七年级(下)数学提高题

合集下载

湖北黄冈中学七年级数学下册第九章【不等式与不等式组】提高卷(含答案解析)

湖北黄冈中学七年级数学下册第九章【不等式与不等式组】提高卷(含答案解析)

一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( ) A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-42.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥4.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种5.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤- 6.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .117.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数 8.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 9.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x <10.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0a b> 11.已知a<b ,则下列四个不等式中,不正确的是( )A .a+2<b+2B .22ac bc <C .1122a b <D .-2a-1-2b-1>二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.13.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x m y m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 14.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =;③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号).15.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________. 16.绝对值小于π的非负整数有____________.17.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.18.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.19.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________ 20.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________.21.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题22.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.23.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:甲 乙 进价(元/件)14 35 售价(元/件) 20 43(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围.25.已知方程组2523x y mx y m-=+⎧⎨+=⎩的解满足条件0x>,0y<,求m的取值范围.一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 3.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( ) A .21a -≤<- B .21a -≤≤-C .21a -<<-D .21a -<≤- 4.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤27.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D . 8.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5 B .m≥5 C .m <5 D .m≤89.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .10.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( ) A .a <3 B .a≤3 C .a≥3 D .a >311.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.13.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 14.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__. 15.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________.16.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.17.己知不等式组1x x a ≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.18.已知关于x的不等式组0,10x ax+>⎧⎨->⎩的整数解共有3个,则a的取值范围是___________.19.定义一种法则“⊗”如下:()()a a ba bb a b>⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m-⊗=,则m的取值范围是_______.20.不等式2x+9>3(x+4)的最大整数解是_____.21.不等式组20210xx+>⎧⎨-≤⎩的所有整数解的和是_____________三、解答题22.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.23.某物流公司在疫情期间,要将300吨防疫物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆比B型车可多装5吨.6辆A型车与2辆B型车刚好能装完150吨物资.要求在每辆车不超载的条件下,把300吨防疫物资装运完.(1)求A型车、B型车各能装多少吨物资?(2)若确定调用5辆A型车,则至少还需调用B型车多少辆?24.大润发超市用6800元购进A、B两种计算器共120只,这两种计算器的进价、标价如下表.价格/类型A型B型进价(元/只)3070标价(元/只)50100(1)这两种计算器各购进多少只?(2)元旦活动期间,超市决定将A型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B型计算器最多打几折出售?25.某市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个,两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池个,修建两种沼气池共需费用y万元.(1)求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.已知实数a 、b ,下列命题结论正确的是( )A .若a b >,则 22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若33a b >,则22a b >3.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下4.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( )A .6B .7C .8D .95.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B . C . D . 7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤28.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .119.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 10.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是 A .m ≥2 B .m >2 C .m <2 D .m ≤211.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( )A .20人B .19人C .11人或13人D .19人或20人二、填空题12.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 14.不等式21302x --的非负整数解共有__个. 15.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____. 16.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 17.不等式12x -<的正整数解是_______________.18.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.19.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.20.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限21.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).三、解答题22.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 23.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.(1)这两种计算器各购进多少只?(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售?24.解不等式,并把不等式的解集在数轴上表示出来.(1)6327x x ->-;(2)21123x x -+-≤. 25.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围.。

强化训练华东师大版七年级数学下册第6章一元一次方程必考点解析练习题(精选含解析)

强化训练华东师大版七年级数学下册第6章一元一次方程必考点解析练习题(精选含解析)

七年级数学下册第6章一元一次方程必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D为线段AC的中点,12BC AB=,1BD=cm,则AB的长为()A.3cm B.4cm C.5cm D.6cm2、某商店在某一时间内以每件60元的价格出售两件商品,其中一件盈利20%,另一件亏损20%.则在这次买卖中,商家()A.亏了10元B.赚了5元C.亏了5元D.不盈不亏3、如图,小玲将一个正方形纸片剪去一个宽为2cm的长条后,再从剩下的长方形纸片上剪去一个宽为3cm的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为()cm.A .4B .6C .12D .184、已知下列方程:①1123y y -=+;②x +y ;③x =0; ④x 2+4x ;⑤﹣35x=;⑥x (1﹣2x )=3x ﹣1.其中是一元一次方程的是( )A .①⑤B .①③C .①③⑥D .⑤⑥5、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x 名快递,则可列方程为( )A .7681x x -=+B .7681x x +=-C .6178x x -+=D .6178x x +-= 6、已知a b =,则下列变形错误的是( ).A .22a b +=+B .0a b -=C .22a b -=-D .a b c c= 7、在解方程123123x x -+-=时,去分母正确的是( ) A .()()312231x x --+=B .()()312231x x --+=C .()()312236x x -++=D .()()312236x x --+=8、根据等式的性质,下列变形正确的是( )A .如果23x =,那么23x a a =B .如果x y =,那么55x y -=-C .如果x y =,那么22x y -=-D .如果162x =,那么3x = 9、如果6x =是关于x 的方程324x m -=的解,则m 的值是( )A .2-B .2C .7-D .710、如图,OM 平分AOB ∠,2MON BON ∠=∠,72AON BON ∠-∠=︒,则AOB ∠=( ).A .96°B .108°C .120°D .144°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是__人.2、若214n a b -与23m a b 是同类项,则m n +=___.3、若一列火车匀速行驶,经过一条长310米的隧道需要18秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯照在火车上的时间是8秒,则这列火车长 _____米.4、随着气温降低,吃羊肉的重庆人越来越多.于是王老板预定了一批羊排、羊腿、精品单肉.第一批预定羊排的数量(斤)是精品羊肉的2倍,羊腿的数量(斤)是羊排、精品羊肉的数量之和.由于品质优良宣传力度大,小区邻居的预订量暴增,王老板按照相同的价格加紧采购了第二批羊排、羊腿、精品羊肉,其中第二批羊腿的数量古第二批总数量的16,此时两批羊腿总数量达到了羊排、羊腿、精品羊肉三种总量的518,而羊排和精品羊肉的总数量之比为8:5.若羊排、羊腿、精品羊肉的成本价分别为50元、42元、38元,羊排的售价为每斤64元,销售中,王老板为回馈顾客,将两批羊排总量的18送邻居免费品尝,其余羊排、羊腿、精品羊肉全部实完,总利润率为16%,且羊腿的销售单价不高于羊排、精品羊肉销售单价之和的713.则精品羊肉的单价最低为______元. 5、在2、﹣2、0中,x =_______是方程2x 4+x 2=﹣18x 的解.三、解答题(5小题,每小题10分,共计50分)1、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且8a +与()216b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A 和C 相距8个单位长度.(3)此时在快车AB 上有一位爱动脑筋的六年级学生乘客P ,他发现行驶中有一段时间t 秒钟,他的位置P 到两列火车头A ,C 的距离和加上到两列火车尾B ,D 的距离和是一个不变的值(即PA PC PB PD +++为定值).你认为学生P 发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.2、对于任意有理数a 、b ,如果满足2323ab a b ++=+,那么称它们为“伴侣数对”,记为(),a b . (1)若(),2x 是“伴侣数对”,求x 的值;(2)若(),m n 是“伴侣数对”,求[]135(32)2(3)2n m m n ++-+的值. 3、如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知0bc <.(1)原点在第 部分;(2)若5AC =,3BC =,1b =-,求a 的值;(3)在(2)的条件下,数轴上一点D 表示的数为d ,若2BD OC =,直接写出d 的值.4、某百货商场经销甲、乙两种服装,甲种服装每件进价500元,乙种服装每件进价800元.(1)若该商场同时购进甲、乙两种服装共30件,总进价为21000元,求商场购进甲、乙两种服装各多少件?