热力学第一定律、第二定律
热力学第一定律和第二定律的应用
热力学第一定律和第二定律的应用热力学是一门研究物质热现象的学科。
它关注热能的产生和传递,以及在这个过程中的热量和温度变化。
在热力学中,第一定律和第二定律是最基本的定律之一,它们是热力学的核心概念。
热力学第一定律被称为能量守恒定律。
它表明,在封闭系统中,能量总是保持不变,只能从一种形式转化为另一种形式。
这个定律提示我们,我们重视能源的消耗和使用,因为不应该浪费能源。
无论是机械能还是热能,都应该正确使用。
一个显著的案例是汽车运转。
当汽车的引擎被点火时,燃料就被燃烧,化学能被转化为机械能。
显然,能源的利用率是非常重要的,因为汽车使用能源的效率越高,汽车性能就越好,所需的燃油也就越少。
这反映在现代汽车的引擎效率上,随着技术的进步,现代引擎通常比早期引擎更高效。
此外,热力学第二定律也是一个重要的定律。
它被称为热力学不可逆性定理。
它表明,在封闭系统中,随着时间的变化,热量总是从高温度向低温度传递,从而稳定达到热平衡。
根据该定律,由于热传递只能从热到冷,因此存在热流方向的限制。
这个定律提示我们,热能是非常宝贵的,必须要使用得当。
在实践中,我们可以利用热力学的知识来提高能源的使用效率。
例如,压缩空气,毫无疑问是一个至关重要的能源效率问题。
空气压缩机的效率对于许多工业进程来说是至关重要的,但许多人不知道如何使这种过程尽可能有效。
这里,热力学可以发挥作用。
通过使用合适的绕组材料或有效的制冷剂,既可以减小压缩的过程中产生的热量损失,从而提高效率。
另外,在燃烧过程中,我们可以跟踪能量的流动,以便找出如何将未使用的热量利用起来。
热力学还可以帮助解释一些自然现象,例如化学反应和地球表面温度。
通过研究这些现象和变化,我们可以得出关于这些过程的基本知识和生产实践成果。
总之,热力学第一定律和第二定律是非常基础的定律,但在现代科学技术和工程过程中扮演着至关重要的角色。
通过合理利用能源和热量,我们可以提高效率,减少浪费,并推动进一步的科学和技术进步。
大学物理热力学第一定律
绝热线的斜率大于 等温线的斜率
pdV Vdp 0
dp dV
T
pA VA
24
Note:
其他过程方程:
e.g. 等体过程: p C
T 等压过程: V C
T
等温过程: pV C
25
2. 绝热过程中,理想气体对外做功:
V2
A pdV
V1
p1V1
V2 V1
dV V
p2V2
V2 V1
dV V
p
1
2
p=const.
O 因 dQ
V 摩尔定压热容
M
Mmol C pdT
又 dE
M Mmol CV dT
且 dA M RdT
M mol
17
注:pV M RT p=const .
M mol pdV M RdT
M mol
由 dQ=dE+dA 代入、、
得 C p = CV + R ——迈耶(Mayer)公式
V1
V
RT ln V2 2.72103 J
V1
(2) 根据绝热过程方程,有
OV
T2 T1(V1 V2 ) 1 192 K
pV C2
pV C1
3V V
31
将热力学第一定律应用于绝热过程方程中,有
A E E CV (T2 T1) 2.2 103 J
所以 A 2.2 103 J
32
重力型
蓄水槽
发电机
电池
泵
蓄水槽
浮力型 毛细型 子母型 ……
即:E 0, Q 0, A 0
违反热力学第一定律,所以不可能成功。
14
§2.2 等体过程 isochoric process
浅谈热力学第一和第二定律
论热力学第一和第二定律内容提要:热力学第一和第二定律是热力学的最基本最重要的理论基础,其中热力学第一定律从数量上描述了热能与机械能相互转换时数量的关系。
热力学第二定律从质量上说明热能与机械能之间的差别,指出能量转换是时条件和方向性。
在工程上它们都有很强的指导意义。
关键字:热力学第一定律热力学第二定律统计物理学哲学热现象是人类最早接触的自然现象之一。
从钻木取火开始,人类对热的利用和认识经历了漫长的岁月,直到近三百年,人类对热的认识才逐步形成一门科学。
在十八世纪初期,由于煤矿开采工业对动力抽水机的需求,最初在英国出现了带动往复水泵的原始蒸汽机。
