不同位置的轴对称图形中,全等的图形共有()A.0对B.1对C.2对D.3对六.轴对称的性质10.如图,点P为∠AOB内部任意一点,点P与点P1关于OA对称,点P与点P2关于OB对称,OP=4,∠AOB=45°,则△OP1P2的面积为.11.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为(用含n的式子表示).七.:轴对称与最值12.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE=120°,则DE的最大值是.13.如图,点C,D在AB的同侧,AC=5,AB=10√2,BD=10,点M为AB的中点,若∠CMD=120°,则CD的最大值是.14.如图,△ABC中,∠B=45°,∠C=75°,AB=4,D为BC上一动点,过D作DE⊥AC于点E,作DF⊥AB于点F,连接EF,则EF的最小值为.15.如图,在锐角△ABC中,∠A=30°,BC=3,S△ABC=8,点P是边BC上的一动点,点P关于直线AB,AC的对称点分别是M,N,连接MN,则MN的最小值为.八.作图:轴对称的变换16.如图,在正方形网格中,△ABC的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC 关于直线l成轴对称,其中A′点的对应为A点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.17.如图,在平面直角坐标系的网格中,其最小正方形的边长为1个单位长度,△ABC的顶点都在格点上.(1)作出△ABC关于x轴对称的图形△A'B'C',并写出△A'B'C'三个顶点的坐标;(2)判断△A'B'C'的形状,并简单加以说明.九.角平分线的性质18.如图,已知△ABC的周长是18,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3,则△ABC的面积是.19.如图,OP平分∠MON,P A⊥ON于点A,P A=3,点Q是射线OM上一个动点,若PQ=m,则m的取值范围是.20.如图,△ABC的三边AB、BC、CA长分别是30、40、50,∠ABC和∠ACB的角平分线交于O,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5十.角平分的性质与面积21.如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB =20,则△AOB的面积是.22.如图,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.23.已知点O是△ABC的三个内角平分线的交点,若△ABC的周长为24cm,面积为36cm2,则点O 到AB的距离为cm.十一.角平分线的判定24.如图,O是△ABC内一点,且O到三边AB,BC,CA的距离相等(即OF=OD=OE),若∠BAC=80°,则∠BOC()A.110°B.120°C.130°D.140°25.东湖高新区为打造成“向往之城”,正建设一批精品口袋公园.如图所示,△ABC是一个正在修建的口袋公园.要在公园里修建一座凉亭H,使该凉亭到公路AB、AC的距离相等,且使得S△ABH =S△BCH,则凉亭H是()A.∠BAC的角平分线与AC边上中线的交点B.∠BAC的角平分线与AB边上中线的交点C.∠ABC的角平分线与AC边上中线的交点D.∠ABC的角平分线与BC边上中线的交点十二.垂直平分线的性质26.如右图:AB比AC长3cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14cm,则AB=cm.27.如图,在△ABC中,AB、AC的中垂线GF、DE分别交BC于点F、E,连接AE、AF,∠B+∠C=50°,那么∠F AE的度数是()A.80°B.70°C.60°D.50°十三.垂直平分线的判定28.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.十四.角平分线与垂直平分线的融合29.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.十五.等腰三角形的性质30.如图,△ABC中,∠CAB=∠CBA=48°,点O为△ABC内一点,∠OAB=12°,∠OBC=18°,则∠ACO+∠AOB=()A.190°B.195°C.200°D.210°31.求证:等腰三角形两底角的平分线相等.32.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.十六.等腰三角形的判定33.如图,已知△ABC,CD平分它的外角∠BCE,AB∥CD,证明:△ABC为等腰三角形.34.如图,在△ABC中,∠A=60°.BE,CF交于点P,且分别平分∠ABC,∠ACB.(1)求∠BPC的度数;(2)连接EF,求证:△EFP是等腰三角形.十七.格点等腰三角形35.如图,在正方形网格中,网格线的交点称为格点;已知A,B是两格点,若C点也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.36.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN=4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.十八.图形的存在性之等腰37.如图,在△ABC中,∠B=25°,∠A=100°,点P在△ABC的三边上运动,当△P AC成为等腰三角形时,其顶角的度数是.38.在△ABC中,∠A=40°,当∠C=时,△ABC为等腰三角形.39.如图,等边△ABC的边长为12cm,M,N两点分别从点A,B同时出发,沿△ABC的边顺时针运动,点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N两点同时停止运动,则当M,N运动时间t=s时,△AMN为等腰三角形.十九.等腰三角形的性质与判定综合40.如图,点D在等边△ABC的外部,连接AD、CD,AD=CD,过点D作DE∥AB交AC于点F,交BC于点E.(1)判断△CEF的形状,并说明理由;(2)连接BD,若BC=10,CF=4,求DE的长.41.在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.二十.等边三角形的性质42.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.二十一.等边三角性的判定43.如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.二十二.等边三角性的判定与性质的综合运用44.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.45.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.二十三.含30°角的直角三角形46.如图,已知Rt△ABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC于点E,垂足为点D,取线段BE的中点F,联结DF.求证:AC=DF.(说明:此题的证明过程需要批注理由)二十四.直角三角形斜中线的运用47.【教材呈现】如图是华师版九年级上册数学教材第103﹣104页的部分内容.如图24.2.1,画Rt△ABC,并画出斜边AB上的中线CD,量一量,看看CD与AB有什么关系.相信你与你的同伴一定会发现,CD恰好是AB的一半.下面让我们用演绎推理证明这一猜想.已知:如图24.2.2,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,求证:CD=12AB.定理证明:请根据教材图24.2.2的提示,结合图①完成直角三角形的性质:“直角三角形斜边上的中线等于斜边的一半”的证明.定理应用:(1)如图②,在△ABC中,AD⊥BC,垂足为点D(点D在BC上),CE是AB边上的中线,DG垂直平分CE.求证:∠B=2∠BCE;(2)在(1)条件下,若BF⊥AC于点F,连接DE、EF、FD.当△DEF是等边三角形,且BD =3时,△DEF的周长为.48.如图,Rt△ABC中,∠CAB=90°,∠ACB=30°,D是AB上一点(不与A、B重合),DE⊥BC于E,若P是CD的中点,请判断△P AE的形状,并说明理由.二十五.新定义49.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=√3,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP 进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP=√2,求△PDC 的面积.二十六.尺规作图50.如图,在△ABC中,∠C=90°.(1)过点B作∠ABC的平分线交AC于点D(尺规作图,保留作图痕迹,标注有关字母,不用写作法和证明);(2)若CD=3,AB+BC=16,求△ABC的面积.51.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部,请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)二十七.规律类52.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若操作2022次,得到小正方形的个数是()A.6065B.6066C.6067D.606853.如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E;…按此做法继续下去,则第2022个三角形中以A2022为顶点的内角度数是()A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75° 二十八.坐标中的轴对称54.已知点M (a ,﹣3),点N (﹣2,b )关于y 轴对称,则(a +b )2022的值( )A .﹣3B .﹣1C .1D .355.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (3,4),C (3,﹣1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.二十九.三线合一的妙用56.如图,△ABC 中,AB =AC ,AD 是∠BAC 的角平分线交BC 于点D ,DE ⊥AC 于点E ,CF ⊥AB 于点F ,DE =3,则CF 的长为( )A .4B .6C .9D .1257.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:∠BAD=∠CAD;(2)求证:BE=CE.三十.角平分与平行、垂直的巧妙融合58.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为.59.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=5,ED=9,求EB+DC=.60.如图,已知S△ABC=24m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC m2.。