(2)若该商场对(1)中所购进的甲、乙两种服装进行销售,其中甲种服装每件售价800元,乙种服装每件盈利50%,则该商场销售完这批服装一共能盈利_______元;(3)该商场元旦当天对所有商品实行“满1000元减400元的优惠”(比如:某顾客购物3200元,满三个1000元,则可优惠1200元,只需付款2000元).到了晚上八点后,又推出“先打折”,再参与“满1000元减400元”的活动.张先生元旦购买甲、乙两种服装各一件,标价合计2000元.后来他发现按照晚上八点后的优惠方式付款,竟然比不打折直接参与“满1000元减400元”的活动多付200元钱.问该商场晚上八点后推出的活动是先打几折?5、如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OM 恰好平分BOC ∠.①t 的值是_________;②此时ON 是否平分AOC ∠?说明理由;(2)在(1)的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分MON ∠?请说明理由;(3)在(2)的基础上,经过多长时间,10BOC ∠=︒?请画图并说明理由.-参考答案-一、单选题1、B【解析】【分析】设,BC x =再表示32,3,,2AB x AC x CDx 再利用,1,DC DB BC DB 列方程解方程即可. 【详解】解:设,BC x = 而12BC AB =, 22,3,AB BC x AC AB BC x点D 为线段AC 的中点,3,2AD CD x 而,1,DC DB BC DB31,2x x 解得:2,x =2 4.AB x故答案为:B【点睛】本题考查的是线段的和差关系,线段的中点的含义,一元一次方程的应用,熟练的利用方程解决线段问题是解本题的关键.2、C【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=60,解得:x=50,所以盈利了60-50=10(元).设第二件衣服的进价为y元,依题意得:y(1-20%)=60,解得:y=75,所以亏损了75-60=15元,所以两件衣服一共亏损了15-10=5(元).故选:C.【点睛】本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.3、B【解析】【分析】设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.【详解】解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,依题意得:2x=3(x-2),解得x=6故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.4、B【解析】【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【详解】解::①1123y y-=+是一元一次方程;②x+y不是方程;③x=0 是一元一次方程④x2+4x不是方程;⑤﹣35x=不是一元一次方程;⑥x(1﹣2x)=3x﹣1,不是一元一次方程故①③是一元一次方程,故选B【点睛】本题考查了一元一次方程的概念,理解一元一次方程的概念是解题的关键.5、B【解析】【分析】设该分派站有x 个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x 的一元一次方程,求出答案.【详解】解:设该分派站有x 名快递员,则可列方程为:7x +6=8x -1.故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.6、D【解析】【分析】本题根据等式的性质依次判断即可.【详解】解:A 、根据等式两边加上相同的数,等式成立,22a b +=+正确,不符合题意;B 、移项得0a b -=,选项正确,不符合题意;C 、等式两边乘上相同的数,22a b -=-成立,不符合题意;D 、等式除以同一个不为零的数,等式才成立,a b c c=需要强调0c ≠,选项错误,符合题意; 故选:D .【点睛】本题考查了等式的基本性质,解题的关键是掌握等式两边同时加减相同的数,等式成立;等式两边乘上相同的数,等式成立;等式除以不为零的数,等式成立.7、D【解析】【分析】方程两边乘以6去分母得到结果,即可作出判断.【详解】解:方程的两边同时乘以6,得3(x -1)-2(2+3x )=6.故选:D【点睛】此题考查了解一元一次方程中的去分母,熟练掌握去分母的方法是解题的关键.8、C【解析】【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0≠,那么23x a a=,故该选项不符合题意; B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意; 故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键. 性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9、D【解析】【分析】将6x =代入方程324x m -=即可求得答案.【详解】解:将6x =代入方程324x m -=,得18-2m =4,解得m =7,故选:D .【点睛】此题考查了方程的解的定义,正确将方程的解代入方程计算是解题的关键.10、B【解析】【分析】设BON x ∠=,利用关系式2MON BON ∠=∠,72AON BON ∠-∠=︒,以及图中角的和差关系,得到3MOB x ∠=、722AOB x ∠=︒+,再利用OM 平分AOB ∠,列方程得到18x =︒,即可求出AOB ∠的值.【详解】解:设BON x ∠=,∵2MON BON ∠=∠,∴2MON x ∠=,∴23MOB MON BON x x x ∠=∠+∠=+=.∵72AON BON ∠-∠=︒,∴72AON x ∠=︒+,∴72722AOB AON BON x x x ∠=∠+∠=︒++=︒+.∵OM 平分AOB ∠, ∴12MOB AOB ∠=∠, ∴()137222x x =︒+,解得18x =︒. 72272218108AOB x ∠=︒+=︒+⨯︒=︒.故选:B .【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.二、填空题1、42【解析】【分析】设一班原有人数是x 人,则二班原有人数是()78x -人,根据从一班调3人到二班,那么两班人数正好相等,列方程求解.【详解】解答:解:设一班原有人数是x 人,则二班原有人数是()78x -人,依题意有:3783x x -=-+,解得42x =.故一班原有人数是42人.故答案为:42.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.2、5【解析】【分析】先根据同类项的定义可得22,13m n =-=,解方程可得,m n ,再代入计算即可得.【详解】解:由题意得:22,13m n =-=,解得1,4m n ==,则145m n +=+=,故答案为:5.【点睛】本题考查了同类项、一元一次方程的应用,熟记同类项的定义(如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)是解题关键.3、248【解析】【分析】设这列火车长x 米,然后根据题意列一元一次方程解答即可.【详解】解:设这列火车长x 米, 由题意可得:310188x x +=,解得x =248. 答:这列火车长248米.故答案为:248.【点睛】本题主要考查了一元一次方程的应用,设出合适的未知数、正确列出一元一次方程是解答本题的关键.4、33.5【解析】【分析】设第一批精肉的数量为x斤,则羊排数量为2x斤,羊腿数量为3x斤,设第二批总重量为y斤,则第二批羊腿重量为1y6斤,根据题意,得3x+1y6=518(6x+y),求得y=12x,从而求得第二批羊排重量为6x斤,精肉重量为4x斤,总成本为50(2x+6x)+42(3x+2x)+38(x+4x),设羊排价格为m元,精肉价格为n元,则总利润为14(2x+6x-x)+(m-42)(3x+2x)+(n-38)(x+4x),根据题意,得[50(2x+6x)+42(3x+2x)+38(x+4x)] ×16%=14(2x+6x-x)+(m-42)(3x+2x)+(n-38)(x+4x),m≤713(64+n),求n的最小值即可.【详解】设第一批精肉的数量为x斤,则羊排数量为2x斤,羊腿数量为3x斤,设第二批总重量为y斤,羊排重量为a斤,则第二批羊腿重量为1y6斤,根据题意,得3x+1y6=518(6x+y),解得y=12x,∵羊排和精品羊肉的总数量之比为8:5,∴(2x+a):(x+12x-2x-a)=8:5,解得a=6x斤,∴精肉重量为4x斤,∴总成本为50(2x+6x)+42(3x+2x)+38(x+4x),设羊排价格为m元,精肉价格为n元,则总利润为14(2x+6x-x)+(m-42)(3x+2x)+(n-38)(x+4x),根据题意,得[50(2x+6x)+42(3x+2x)+38(x+4x)] ×16%=14(2x+6x-x)+(m-42)(3x+2x)+(n-38)(x+4x),解得m+n=86,∵羊腿的销售单价不高于羊排、精品羊肉销售单价之和的713,∴m≤713(64+n),解得n≥33.5,∴n的最小值为33.5.故答案为:33.5.【点睛】本题考查了利润问题,不等式,最值问题,正确理解题意,合理设未知数,列出符合题意的等式,不等式是解题的关键.5、﹣2或0【解析】【分析】将2、﹣2、0依次代入方程左右两边代数式,求出代数式的值,相等即是原方程的解.【详解】解:当x=2时,方程左边=2×24+22=36,右边=﹣18×2=﹣36,左边≠右边,故x=2不是原方程的解;当x=﹣2时,方程左边=2×(﹣2)4+(﹣2)2=36,右边=﹣18×(﹣2)=36,左边=右边,故x=﹣2是原方程的解;当x=0时,方程左边=2×04+02=0,右边=﹣18×0=0,左边=右边,故x=0是原方程的解;∴x=﹣2或0是原方程的解.故答案为:﹣2或0.【点睛】本题考查方程的解,代数式的值,掌握方程的解,使方程左右两边值相等的未知数的值叫方程的解.三、解答题1、 (1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【解析】【分析】(1)根据非负数的性质求出a=﹣6,b=8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,列方程即可求解;(3)由于PA+PB=AB=2,只需要PC+PD是定值,从快车AB上乘客P与慢车CD相遇到完全离开之间都满足PC+PD是定值,依此分析即可求解.(1)解:(1)∵|a+6|与(b﹣8)2互为相反数,∴|a+6|+(b﹣8)2=0,∴a+6=0,b﹣8=0,解得a=﹣6,b=8.∴此时刻快车头A与慢车头C之间相距8﹣(﹣6)=14(单位长度);答:此时快车头A与慢车头C之间相距14单位长度;(2)解:设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,两车相遇前可列方程为+=-,t t62148解得,0.75t=.两车相遇后可列方程为62148t t+=+,解得, 2.75t=.答:再行驶0.75秒或2.75秒两列火车行驶到车头AC相距8个单位长度;(3)正确,∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,即路程为4,所以,行驶时间t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.2、 (1)89 x=-(2)5【解析】【分析】(1)根据“伴侣数对”的含义可得关于x的方程,解方程即可;(2)根据“伴侣数对”的含义可得m与n的关系,化简多项式,把m与n的关系代入化简后的式子中即可求得值.(1)∵(),2x 是“伴侣数对” ∴223223x x++=+ 解方程得:89x =-(2)∵(),m n 是“伴侣数对” ∴2323m n m n ++=+ 化简得:9m +4n =0[]135(32)2(3)2n m m n ++-+ 13(151062)2n m m n =++-- 9352n m n =+-+ 1(94)52m n =++ 1052=⨯+ 5=【点睛】本题是新定义题,考查了解一元一次方程,化简求值,关键是理解“伴侣数对”的含义.3、 (1)③(2)-3(3)-5或3【解析】【分析】(1)因为bc <0,所以b ,c 异号,所以原点在第③部分;(2)求出AB 的值,然后根据点A 在点B 左边2个单位求出a 的值;(3)先求出点C 表示的数,然后分2种情况分别计算即可.(1)解:∵0bc <,b <c ,∴b <0,c >0,∴原点在第③部分,故答案为:③;(2)解:∵AC =5,BC =3,∴AB =AC -BC =5-3=2,∵b =-1,∴a =-1-2=-3;(3)解:∵a =-3,5AC =,∴c =-3+5=2,∴OC =2,当点D 在点B 的左侧时,∵2BD OC =,∴-1-d =2×2,∴d =-5;当点D 在点B 的右侧时,∵2BD OC =,∴d -(-1)=2×2,∴d =3;∴若2BD OC =,d 的值是-5或3.【点睛】本题考查了数轴上两点间的距离,线段的和差,有理数的乘法法则,以及一元一次方程的应用,体现了分类讨论的数学思想,做到不重不漏是解题的关键.4、 (1)商场购进甲、乙两种服装各10、20件.(2)11000(3)该商场晚上八点后推出的活动是先打九折.【解析】【分析】(1)由题意设购进甲服装x 件,乙服装(30-x )件,建立方程求解即可得出答案;(2)根据题意将甲、乙两种服装各自盈利相加即可得到答案;(3)由题意先得出晚上八点后的优惠方式付款的价钱,进而设该商场晚上八点后推出的活动是先打y 折建立方程求解即可得出答案.(1)解:设购进甲服装x 件,乙服装(30-x )件,由题意可得:500800(30)21000x x +-=,解得:10x =,30301020x -=-=(件),答:商场购进甲、乙两种服装各10、20件.(2)由题意得:该商场销售完这批服装一共能盈利0(800500)1080050%201100+⨯=-⨯⨯元.故答案为:11000.(3)由题意得:不打折直接参与“满1000元减400元” 付款2000200010004001200-÷⨯=元,晚上八点后的优惠方式付款12002001400+=元,设该商场晚上八点后推出的活动是先打y 折,可得:20004001400y -=,解得:0.9y =,即打九折.答:该商场晚上八点后推出的活动是先打九折.【点睛】本题考查一元一次方程的实际应用,读懂题意并根据题意建立方程求解是解题的关键.5、 (1)①5;②是,理由见解析(2)5,理由见解析 (3)703秒或803秒,理由见解析 【解析】【分析】(1)①由∠AOC 的度数,求出∠COM 的度数,根据互余可得出∠CON 的度数,进而求出时间t ;②根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠BOM=∠COM,即可得出ON平分∠AOC;(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;(3)需要分两种情况,当射线OC在直线AB上方时,在直线下方时两种情况,再根据旋转建立方程即可.【小题1】解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC-∠CON=30°-15°=15°,∴∠AON=∠CON,解得:t=15°÷3°=5;故答案为:①5;②是,理由如下:由上可知,∠CON=∠AON=15°,∴ON平分∠AOC;【小题2】经过5秒时,OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度顺时针旋转,射线OC也绕O点以每秒6°的速度顺时针旋转,设∠AON为3t,∠AOC为30°+6t,当OC平分∠MON时,∠CON=∠COM=45°,∴∠AOC-∠AON=45°,可得:30°+6t-3t=45°,解得:t=5;【小题3】根据题意,有两种情况,当射线OC在直线AB上方时,如图4①,当射线OC在直线直线AB下方时,如图4②,则有30°+6t+10°=180°,或30°+6t-10°=180°,解得t=703或803,∴经过703秒或803秒时,∠BOC=10°.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。