后来随着工业的发展,随着对动力得更高要求,人们不断改进蒸汽机,从而导致蒸汽机效率的不断提高。
特别是1763~1784年间英国人瓦特对当时的原始蒸汽机作出的重大改进,这次改进直接推动了工业革命,是人类的生产力水平得到很大提高。
随着蒸汽机的广泛应用,如何进一步提高蒸汽机效率的问题变的日益重要。
这样就促使人们人们对提高蒸汽机热效率、热功转换的规律等问题的深入研究,从而推动了热力学的发展,其中热力学第一和第二定律便在这种发展中产生。
热力学第一定律:热力学的基本定律之一。
是能的转化与守恒定律在热力学中的表现。
它指出热是物质运动的一种形式,并表明,一个体系内能增加的量值△E(=E末-E初)等于这一体系所吸收的热量Q与外界对它所做的功之和,可表示为△E=W+Q 。
对热力学第一定律应从广义上理解,应把系统内能的变化看作是系统所含的一切能量(如化学的、热的、电磁的、原子核的、场的能量等)的变化,而所作的功是各种形式的功,如此理解后,热力学第一定律就成了能量转换和守恒定律。
在1885年,恩格斯把这个原理改述为“能量转化与守恒定律”,从而准确而深刻地反映了这一定律的本质内容。
同时热力学第一定律也可表述为:第一类永动机是不可能制造的。
在19世纪早期,不少人沉迷于一种神秘机械, 这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。
热力学第二定律自由能(3)
从式(2.45)可得出下列偏微分公式
等容
U ( S )V
T
等熵
U
( V
)S
p
同理,可分别得到:
T
( U S
)V
H ( S ) p
V
(
H p
)S
(
G p
)T
p
( U V
)S
( F V
)T
S
(
F T
)V
(
G T
)
p
20
设某一状态函数 Z f (x, y)
一、热力学第一定律、第二定律的联合表达式 第 九
节 热一律 dU Q W
吉 布 斯
热二律
dS Q
T环
或 T环dS Q
能
、 亥
联合两定律 T环dS dU W
(2.34)
姆
霍 此式可用于封闭体系的任意过程,式中不等号
兹 能
表示过程不可逆,等号表示过程可逆。
1
二、亥姆霍兹能
T2
1 )
T1
(2.60)
若进行不定积分
G
T
T2 T1
H T2
dT
I
假设ΔH不随 温度而变
如果ΔH随温度而变,则由基尔霍夫定律求ΔH:
H H0 CpdT
再代入(2.59)式进行积分
G
H0
aT
ln
T
b 2
T
2
c 6
T
3
......
第二章 热力学第一定律
(p始 =p末,为等压过程)
3) 恒容过程: 过程中系统的体积始终保持不变(dV =0)
4) 绝热过程: 系统与环境间无热交换的过程,过程热Q=0
5) 循环过程: 经历一系列变化后又回到始态的过程。 循环过程始末所有状态函数变化量∆X均为零 。
习题2.3:在25oC及恒定压力下,电解1molH2O(l), 求过程的体积功。
分析:利用体积功的计算式 恒压过程 (pamb = p): W=-p(V2-V1)
解:
H
2O(l )
H
2
(
g
)
1 2
O2
(g)
1mol
1mol 0.5mol
W p(V2 V1) pV2 ( ng )RT
(1.5 8.314 298.15)J 3.718kJ
∆12 X = X2 – X1
X1
始态
1
X2
2
末态
3
∆X
➢3. 对于循环过程,由于始末态相同,状态函数变化值为0。 ➢4. 定量,组成不变的均相流体系统,任一状态函数是另外 两个状态函数的函数,如V = f (T, p)。即状态函数之间互为函 数关系。
A
异途同归,值变相等;周而复始,其值不变
下列叙述中不是状态函数特征的是( D ) A. 系统状态确定后,状态函数的值也确定 B. 系统变化时,状态函数的改变值只由系统 的始末态决定 C. 经循环过程,状态函数的值不变 D. 状态函数均有加和性
(2)经典热力学只考虑平衡问题:只考虑系统由始态到末 态的净结果,并依此解决诸如过程能量衡算、过程的方向、 限度的判断等热力学问题,至于由始态到末态的过程是如 何发生与进行的、沿什么途径、变化的快慢等等一些问题, 经典热力学往往不予考虑。