八年级轴对称典型例题

八年级轴对称典型例题

八年级轴对称典型例题一、等腰三角形与轴对称性质相关例题例题1:已知等腰三角形ABC中,AB = AC,∠A = 36°,请找出这个等腰三角形的所有对称轴。

解析:1. 因为等腰三角形ABC中,AB = AC,等腰三角形是轴对称图形,对称轴是底边上的高(或顶角平分线或底边的中线)所在的直线。

作AD⊥BC于D点,由于AB = AC,根据等腰三角形三线合一的性质,AD所在直线就是等腰三角形ABC的对称轴。

因为∠A=36°,AB = AC,所以∠B=∠C=(180° 36°)/2 = 72°。

这条对称轴将等腰三角形ABC分成两个全等的直角三角形ABD和ACD。

2. 总结:等腰三角形ABC有1条对称轴,即底边上的高AD所在的直线。

二、线段垂直平分线与轴对称例题例题2:如图,在△ABC中,DE是AC的垂直平分线,AE = 3cm,△ABD的周长为13cm,求△ABC的周长。

[此处可自行画一个简单的三角形ABC,其中DE是AC的垂直平分线,D在AC上,E在BC上]解析:1. 因为DE是AC的垂直平分线,根据线段垂直平分线的性质,可得AD = CD。