2020-2021学年人教版七年级数学下册《8.3实际问题与二元一次方程组》同步提升训练(附答案)

2020-2021学年人教版七年级数学下册《8.3实际问题与二元一次方程组》同步提升训练(附答案)

2021年人教版七年级数学下册《8.3实际问题与二元一次方程组》同步提升训练(附答案)1.如图是一个迷宫游戏盘的局部平面简化示意图,该矩形的长、宽分别为5cm,3cm,其中阴影部分为迷宫中的挡板,设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2,则下列所列方程正确的是()A.y=5×3﹣3x﹣5x B.y=(5﹣x)(3﹣x)C.y=3x+5x D.y=(5﹣x)(3﹣x)+5x22.某中学组织全区优秀九年级毕业生参加学校冬令营,一共有x名学生,分成y个学习小组.若每组10人,则还差5人;若每组9人,还余下3人.若求冬令营学生的人数,所列的方程组为()A.B.C.D.3.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm4.小明到文具店购买文具,他发现若购买4支钢笔、2支铅笔、1支水彩笔需要50元,若购买1支钢笔、3支铅笔、4支水彩笔也正好需要50元,则购买1支钢笔、1支铅笔、1支水彩笔需要()A.10元B.20元C.30元D.不能确定5.中国古代人民在生产生活中发现了许多数学问题,在《九章算术》中记载了这样一个问题,大意为:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,则衡器两边的总重量相等,如果5只雀和6只燕的总重量为1斤,问雀、燕每1只各重多少斤?”如果设每只雀重x斤,每只燕重y斤,则下列方程组正确的是()A.B.C.D.6.某玩具车间每天能生产甲种玩具零件100个或乙种玩具零件200个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A.B.C.D.7.为了更好地开展阳光大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都买),该班级的购买方案共有()A.3种B.4种C.5种D.6种8.某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩?设大盒装x个,小盒装y个,则下列方程组中正确的是()A.B.C.D.9.某核心素养测试由20道题组成,答对一题得6分,答错一题扣4分.今有一考生虽然做了全部的20道题,但所得总分为零,他答对的题有()A.12道B.10道C.8道D.6道10.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.已知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为()A.B.C.D.11.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是()A.B.C.D.12.一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是.13.《九章算术》记载了这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万,问善田几何?”意思是:当下良田1亩,价值300钱;薄田7亩,价值500钱.现在共买1顷,价值10000钱.根据条件,良田买了亩.14.长春是以汽车产业为主要经济支柱的工业化城市.新中国的第一辆汽车就是在长春诞生的,长春是中国大型的汽车制造城市,所以又叫“汽车城”.某汽车制造厂生产一款电动汽车,计划一个月生产200辆,由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?15.某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?16.某市生产的洋葱品质好、干物质含量高且耐储存,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.17.为加快长三角一体化建设,某快递公司大幅下调沪苏浙皖三省一市区域内快递费用,其调整前后的费用标准如下:起步价1千克内(元)超过1千克的部分(元/千克)调整前a b调整后a﹣3b﹣1调整前寄3kg物品需要12元,调整后花同样的钱可寄出8kg物品,求a,b的值.18.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲,乙两组合做.若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.19.(列二元一次方程组求解)小明家离学校2km,其中有一段为上坡路,另一段为下坡路.他从家跑步去学校共用了16min,已知小明在上坡路上的平均速度是4.8km/h,在下坡路上的平均速度是12km/h.求小明上坡、下坡各用了多少min?20.科技馆门票价格规定如下表.购票张数1﹣50张51﹣100张100张以上每张票的价格18元15元10元某学校七年级①、②两个班共103人去科技馆,其中①班有40多人,不足50人,经计算,如果两个班都以班为单位购票,则一共应付1686元.(1)七年级②班学生有多少人?(2)如果两个班联合起来,作为一个团体购票,可以省元.21.一张方桌由一个桌面和四条腿组成,如果1立方米料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,请设计一个方案,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?22.某中学为了响应“足球进校园”的号召,在商场购买A、B两种品牌的足球,已知购买一个B品牌足球比购买一个A品牌足球多30元,购买2个A品牌足球和3个B品牌足球共需340元.(1)求购买一个A品牌足球和一个B品牌足球各需多少元?(2)该中学决定购买A、B两种品牌足球共50个,恰商场对两种品牌足球的售价进行调整,A品牌足球售价比原来提高8%,B品牌足球按原售价的九折出售,如果此次购买A、B两种品牌足球总费用为3060元,那么该中学购进B品牌足球多少个?23.列方程组解应用题:某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.平价商场经销的甲,乙两种商品,甲种商品每件售价98元,利润率为40%;乙种商品每件进价80元,售价128元.(1)求甲种商品每件的进价;(利润率=×100%)(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(3)在“元旦”期间,该商场只对乙种商品进行如表的优惠促销活动:打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠按表的优惠条件,若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?25.某飞镖游戏规则如下:掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分,每次掷中的位置用一个“×”标注.如图,已知小红,小华和小明的有效成绩均为8次,结果小红得了65分,小华得了71分.(1)列方程组解答:掷中A区、B区一次各得多少分?(2)按照同样的记分方法,小明得了多少分?26.大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?27.“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤器,空气净化器和过滤器在两家商场的售价一样.已知买一个空气净化器和1个过滤器要花费2320元,买2个空气净化器和3个过滤器要花费4760元.(1)请用方程组求出一个空气净化器与一个过滤器的销售价格分别是多少元?(2)为了“庆新年,贺元旦”,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤器.若某单位想要买10个空气净化器和30个过滤器,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.28.某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?类别/单价成本价(元/箱销售价(元/箱)A品牌2032B品牌355029.我市为加快美丽乡村建设,建设秀美幸福抚州,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和4个B类村庄改建共需资金多少万元?30.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?31.已知:用3辆A型车和2辆B型车载满货物一次可运货共19吨;用2辆A型车和3辆B型车载满货物一次可运货共21吨.(1)1辆A型车和1辆B型车都载满货物一次分别可以运货多少吨?(2)某物流公司现有49吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都载满货物.①求m、n的值;②若A型车每辆需租金130元/次,B型车每辆需租金200元/次.请求出租车费用最少是多少元?32.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?33.一条船顺流航行,每小时行20km;逆流航行,每小时行16km.求轮船在静水中的速度与水的流速.34.实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?参考答案1.解:设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2,根据题意可得:y=(5﹣x)(3﹣x),故选:B.2.解:每组10人时,实际人数可表示为10y﹣5;每组9人时,实际人数可表示为9y+3;可列方程组为:,故选:C.3.解:设这个长方形的长为xcm,宽为ycm,依题意得:,解得:.故选:B.4.解:设购买1支钢笔、1支铅笔、1支水彩笔分别需要x、y、z元,根据题意得:,①+②得:5x+5y+5z=100,所以x+y+z=20,故选:B.5.解:设每只雀重x斤,每只燕重y斤,则方程组为,故选:A.6.解:由题意可得,,故选:B.7.解:设购买x个跳绳,y个呼啦圈,依题意得:8x+12y=120,∴y=10﹣x.∵x,y均为正整数,∴x为3的倍数,∴或或或,∴该班级共有4种购买方案.故选:B.8.解:依题意得:.故选:C.9.解:设他答对了x道题,答错了y道题,依题意得:,解得:.故选:C.10.解:若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为:.故选:B.11.解:设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒,根据题意可列方程组:,故选:C.12.解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.13.解:设良田买了x亩,薄田买了y亩,依题意得:,解得:,即良田买了12.5亩,故答案为:12.5.14.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意得:,解得:.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)(200﹣4×30)÷2=80÷2=40(名).答:还需要招聘40名新工人才能完成一个月的生产计划.15.解:(1)设甲种型号的空气加湿器每台的进价为x元,乙种型号的空气加湿器每台的进价为y元,依题意得:,解得:.答:甲种型号的空气加湿器每台的进价为200元,乙种型号的空气加湿器每台的进价为170元.(2)设该超市本次购进购进甲种型号的空气加湿器m台,则购进乙种型号的空气加湿器(60﹣m)台,依题意得:(260﹣200)m+(190﹣170)(60﹣m)=2800,解得:m=40,∴60﹣m=20(台).答:该超市本次购进购进甲种型号的空气加湿器40台,乙种型号的空气加湿器20台.16.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意得:,解得:.答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意得:3a+4b=31,∴a=.又∵a,b均为非负整数,∴或或,∴该物流公司共有3种租车方案,方案1:租用9辆A型车,1辆B型车;方案2:租用5辆A型车,4辆B型车;方案3:租用1辆A型车,7辆B型车.(3)方案1所需租车费为100×9+120×1=1020(元);方案2所需租车费为100×5+120×4=980(元);方案3所需租车费为100×1+120×7=940(元).∵1020>980>940,∴费用最少的租车方案为:租用1辆A型车,7辆B型车,最少租车费为940元.17.解:由题意可知:,解得:,答:a的值是8,b的值是2.18.解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)设甲组每天完成的工作量为m,乙组每天完成的工作量为n,依题意得:,解得:,∴甲组单独完成装修所需时间为1÷=12(天),乙组单独完成装修所需时间为1÷=24(天).施工方案①所需装修费用及耽误营业损失的费用之和为(300+200)×12=6000(元);施工方案②所需装修费用及耽误营业损失的费用之和为(140+200)×24=8160(元);施工方案③所需装修费用及耽误营业损失的费用之和为(300+140+200)×8=5120(元).∵5120<6000<8160,∴方案③请甲,乙两组合做最有利于商店经营.19.解:设小明上坡用了xmin,下坡用了ymin,依题意得:,解得:.答:小明上坡用了10min,下坡用了6min.20.解:(1)设七年级②班有x人,七年级①班有y人,由题意得:,解得:,答:七年级②班有56人;(2)1686﹣10×103=656(元).即如果两班联合起来,作为一个团体购票,可省656元,故答案为:656.21.解:设用x立方米木料做桌面,用y立方米木料做桌腿,则恰好配成方桌50x张,依题意得:,解得:,∴50x=150.答:用3立方米木料做桌面,用2立方米木料做桌腿,恰好配成方桌150张.22.解:(1)设购买一个A品牌足球需要x元,购买一个B品牌足球需要y元,依题意得:,解得:.答:购买一个A品牌足球需要50元,购买一个B品牌足球需要80元.(2)设该中学购进B品牌足球m个,则购进A品牌足球(50﹣m)个,依题意得:50×(1+8%)(50﹣m)+80×0.9m=3060,解得:m=20.答:该中学购进B品牌足球20个.23.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.24.解:(1)设甲种商品的进价为a元,则98﹣a=40%a.解得a=70.答:甲种商品的进价为70元;(2)设该商场购进甲种商品x件,根据题意可得:70x+80(50﹣x)=3800,解得:x=20;乙种商品:50﹣20=30(件).答:该商场购进甲种商品20件,乙种商品30件.(3)设小华在该商场购买乙种商品b件,根据题意,得①当过480元,但不超过680元时,480+(128b﹣480)×0.6=576,解得b=5.②当超过680元时,128b×0.75=576,解得b=6.答:小华在该商场购买乙种商品5或6件.25.解:(1)设掷中A区一次得x分,掷中B区一次得y分,依题意得:,解得:.答:掷中A区一次得10分,掷中B区一次得7分.(2)2×10+6×7=62(分).答:小明得了62分.26.解:设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,依题意得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名大学生志愿者.27.解:(1)设一个空气净化器与一个过滤器的销售价格分别为x元、y元,由题意得:,解得:,答:一个空气净化器2200元,一个过滤器120元;(2)选择“苏宁”商场购买更合算,理由如下:在“国美”商场购买所需费用为:0.95(2200×10+120×30)=24320(元),在“苏宁”商场购买所需费用为:2200×10+(30﹣10×2)×120=23200(元),∵24320>23200,∴选“苏宁”商场购买更合算.28.解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.29.解:(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x、y万元,由题意得,,解得:.答:建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)3x+4y=3×120+4×180=1080(万元).答:共需资金1080万元.30.解:设小长方形的长为x米,宽为y米,依题意,得:,解得:,∴210×2x×(x+2y)=75600(元).答:要完成这块绿化工程,预计花费75600元.31.解:(1)设1辆A型车和1辆B型车都载满货物一次分别可以运货x吨,y吨,根据题意得:,解得:.答:1辆A型车一次可以运货3吨,1辆B型车一次可以运货5吨.(2)①由(1)和题意得:3m+5n=49,∴,∵m、n都是正整数,∴或或.②∵A型车每辆需租金130元/次,B型车每辆需租金200元/次,∴当m=13,n=2时,需租金:130×13+200×2=2090(元),当m=8,n=5时,需租金:130×8+200×5=2040(元),当m=3,n=8时,需租金:130×3+200×8=1990(元),∵2090>2040>1990,所以租车费用最少的是1990元.32.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.33.解:设水流速度为xkm/h,由题意,得20﹣x=16+x,解得:x=2.轮船在静水中的速度为:16+2=18km/h.答:轮船在静水中的速度为18km/h,水的流速为2km/h.34.解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.。