第二章 热力学第一定律
热力学是自然科学中建立最早的学科之一,是 研究不同形式能量转化的科学。
热力学第一、第二定律于19世纪中叶被提出;
热力学定律是经验定律,不能用数学证明; 热力学理论是通过逻辑推理+数学运算得出的。 第一定律:能量守恒,解决过程的能量衡算问题 (功、热、热力学能的计算) 第二定律:过程进行的方向和限度的判据 第三定律:解决物质熵的计算
U =Q + W
U 系统热力学能(内能)的增量;
Q 系统与环境交换的热,得热为+,失热为- W 系统与环境交换的功,得功为+,失功为-
即:封闭系统中内能的增加,等于它所吸收的热 加上它所得到的功 若系统发生微小变化,有: dU = Q +W 热力学第一定律的其它说法: 要制造一种既产生功又不需供给相当能量 的机器(第一类永动机)是不可能的。
CV ,m C p ,m
CV,m和Cp,m 的关系
C p ,m CV ,m H m U m U m pVm U m T T T p T V V p Vm U m p T T p V
在任何隔离系统中,所储存的总能量不变。
2. 热力学能U的意义
U是系统内部所储存的总能量 系统内部分子的动能 包括 分子相互间作用的位能 分子内部原子、电子、及核的能量 U 具有加和性,所以是广度量。(Um是强度量) U 是状态函数 U= f ( T, V ) (n一定)
(具有全微分性质)
U U dU d V dT V T T V
V2
V2
V
V2 Wr nRT ln V 1
p1 nRT ln p 2
热力学定律
能量守恒定律在任何过程中能量不会自生自灭,只能从一种形式转化为另一种形式,在转化过程中能量的总值不变,这就是能量守恒定律,又称为能量守恒与转化定律。
热力学第一定律将能量守恒定律应用于热力学中即称为热力学第一定律。
在化学热力学中,研究的是宏观静止系统,不考虑系统整体运动的动能和系统在外力场(如电磁场、离心力场等)中的位能,只着眼于系统的内能(又称热力学能)。
内能是指系统内分子的平动能、转动能、振动能,分子间势能,原子间键能,电子运动能,核内基本粒子间核能等能量的总和。
设想系统由始态(内能为U1)变为终态(内能为U2),若在过程中,系统从环境吸热Q,对环境做功W,则封闭系统内能的变化是ΔU=U2-U1=Q-W 这就是热力学第一定律的数学表达式。
它表示封闭系统中系统内能的增量等于系统所吸的热减去系统对环境所做的功。
由于内能是系统内部能量的总和,所以是系统自身的性质,只决定于其状态,是系统状态的函数。
状态函数的三个特点系统处于一定的状态,其内能应有一定的数值,其变化量只决定于系统的始态和终态,而与变化的途径无关。
即它具有状态函数的三个特点:①状态一定,其值一定;②殊途同归,值变相等;③周而复始,值变为零。
由于物质结构的复杂性和内部微观粒子相互作用的多样性,系统物质内能的绝对值尚无法确定,但内能的变化量可以通过系统与环境交换的热和功来确定。
热力学正是通过状态函数的变化量来解决实际问题的。
热系统与环境之间由于存在温度差而交换的能量称为热。
系统吸热,Q为正值;系统放热,Q为负值。
Q的SI单位为J。
功系统与环境间除热以外的其他形式传递的能量都叫做功。
以符号W 表示,SI单位为J。
系统对环境作功时,W取正值;环境对系统作功时,W取负值。
热力学中将功分为体积功和非体积功两类。
由气体体积的膨胀或压缩所做的功称为体积功(或膨胀功)。
体积功对于化学过程有特殊意义,因为许多化学反应常在敞口容器中进行。
如果外压p不变,这时的体积功为pΔV。
热力学第一定律
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
热力学第一定律和第二定律
热力学第一定律和热力学第二定律通过我们对物理及热力学的学习发现了这样的规律:凡是牵涉到热现象的一切过程都有一定的方向性和不可逆性,例如热量总是从高温物体自发地传向低温物体,而从未看到热量自发地从低温物体传向高温物体,例如当我们拥有一杯热水可以通过等待热水向周围空气散热得到一杯凉水,可是当我们需要这杯凉水重新变成热水时,单纯等待散失到周围空气的热量重新回来却不可能。