2. 已知△ABD的周长为AB+BD + AD = 13cm,由于AD = CD,所以AB+BD+CD = 13cm,即AB + BC = 13cm。

3. 又因为AE = 3cm,且DE垂直平分AC,所以AC = 2AE = 6cm。

4. 那么△ABC的周长为AB+BC + AC=13 + 6 = 19cm。

三、角平分线与轴对称例题例题3:如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,连接CD,求证:OP垂直平分CD。

[画一个∠AOB,OP为角平分线,PC垂直OA于C,PD垂直OB于D,连接CD]解析:1. 因为OP平分∠AOB,PC⊥OA,PD⊥OB,根据角平分线的性质,可得PC = PD。

2. 在Rt△OPC和Rt△OPD中,OP = OP(公共边),PC = PD,所以Rt△OPC≌Rt △OPD(HL)。

轴对称经典测试题(含答案)

轴对称经典测试题(含答案)

一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何请用一句话表示:.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为B E CDAABC DBHFAECGO第8题图第9题图第10题图____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C1的位置,若∠DBC=30º,则∠ABC1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.二、解答题(共68分)17.(5分)已知点M)5,3(ba-,N)32,9(ba+关于x轴对称,求a b的值.18.(5分)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC 于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.第14题图第15题图第16题图ABC DEF20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.A23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.A DBCABOEFCAF27.(7分)等边△ABC 中,点P 在△ABC 内,点Q在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.轴对称单元测试答案(二)一、填空题ACBPQ1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.1511.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度16.130度二、解答题18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略-。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。

答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。

答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。

答案:对称中心4. 轴对称图形的对称轴可以有______条。

答案:无数5. 一个图形关于某面对称,那么这个面被称为______。

答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。

八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。

例题1:下列图形中,是轴对称图形的是()A. 平行四边形。

B. 三角形。

C. 梯形。

D. 正方形。

解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。

2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。

3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。

4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。

答案为D。

例题2:正六边形的对称轴有()条。

A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。

2. 所以正六边形的对称轴有6条。

答案为B。

二、线段垂直平分线性质的例题。

例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。

2. 已知△BCE的周长为14,即BE + EC+BC = 14。

3. 又因为AE = BE,所以AC+BC=14。

4. 已知BC = 6,所以AC = 14 - 6=8。

5. 因为AB = AC,所以AB = 8。

答案为C。

例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。

B. l平分但不垂直AB。

C. l垂直且平分AB。

D. l与AB相交但不一定垂直平分。

解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。

2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。

轴对称图形作图强化练习20题(坐标轴对称问题)

轴对称图形作图强化练习20题(坐标轴对称问题)