人教版七年级下数学期末模拟提优练试题含解析

人教版七年级下数学期末模拟提优练试题含解析

人教版七年级下数学期末模拟提优练试题含解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的立方根是()A.﹣2B.2C.±2D.42.(4分)下列各数中,介于6和7之间的数是()A.B.C.D.3.(4分)若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)4.(4分)不等式组的解集是()A.﹣5≤x<3B.﹣5<x≤3C.x≥﹣5D.x<35.(4分)下列问题中,应采用抽样调查的是()A.企业招聘,对应聘人员进行面试B.了解某班学生的身高情况C.调查春节联欢晚会的收视率D.了解某校七年级第二学期期末考试各班的数学科平均成绩6.(4分)已知a∥b,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B,直角顶点C分别落在直线a,b上,若∠1=15°,则∠2的度数是()A.15°B.22.5°C.30°D.45°7.(4分)如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C.D.8.(4分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.45°B.30°C.50°D.36°9.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40B.45C.51D.5610.(4分)关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:=.12.(4分)请写出一个比2大且比4小的无理数.13.(4分)已知|4x+3y﹣1|+(y﹣3)2=0,求x+y的值.14.(4分)如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.15.(4分)如图,在平面直角坐标系中,若▱ABCD的顶点A,B,C的坐标分别是(2,3),(1,﹣1),(7,﹣1),则点D的坐标是.16.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,则第1007个三角数与第1009个三角数的差为.三、解答题(本大题共9小题,共86分)17.(8分)计算:18.(8分)解不等式2(2x+1)<14,并把它的解集在数轴上表示出来:19.(8分)解方程组:.20.(8分)如图:O为直线AB上一点,,OC是∠AOD的平分线.求:∠COD的度数.21.(8分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(10分)在图中描出A(﹣4,4),B(0,4),C(2,1),D(﹣2,1)四个点,线段AB、CD有什么位置关系?顺次连接A,B,C,D四点,求四边形ABCD的面积.23.(10分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.24.(12分)某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元.(1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?25.(14分)如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)当P、Q分别在线段AO,OC上时,连接PB,QB,使S△P AB=2S△QBC,求出点P 的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【分析】根据(﹣2)3=﹣8,继而可得出﹣8的立方根.【解答】解:=﹣2,故选:A.【点评】此题考查了立方根的知识,属于基础题,比较简单,关键是知道(﹣2)3=﹣8.2.【分析】先估算出5<<6,6<7,7<<8,3<<4,根据以上范围得出选项即可.【解答】解:∵5<<6,6<7,7<<8,3<<4,∴在6和7之间的数是,故选:B.【点评】本题考查了估算无理数的大小的应用,解此题的关键是能估算出每个数的范围,是基础题目,难度不大.3.【分析】根据x轴上的点P到y轴的距离为3,可得点P的横坐标为±3,进而根据x轴上点的纵坐标为0可得具体坐标.【解答】解:∵x轴上的点P到y轴的距离为3,∴点P的横坐标为±3,∵x轴上点的纵坐标为0,∴点P的坐标为(3,0)或(﹣3,0),故选:B.【点评】本题考查了点的坐标的相关知识;用到的知识点为:x轴上点的纵坐标为0.4.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥﹣5,故不等式组的解集为:﹣5≤x<3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断.【解答】解:A、企业招聘,对应聘人员进行面试应采用全面调查;B、了解某班学生的身高情况应采用全面调查;C、调查春节联欢晚会的收视率应采用抽样调查;D、了解某校七年级第二学期期末考试各班的数学科平均成绩应采用全面调查;故选:C.【点评】本题考查的是算术平均数、抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可.【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1+∠3=45°,∵∠1=15°,∴∠3=30°,∵a∥b,∴∠2=∠3=30°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.【解答】解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.【点评】本题考查平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.【分析】设∠ADB=x,则∠BDC=2x,再由AD∥BC得出∠DBC=∠ADB=x,根据三角形内角和定理得出x的值,进而可得出结论.【解答】解:∵∠ADB:∠BDC=1:2,∴设∠ADB=x,则∠BDC=2x.∵AD∥BC,∴∠DBC=∠ADB=x,∵∠C=30°,∠C+∠DBC+∠BDC=180°,即30°+x+2x=180°,解得x=50°,∴∠DBC=50°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.9.【分析】先根据[x]表示不大于x的最大整数,列出不等式组,再求出不等式组的解集即可.【解答】解:根据题意得:5≤<5+1,解得:46≤x<56,故选:C.【点评】此题考查了一元一次不等式组的应用,关键是根据[x]表示不大于x的最大整数,列出不等式组,求出不等式组的解集.10.【分析】首先应用加减消元法,求出方程组的解是多少;然后根据方程组的解为整数,判断出满足这个条件的整数m的个数有多少即可.【解答】解:①﹣②,可得(2﹣m)x=﹣m,解得x=,把x=代入①,解得y=,∴原方程组的解是,∵方程组的解为整数,∴m﹣2=±1,±2或±4.(1)m﹣2=﹣1时,m=1,原方程组的解是,符合题意;(2)m﹣2=1时,m=3,原方程组的解是,符合题意;(3)m﹣2=﹣2时,m=0,原方程组的解是,符合题意;(4)m﹣2=2时,m=4,原方程组的解是,符合题意;(5)m﹣2=﹣4时,m=﹣2,原方程组的解是,不符合题意;(6)m﹣2=4时,m=6,原方程组的解是,不符合题意;∴满足这个条件的整数m的个数有4个:m=0,1,3,4.故选:C.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.二、填空题(本大题共6小题,每小题4分,共24分)11.【分析】易知=3,=2,即可计算【解答】解:=3﹣2=1故答案为1【点评】此题主要考查实数的运算,根据根式的性质即可计算.12.【分析】由于4<5<16,则<<,即可得到满足条件的无理数【解答】解:∵4<5<16,∴<<,即2<<4.故答案为:.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.13.【分析】首先由非负数的性质得出x、y的数值,进一步代入求得答案即可.【解答】解:根据题意得,解得.则原式=﹣2+3=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【分析】根据折叠的性质,得∠BFE=(180°﹣∠1),再根据平行线的性质即可求得∠AEF的度数.【解答】解:根据长方形ABCD沿EF对折,若∠1=50°,得∠BFE=(180°﹣∠1)=65°.∵AD∥BC,∴∠AEF=115°.【点评】此题综合运用了折叠的性质和平行线的性质.15.【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(2,3),(1,﹣1),(7,﹣1),∴BC=6,顶点D的坐标为(8,3).故答案为:(8,3).【点评】此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键.16.【分析】观察分析得到第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…,得到第n个三角形数为1+2+3+4+…+n,则第22个三角形数为1+2+3+4+…22,第24个三角形数为1+2+3+4+…+22+23+24,即可得到第24个三角形数与第22个三角形数的差.【解答】解:第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…所以第1007个三角形数为1+2+3+4+…1007,第1009个三角形数为1+2+3+4+…+1007+1008+1009,所以第1007个三角形数与第1009个三角形数的差等于1008+1009=2017.故答案为:2017.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(本大题共9小题,共86分)17.【分析】先化成最简二次根式,再根据二次根式的加减法则求出即可.【解答】解:原式==.【点评】本题考查了二次根式的加减,能灵活运用法则进行计算是解此题的关键.18.【分析】先去括号,再移项合并同类项,最后系数化1即可得到解集,最后画数轴表示解集.【解答】解:4x+2<14,4x<12,x<3.∴不等式的解集为x<3.【点评】本题主要考查了解一元一次不等式的方法以及在数轴上表示不等式解集的方法,属于基础题型.19.【分析】把第一个方程乘以4,然后利用加减消元法解方程组即可.【解答】解:,①×4得,8x﹣4y=20③,②+③得,11x=22,解得x=2,把x=2代入①得,4﹣y=5,解得y=﹣1,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.【分析】利用∠AOC=∠BOC及补角的性质就可求出∠COD的度数.【解答】解:∵∠AOC=∠BOC,∠AOC+∠BOC=180°,∴4∠AOC=180°,∠AOC=45°,∵OC平分∠AOD,∴∠COD=∠AOC=45°.【点评】此题主要考查了补角的性质及垂直的定义,要注意领会由直角得垂直这一要点.21.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.【分析】根据平面直角坐标系描出各点,再根据网格结构的特点观察图形即可得解;由图形可以判断四边形的形状为平行四边形,利用网格结构求出AB边的长度以及AB边上的高,然后根据面积公式列式计算即可得解.【解答】解:(1)如图,AB∥CD;(2)S=4×3=12,四边形ABCD的面积是12.【点评】本题考查了坐标与图形的性质,熟练掌握网格结构与平面直角坐标系准确描出A、B、C、D四个点是解题的关键.23.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.24.【分析】①根据题意,需分类讨论.因为160<240,所以不可能选择A类年票;然后计算出若只选择购买B类年票,若只选择购买C类年票,若不购买年票,进入该园林的次数,通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C类年票.②设一年中进入该园林x次时,购买A类年票比较合算,根据题意,可得不等式组.求得解集即可得解.【解答】(1)解:不可能选A年票.若选B年票,则(次),若选C年票,则(次),若不购买年票,则(次),所以,若计划花费160元在该公园的门票上时,则选择购买C类年票进入公园的次数最多,为13次;(2)解:设超过x次时,购买A类年票比较合算,,解得x>30,因此,一年中进入该公园超过30次时,购买A类年票比较合算.【点评】此题主要考查了一元一次不等式组的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式组.25.【分析】(1)根据非负数的性质分别求出a、c,得到点B的坐标,根据坐标与图形性质判断AO和BC位置关系;(2)过B点作BE⊥AO于E,根据三角形的面积公式求出AP,得到点P的坐标;(3)分点Q在点C的上方、点Q在点C的下方两种情况,根据平行线的性质解答即可.【解答】解:(1)∵(a+8)2+=0,∴a+8=0,c+4=0,解得,a=﹣8,c=﹣4,则点B的坐标为(﹣4,﹣4),∵点B的坐标为(﹣4,﹣4),点C的坐标为(0,﹣4),∴BC∥AO,故答案为:(﹣4,﹣4),BC∥AO;(2)过B点作BE⊥AO于E,设时间经过t秒,S△P AB=2S△QBC,则AP=2t,OQ=t,∴CQ=4﹣t,∵BE=4,BC=4,∴,,∵S△APB=2S△BCQ,∴4t=2(8﹣2t)解得,t=2,∴AP=2t=4,∴OP=OA﹣AP=4,∴点P的坐标为(﹣4,0);(3)∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.理由如下:①当点Q在点C的上方时,过Q点作QH∥AO,如图2所示,∴∠OPQ=∠PQH,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠OPQ+∠CBQ=∠PQH+∠BQH,∴∠PQB=∠OPQ+∠CBQ,即∠PQB=∠OPQ+30°;②当点Q在点C的下方时;过Q点作HJ∥AO如图3所示,∴∠OPQ=∠PQJ,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°,即∠BQP+∠OPQ=150°,综上所述,∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.【点评】本题考查的是三角形的面积计算、坐标与图形性质、平行线的性质、三角形内角和定理,掌握非负数的性质、灵活运用分情况讨论思想是解题的关键.一、七年级数学易错题1.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 2【答案】B 【解析】【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a 的取值范围是﹣4≤a <﹣3. 【详解】解不等式x ﹣a >0,得:x >a , 解不等式3﹣2x >0,得:x <1.5, ∵不等式组的整数解有5个, ∴﹣4≤a <﹣3, 故选B .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a 的取值范围.2.已知关于x 的不等式组 ()()255133 22x x x t x +⎧->⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( )A .1992t << B .1992t ≤<C .1992t <≤D .1992t ≤≤【答案】C【解析】 【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可. 【详解】解:由(1)得x<-10, 由(2)x>3-2t,, 所以3-2t<x<-10,∵x 有5个整数解,即x=-11,-12,-13,-14,-15, ∴163215t -≤-<-∴1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错.3.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( ) A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩ B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩ C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩ D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩【答案】A 【解析】 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .4.如果关于x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,设整数a 与整数b 的和为M ,则M 的值的个数为( ) A .3个 B .9个C .7个D .5个【答案】D 【解析】 【分析】先求出不等式组的解集,再得出关于a 、b 的不等式组,求出a 、b 的值,即可得出选项. 【详解】520730x a x b ->⎧⎨-≤⎩①②∵解不等式①得:x >25a , 解不等式②得:x≤37b , ∴不等式组的解集为2357a b x <≤, ∵x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,∴6≤25a <7,9≤37b<10, 解得:15≤a <17.5,21≤b <2313,∴a=15或16或17,b=21或22或23,∴M=a+b=36、37、38、39或40,共5种情况.故选D【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.5.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2【答案】C【解析】【分析】过P点作PD⊥x轴,垂足为D,根据A(,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODP﹣S△ADP,列方程求a.【详解】过P点作PD⊥x轴,垂足为D,由A(,0)、B(0,1),得OA,OB=1.∵△ABC为等边三角形,由勾股定理,得AB2,∴S△ABC.又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP(1+a)×3(3)×a=由2S△ABP=S△ABC,得:,∴a.故选C.【点睛】本题考查了坐标与图形,点的坐标与线段长的关系,不规则三角形面积的表示方法及等边三角形的性质和勾股定理.6.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【答案】C【解析】【分析】【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角.平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.7.若于x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,且关于y 的分式方程3111y a y y---=--有非负整数解,则满足条件的所有整数a 的和为( ) A .12 B .14C .18D .24【答案】B 【解析】 【分析】根据已知x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩可解出x 的取值范围,且仅有5个整数解,可确定x可能取的值,即可求得a 的取值范围,再根据关于y 的分式方程3111y a y y---=--有非负整数解,可确定a 的取值范围,综合所有a 的取值范围得出a 最终可取的值,求和得答案. 【详解】解x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩得3284x x -≤-4x ≤2(5)2x a x -+<x >27a- ∵x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,即0、1、2、3、4∴2107a--≤< 29a <≤y 的分式方程3111y a y y---=-- 3)1y a y --=-(31y a y -+=- 22y a =-22a y -=已知关于y 的分式方程3111y a y y---=--有非负整数解 而212a y -=≠ ∴202a -≥且212a -≠ 所以2a ≥且4a ≠又∵ 22a y -=有非负整数解∴a 为偶数综上所述,满足条件的所有整数a 为6、8,它们的和为14 故选:B 【点睛】本题主要考点:不等式组和分式方程的求解,根据已知条件,再通过求解不等式组和分式方程确定a 的取值范围,分式方程中分母不能为0,可作为已知条件,综合所有a 的取值范围,确定最终a 的值8.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >- B .2a <C .22a -<<D .2a ≤【答案】D 【解析】 【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a 的取【详解】解:∵关于x 的不等式52x x a -≥+的最小正整数解是1x = ∴214a+≤ 2a ≤故选:D. 【点睛】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.10.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .2020【答案】C 【解析】 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2017与点A 2018的坐标,进而可求出点A 2017与点A 2018之间的距离. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), …第2n 次跳动至点的坐标是(n+1,n ), 则第2018次跳动至点的坐标是(1010,1009), 第2017次跳动至点A 2017的坐标是(-1009,1009). ∵点A 2017与点A 2018的纵坐标相等,∴点A 2017与点A 2018之间的距离=1010-(-1009)=2019, 故选C .本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<【答案】B 【解析】 【分析】符号[]a 表示不大于a 的最大整数,即[]a 为小于等于a 的最大整数. 【详解】因为[]a 为小于等于a 的最大整数,所以[][]1a a a <+≤, 若[]a =-6,则a 的取值范围是65a -≤-<, 故选B . 【点睛】本题考查了对不等关系的理解,解题的关键是理解符号[]a 的本质是小于或等于a 的最大整数.12.如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线A 1A 2A 3A 4关于点A 4的中心对称图形,再做出新的折线关于与x 轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线一每秒1个单位的速度移动,设运动时间为t .当t =2020时,点P 的坐标为( )A .(1010B .(2020C .(2016,0)D .(1010 【答案】A 【解析】 【分析】把点P 从O 运动到A 8作为一个循环,寻找规律解决问题即可. 【详解】由题意OA 1=A 3A 4=A 4A 5=A 7A 8=2,A 1A 2=A 2A 3=A 5A 6=A 6A 7=1, ∴点P 从O 运动到A 8的路程=2+1+1+2+2+1+1+2=12, ∴t =12,把点P 从O 运动到A 8作为一个循环, ∵2020÷12=168余数为4,∴把点A 3向右平移168×3个单位,可得t =2020时,点P 的坐标,∵A 3(2,168×6=1008,1008+2=1010,∴t =2020时,点P 的坐标(1010, 故选:A . 【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.13.已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( ) A .23x ≤< B .23x <≤ C .21x -≤<- D .21x -<≤-【答案】D 【解析】 【分析】令1-x=y ,则13ay b ≤+<,根据题干可知:23y ≤<,从而得出x 的取值范围. 【详解】令1-x=y ,则13ay b ≤+< ∵13ax b ≤+<的解集为23x ≤< ∴13ay b ≤+<的解集为:23y ≤< ∴213x ≤-< 解得:21x -<≤-【点睛】本题考查解不等式,解题关键是通过换元法,将1-x 表示为y 的形式.14.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B .15.如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( ) A .a <0 B .a <﹣1 C .a >1 D .a >﹣1【答案】B 【解析】 【分析】根据不等式的性质,两边同时除以a+1,a+1是正数还是负数不确定,所以要分两种情况,再根据解集为x <1,发现不等号的符号发生了变化,所以确定a+1<0,从而得到答案. 【详解】解:(a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <-1. 故选:B .此题主要考查了解不等式,当不等式两边除以同一个数时,这个数的正负性直接影响不等号.16.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)【答案】D【解析】【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.17.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选C.【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.18.一个自然数的一个平方根是a,则与它相邻的下一个自然数的平方根是()a+A.1a+B.1C.21a+D.21±+a【答案】D【解析】【分析】根据平方根定义得原数为a2,故相邻的下一个自然数是a2+1,再求得平方根即可.。