又如机械能可以通过摩擦无条件地完全地转化为热量,但是热能无法在单一热源下自发地转换为机械能。
这种自然规律虽然有时候不能如我们所愿,但它对我们意义重大。
可以说是人类在地球上赖以生存的基础。
我们却难以设想传热方向未知状态下的混乱。
我们不知道传热的方向,从而会不知道一杯热水放在环境中会变凉还是会继续升温,何时才能变凉,我们把凉水放在炉子上加热却不知道热量是从凉水传向炉子,还是从炉子传向凉水。
我们会得到热水还是更凉的凉水。
从这个意义上说正如交通红绿灯是交通畅通无阻的保证传热方向规律是自然界热领域中的红绿灯。
热不可能自发地不付代价地从低温物体传至高温物体,这就是克劳修斯说的热力学第二定律不可能制造出从单一热源吸热使之全部转化成为功而不留下其他任何变化的热力发动机这就是开尔文说的热力学第二定律总结热力学第二定律的两种说法的自然过程总是使系统趋于平衡能量从高位趋于低位,存在着不平衡的自然界,无时无刻不发生着这种变化——机械运动产生热量高温物体将热量传向低温物体。
高温物体将热量传向低温物体的过程中又可能产生机械运动。
生命过程、化学过程、核反应过程都伴随着热过程的发生,自然界的运动变化中热现象担任着重要的角色。
生活常识告诉我们冬天冷玻璃杯遇开水会破裂,这些都是物质表现出来的各种热湿现象,由于地球不停地运动和变化,经过漫长的地质年代逐渐在地壳内部积累了巨大的能量。
形成了巨大的应力作用,当大地构造应力或热应力使地壳某些脆弱的地带承受不了,时发生错位或断裂以波的形式传到地面就形成了地震研究火山的学者认为;热是各种地质作用的原始驱动力,火山活动是地球内部热的不均匀性的地表,反映海底的地震和火山喷发可能引起海水中形成巨大的海浪并向外传播。
大学物理第三章热力学第一定律第四章热力学第二定律
B C AD
氮气 氦气
35
B C AD
氮气 氦气
解: 取(A+B)两部分的气体为研究系统, 在外界压缩A部分气体、作功为A的过程 中,系统与外界交换的热量 Q 0
Q E ( A) 0
36
B
氮气
C
AD
氦气
系统内能的变化为
E E A E B
5 E B RTB 2
内能:态函数,系统每个状态都对应着一定内能的数值。 功、热量:只有在状态变化过程中才有意义,状态不 变,无功、热可言。
9
五、热力学第一定律
1. 数学表式 ★ 积分形式 ★ 微分形式
Q E A
dQ dE dA
10
2. 热力学第一定律的物理意义 (1)外界对系统所传递的热量 Q , 一部分用于 系统对外作功,一部分使系统内能增加。 (2)热一律是包括热现象在内的能量转换和守恒 定律。
m i E RT M2
m i i m E RT R T末 T初) ( M2 2M
i dE RdT 2
8
注意 :
10 作功和传热对改变系统的内能效果是一样的。 (要提高一杯水的温度,可加热,也可搅拌)
20 国际单位制中,功、热、内能单位都是焦耳(J)。 (1卡 = 4.18 焦耳) 30 功和热量都是系统内能变化的量度,但功和热本身不 是内能。
绝热线
斜 率
PV C1
dP K 绝热 dV
P V
26
K 绝热 同一点 P0,V0,T0 斜率之比 ( ) K 等温
P0 K绝热 V0 P0 K等温 V0
P
a
等温
结论:绝热线比等温线陡峭
热力学四大定律
热力学四大定律:第零定律——若A与B热平衡,B与C热平衡时,A与C也同时热平衡第一定律——能量守恒定律(包含了热能)第二定律——机械能可全部转换成热能,但是热能却不能以有限次的试验操作全部转换成功(热能不能完全转化为功)第三定律——绝对零度不可达成性热力学定律的发现及理论化学反应不是一个孤立的变化过程,温度、压力、质量及催化剂都直接影响反应的方向和速度。
1901年,范霍夫因发现化学动力学定律和渗透压,提出了化学反应热力学动态平衡原理,获第一个化学奖。
1906年能斯特提出了热力学第三定律,认为通过任何有限个步骤都不可能达到绝对零度。
这个理论在生产实践中得到广泛应用,因此获1920年化学奖。