轴对称图形作图练习1 .如图,在所给网格图(每小格均为边长是1 的正方形)中完成下列各题:(用直尺画图)(1)画出格点4ABC (顶点均在格点上)关于直线DE 对称的△AiBiCi:(2)在DE 上画出点P,使PBi+PC 最小.2 .如图所示的正方形网格中,每个小正方形的边长均为1 个单位,AABC 的三个顶点都在格点上.(1)在网格中画出AABC 向下平移3个单位得到的△ AiBiCi :(2)在网格中画出4ABC 关于直线m 对称的4A2B2c2: (3)在直线m 上画一点P,使得GP+C2P 的值最小.3 .如图,已知AABC.(1)画出△A1B1C1,使△AiBiCi 和AABC 关于直线MN成轴对称.(2)画出AAzB2c2,使4A2B2c2和AABC 关于直线PQ 成轴对称. 3 3) ZkAiBiCi 与AAzB2c2成轴对称吗?若成,请在图上画出对称轴:若不成,说明理由.4 .如图,在长度为1个单位长度的小正方形组成的正方形中, 点A 、B 、C 在小正方形的顶点上.(1)在图中画出与4ABC 关于直线1成轴对称的△AB,C : (2)五边形ACBB'C 的周长为: (3)四边形ACBB ,的面积为:(4)在直线1上找一点P,使PB+PC 的长最短,则这个最短 长度为 .Ay / V/ /\B—aCDm5.在平面直角坐标系中,A (1, 2), B (3, 1), C ( -2, -1).(1)在图中作出AABC关于y轴的对称△A1B1C1:(2)写出aABC关于x轴对称AA2B2c2的各顶点坐标:A2:B2—;C2 .6.如图,ZiABC的顶点坐标分别为A (4, 6), B (5, 2), C (2, 1), (1)作出aABC关于y 轴对称的△ABXT,并写出A- B\ C的坐标. (2)求AABC的而积.7.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,AABC的顶点均在格点上,点A的坐标是(-3, - 1).(1)将AABC沿y轴正方向平移3个单位得到△AiBiCi,画出△AiBiCi,并写出点&坐标;(2)画出△AiBiCi关于y轴对称的AAzB2c2,并写出点C2的坐标.8. 4ABC在平面直角坐标系中的位置如图所示.(1)画出aABC关于y轴对称的△AiBiG:(2)将4ABC向右平移6个单位,作出平移后的△A2B2c2,并写出AAzB2c2各顶点的坐标:(3)观察△AiBiCi和4A2B2c2,它们是否关于上」某条直线对称?若是,请在图上画出这条对称釉・1-「7 7 • li9.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商, 工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?10.如图,在平面直角坐标系中,A (-1, 5)、B ( - 1, 0)、C (-4, 3).(1)在图中作出AABC关于y轴的对称图形△AiBiCi.(2)写出点Ai、B H C I的坐标.11.如图,在平面直角坐标系xoy中,A (1,2), B (3, 1), C ( -2, - 1).(1)在图中作出AABC关于y轴的对称图形△AiBiCi .(2)写出点Ai, Bi,Ci的坐标(直接写答案).Ai_Bi_Cl .12.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点4ABC (顶点均在格点上)关于直线DE对称的△AiBiCi:(2)在DE上画出点Q,使QA+QC最小.13.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4, 5), ( - 1, 3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出4ABC关于y轴对称的△A,B,C:(3)写出点B'的坐标.14. AABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出aABC关于x轴对称的△AiBiCi,并写出点C1的坐标;(2)作出aABC关于y对称的AA2B2c2,并写出点C2的坐标.15.在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形的顶点上).(1)写出△ABC的面积;(2)画出aABC关于y轴对称的△AiBiCi;(3)写出点A及其对称点Ai的坐标.16.已知:如图,已知△ABC,(1)分别画出与aABC关于x轴、y轴对称的图形△AiBiCi 和aAzB2c2:(2)写出△AiBiCi和aAzB2c2各顶点坐标:(3)求AABC的而积.6X17.如图,在平而直角坐标系中,每个小正方形的边长为1,点A的坐标为(-3, 2).请按要求分别完成下列各小题:(1)把AABC向下平移4个单位得到△AiBiC],画出△AiBiCi,点Ai的坐标是:(2)画出AABC关于y轴对称的4A2B2c2;点C2的坐标是:(3)求4ABC的而积.18.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A, C的坐标分别为(-4, 5), ( - 1, 3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出aABC关于y轴对称的△A,B,C:(3)写出点B'的坐标.19.在正方形网格中建立如图的平面直角坐标系xOy, ZkABC的三个顶点都在格点上,点A的坐标是(4, 4),请解答下列问题:(1)将4ABC向下平移5单位长度,画出平移后的△AiBiG并写出点A对应点Ai的坐标; (2)画出△A I B I C I关于y轴对称的4A2B2c2并写出A2的坐标:(3) S A ABC=・20.如图,在平面直角坐标系中,点A的坐标为(3, -3),点B的坐标为(-1, 3),回答下列问题(1)点C的坐标是—.(2)点B关于原点的对称点的坐标是—.(3) △ ABC的面积为.(4)画出aABC关于x轴对称的。

轴对称典型试题和画图试题

轴对称典型试题和画图试题
25、如图,在等边 中, ,点 在 上,且 ,点 是 上一动点,连结 ,将线段 绕点 逆时针旋转 得到线段 .要使点 恰好落在 上,则 的长是(C)A.4B.5C.6D.8

、已知:如图,C及两点及两点、。求作:点P,使得P=P,且点到C两边所在的直线距离相等.
答案一:C内角平分线与线段的垂直平分线交点
13、下列说法正确的是(A).
A.轴对称涉及两个图形,轴对称图形涉及一个图形D.有两个内角相等的三角形不是轴对称图形
B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形
14、下列图形中对称轴最多的是(C).A.等腰三角形B.正方形C.圆D.线段
15、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).
解析:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)
(2)过点(-1,0)作y轴的平行线m,即直线x=-1.
(3)分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.
(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1) 减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。
答案二:ABC外角平分线与线段的垂直平分线交点
27、已知点 A在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B ,当点P 在直线l 上运动时,点 P 与 A、 B 两点的距离总相等,如果存在,请作出定点B ;若不存在,请说明理由.