七年级数学下段考试卷及答案

七年级数学下段考试卷及答案

七年级数学下段考试卷及答案面对七年级数学下段考试要有坚韧的精神,撑过去就是康庄大道啊。

愿你七年级数学考出好结果,以下是店铺为你整理的七年级数学下段考试卷,希望对大家有帮助!七年级数学下段考试卷一、选择题(每小题3分,共30分)1.下列长度的各组线段,能组成直角三角形的是( )A.12,15,18B.12,35,36C.0.3,0.4,0.5D.2,3,42.下列实数,﹣,0. ,,,( ﹣1)0,﹣,0.1010010001中,其中无理数共有( )A.2个B.3个C.4个D.5个3.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的( )A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对5.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是( )A.28°B.118°C.62°D.62°或118°6.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠FB.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠ED.AB=DE,BC=EF,AC=DF7.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C 的个数有( )A.4个B.6个C.8个D.10个8.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=( )A.22013B.22014C.22015D.220169.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC 上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ 的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.4个10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落在边AD上,折痕与边BC交于点E;然后将其展平,再以点E所在直线为折痕,使点A落在边BC上,折痕EF交边AD于点F.则∠AFE的大小是( )A.22.5°B.45°C.60°D.67.5°二、填空题(每空2分,共16分)11.近似数3.40×105精确到位.12.当a2=64时, = .13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.14.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.16.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE 于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB=.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE 翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共10大题,共84分)19.(1)计算:(2)求x的值:5(x﹣1)2=20.20.因式分解:(1)3a5﹣12a4+9a3(2)3a2﹣6ab+3b2﹣12c2.21.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.22.如图,正方形网格中每个小正方形边长都是1.(1)在直线l上找一点P,使PB+PC的值最小;(2)连接PA、PC,计算四边形PABC的面积;(3)若图中的格点Q到直线BC的距离等于,则图中所有满足条件的格点Q有个.23.已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.(1)试判断△ABC的形状,并说明理由;(2)若a=6,b=5,求△ABC的面积.24.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.25.仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴ ,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b 的值.26.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2﹣GE2=EA2.27.如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且,点P、Q分别是边AD、AB上的动点.(1)求BD的长;(2)①如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;②如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,求出PA的长.28.【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC 的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.七年级数学下段考试卷答案一、选择题(每小题3分,共30分)1.下列长度的各组线段,能组成直角三角形的是( )A.12,15,18B.12,35,36C.0.3,0.4,0.5D.2,3,4【考点】勾股定理的逆定理.【分析】验证两小边的平方和是否等于最长边的平方;应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断即可.【解答】解:A、因为122+152≠182,所以不能组成直角三角形,故选项错误;B、因为122+352≠362,所以不能组成直角三角形,故选项错误;C、因为0.32+0.42=0.52,所以能组成直角三角形,故选项正确;D、因为22+32≠42,所以不能组成直角三角形,故选项错误;故选:C.2.下列实数,﹣,0. ,,,( ﹣1)0,﹣,0.1010010001中,其中无理数共有( )A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣,共有3个.故选B.3.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的( )A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些【考点】实数与数轴.【分析】首先根据圆周长公式求出圆的周长,然后结合数轴的特点即可确定A表示的数.【解答】解:A、∵圆的周长为π,∴滚动一圈的路程即π,∴点A 所表示的是π,故选项正确;B、数轴上不只有一个无理数π,故选项错误;C、数轴上既有无理数,也有有理数,故选项错误;D、数轴上的有理数与无理数多少无法比较,故选项错误;故选A.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EO C,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.5.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是( )A.28°B.118°C.62°D.62°或118°【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°﹣28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故选D.6.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠FB.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠ED.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.7.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C 的个数有( )A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB= ,然后即可确定C点的位置.【解答】解:如图,AB= = ,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.8.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=( )A.22013B.22014C.22015D.22016【考点】等边三角形的性质.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2015=22014.故选B.9.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC 上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ 的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质.【分析】易证△ABQ≌△CAP,可得∠AQB=∠CPA,即可求得∠AMP=∠B=60°,易证∠CQM≠60°,可得CQ≠CM,根据t的值易求BP,BQ的长,即可求得PQ的长,即可解题.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠B=∠ACB=60°,根据题意得:AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),(2)正确;∴∠AQB=∠CPA,∵∠BAQ+∠APC+∠AMP=180°,∠BAQ+∠B+∠AQB=180°,∴∠AMP=∠B=60°,∴∠QMC=60°,(3)正确;∵∠QMC=60°,∠QCM≠60°,∴∠CQM≠60°,∴CQ≠CM,∵BP=CQ,∴CM≠BP,(1)错误;当t= 时,BQ= ,BP=4﹣ = ,∵PQ2=BP2+BQ2﹣2BP•BQcos60°,∴PQ= ,∴△PBQ为直角三角形,同理t= 时,△PBQ为直角三角形仍然成立,(4)正确;故选 C.10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落在边AD上,折痕与边BC交于点E;然后将其展平,再以点E所在直线为折痕,使点A落在边BC上,折痕EF交边AD于点F.则∠AFE的大小是( )A.22.5°B.45°C.60°D.67.5°【考点】翻折变换(折叠问题).【分析】先根据折叠的性质得到∠AEB=45°,继而得出∠AEC,再由折叠的性质即可得到∠AFE的度数.【解答】解:以点A所在直线为折痕,折叠纸片,使点B落在AD 上,折痕与BC交于E点,∠AEB=45°,∠FEC=∠FEA= =67.5°.∵AF∥EC,∴∠AFE=∠FEC=67.5°.故选D.二、填空题(每空2分,共16分)11.近似数3.40×105精确到千位.【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:近似数3.40×105精确到千位.故答案是:千.12.当a2=64时, = ±2.【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴ =±2.13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .【考点】勾股定理;直角三角形斜边上的中线.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE= AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD= = =8.故答案是:8.14.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为81 .【考点】平方根.【分析】根据一个正数的平方根互为相反数,即可得到一个关于x 的方程,即可求得x,进而求得所求的正数.【解答】解:根据题意得:(﹣m﹣3)+(2m﹣3)=0,解得:m=6,则这个数是:(﹣3﹣6)2=81.故答案是:81.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=45 °.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC= = =67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF= BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.16.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB=46°.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB= ∠AFB=46°.故答案为:46°.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE 翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF= ,ED=AE= ,从而求得B′D=1,DF= ,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC= AC•BC= AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE= ,∴EF= ,ED=AE= ,∴DF=EF﹣ED= ,∴B′F= .故答案为: .18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′= ,∠D′DA+∠ADC=90°由勾股定理得CD′= ,∴BD=CD′= ,故答案为: .三、解答题(共10大题,共84分)19.(1)计算:(2)求x的值:5(x﹣1)2=20.【考点】实数的运算;平方根.【分析】此题涉及有理数的乘方、平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:(1)=﹣2+3﹣8=﹣7(2)∵5(x﹣1)2=20,∴(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,解得x=3或x=﹣1.20.因式分解:(1)3a5﹣12a4+9a3(2)3a2﹣6ab+3b2﹣12c2.【考点】因式分解﹣分组分解法;提公因式法与公式法的综合运用.【分析】(1)利用提供因式法和十字相乘分式分解因式;(2)利用提公因式法和分组分解法分解因式.【解答】解:(1)原式=3a3(a2﹣4a+3)=3a3(a﹣3)(a﹣1).(2)原式=3(a2﹣2ab+b2﹣4c2)=3[(a﹣b)2﹣4c2]=3(a﹣b+2c)(a﹣b﹣2c).21.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】先根据点P在∠AOB的角平分线OC上,PE⊥OB可求出PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,由全等三角形的判定定理可得出△DPF≌△EPF,进而可得出答案.【解答】证明:∵点P在∠AOB的角平分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=90°﹣∠DOP,∠EPF=90°﹣∠EOP,∴∠DPF=∠EPF,在△DPF和△EPF中(SAS),∴△DPF≌△EPF∴DF=EF.22.如图,正方形网格中每个小正方形边长都是1.(1)在直线l上找一点P,使PB+PC的值最小;(2)连接PA、PC,计算四边形PABC的面积;(3)若图中的格点Q到直线BC的距离等于,则图中所有满足条件的格点Q有16 个.【考点】轴对称﹣最短路线问题;点到直线的距离.【分析】(1)找到B点对称点B′,再连接B′C交直线l于点P,即可得出答案;(2)直接将四边形分割为两个三角形,进而求出其面积;(3)利用勾股定理结合网格得出平行于直线BC且到直线BC的距离为的直线,即可得出答案.【解答】解:(1)如图所示:点P即为所求;(2)四边形PABC的面积为:×3×5+ ×4×1=9.5;(3)图中所有满足条件的格点Q有:16个.故答案为:16.23.已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.(1)试判断△ABC的形状,并说明理由;(2)若a=6,b=5,求△ABC的面积.【考点】因式分解的应用.【分析】(1)由已知条件得出b2﹣c2+2ab﹣2ac=0,用分组分解法进行因式分解得出(b﹣c)(b+c+2a)=0,得出b﹣c=0,因此b=c,即可得出结论;(2)作△ABC底边BC上的高AD.根据等腰三角形三线合一的性质得出BD=DC= BC=3,利用勾股定理求出AD= =4,再根据三角形的面积公式即可求解.【解答】解:(1)△ABC是等腰三角形,理由如下:∵a,b,c为△ABC的三条边的长,b2+2ab=c2+2ac,∴b2﹣c2+2ab﹣2ac=0,因式分解得:(b﹣c)(b+c+2a)=0,∴b﹣c=0,∴b=c,∴△ABC是等腰三角形;(2)如图,作△ABC底边BC上的高AD.∵AB=AC=5,AD⊥BC,∴BD=DC= BC=3,∴AD= =4,∴△ABC的面积= BC•AD= ×6×4=12.24.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形的判定得出△DFC≌△AFM(AAS),即可得出答案;(2)由(1)知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线的判定得出答案.【解答】(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.25.仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴ ,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b 的值.【考点】因式分解﹣十字相乘法等;解二元一次方程组.【分析】(1)设另一个因式是(2x+b),则(x+4)(2x+b)=2x2+bx+8x+4b=2x2+(b+8)x+4b=2x2+3x﹣k,根据对应项的系数相等即可求得b和k的值;(2)设另一个因式是(2x2+mx+n),利用多项式的乘法运算法则展开,然后根据对应项的系数相等列式求出b的值即可得解.【解答】解:(1)设另一个因式是(2x+b),则(x+4)(2x+b)=2x2+bx+8x+4b=2x2+(b+8)x+4b=2x2+3x﹣k,则,解得: .则另一个因式是:2x﹣5,k=20.(2)设另一个因式是(2x2+mx+n),则(x+2)(2x2+mx+n)=2x3+(m+4)x2+(2m+n)x+2n=2x3+5x2﹣x+b,则,解得 .故b的值是﹣6.26.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2﹣GE2=EA2.【考点】全等三角形的判定与性质;线段垂直平分线的性质;勾股定理.【分析】(1)根据三角形的内角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根据ASA证出△DBH≌△DCA即可;(2)根据DB=DC和F为BC中点,得出DF垂直平分BC,推出BG=CG,根据BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.【解答】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°﹣90°﹣45°=45°=∠ABC∴DB=DC,∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,∵在△DBH和△DCA中,,∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,由(1)知,DB=CD,∵F为BC的中点,∴DF垂直平分BC,∴BG=CG,∵∠ABE=∠CBE,BE⊥AC,∴△ABE≌△CBE,∴EC=EA,在Rt△CGE中,由勾股定理得:CG2﹣GE2=CE2,∵CE=AE,BG=CG,∴BG2﹣GE2=EA2.27.如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且,点P、Q分别是边AD、AB上的动点.(1)求BD的长;(2)①如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;②如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,求出PA的长.【考点】四边形综合题.【分析】(1)由条件可求得AB=4,BC=6,由勾股定理可求出BD 的长;(2)①由题可知只能有∠QPC为直角,当PQ=PC时,可证得Rt△PDC≌Rt△QAP,可求得AP的长;②分PC=EC、PC=PE和PE=EC 三种情况分别利用等腰三角形的性质和勾股定理求解即可.【解答】解:(1)如图1,连接BD,∵ ,∴AB=4,BC=6,则在Rt△ABD中,由勾股定理可求得BD= =2 ;(2)①能,AP=4,理由如下:如图2,由图形可知∠PQC和∠PCQ不可能为直角,所以只有∠QPC=90°,则∠QPA+∠CPD=∠PCD+∠CPD,∴∠QPA=∠PCD,当PQ=PC时,在Rt△APQ和Rt△DCP中∴△APQ≌△DCP(AAS),∴AP=CD=4,故在P、Q运动中是否能使△CPQ成为等腰直角三角形,此时AP=4;②当PC=EC=5时,在Rt△PCD中,CD=4,PC=EC=5,由勾股定理可求得PD=3,所以AP=AB﹣PD=3,当PC=PE=5时,如图3,过P作PF⊥BC交BC于点F,则FC=EF=PD= EC=2.5,所以AP=AB﹣PD=6﹣2.5=3.5,当PE=EC=5时,如图4,过E作EH⊥AD于点H,由可知AH=BE=1,在Rt△EHD中,EH=AB=4,EP=5,由勾股定理可得HP=3,所以AP=AH+PH=1+3=4,综上可知当△EPC为等腰三角形时,求出PA的长为3、3.5或4.28.【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC 的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.【考点】几何变换综合题.【分析】(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点D为Rt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA的长,由此可得出结论.【解答】解:(1)连接CD并延长,交OA延长线于点F.在△BCD与△AFD中,,∴△BCD≌△AFD(ASA).∴CD=FD,即点D为Rt△COF斜边CF的中点,∴OD= CF=CD.又由折叠可知,OD=OC,∴OD=OC=CD,∴△OCD为等边三角形,∠COD=60°,∴θ= ∠COD=30°;(2)∵点E四边形0ABC的边AB上,∴AB⊥直线l由折叠可知,OD=OC=3,DE=BC=2.∵θ=45°,AB⊥直线l,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;由图可知,当0。

青海省互助一中七年级数学下册第十章【数据的收集。整理与描述】测试卷(培优提高)

青海省互助一中七年级数学下册第十章【数据的收集。整理与描述】测试卷(培优提高)