1931年翁萨格发表论文“不可逆过程的倒数关系”,阐明了关于不可逆反应过程中电压与热量之间的关系。
对热力学理论作出了突破性贡献。
这一重要发现放置了20年,后又重新被认识。
1968年获化学奖。
1950年代,普利戈金提出了著名的耗散结构理论。
1977年,他因此获化学奖。
这一理论是当代热力学理论发展上具有重要意义的大事。
它的影响涉及化学、物理、生物学等广泛领域,为我们理解生命过程等复杂现象提供了新的启示。
热力学第零定律如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
这一结论称做“热力学第零定律”。
热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。
定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。
它为建立温度概念提供了实验基础。
这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
而温度相等是热平衡之必要的条件。
热力学中以热平衡概念为基础对温度作出定义的定律。
通常表述为:与第三个系统处于热平衡状态的两个系统之间,必定处于热平衡状态。
01章_热力学第一定律
U U U (T , p ) ; U ( T , V )
; U
U ( p ,V )
如果是 U U (T , p ) 全微分式: d U
0
六、热和功
1、热(heat) 系统与环境之间因温差而传递的能量称热, 从微观上看,热是体系分子无序热运动的能量交 换。用符号Q 表示,其微小量用 Q 表示。 Q的取号:系统吸热,Q>0 系统放热,Q<0
计算Q一定要与系统与环境之间发生热交换 的过程联系在一起,系统内部的能量交换不可能 是热。 热分类:显热、潜热(恒温恒压的相变过程)、 化学热。
3、相平衡(phase equilibrium) 多相共存时,各相的组成和数量不随时间而改变
4、化学平衡(chemical equilibrium ) 反应系统中各物的数量不再随时间而改变
三、状态函数 系统的一些性质,其数值仅取决于系统所处
的状态,而与பைடு நூலகம்统的历史无关;
它的变化值仅取决于系统的始态和终态,而
热和功的取号与热力学能变化的关系 系统吸热
Q>0 环境 U >0 系统
系统放热
Q<0 U <0 W<0 对环境作功
U = Q + W
W>0 对系统作功
例1:体系由A态变化到B态,沿途径Ⅰ放热100J, 对体系做功50J,问①由A态沿途经Ⅱ到B态,体系 做功80J,则Q为多少?②如果体系再由B态沿途经 Ⅲ回到A态,得功为50J,体系是吸热还是放热, Q为多少? Ⅱ Ⅰ A Ⅲ 系统变化框图
第二章 热力学第一定律-1
系
δQ 环境
统
δW 环境
所 以:
dU体系热力学能量的增量 Q W
注 意:
Ⅰ. d 表示全微分, 表示非全微分。
Ⅱ. 凡是使体系(热力学)能量增加的功和热都取正值,反之取负值。
三、焦耳(Joule)实验
搅 拌 器 活塞
真空
实验前——左边容器空气,
右边容器真空;容器置于一
系统分类——根据系统与环境之间是否有物质和能量交换:
(1)封闭体系:无物质交换,有能量交换。 (2)敞开体系:既有物质交换,又有能量交换。 (3)隔离体系:既无物质交换,也无能量交换。
注意:系统与环境的区分具有相对性;系统的选择具有任意 性。
3. 系统的性质——广度性质与强度性质
(1) 广度性质(容量性质)——如果在没有任何其他变化的情况下,
二、热力学的基本概念和术语
• 1. 引言
高楼大厦是由沙石等基础元件构成的;同样的道理,任何一 个理论体系都是建立在一定的基础元件上的。例如:英语由26个 字母构筑而成;日语由50个片假名和平假名构成而成。热力学体 系也一样由它的基本概念和术语构筑而成。——所以先来讨论热 力学的基本概念和术语。
2. 系统与环境
C. 恒容过程—— V体系=Cons tan t
D. 绝热过程——体系与外界环境无热交换。