生活中的轴对称(经典例题)

生活中的轴对称(经典例题)

班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。

轴对称经典测试题(含答案)

轴对称经典测试题(含答案)

轴对称单元测试(二)一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是. 3.等腰△ABC 中,若∠A =30°,则∠B =________.4.△ABC 中,AD ⊥BC 于D ,且BD =CD ,若AB =3,则AC =____.5.在Rt△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若CD =4,则点D 到AB 的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC 中,AB =AC =10,∠A =30°,则腰AB 上的高等于___________. 8.如图,△ABC 中,AD 垂直平分边BC ,且△ABC 的周长为24,则AB +BD = ;又若∠CAB =60°,则∠CAD =.9.如图,△ABC 中,EF 垂直平分AB ,GH 垂直平分AC ,设EF 与GH 相交于O ,则点O 与边BC 的关系如何?请用一句话表示:.BECDAABCDB HAECO10.如图:等腰梯形ABCD 中,AD ∥BC ,AB =6,AD =5,BC =8,且AB ∥DE ,则△DEC的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为_____.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若∠DBC =30º,则∠ABC 1=________. 16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,∠A =35º,∠BCO =30º,那么∠AOB =_______.二、解答题(共68分)17.(5分)已知点M )5,3(b a -,N )32,9(b a +关于x 轴对称,求ab 的值.18.(5分)已知AB =AC ,BD =DC ,AE 平分∠FAC ,问:AE 与AD 是否垂直?为什么?第14题图 第15题图 第16题图 AEF19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.BA .22.(5分)如图,在∆ABC 中,AB =AC ,∠A =92︒,延长AB 到D ,使BD =BC ,连结DC .求∠D 的度数,∠ACD 的度数.23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.ADBCDB C AO26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.27.(7分)等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试说明你的结论.28.(5分)如图①是一X 画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.AFBCD EACBPQ轴对称单元测试答案(二)一、填空题1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.15cm或5cm 14.2、4,2 15.30度16.130 11.正反写的4和6 12.4,6 13.353度二、解答题17.9 18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形答案:A2. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形被称为:A. 旋转对称图形B. 平移对称图形C. 轴对称图形D. 反射对称图形答案:C二、填空题3. 轴对称图形的对称轴是图形上所有点到对称轴的距离都相等的________。