一、选择题1.下列调查中,适合采用全面调查方式的是( )A .对南宁邕江水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对市场上某种雪糕质量情况的调查D .对本班45名学生身高情况的调查 2.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm ~174.5cm 之间的人数有( )A .12B .48C .72D .963.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%D .扇形图中,公务员部分所对应的圆心角为72°4.2016年4月30日至5月2日,河北省共接待游客1708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是( ) 个人旅游2000x ≤ 20004000x <≤ 40006000x <≤ 60008000x <≤ 800010000x <≤年消费金额x/元频数1225312210A.小王随机抽取了100名员工B.在频数分布表中,组距是2000,组数是5组C.个人旅游年消费金额在6000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额在4000元以下(包括4000元)的共有37人5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.66.运算能力是一项重要的数学能力.兵老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试(每次测验满分均为100分).小明和小军同学帮助兵老师统计了某数学小组5位同学(A,B,C,D,E,F)的三次测试成绩,小明在下面两个平面直角坐标系里描述5位同学的相关成绩.小军仔细核对所有数据后发现,图1中所有同学的成绩坐标数据完全正确,而图2中只有一个同学的成绩纵坐标数据有误.以下说法中:①A同学第一次成绩50分,第二次成绩40分,第三次成绩60分;②B同学第二次成绩比第三次成绩高;③D同学在图2中的纵坐标是有误的;④E同学每次测验成绩都在95分以上.其中合理的是()A.①②③B.①②④C.①③④D.②③④7.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~138.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为()A.1000只B.10000只C.5000只D.50000只9.下列调查中,最适合采用全面调查的是()A.对全国中学生睡眠事件的调查B.对我市各居民日平均用水量的调查C.对光明中学七(1)班学生身高调查D.对某批次灯泡使用寿命的调查10.将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A.24 B.26 C.0.24 D.0.2611.调查50名学生的年龄,列频数分布表时,学生的年龄落在5个小组中,第一,二,三,五的数据分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.40 D.0.6二、填空题12.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.13.为了考察我区七年级学生数学知识与能力测试的成绩,从中抽取30本试卷,每本试卷30份,在这个问题中样本容量是_____________.14.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了_____场.15.妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是取了一点品尝,这属于___(填“全面调查”或“抽样调查”).16.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成_______________组.17.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.则图中“芒果味”所在扇形的圆心角为____.18.来自某综合市场财务部的报告表明,商场2014年1-4月份的投资总额一共是2025万元,商场2014年第一季度每月利润统计图和2014年1-4月份利润率统计图如下(利润率=利润+投资金额).则商场2014年4月份利润是___________万元.19.永州市教育部门为了了解全市中小学安全教育情况,对某校进行了“防溺水”安全知识的测试.从七年级随机抽取了50名学生的测试成绩(百分制),整理样本数据,得到下表:根据抽样调查结果,估计该校七年级600名学生中,80分(含80分)以上的学生有_________人.20.为了估计湖里有多少条鱼,先捕了100条鱼,做好标记然后放回到湖里,过一段时间,待带有标记的鱼完全混合于鱼群后,再捕上200条鱼,发现其中带有标记的鱼为8条,湖里大约有鱼_____条.21.建设路实验学校为了了解本校学生参加课外体育锻炼情况,随机抽取本校部分学生进行问卷调查统计整理并绘制了如下扇形统计图,如果抽取的学生中,从不参加课外体育锻炼的学生有9人,则抽取的学生中经常参加课外体育锻炼的学生有_____人.三、解答题22.某初中要调查学校学生(总数1000人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全条形统计图,并求出a、b的值;(2)试确定这个样本的中位数和众数:(3)请估计该学校1000名学生双休日课外阅读时间不少于4小时的人数.23.垃圾的分类处理与回收利用,可以减少污染,节省资源.重庆主城区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(全部分类),其相关信息如图表,根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占20%,每回收1吨塑料类垃圾可获得0.7吨二级原料.若重庆主城区某月产生的生活垃圾为300000吨,且全部分类处理,那么该月回收的塑料类垃圾可以获得多少吨二级原料?24.周口某中学积极开展“晨阳体育”活动,共开设了跳绳、体操、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图不完整的条形统计图和扇形统计图(部分信息未给出).(1)求本次调查学生的人数;(2)求喜爱体操、跑步的人数,并补全条形统计图;(3)求喜爱篮球、跑步的人数占调查人数的百分比.25.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了n名学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了不完整的统计表和条形统计图.n名学生掌握垃圾分类知识统计表:等级频数频率优秀240.48良好a0.3合格7b待合格40.08根据上面的统计图表回答下列问题:(1)n的值为,a的值为,b的值为.(2)补全条形统计图;(3)若全校有1500名学生,请估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.一、选择题1.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了100名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是100C.1000名学生是总体D.被抽取的每一名学生称为个体2.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.63.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为()A.6度B.7度C.8度D.9度4.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~135.某地区经过两年的产业扶贫后,经济总收入增加了一倍.为更好地了解该地区的经济收入变化情况,统计了产业扶贫前后的经济收入相关数据,得到下列统计图:下面结论不正确的是()A.经过产业扶贫后.养殖收入增加了一倍B.经过产业扶贫后,种植收入减少了C.经过产业共贫后,养殖收入与第二产业收人的总和超过了经济收入的一半D.经过产业扶贫后.其他收入增加了一倍以上6.下列调查活动中,适合采用全面调查的是()A.某种品牌插座的使用寿命B.为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离C.了解某校学生课外阅读经典文学著作的情况D.调查“厉害了,我的国”大型记录电影在线收视率7.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()A.这栋居民楼共有居民125人B.每周使用手机支付次数为28~35次的人数最多C.有25人每周使用手机支付的次数在35~42次D.每周使用手机支付不超过21次的有15人8.下列调查中,适宜采用全面调查方式的是()A.调查某河的水质情况B.了解一批手机电池的使用寿命C.调查某品牌食品的色素含量是否达标D.了解全班学生参加社会实践活动的情况9.今年某市有近7千名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.7千名考生是总体C.这1000名考生是总体的一个样本D.1000名学生是样本容量10.为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生11.某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼(跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据,下列说法不正确的是()A.平均每天锻炼里程数据的中位数是2B.平均每天锻炼里程数据的众数是2C.平均每天锻炼里程数据的平均数是2.34D.平均每天锻炼里程数不少于4km的人数占调查职工的20%二、填空题12.为了了解中学生的身体发育情况,对第二中学同年龄的80名学生的身高进行了测量,经统计,身高在150.5~155.5厘米之间的频数为5,那么这一组的频率是____.13.田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________.14.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D等级这一组人数较多的班是________15.如图为A,B两家酒店去年下半年的月营业额折线统计图.根据图中信息判断,经营状况较好的是A酒店.你的理由是:_________.16.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积和的14,频数分布直方图中有150个数据,则中间一组的频数为______.17.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制成如下不完整的统计图表.根据图表信息,那么扇形图中表示C的圆心角的度数为_____度.成绩等级频数分布表成绩等级频数A24B10C xD218.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.则图中“芒果味”所在扇形的圆心角为____.19.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.20.扇形统计图中,某统计项目所对应的扇形的圆心角度数为72°,则该项目点总体的百分比为_____.21.某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有_______头.三、解答题22.为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数的测试,将所得数据整理后,画出频率分布直方图如图所示.已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5(1)求第四小组的频率.(2)问参加这次测试的学生数是多少?(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标人数是多少人?23.某校随机抽取部分学生,对“学习习惯”进行问卷调查.设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A.很少,B.有时,C.常常,D、总是.将调查结果的数据进行了整理、绘制成部分统计图:请根据图中信息,解答下列问题:(1)填空:a=________%,b=_________%,“常常”对应扇形的圆心角度数为________;(2)请你直接补全条形统计图;(3)若该校有3600名学生,请你估计其中“常常”对错题进行整理、分析、改正的学生有多少名?24.某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了__________名学生;(2)请将条形统计图补充完整;(3)求扇形统计统计图中A部分所对应的圆心角度数;(4)该校共有学生2000人,大约多少学生喜欢读《三国演义》?25.某区为响应市政府号召,在所有中学开展“创文创卫”活动.在活动中设置了“A.文明礼仪;B.环境保护;C.卫生保洁;D.垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展的情况,在全区随机抽取部分中学生进行调查,并根据调查结果绘制成了如下条形统计图和扇形统计图:(1)此次调查的学生人数是______人,条形统计图中m=______,n=______;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中“选项D.垃圾分类”对应扇形的圆心角的大小为______度;(4)依据本次调查的结果,估计全区12000名中学生选“A.文明礼仪”约有多少人?一、选择题1.如图是王涵某两天进行体育锻练的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟.王涵这两天体育锻炼时间最长的项目是()A.跳绳B.跳远C.跑步D.仰卧起坐2.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%3.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量4.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形图中,公务员部分所对应的圆心角为72°5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.66.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力7.为了了解三中九年级840名学生的体重情况,从中抽取100名学生的体重进行分析.在这项调查中,样本是指()A.840名学生B.被抽取的100名学生C.840名学生的体重D.被抽取的100名学生的体重8.某校学生会对学生上网的情况作了调查,随机抽取了若干名学生,按“天天上网、只在周末上网、偶尔上网、从不上网”四项标准统计,绘制了如下两幅统计图,根据图中所给信息,有下列判断:①本次调查一共抽取了200名学生;②在被抽查的学生中,“从不上网”的学生有10人;③在本次调查中“天天上网”的扇形的圆心角为30°.其中正确的判断有()A.0个B.1个C.2个D.3个9.下列调查中,适合用全面调查方式的是()A.了解一批iPad的使用寿命B.了解电视栏目《朗读者》的收视率C.疫情期间,了解全体师生入校时的体温情况D.了解滇池野生小剑鱼的数量10.下列调查活动中,适合采用全面调查的是()A.某种品牌插座的使用寿命B.为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离C.了解某校学生课外阅读经典文学著作的情况D.调查“厉害了,我的国”大型记录电影在线收视率11.下列调查中,调查方式选择合理的是()A.为了了解某一批灯泡的寿命,选择全面调查B.为了了解某年北京的空气质量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查二、填空题12.如图所示,是幸福村农作物统计图,看图回答问题:(1)在扇形统计图中的括号内填上适当的数据:___;(2)棉花的扇形圆心角是144°,表示它占百分数是___;(3)水稻种了240公顷,那么棉花种了___公顷;(4)该村的农作物总种植面积是___.13.田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________.14.已知某组数据的频数为49,频率为0.7,则样本容量为_______15.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).16.请你举出一个适合抽样调查的例子:________________________;并简单说说你打算怎样抽样:________________________________________.17.小夏同学从家到学校有A,B两条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时频数公交车路线2530t≤≤3035t<≤3540t<≤4045t<≤总计A59151166124500B 43 57 149 251 500据此估计,早高峰期间,乘坐B 线路“用时不超过35分钟”的概率为__________,若要在40分钟之内到达学校,应尽量选择乘坐__________(填A 或B )线路.18.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制成如下不完整的统计图表.根据图表信息,那么扇形图中表示C 的圆心角的度数为_____度.成绩等级频数分布表成绩等级频数 A24 B10 Cx D 219.扇形统计图中,某统计项目所对应的扇形的圆心角度数为72°,则该项目点总体的百分比为_____.20.为落实“停课不停学”,某校在线上教学时,要求学生因地制宜开展体育锻炼.为了解学生居家体育锻炼情况,学校对学生四月份平均每天开展体育锻炼的时长情况随机抽取了部分同学进行问卷调查,将调查结果进行了统计分析,并绘制如下两幅不完整的统计图: (A 类:时长10≤分钟;B 类:10分钟<时长20≤分钟;C 类:20分钟<时长30≤分钟;D 类:30分钟<时长40≤分钟;E 类:时长40>分钟).该校共有学生2000人,请根据以上统计分析,估计该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生约有________人.21.昆明七彩云南是融合西双版纳风情、南国气息于一身,集合民族风情展示、历史文化博览、特色商品展销为一体的国家AAAA级旅游景区.某课题小组随机调查了“十一”期间前来观光的游客的出行方式,整理绘制了两幅统计图(尚不完整).根据图中提供的信息,计算此次调查中选择其他方式的有________人.三、解答题22.某超市双11对销售A、B、C三个品牌服装进行了统计,绘制成图1,图2统计图,根据图中提供的信息,解答下列问题:(1)该日销售这三个品牌服装共_______件;(2)补全条形统计图;(3)求扇形统计图中A品牌服装对应扇形的圆心角的度数.(4)该超市明年双11对A、B、C三个品牌服装如何进货?请你提出一条合理化建议.23.农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某市食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉粽(下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)在本次调查中,适宜________.(填普查或者抽样调查)(2)本次被调查的市民有________人;并补全条形统计图;(3)扇形统计图中蛋黄棕对应的圆心角是________度;(4)若该市有居民约50万人,估计其中喜爱大肉粽的有多少人?24.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了_________名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为_________;(3)将条形统计图补充完整;(4)如果该校共有1500名学生,请你估计该校B类学生约有多少人?25.已知某水库上周日的水位是20m,下表是该水库今年某周的水位记录情况.注:正号表示水位比前一天上升,负号表示水位比前一天下降.问:(1)本周星期三的水位是多少米?星期日的水位是多少米?(2)本周哪一天的水位最高,最高水位是多少米,哪一天的水位最低,最低水位是多少米;(3)以上周日水位为0点,用折线统计图表示本周的水位变化情况.。

2020-2021学年北师大版七年级数学下册《第3章变量之间的关系》经典好题培优训练(附答案)

2020-2021学年北师大版七年级数学下册《第3章变量之间的关系》经典好题培优训练(附答案)