E. 循环过程——系统经历一系列具体途径后又回到原来的状态; 其特点是:状态函数的变化值为零,但体系与环境所交换的功 和热不一定为零。
★ 第二种分类方法(分类标准——按组成分类):
A.简单状态变化 ;B.相变 ;C.化学反应
0 0
8. 热力学能(旧称:内能)
(1)定义——系统内部所有粒子除整体动能和整体势能外的全部能量之和,用符
热力学第一第二定律复习
热力学第二定律 一、重要概念 卡诺循环,热机效率,热力学第二定律,克劳修斯不等式 熵,规定熵,标准熵,标准摩尔反应熵,亥姆霍兹函数 ,吉布斯函数 二、主要公式与定义式 1. 可逆热机效率:η = -W / Q1 =(Q1+Q2)/ Q1 = 1 - T2 / T1 (T2 , T1 分别为低温,高温热源) 2.卡诺定理:任何循环的热温熵小于或等于0
(3) 对于凝聚相,状态函数通常近似认为只与温度有关, 而与压力或体积无关,即 d U≈d H= n Cp,m d T
(5) 相变过程 可逆相变:在温度T对应的饱和蒸气压下的相变,如水 在常压下的0℃ 结冰或冰溶解,100 ℃ 时的汽化或凝结等 过程。 由温度T1下的相变焓计算另一温度下的相变焓T T2 q q D Hm (T2)= D Hm (T1)+ D C dT
三、ΔS、ΔA、ΔG的计算 1.ΔS的计算(重点) 特例:恒温过程: ΔS = nRln(V2/V1) 恒容过程: ΔS =nCV,mln(T2/T1) 恒压过程: ΔS =nCp,mln(T2/T1) (2) 相变过程:可逆相变 ΔS =Δ H/T ; 非可逆相变 需设计路径计算 (3) 标准摩尔反应熵的计算 Δ rSmθ = ∑ vB Smθ (B,T) 2.Δ G的计算 (1) 平衡相变或反应达到平衡:Δ G=0 (2) 恒温过程:ΔG=Δ H-TΔS (3) 非恒温过程:Δ G=Δ H- ΔT S =Δ H -(T 2S2-T1S1) 注:题目若要计算Δ G,一般是恒温过程;若不是恒温, 题目必然会给出绝对熵。
(1) Δ S(隔离)>0,自发(不可逆); Δ S(隔离)=0,平衡(可逆)。 (2)恒T、恒p、W ’=0过程(最常用): dG<0,自发(不可逆);dG=0,平衡(可逆)。 (3) 恒T、恒V、W ’=0过程: dA<0,自发(不可逆); dA=0,平衡(可逆)。
2-热力学第一定律
3.1化学势的表示方式
开放体系的热力学方程
dU dH dF dG TdS pdV TdS Vdp
i
i
dn i
i i
i
dn i
i
SdT pdV SdT Vdp
i i
dn i
值得注意:对于开放体 系,TdS不再是体系所 吸收的热,还包括着由 于物质交换而带入或带 出体系的熵
k i k i
i dn i
k
k
k
i dn i
k k
k
SdT pdV SdT Vdp
i
i dn i i dn i
k k
k
k i
22
3.2、偏摩尔量
偏摩尔量的定义: 一个均相体系中,若体系的任一广度量L=L(T, p,n1,n2,……nr)是关于n1,n2,……nr的一次齐次函数, 根据齐次函数的Euler定理,则有,
热力学第一、二定律
2012年9月
1
-、热力学第一定律
就是能量转化和守恒定律: 自然界的一切物质都有能量,能量有各种不同的形 式,能够从一种形式转化为另一种形式,在转化中, 能量的总量不变。 内能定理:任何一个物体或体系在平衡态下都有一 个态函数叫内能,当这个体系从一种平衡态经过绝热 过程到达另一个平衡态后,它的内能的增加等于在 绝热过程中外界对外所做的功。
k
k
k
k
i
k i
k
19
由于各相的体积Vk,内能,熵,物质的量都是广度 量,在忽略各相间的界面效应时,整个多相体系的体 积,内能,熵,物质的量就等于各相的相应量之和。 U U V V n n S S
热力学第一第二定律
热力学第一、第二定律 §10-2
一、 功
当气体作无摩擦的准静态膨胀或压缩时,系 V2 统对外界做功为:
功和热
W pdV
V1
气体所作的功等于p-V图上过程曲线下的面 积,气体膨胀时作正功,系统对外界做功;气体 压缩时作负功,外界对系统做功,但其数值均等 于过程曲线下的面积。 P