答案:直线4. 如果一个图形关于某条直线对称,那么这条直线就被称为图形的________。

答案:对称轴三、判断题5. 所有矩形都是轴对称图形。

()答案:错误6. 轴对称图形的对称轴可以是曲线。

()答案:错误四、简答题7. 请描述如何判断一个图形是否为轴对称图形,并给出一个例子。

答案:判断一个图形是否为轴对称图形,需要检查该图形是否能够沿着一条直线对折,使得对折后的两部分完全重合。

例如,等腰三角形就是一个轴对称图形,因为它可以沿着从顶点到底边中点的高线对折,使得两边的腰完全重合。

8. 解释什么是轴对称变换,并给出一个实际应用的例子。

答案:轴对称变换是一种几何变换,其中一个图形通过沿着一条直线(对称轴)对折,变换成另一个与之完全重合的图形。

实际应用的例子包括镜像反射,例如在镜子中看到的自己的倒影,就是通过镜子作为对称轴进行轴对称变换得到的。

五、计算题9. 已知一个轴对称图形的对称轴是y轴,图形上一点A的坐标为(3,4),请计算点A关于y轴的对称点B的坐标。

答案:点A关于y轴的对称点B的坐标为(-3,4)。

10. 如果一个轴对称图形的对称轴是x轴,图形上一点C的坐标为(-2,3),请计算点C关于x轴的对称点D的坐标。

答案:点C关于x轴的对称点D的坐标为(-2,-3)。

六、绘图题11. 根据题目描述,绘制一个轴对称图形,并标出其对称轴。

答案:[此处应绘制图形,例如一个等腰三角形,其对称轴是连接顶点和底边中点的高线。

]12. 在给定的坐标系中,绘制一个点关于x轴的对称点。

八年级轴对称经典题型

八年级轴对称经典题型

八年级轴对称经典题型一、选择题(每题3分,共15分)1. 下列图形中,是轴对称图形的是()A. 平行四边形。

B. 三角形。

C. 圆。

D. 梯形。

解析:- 圆沿着任意一条直径所在的直线折叠,直线两旁的部分都能完全重合,所以圆是轴对称图形。

- 平行四边形无论沿哪条直线折叠,直线两旁的部分都不能完全重合,不是轴对称图形。

- 三角形不一定是轴对称图形,只有等腰三角形和等边三角形是轴对称图形。

- 梯形不一定是轴对称图形,只有等腰梯形是轴对称图形。

所以答案是C。

2. 点P(3, - 2)关于x轴对称的点的坐标是()A. (3,2)B. (-3, - 2)C. (-3,2)D. (2, - 3)- 关于x轴对称的点,横坐标相同,纵坐标互为相反数。

- 点P(3, - 2)关于x轴对称的点的坐标是(3,2)。

所以答案是A。

3. 等腰三角形的一个内角为50^∘,则这个等腰三角形的顶角为()A. 50^∘B. 80^∘C. 50^∘或80^∘D. 40^∘或65^∘解析:- 当50^∘的角为顶角时,答案就是50^∘。

- 当50^∘的角为底角时,因为等腰三角形两底角相等,根据三角形内角和为180^∘,则顶角为180^∘-50^∘×2 = 80^∘。

所以这个等腰三角形的顶角为50^∘或80^∘,答案是C。

4. 如图,在ABC中,AB = AC,∠ A = 30^∘,DE垂直平分AC,则∠ BCD的度数为()A. 80^∘B. 75^∘C. 65^∘D. 45^∘- 因为AB = AC,∠ A=30^∘,所以∠ B=∠ ACB=(1)/(2)(180^∘-∠A)=(1)/(2)(180^∘ - 30^∘) = 75^∘。

- 因为DE垂直平分AC,所以AD = CD,∠ A=∠ ACD = 30^∘。

- 则∠ BCD=∠ ACB-∠ ACD=75^∘-30^∘=45^∘。

所以答案是D。

5. 下列说法正确的是()A. 两个全等的三角形一定关于某条直线对称。

轴对称练习题含答案

轴对称练习题含答案

轴对称练习题13.1.1 轴对称下列图形中,是轴对称图形的是( )3 .如图,△ ABC和4A'B。

关于直线I对称,下列结论中正确的有()①^ABC/△ A'B'C;②/BAC =Z B'A'C;③直线l垂直平分C C;④直线BC和B'C 的交点不一定在直线l上.A. 4个B. 3个C 2个D. 1个第3题图第4题图4 .如图,△ ABC与^A'B。

关于直线l对称,且N A = 105°, Z C = 30°,则N B的度数为()A.25°B.45°C.30°D.20°5 .如图,A ABC关于直线MN对称的三角形的顶点分别为A', B’, C,其中Z A = 90°, A =8cm, A'B=6cm.(1)求AB, A'C的长;(2)求4 A‘B。

的面积.2下列轴对称图形中,对称轴条数是四条的图形是()13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在八^。

中,AB的垂直平分线交AC于点P, PA = 5,则线段PB的长度为()A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD, BC=BD,则有()A. AB与CD互相垂直平分B. CD垂直平分ABC AB垂直平分CD D. CD平分/ACB3.如图,在A ABC中,D为BC上一点,且BC=BD+AD,则点D在线段的垂直平分线上.第3题图第4题图4.如图,在Rt A ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且N CBD =Z ABD,则N A =°.5.如图,在^ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm, △ ADC的周长为11cm,求BC的长.第2课时线段垂直平分线的有关作图1.如图,已知线段/'分别以点A,点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点。

初二数学轴对称图形练习题

初二数学轴对称图形练习题

初二数学轴对称图形练习题数学练习题1. 试题一一张方格纸上有一个图形,通过折叠图形,使得折叠之后的图形沿折叠线对称。

请你画出折叠之后的图形。

如图所示:(图略)2. 试题二对称图形(1)找出下列图形的轴对称线,并将其画出。

(a)长方形(b)正方形(c)圆形(d)等腰三角形(e)矩形(2)如果我们知道一个图形的轴对称线,能否唯一确定这个图形?请说明理由。

3. 试题三轴对称性质(1)如果一个图形经过某一条直线的折叠后可以重合在原来的位置,请问这条直线是否为轴对称线?为什么?(2)如果一个图形的某一部分和整个图形关于某个点对称,请问这个点是否为轴对称线?为什么?(3)如果一个图形经过某一条直线的折叠后,不与原来的图形重合,请问这条直线是否为轴对称线?为什么?4. 试题四图形的轴对称性质与图形的特点以下是几个常见的图形,请你判断它们是否具有轴对称性质,并说明理由。