2021年度北师大版七年级数学下册《第3章变量之间的关系》经典好题培优训练(附答案)1.某同学从家骑自行车上学,先上坡到达A地后再下坡到达学校,所用的时间与行驶的路程如图所示,如果返程上、下坡速度保持不变,那么他从学校回到家需要的时间是()A.14分钟B.12分钟C.9分钟D.7分钟2.变量x,y的一些对应值如表:x…﹣2﹣10123…y…9210﹣7﹣26…根据表格中的数据规律,当x=﹣5时,y的值是()A.76B.﹣74C.126D.﹣1243.小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分4.为增强居民节水意识,我市自来水公司采用以户为单位分段计费办法收费,即每月用水不超过10吨,每吨收费a元;若超过10吨,则10吨水按每吨a元收费,超过10吨的部分按每吨b元收费,公司为居民绘制的水费y(元)与当月用水量x(吨)之间的函数图象如下,则下列结论错误的是()A.a=1.5B.b=2C.若小明家3月份用水14吨,则应缴水费23元D.若小明家7月份缴水费30元,则该用户当月用水18.5吨5.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.6.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y(元)与上网时间x(小时)的函数关系如图所示,则下列判断错误的是()A.每月上网不足25小时,选择A方式最省钱B.每月上网时间为30小时,选择B方式最省钱C.每月上网费用为60元,选择B方式比A方式时间长D.每月上网时间超过70小时,选择C方式最省钱7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg):x0246810y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量为5kg时,弹簧长度增加了1.25cmD.所挂物体质量为9kg时,弹簧长度增加到11.25cm8.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A.B.C.D.9.已知小明从A地到B地,速度为4千米/小时,A、B两地相距3千米,若用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是()A.y=4x B.y=4x﹣3C.y=﹣4x D.y=﹣4x+310.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个11.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离s(单位:米)与时间t(单位:分钟)的对应关系如图所示,则文具店与小张家的距离为.12.如果乘坐出租车所付款金额y(元)与乘坐距离x(千米)之间的函数图象由线段AB、线段BC和射线CD组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为元.13.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A端出发,父亲从另一端B出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S(米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是米/秒.14.如图,某学校组织团员举行防溺水宣传活动,从学校骑车出发,先上坡到达A地后,宣传8min;然后下坡到B地宣传8min返回,行程情况如图.若返回时,上、下坡的速度仍保持不变,那么他们直接从B地返回学校用的时间是min.15.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是(填序号).16.某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费1.2元,如果乘客白天乘坐出租车的路程为x(x>3)千米,乘车费为y元,那么y 与x之间的关系为.17.甲骑自行车、乙骑摩托车沿相同路线匀速由A地到B地,行驶过程中路程与时间的函数关系如图所示.根据图象信息可知,乙在甲骑行分钟时追上甲.18.已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)与时间t(秒)之间的关系如图乙中的图象所示.其中AB=6cm.当t=时,△ABP的面积是15cm2.19.如图是购买水果所付金额y(元)与购买量x(千克)之间的函数图象,则一次购买5千克这种水果比分五次每次购买1千克这种水果可节省.20.甲,乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:(1)这是一次米赛跑;(2)乙在这次赛跑中的速度为米/秒.21.某种车的油箱加满油后,油箱中的剩余油量y(升)与车行驶路程x(千米)之间的关系,如图所示,根据图象回答下列问题:(1)这种车的油箱最多能装升油.(2)加满油后可供该车行驶千米.(3)该车每行驶200千米消耗汽油升.(4)油箱中的剩余油量小于10升时,车辆将自动报警,行驶千米后,车辆将自动报警?22.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量y(万立方米)与干旱时间t(天)之间的关系如图所示,回答下列问题:(1)干旱持续到第10天,水库的蓄水量为万立方米.(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天时,水库将干涸.23.琳琳通过新闻了解到,近来意大利“新冠肺炎”疫情愈发严重,决定给意大利的网友Carlo邮寄一批防疫用品.已知琳琳家、药店、邮局在同一直线上,琳琳从家出发,跑步去药店买了酒精和口罩,又步行到邮局把物品寄出,然后再走回家.琳琳离家的距离y 与时间x之间的关系如图所示,请根据图象解决下列问题:(1)琳琳家离药店的距离为km.(2)琳琳邮寄物品用了min.(3)琳琳两段步行的速度分别是多少?(4)图中点P的意义是.24.一个周末上午8:00,小张自驾小汽车从家出发,带全家人去一个4A级景区游玩,小张驾驶的小汽车离家的距离y(千米)与时间t(时)之间的关系如图所示,请结合图象解决下列问题:(1)小张家距离景区千米,全家人在景区游玩了小时;(2)在去景区的路上,汽车进行了一次加油,之后平均速度比原来增加了20千米/时,试求他加油共用了多少小时?(3)如果汽车油箱中原来有油25升,平均每小时耗油10升,问小张在加油站至少加多少油才能开回家?25.小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明从早晨出发直到到达学校共用了多少分钟?(3)小明修车前、后的行驶速度分别是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?26.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)先出发,先出发了分钟;(2)当t=分钟时,小凡与小光在去图书馆的路上相遇;(3)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括停留的时间)27.在弹性限度内,某弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516(1)在这个变化过程中,自变量和因变量各是什么?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,写出y与x的关系式.(3)如果该弹簧最大挂重量为25千克,当挂重为14千克时,该弹簧的长度是多少?参考答案1.解:由图象可知,该同学上坡的速度为:(千米/分钟),下坡的速度为:(千米/分钟),则他从学校回到家需要的时间是:(分钟).故选:C.2.解:根据表格数据可知,函数的解析式为y=﹣x3+1,当x=﹣5时,y=﹣53+1=﹣124.故选:D.3.解:由图象可知,小华和小明的家离学校1200米,故A正确;根据图象,小华乘公共汽车,从出发到到达学校共用了13﹣8=5(分钟),所以公共汽车的速度为1200÷5=240(米/分),故B正确;小明先出发8分钟然后停下来吃早餐,由图象可知在小明吃早餐的过程中,小华出发并与小明相遇然后超过小明,所以二人相遇所用的时间是8+480÷240=10(分钟),即7:50相遇,故C正确;小明从家到学校的时间为20分钟,所以小明的平均速度为1200÷20=60(米/分),故D 错误.故选:D.4.解:由图象可知,a=15÷10=1.5;b==2;用水14吨,则应缴水费:1.5×10+2×(14﹣10)=15+8=23(元);缴水费30元,则该用户当月用水为:10+(30﹣15)÷2=17.5(吨).故结论错误的是选项D.故选:D.5.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.6.解:由题意可知:A、每月上网不足25小时,选择A方式最省钱,故本选项不合题意;B、每月上网时间为30小时,选择A方式的费用为:30+5×[(120﹣30)÷(50﹣25)]=48(元),B方式为50元,C方式为120元,所以选择A方式最省钱,故本选项符合题意;C、每月上网费用为60元,选择B方式比A方式时间长,故本选项不合题意;D、每月上网时间超过70小时,选择C方式最省钱,故本选项不合题意;故选:B.7.解:A.x与y都是变量,且x是自变量,y是因变量,故A不符合题意;B.弹簧不挂重物时的长度为10cm,故B不符合题意;C.所挂物体质量为5kg时,弹簧长度增加了1.25cm,故C不符合题意;D.所挂物体质量为9kg时,弹簧长度增加到12.25cm,故D符合题意.故选:D.8.解:∵小华从家跑步到离家较远的新华公园,∴随着时间的增加离家的距离越来越远,∵他在那里与同学打一段时间的羽毛球,∴他离家的距离不变,又∵再步行回家,∴他离家越来越近,∴小华同学离家的距离y与所用时间x之间函数图象的大致图象是B.故选:B.9.解:用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是:y=3﹣4x=﹣4x+3.故选:D.10.解:由图可得,李师傅上班处距他家2000米,故①说法正确,李师傅路上耗时20分钟,故②说法正确,修车后李师傅骑车速度是=200(米/分钟),修车前速度为(米/分钟),所以修车后李师傅骑车的速度是修车前的2倍,故③说法错误;李师傅修车用了:15﹣10=5(分钟),故④说法正确.所以其中错误的是1个.故选:B.11.解:小张骑车的速度=1500÷(6﹣1)=300米/分钟.文具店与小张家的距离=1500﹣300×2=900米.故答案为:900米.12.解:乘坐该出租车8(千米)需要支付的金额为:14+(30.8﹣14)÷(10﹣3)×(8﹣3)=26(元).故答案为:26.13.解:根据图象可知,爸爸跑完全程用时20秒,爸爸的速度为:100÷20=5米/秒,s=80时,儿子已经到终点,此时爸爸的路程为80米,时间为:80÷5=16秒,儿子的速度为:100÷16=米/秒,故答案为:儿子奔跑的速度为米/秒.14.解:如图,由题意可得,OA段为上坡,上坡的速度为:,CB段为下坡,下坡的速度为:,返回时,先上坡,再下坡;上坡时间:,上坡时间:min,返回时所用时间为:30+7.2=37.2min.故答案为:37.2.15.解:结合题意,可得x轴表示的是小文出发的时间t,y轴表示的是小文和小亮的路程差s.O(0,0):小文还未出发;A(9,720):小文步行9分后,小亮出发;∴小文的速度为:80m/min;B(15,0):小文出发15分后,小亮追上小文;∴小文和小亮的速度差为120m/min,则小亮的速度为200m/min;∴200÷80=2.5;C(19,b):小文出发19分后,小亮先到达青少年宫;b=(19﹣9)×200﹣19×80=480;D(a,0):小文出发a发后,到达青少年宫;a=2.5×(19﹣9)=25.由以上分析可得,正确的是:①②④.故答案为:①②④.16.解:依据题意得:y=7+1.2(x﹣3)=1.2x+3.4,故答案为:y=1.2x+3.4,17.解:由题意得:甲的速度为:(km/min),乙的速度为:(km/min),设乙在甲骑行x分钟时追上甲,根据题意得:0.2x=0.4(x﹣10),解得x=20.所以乙在甲骑行20分钟时追上甲.故答案为:20.18.解:动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8(cm);动点P在CD上运动时,对应的时间为4到6秒,易得:CD=2cm/秒×(6﹣4)秒=4(cm);动点P在DF上运动时,对应的时间为6到9秒,易得:DE=2cm/秒×(9﹣6)秒=6(cm),故图甲中的BC长是8cm,DE=6cm,EF=6﹣4=2(cm)∴AF=BC+DE=8+6=14(cm),∴b=9+(EF+AF)÷2=17,∴或,解得t=2.5或14.5.故答案为:2.5或14.5.19.解:由图象可得,当0<x≤2时,每千克苹果的单价是20÷2=10(元),当x>2时,每千克苹果的单价是(36﹣20)÷(4﹣2)=8(元),故一次购买5千克这种苹果需要花费:10×2+8×(5﹣2)=44(元),分五次每次购买1千克这种苹果需要花费:10×5=50(元),50﹣44=6(元),即一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省6元,故答案为:6元.20.解:(1)这是一次100米赛跑;(2)乙在这次赛跑中的速度为:100÷12.5=8(米/秒).故答案为:(1)100;(2)8.21.解:(1)这种车的油箱最多能装50升油.(2)加满油后可供该车行驶1000千米.(3)该车每行驶200千米消耗汽油10升.(4)油箱中的剩余油量小于10升时,车辆将自动报警,行驶800千米后,车辆将自动报警.故答案为:(1)50;(2)1000;(3)10;(4)800.22.解:(1)由图象可知,干旱持续到第10天,水库的蓄水量为1200万立方米.故答案为:1200;(2)(1500﹣1200)÷10=30(万立方米),(1500﹣360)÷30=38(天),答:38天后将发生严重干旱警报;(3)1500÷30﹣38=12(天),答:照这样干旱下去,预计再持续12天时,水库将干涸.23.解:(1)由图象可知,琳琳家离药店的距离为2.5km.故答案为:2.5;(2)由图象可知,琳琳邮寄物品用了:65﹣45=20(分钟),故答案为:20;(3)从药店步行到邮局的路程为1km,时间为15min,所以速度为km/min;从邮局步行回家的路程为1.5km,时间为25min,所以速度为:(km/min);(4)图中点P的意义是:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.故答案为:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.24.解:(1)由图示信息可知,小张家距离景区200千米,在景区停留了15﹣10.5=4.5(小时),所以游玩了4.5小时.故答案为:200;4.5;(2)120÷(9.5﹣8)=80(千米/时)=0.8(小时),10.5﹣9.5﹣0.8=0.2(小时).故他加油共用了0.2小时;(3)200÷=2.5(小时),9.5﹣8+0.8+2.5=4.8(小时),10×4.8﹣25=23(升).故小张在加油站至少加23升油才能开回家.25.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);(2)小明共用了30分钟到学校;(3)修车前速度:3÷10=0.3千米/分,修车后速度:5÷15=千米/分;(4)8÷(分种),30﹣(分钟),故他比实际情况早到分钟.26.解:(1)观察两函数图象,发现:小凡先出发,比小光先出发了10分钟.故答案为:小凡;10;(2)小光的速度为:5÷(50﹣10)=(千米/分钟),小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去图书馆的路上相遇,故答案为:34;(3)小凡的平均速度为:=10(千米/小时),小光的平均速度为:5÷=7.5(千米/小时).27.解:(1)上表反映了:弹簧的长度(cm)与所挂物体的质量(kg)之间的关系,物体的质量是自变量,弹簧的长度是因变量;(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么y与x的关系式为:y=0.5x+12;(3)当x=14时,y=0.5×14+12=19.答:当挂重为14千克时,弹簧的长度19cm。