dW pdV
2、比热容: 单位质量的热容量称为比热容。
C 1 Q 1 dQ c lim ( ) m T 0 m T m dT
比热容与系统的质量无关,是强度量。
比热容的单位:焦耳/千克开
二、等容过程
•特点:
p
p2
p1
( p2 ,V , T2 )
( p1 ,V , T1 )
理想气体的体积保持不变 V=const
理想气体的内能仅是T的函数,与V和p无关。
六、焦耳-汤姆逊效应
1852年焦耳和汤姆逊利用节流过程发现实际气 体内能不仅是温度的函数也是体积和压强的函数。 1、节流过程
用绝热材料包着的管子中间有一个多孔塞或 节流阀,多孔塞两边维持较高压强p1和较低压强p2, 于是气体从高压一边经多孔塞缓慢地流到低压一 边,并达到稳定状态,这个过程叫节流过程。
•热容比
Cp CV
等压热容量和等容热容量的关系 以温度T和体积V为独立变量,内能的全微分为: U U dU dT dV T V V T 由热力学第一定律的微分表达式 U U Q W dU dT dV T V V T 只考虑只有体积功情况 W pdV U U Q dT dV pdV T V V T
•焓 等压过程 Q dU pdV dU d pV d U pV 定义: 状态函数 H=U+pV 为焓 有
大学物理第二章 热力学第一定律要点
2) 恒压过程:变化过程中p(系) = p(环) = 常数,(dp=0)
(p(始) = p(终) = 常数,为等压过程, p = 0 )
3) 恒容过程:过程中系统的体积始终保持不变 4) 绝热过程:系统与环境间无热交换的过程
5) 循环过程:经历一系列变化后又回到始态的过程。 循 环过程前后状态函数变化量均为零 。 6) 可逆过程:系统经历某过程后,能够通过原过程的反 向变化而使系统和环境都回到原来的状态
U=f (T ,V ) U U dU dV dT V T T V
又 dT = 0, dU = 0, dV 0
U 0 V T
即: 恒温时,U不随V变化
U=f (T) 理想气体单纯 pVT 变化时,U 只是 T 的函数
(液体、固体近似成立)
§2.3 恒容热、恒压热与焓的导出 1. 恒容热(QV):
对于封闭系统,W =0 时的恒容过程: ∵ dV=0 ,∴W = 0,有:
QV ΔU U2 U1
及 δQV dU
2. 恒压热(Qp):
对于封闭系统,W = 0 时的恒压过程: W= – pambV= – p(V2 – V1) = – (p2V2 – p1V1)
(H的定义虽然由恒压过程导出,但可用于任何过程的计算)
H: 状态函数, 广度量, 单位 J 理想气体,单纯 pVT 变化,恒温时: ∵ U = 0 ∴ H = U + (pV) = 0 + (pV) = (nRT) = nRT = 0 H = f ( T ) 理想气体单纯 pVT 变化时,H 只是 T 的函数
摩尔热容
相变焓
第二章热力学第一定律
只要有功交换,均存在某种粒子 的定向运动,或者是某种有序运动。 途径函数,其微小变量用W表示
体积功计算方法
系统: 气缸内的气体 过程: 受热膨胀了dV, 气体抵抗pamb 作功W
结果 : 活塞位移dh 计算: 微功=力×位移
由功的传递 方向的规定:
W =F dh =pamb As dh = pamb d(Ash)
化学热力学与物理中的热力学不同,
本课程主要讨论与化学变化相关的热力学
(Chemical Thermodynamics)。
1.第一定律:能量守恒,解决过程的能量衡
算问题(功、热、热力学能等);
2.第二定律:过程进行的方向判据;
3.第三定律:解决物质熵的计算; 4.第零定律:热平衡原理T1=T2, T2=T3,
H2 0℃ 101.325 kPa
n(H2)=1mol 途径b
H2 0℃ 50.663 kPa
W(b)= -pamb(V2-V1)
= -pamb(nRT2/p2- nRT1/p1)
= -50.663kPa× (44.8-22.4)dm-3 = -1135J