(1)矩形(2)长方形(3)正方形(4)等腰三角形(5)直角三角形(6)直线(7)正多边形(8)菱形(9)椭圆5. 试题五通过题目给出的信息,判断是否有轴对称线。

如果有,请将轴对称线画出来。

(1)一个图形的两个边相等并平行。

(2)一个图形的两个角相等,并且它的两个对边平行。

(3)一个图形的两个对边平行,并且它的两个对角线相等。

6. 试题六解决问题请你找出一个轴对称图形,并通过折叠纸张的方式验证它的轴对称性质。

注意:为保护环境,请使用废弃的纸张进行练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、轴对称(一)基本试题1、(2008浙江台州)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.的三个顶点都在格点上.(1)画出绕点逆时针旋转后得到的三角形;(2)求在上述旋转过程中所扫过的面积.解:(1)画图正确(如图).(2)所扫过的面积是:.2、(2008年浙江省嘉兴市)如图20,正方形网格中,为格点三角形(顶点都是格点),将绕点按逆时针方向旋转得到.(1)在正方形网格中,作出;(2)设网格小正方形的边长为1,求旋转过程中动点所经过的路径长.解:(1)如图(2)旋转过程中动点所经过的路径为一段圆弧.,,.又,动点所经过的路径长为52.3.如图11,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P 的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系(直接写出结果).解:(1)如图11,E(-3,-1),A(-3,2),C(-2,0);(2)如图11,A2(3,4),C2(4,2);(3)△A2B2C2与△A1B1C1关于原点O成中心对称.4、(2008年广东茂名市)如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案绕原点O旋转180°后得到的图案;(2)在同一方格纸中,并在轴的右侧,将原小金鱼图案以原点O为位似中心放大,使它们的位似比为1:2,画出放大后小金鱼的图案.5、(2008北京)已知等边三角形纸片的边长为,为边上的点,过点作交于点.于点,过点作于点,把三角形纸片分别沿按图1所示方式折叠,点分别落在点,,处.若点,,在矩形内或其边上,且互不重合,此时我们称(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形的面积;(2)实验探究:设的长为,若重叠三角形存在.试用含的代数式表示重叠三角形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).解:(1)重叠三角形的面积为;(2)用含的代数式表示重叠三角形的面积为;的取值范围为≤-83m<46、(2008 四川内江)如图,是由绕点顺时针旋转而得,且点在同一条直线上,在中,若,,,则斜边旋转到所扫过的扇形面积为163π.7、(2008 湖北荆门)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为________.8、(2008四川达州市).如图所示,边长为2的等边三角形木块,沿水平线滚动,则点π(结果保留准确值).从开始至结束所走过的路线长为:839、(2008 湖北天门)如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为( C ).A、(2,)B、(,)C、(2,)D、(,)10、(2008年南宁市)如图2,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为( B ).(A )60° (B )67.5° (C )72° (D )75°11、(2008湖北荆州)如图5,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,O 为位似中心, OD=OD ′,则A ′B ′:AB 为( D ) A.2:3 B.3:2 C.1:2 D.2:112、(2008 青海)如图18,是由经过位似变换得到的,点是位似中心,分别是的中点,则与的面积比是( C )A . B . C . D .13、下列说法正确的是( A ).A .轴对称涉及两个图形,轴对称图形涉及一个图形 D .有两个内角相等的三角形不是轴对称图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形 14、下列图形中对称轴最多的是( C ) .A .等腰三角形 B .正方形 C .圆D .线段15、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ). A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 15 . 17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 6 2cm .F EDCBAP 2P 1N MO PBAα35°115°18、如图所示,两个三角形关于某条直线对称,则α= 300 .19、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.20、如图,在正方形网格上有一个△ABC .若网格上的最小正方形的边长为1,求△ABC 的面积.(6-2.5)21、如图所示,在道路OA 、OB 的交叉区域内有M 、N 两所学校,现在要在此区域内建一图书馆P ,使它到两条道路距离相等,并且到两所学校距离也相等,求P 点位置. 解: ①作∠AOB 的平分线OC ;②连接MN ,作线段MN 的垂直平分线交OC 于P ,P 点就是图书馆的位置.22、如图(1)请写出△ABC 中各顶点的坐标.(2)在同一坐标系中画出直线m :x=•-1,并作出△ABC 关于直线m 对称的△A ′B ′C ′.(3)若P (a ,b )是△ABC 中AC 边上一点,•请表示其在△A ′B ′C ′中对应点的坐标. 解析:(1)△ABC 中各顶点的坐标分别是A (1,4)、B (-1,1)、C (2,-1) (2)过点(-1,0)作y 轴的平行线m ,即直线x=-1. (3)分别作点A 、B 、C 关于直线m 对称的点A ′(-3,4)、B ′(-1,1)、C ′(-4,-1),并对顺次连接A ′、B ′、C ′三点,则△A ′B ′C ′即为所求.(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P 的对应点的坐标为(-2-a ,b )。