虽:始态与末态分别相同 因:途径a 途径b 结果: W(a) W(b) 例2.2.1 表明:功W是途径函数 2. 热(heat) 定义: 由系统与环境间的温度差引起的 能量交换即为热。 符号:Q 单位:J(kJ)
3. 过程和途径
过程: 系统从某一状态变化到另一状态 的经历。 将实现某一过程的具体步骤称途径。 途径: 一个途径可以由一个或几个步骤 组成,中间可能经过多个实际的 或假想的中间态。
单纯 pVT 变化 由内部物质变 化类型分类
相变化
化学变化
恒温过程 ( Tsys= Tamb= const) 恒压过程 ( psys= pamb= const) 由过程进行特 定条件分类
热力学第一定律与第二定律
热力学第一定律与第二定律热力学是关于能量转化和能量守恒的科学,它研究了物质与能量之间的关系以及能量转化的规律。
在热力学中,有两个基础定律,即热力学第一定律和热力学第二定律。
本文将详细介绍这两个定律的定义、原理和应用。
一、热力学第一定律热力学第一定律又被称为能量守恒定律,它表明能量在系统中的变化量等于系统所做的功加上系统吸收的热量。
简言之,能量是守恒的。
具体来说,热力学第一定律可以用以下方程式表示:ΔU = Q - W其中,ΔU代表系统内能的变化,Q代表系统吸收的热量,W代表系统所做的功。
根据这个定律,我们可以得出以下结论:1. 系统吸收的热量等于系统内能的增加。
热量可以使系统内粒子的动能增加,也可以使分子之间的相互作用增强,从而使内能增加。
2. 系统所做的功等于系统内能的减少。
当一个物体从高温区移动到低温区时,它会做功,从而导致内能减少。
热力学第一定律的应用非常广泛。
例如,在工程领域中,我们可以利用这个定律来计算热机的效率。
在化学反应中,我们可以根据热力学第一定律来判断反应是否放热或吸热,并求出反应的焓变。
总之,热力学第一定律是热力学研究中的基础,对于理解和应用能量转化的过程至关重要。
二、热力学第二定律热力学第二定律是关于物质能量转化方向的定律。
它规定了能量在自然界中传递的方式和限制。
总结起来,热力学第二定律表明热量自发地从高温物体传递到低温物体,而不会自发地从低温物体传递到高温物体。
这个定律可以从以下两个方面解释:1. 热量不会自发地从低温物体传递到高温物体。
这是因为能量在自然界中总是从高能态流向低能态。
如果低温物体能够将热量传递给高温物体,就违背了能量的自发流动方向。
2. 熵增定律。
熵是用来描述系统无序程度的物理量,热力学第二定律指出,一个孤立系统的熵要么保持不变,要么增加。
换句话说,自发过程总是趋于增加系统的熵。
而熵的增加意味着能量的转化趋于不可逆。
根据热力学第二定律的约束,我们可以得出一些重要的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 4 g Ar (可视为理想气体,其摩尔质量M (Ar)=39.95 g·mol -1
)在300 K 时,压力为506.6 kPa ,
今在等温下反抗202.6 kPa 的恒定外压进行膨胀。
试分别求下列两种过程的Q ,W ,ΔU ,ΔH ,ΔS ,ΔA 和ΔG 。
(1)若变化为可逆过程;
(2)若变化为不可逆过程。
2. 已知H 2(g),Cl 2(g),HCl(g)在298 K 和标准压力下的标准生成焓和标准熵的数据如下表所
示:
试计算333 K 时反应:H 2(g)+ Cl 2(g)== HCl(g) 的Δr A m $。
假设Δr H m $与温度无关。
3. 证明: (∂U /∂V )p = C p (∂T /∂V )p -p
4. 一个绝热圆筒上有一个理想的(无摩擦无重量的)绝热活塞,其内有理想气体,内壁绕有
电炉丝。
当通电时气体就慢慢膨胀,因为这是个恒压过程,Q p =ΔH ,又因为是绝热体系,所以ΔH =0,这个结论是否正确,为什么?
5. 对一封闭体系,W f = 0 时,下列过程中体系的ΔU ,ΔS ,ΔG 何者必为零?
(1) 绝热密闭刚性容器中进行的化学反应过程 _________ ;
(2) 某物质的恒温恒压可逆相变过程 _________ ;
(3) 某物质经一循环恢复原状态 _________ 。