23、如上图,一束光线从y 轴上的点A (0,2)出发,经过x 轴上点C 反射后经过点B (6,6),则光线从点A 到点B 所经过的路程是( ) A. 10 B. 8 C. 6 D. 4解:作A 关于x 轴的对称点,则,连结,由光的反射定律知:入射角=反射角,因此,与x 轴的交点即为反射点。

因为AC=,所以。

过点作轴,过B 点作轴,两直线交于点D ,可得:。

24、如图,把∆ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. ∠=∠+∠A 12B. 212∠=∠+∠AC. 3212∠=∠+∠AD.3212∠=∠+∠A ()分析:折叠前后的部分关于折痕所在直线对称,分别延长BE 、CD 相交于点A ’,则点A ’就是点A 的对称点.连结AA ’,根据轴对称的性质可知,直线DE 是线段AA ’的垂直平分线,所以EA=EA ’, DA=DA ’.∴∠EAA ’=∠EA ’A, ∠DAA ’=∠DA ’A.又∵∠1=∠EAA ’+∠EA ’A=2∠EAA ’, ∠2=∠DAA ’+∠DA ’A=2∠DAA ’,∴∠1+∠2=2∠EAA ’+2∠DAA ’=2(∠APBEAA’+∠DAA’)=2∠DAE.因此,应该选B.25、如图,在等边A B CA O=,点P是A B上一动△中,9A C=,点O在A C上,且3点,连结O P,将线段O P绕点O逆时针旋转60 得到线段O D.要使点D恰好落在B C上,则A P的长是( C )A.4 B.5 C.6 D.8(二)画图试题26、已知:如图,∠AB C及两点及两点M、N。

求作:点P,使得P M=P N,且点到 ∠AB C两边所在的直线距离相等.答案一: ∠AB C 内角平分线与线段MN的垂直平分线交点答案二:∠ABC外角平分线与线段MN的垂直平分线交点27、已知点 A在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B ,当点P 在直线l 上运动时,点 P 与 A、 B 两点的距离总相等,如果存在,请作出定点B ;若不存在,请说明理由.解:点B与点A重合,或者点B是点A关于直线l 对称点.28、如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短。

这个中转站M应建在公路旁的哪个位置比较合理?29、(”五羊杯”邀请赛试题)如图,∠AOB=450,角内有点P,在角的两边有点Q、R(均不同于均不同于O点),求作 Q、R,使得,使得三角形PQR的周长最小。

30、已知如图,点M在锐角∠AOB的内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离和最小。

31、 已知:A 、B 两点在直线l 的同侧,在l 上求作一点M ,使得|AM -BM|最小32、(2004 郸县改编)某供电部门准备在输电主干线l 上连接一个分支线路同时向新落成的A 、B 两个居民小区送电,分支点为M ,已知居民小区A 、B 到主干线l 的距离分别为AA 1=2千米,BB 1=2千米,且A 1B 1=4千米. ⑴ 居民小区 A 、B 在主干线l 的两旁如图⑴所示,那么分支点M 在什么地方时总线路最短?最短线路的长度是多少千米?⑵ 如果居民小区、在主干线l 的同旁,如图⑵所示,那么分支点M 在什么地方时总线路最短?此时分支点M 与A 距离多少千米?解:⑴ 连 AB ,AB 与l 交点就是所求分支点M ,分支点开在此处总线路最短,最短线段的长度为⑵ B 点关于直线l 对称点B 2,连AB 2交直线l 于点M ,此处即为分支点,由图可知,A 1M 长度为2千米. 33、(2009临沂)如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45 方向上。

相关文档
最新文档