专题26 用频率估计概率-【微专题】2022-2023学年七年级数学下册常考点微专题提分精练

专题26 用频率估计概率-【微专题】2022-2023学年七年级数学下册常考点微专题提分精练

专题26 用频率估计概率1. 某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C. 袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D. 掷一个质地均匀的正六面体骰子,向上的面点数是偶数2. 甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A. 掷一枚正六面体的骰子,出现1点的概率B. 一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被2整除的概率3. 不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,再随机摸出一个,下图显示了某数学小组开展上述摸球活动的某次实验的结果.下面四个推断中正确的是( )①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率是0.33;②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35;③可以根据本次实验结果,计算出盒子中约有红球7个;④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率一定是0.40.A. ①②B. ①③C. ②③D. ②④4. 如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为8m ,宽为5m 的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( )A. 212mB. 214mC. 216mD. 218m 5. 一个袋子中装有12个球 (袋中每个球除颜色外其余都相同). 其活动小组想估计袋子中红球的个数,分10个组进行摸球试验,每一组做400次试验,汇总后,摸到红球的次数为3000次.请你估计袋中红球接近()A. 3B. 4C. 6D. 9第II卷(非选择题)二、解答题6. 黔东南州某校数学兴趣小组开展摸球试验,具体操作如下:在一个不透明的盒子里装有黑、白两种颜色的小球共4个,这些球除颜色外无其它差别,将球搅匀后从中随机摸出一个球记下颜色,然后再把它放回盒子里搅匀,再随机摸出一球记下颜色,不断重复摸球实验.下表是这次活动的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数263850127197251m摸到白球的频率0.2600.2530.2500.2540.2460.251mn(1)请你根据上表统计数据估计:从不透明的盒子里随机摸出一个球,摸出的球是白球的概率约为___________(精确到0.01);(2)试估算盒子里有多少个白球?(3)根据第(2)题的估算结果,若从盒子里随机摸出两球,请画树状图或列表求“摸到两个颜色相同小球”的概率.7. 一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2、3、4、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如表:摸球总次数20306090120180240330450“和为7”出现的10132430375882110150频数“和为7”出现的频率0.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率是___________;(2)当5x=时,请用列表法或树状图法计算“和为7”的概率.8. 在一个不透明的口袋里装有n个相同的红球,为了用估计绕中红球的数量,八(1)学生在数学实验分组做摸球试验:每将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个并记下颜色,再把它放回袋中,不断重复,下表是统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012601500摸到白球的频数n60a247365484609摸到白球的频率ns0.4000.420.4120.4060.403b(1)按表格数据格式,表中的a=_______,b=________;(2)请估计:当次数s很大时,摸到到白球的频率将会接近_________(精确到0.1);(3)请推算:摸到红球的概率是_________(精确到0.1);(4)根据(3)中结果,试估算:这个不透明的口袋中红球的数量n的值.9. 在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116295480601摸到白球的频率mn0.590.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)试估算口袋中红球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?10. 2020年南宁市开展创建全国文明城市活动,青秀区创城办招募了大量“卫生保洁”和“交通引导”志愿者(一人只参与一个项目),开展一段时间后,创城办决定派数位调查员分别调查这两个项目的开展情况.(1)调查员小明被分配到调查“交通引导”项目的概率是 ;(2)为掌握“交通引导”志愿志愿者早上7:20按时到位情况,小明对部分志愿者进行调查并整理,得到如下数据:调查总人数2050100300500按时到位人数184694283472按时到位频率0.9000.9200.9400.9430.944分析上表中的数据,估算“交通引导”志愿者早上7:20按时到位的概率为 (精确到0.01);②请估计4800名“交通引导”志愿者早上7:20能按时到位的人数.11. 某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;(2)按此市场调节的观律,①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.12. 小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:掷石子次数石子落在的区域ABC50次150次300次石子落在圆内(含圆上)的次数m144393石子落在阴影内的次数n1985186(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.13. 一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?14. 在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别,每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回,在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验,下图显示的是这个试验中摸出一个球是红球的结果.(1)根据所学的频率与概率关系的知识,估计从这个不透明的帆布袋中随机摸出一个球是红球的概率是______,其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列举法求摸出的两个球刚好一个是红球和一个是白球的概率.15. 在一个不透明的箱子中装有形状、大小都一样的小球,其中红色小球有3个,蓝色小球有1个.(1)从箱子中任意摸出一个小球,恰好是红色的概率为______ ;(2)从箱子中任意摸出两个小球,两个小球颜色恰好不同的概率为______ ;(3)将摸出的小球全部放回后,又放入n个蓝色小球,摇晃均匀后任意摸出一个,记下颜色后放回,经过大量反复地实验,发现摸到蓝色小球的频率约为23,则n ______.16. 下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n50010001500200030004000发芽的粒数m4719461425189828533812发芽频率mn0.9420.946x0.949y0.953(1)求表中x,y的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.17. 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生哪种结果,在烧制前无法预知,所以这是一种随机现象.由于烧制结果不是等可能的,所以我们常用合格品的频率来估计合格品的概率.某瓷砖厂对最近出炉的一批瓷砖进行了质量抽检,结果如下:抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924合格品频率nm0.9500.960a0.9630.9620.9620.9630.961b (1)计算:=a________;b=________.(结果保留三位小数)(2)根据上表,在这批瓷砖中任取一个,它为合格品的概率大约是多少?(结果保留两位小数)18. 【数学试验】数学学习小组在学习“用频率估计概率”的数学活动课上,做投掷骰子(质地均匀的正方体)试验,他们共做了100次试验,试验的结果如下:向上点数123456出现次数1219151820x(1)求表格中x的值;(2)计算“3点朝上”的频率.(3)【数学发现】数学学习小组针对数学试验的结果提出结论:“根据试验及‘用频率估计概率’的知识,出现1点朝上的概率是12%.”你认为数学学习小组的结论正确吗?并说明理由.(4)【结论应用】在一个不透明的盒子里,装有40个黑球和若干个白球,它们除颜色外都相同,搅匀后从中任意摸出一个球,记下颜色再把它放回盒子中,不断重复试验,统计结果发现,随着试验次数越来越多,摸到黑球的频率逐渐稳定在0.2左右.据此估计盒子中大约有白球多少个?19. 某运动员进行打靶训练,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计的图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中想要打中靶心180枪,请计算出他还需要打大约多少枪?20. 为了加强疫情防控,某校从4月初开始启动闭环管理,要求所有的学生午餐统一在学校食堂就餐.为了加强对食堂的监控,有效保证饮食质量,学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分.将本次调查结果制成如下统计表:评分/分45678910人数/人6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是______分;(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬;6~8分为“比较满意”,提醒食堂进行改善;0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)专题26 用频率估计概率【1题答案】【答案】D【解析】【分析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答.【详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为13,错误.(2)B事件的概率为14,错误.(3)C事件概率为23,错误.(4)D事件的概率为12,正确.故选D.【点睛】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.视频【2题答案】【答案】B【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率1 3≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为12,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.【3题答案】【答案】C【解析】【分析】根据概率公式和给出的摸到红球的频率示意图分别对每一项进行分析,即可得出答案.【详解】解:①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率接近0.33,故本选项推理错误;②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35,故本选项推理正确;③可以根据本次实验结果,计算出盒子中约有红球200.357⨯=(个),故本选项推理正确;④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率也是0.35,故本选项推理错误.所以,正确的推断是②③.故选:C【点睛】此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.【4题答案】【答案】B【解析】【分析】根据折线统计图知,当实验的次数逐渐增加时,样本的频率稳定在0.35,因此用频率估计概率,再根据几何概率知,不规则图案的面积与矩形面积的比为0.35,即可求得不规则图案的面积.【详解】p 由折线统计图知,随着实验次数的增加,小球落在不规则图案上的频率稳定在0.35,于是把0.35作为概率.设不规则图案的面积为x cm 2,则有0.3585x =⨯解得:x=14即不规则图案的面积为14cm2.故选:B.【点睛】本题考查了几何概率以及用频率估计概率,并在此基础上进行了题目创新,关键在于读懂折线统计图的含义,随着实验次数的增加,频率稳定于0.35附近,由此得实验的频率,并把它作为概率.这对学生知识的灵活应用提出了更高的要求.【5题答案】【答案】D【解析】【分析】首先由分10个组进行摸球试验,每一组做400次试验,可求得共进行试验的次数,再由摸到红球的次数为3000次得出口袋中红色球的概率,进而求出红球个数即可.【详解】解:∵分10个组进行摸球试验,每一组做400次试验,∴共进行试验的次数为:104004000⨯=(次),∵把结果汇总起来后,摸到红球的次数为3000次,∴摸到红球的概率为:30003 40004=,∴袋中红球接近312=94⨯(个),故选:D.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值求出概率是解题关键.第II卷(非选择题)二、解答题【6题答案】【答案】(1)0.25(2)1 (3)12【解析】【分析】(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此可得.(2)设盒子里有x 个白球,根据概率公式列出算式,再进行计算即可得出答案;(3)先利用列表法展示所有12种等可能的结果数,再找出“摸到两个颜色相同小球”的结果数,然后根据概率公式求解.【小问1详解】从不透明的盒子里随机摸出一个球,摸出的球是白球的概率约为0.25;故答案为:0.25;【小问2详解】设盒子里有x 个白球,根据题意,得:0.254x =,解得:1x =,∴盒子里有1个白球.【小问3详解】随机摸出两球的树状图如下:共有12种等可能结果,而“摸到的两个球是颜色相同的小球”6种结果,“摸到两个颜色相同小球”的概率是61122=.【点睛】本题主要考查利用频率估计概率,解题的关键是掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【7题答案】【答案】(1)0.33(2)见解析,13【解析】【分析】(1)由频率估计概率可得答案;(2)先画树状图,得到所有等可能的结果,再得到符合条件的结果数,利用概率公式进行计算即可.【小问1详解】利用图表得出:实验次数越大越接近实际概率,所以出现“和为7”的概率是0.33;【小问2详解】当5x=时,如图,共有12种情况,和是7的情况共4种,“和为7”的概率41 123 ==.【点睛】本题考查的利用频率估计概率,利用画树状图求解随机事件的概率,熟练的画树状图得到所有的等可能的结果数与符合条件的结果数是解本题的关键.【8题答案】【答案】(1)126,0.406(2)0.4(3)0.6(4)15【解析】【分析】(1)根据频率=频数÷样本总数分别求得a、b的值即可;(2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;(3)摸到红球的概率为10.40.6-=;(4)根据红球的概率公式得到相应方程求解即可;【小问1详解】3000.42126a=⨯=,60915000.406b=÷=;故答案为:126,0.406;【小问2详解】当次数s很大时,摸到白球的频率将会接近0.40;故答案为: 0.4;【小问3详解】摸到红球的概率是10.40.6-=;故答案为: 0.6;【小问4详解】设红球有x 个,根据题意得:0.610x x =+解得:15x =,经检验15x =是原方程的解,故答案为: 15.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.【9题答案】【答案】(1)0.6;(2)可估计口袋中红球的个数为2只;(3)两只球颜色不同的概率为35.【解析】【分析】(1)根据统计数据,当 n 很大时,摸到白球的频率接近0.6;(1)根据利用频率估计概率,可估计摸到白球的概率为0.6,则摸到红球的概率为0.4,然后利用概率公式计算红球的个数;(1)先利用树状图法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【小问1详解】解:当n 很大时,摸到白球的频率将会接近0.6;故答案为:0.6;【小问2详解】解:由(1)摸到白球的概率为0.6,则摸到红球的概率为10.60.4-=,所以可估计口袋中红球的个数为:50.42⨯=(只);【小问3详解】解:画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率123 205 ==.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,理解并掌握这个固定的近似值就是这个事件的概率是解题的关键.【10题答案】【答案】(1)12(2)①0.94;②4512人【解析】【分析】(1)直接根据概率公式求解即可;(2)①随着调查总人数的增加,按时到位的频率逐渐稳定于0.94,利用频率估计概率即可得出答案;②总人数乘以按时到位的概率即可.【小问1详解】解:调查员小明被分配到调查“交通引导”项目的概率是12,故答案为:12;【小问2详解】解:①由表中数据知,随着调查总人数的增加,按时到位的频率逐渐稳定于0.94,所以估计“交通引导”志愿者早上7:20按时到位的概率为0.94,故答案为:0.94;②48000.944512⨯=(人),答:估计4800名“交通引导”志愿者早上7:20能按时到位的有4512人.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【11题答案】【答案】(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【解析】【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.(2)①根据表格求出销售量y 与售价x 的函数关系式,代入x =16.5计算即可;②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为()1000010.19000⨯-=千克(2)①设销售量y 与售价x 的函数关系式为y kx b=+由题意可得函数图像过()18,800及()17,850两点8001885017k b k b=+⎧⎨=+⎩得501700k b =-⎧⎨=⎩∴y 与x 的函数关系式为501700y x =-+把16.5x =代入,875y =∴当售价定为16.5元/千克,日销售量为875千克②依题意得:12天内售完9000千克柑橘故日销售量至少为:900075012=(千克)∴501700750y x =-+≥解得19x ≤设利润为w 元,则2(9)(501700)50215015300w x x x x =-⨯-+=-+-∴对称轴为5.21=x ∴当19x ≤时w 随x 的增大而增大∴当19x =时销售利润最大,最大利润为(199)(50191700)7500-⨯-⨯+=(元)【点睛】此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式.【12题答案】【答案】(1)12;(2)3π.【解析】【分析】(1)根据次数越多,频率越稳定,用300次时石子落在圆内(含圆上)的次数÷ 石子落在阴影内的次数即可得答案.(2)根据石子落在圆内和石子落在阴影内的次数的关系求出圆的面积约占封闭图形ABC 面积的比例即可求出封闭图形ABC 的大致面积.【详解】(1)根据统计表,可得石子落在圆内的概率与落在阴影部分的概率之比k=93186=12;(2)石子落在圆内和石子落在阴影内的次数关系,随着试验次数的增多,逐渐趋向于为1:2,所以圆的面积约占封闭图形ABC 面积的13,因为S 圆=π,所以封闭图形ABC 的面积约为3π.【点睛】本题考查的是利用频率计算概率在实际生活中的运用,关键是得到阴影与圆的比;用规则图形来估计不规则图形的比是常用的方法.【13题答案】【答案】(1)小明可估计口袋中的白球的个数是6个.(2)需准备720个红球.【解析】【详解】试题分析:(1)用白球的个数:(白球的个数+红球的个数)=40:100,列方程求解;(2)用彩球的总数乘以10040100-,即可得到红球的个数.试题解析:(1)解:设白球的个数为x个,根据题意得:解得:x=6小明可估计口袋中的白球的个数是6个.(2)1200× =720.答:需准备720个红球.点睛:本题主要考查了用样本估计总体,其本质是利用概率相等来解决问题,如口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,随机摸出一个,摸出白球的概率与重复100次摸到40次白球的概率相同,从而列方程求解.【14题答案】【答案】(1)0.75,3(2)12【解析】【分析】(1)根据图表中的频率分布可估计概率,再利用总数乘以概率可得红球个数;(2)列出表格,利用概率公式计算.【小问1详解】解:由图表可知:摸出红球的频率分布在0.75上下,则可估计随机摸出一个球是红球的概率是0.75,红球的个数是:40.753⨯=,故答案为:0.75,3;【小问2详解】由(1)可知帆布袋中有3个红球和1个白球.列表如下:白红1红2红3白白,红1白,红2白,红3。

2020-2021学年苏科版数学七年级下《二元一次方程组》实际应用培优提升(二)含答案

2020-2021学年苏科版数学七年级下《二元一次方程组》实际应用培优提升(二)含答案

苏科版数学七年级下《二元一次方程组》实际应用培优专练习(二)1.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.2.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.3.某厂工人小王某月工作的部分信息如下:信息一:工作时间为每天上午8:00~12:00,下午14:00~16:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系如表:生产甲种产品件数(件)生产乙种产品件数(件)所用总时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产1件甲种产品可得1.5元,每生产1件乙种产品可得2.8元.根据以上信息,回答下列问题:(1)小王每生产1件甲种产品、1件乙种产品分别需要多少分钟?(2)小王该月最多能得多少元?此时分别生产甲、乙两种产品多少件?4.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.5.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?6.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?7.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周 5 6 2310第二周8 9 3540 (1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案:若不能,请说明理由.8.某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.9.今年新型冠状病毒肺炎(COVID﹣19,简称为新冠肺炎)疫情在全球蔓延,我们国家坚决打赢这场无硝烟的人民战争,我市各单位为同学们的返校复学采取了一系列前所未有的举措.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子,原来购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个毽子共需120元.(1)求跳绳和毽子的售价原来分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.10.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?11.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.12.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?13.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)1000 1200 1500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).14.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)200 250 300(1)全部物资可用甲型车8辆,乙型车5量,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.2.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.3.解:(1)设小王每生产1件甲种产品需要x分钟,每生产1件乙种产品需要y分钟,依题意,得:,解得:.答:小王每生产1件甲种产品需要15分钟,每生产1件乙种产品需要20分钟.(2)设小王该月生产m件甲种产品,该月获得的报酬为w元,则小王该月生产件乙种产品,依题意,得:w=1.5m+2.8×=﹣0.6m+1260.∵﹣0.6<0,∴当m=60时,w取得最大值,最大值为1224,此时=405.答:小王该月最多能得1224元,此时生产甲种产品60件,乙种产品405件.4.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.5.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.6.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.7.解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y 元/台,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元/台,B种型号的电风扇的销售单价为260元/台.(2)设再购进A种型号的电风扇m台,则购进B种型号的电风扇(120﹣m)台,依题意,得:2310+3540+150m+260(120﹣m)﹣120(5+8+m)﹣190[6+9+(120﹣m)]=8240,解得:m=40,∴120﹣m=80.答:再购进A种型号的电风扇40台,B种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标.8.解:(1)设美术社团购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:美术社团购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:美术社团这次义卖活动共获得3800元利润.9.解:(1)设跳绳原来的售价为x元,毽子原来的售价为y元,依题意得:,解得:.答:跳绳原来的售价为20元,毽子原来的售价为16元.(2)设学校购进m根跳绳,则购进(400﹣m)个毽子,依题意得:,解得:300≤m≤310.设学校购进跳绳和毽子一共花了w元,则w=20×0.8m+16×0.75(400﹣m)=4m+4800,∵4>0,∴w随m的增大而增大,∴当m=300时,w取最小值,此时400﹣m=100.∴学校花钱最少的购买方案为:购进跳绳300根,毽子100个.10.解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.11.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.12.解:(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,,解得,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,利润为w元,w=(180﹣100)a+(250﹣150)b=80a+100b,∵某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台,∴100a+150b=1000且a≥1,b≥1,∴2a+3b=20(a≥1,b≥1),∴或或,∴当a=1,b=6时,w=80×1+100×6=680,当a=4,b=4时,w=80×4+100×4=720,当a=7,b=2时,w=80×7+100×2=760,由上可得,当a=7,b=2时,w取得最大值,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风2台.13.解:(1)设需甲种车型x辆,乙种车型y辆,由题意得:,解得:,答:需甲种车型6辆,需乙种车型15辆;(2)设需甲车型x辆,乙车型y辆,丙车型z辆,由题意得:,消去z得:5x+2y=30,x=6﹣y,∵甲、乙、丙三种车型都参与运送,∴x、y、z是正整数,且不大于18,得y=5,10,解得:,,∴有两种运送方案:①甲车型4辆,乙车型5辆,丙车型9辆;②甲车型2辆,乙车型10辆,丙车型6辆;∴应该是甲车型4辆,乙车型5辆,丙车型6辆;或甲车型2辆,乙车型10辆,丙车型3辆;两种方案的运费分别是:①1000×4+1200×5+1500×9=23500(元),②1000×2+1200×10+1500×6=23000(元),∵23000<23500,∴甲车型2辆,乙车型10辆,丙车型6辆,运费最省.14.解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.。

二元一次方程组的应用12大类型大题专练-2022-2023学年七年级数学下学期复习备考高分秘籍人教版

二元一次方程组的应用12大类型大题专练-2022-2023学年七年级数学下学期复习备考高分秘籍人教版

2022-2023学年七年级数学下学期复习备考高分秘籍【人教版】专题2.10二元一次方程组的应用12大类型大题专练(培优强化48道)类型一、和差倍分问题,从乙库运出存粮的40%,那么乙库所余粮食是甲库1.若甲、乙两库共存粮95吨,现从甲库运出存粮的23的2倍,问甲、乙两库原来各有多少吨粮食?2.近年来,妇女权益得到有力保障,参加养老保险(即城镇职工养老保险和城乡居民养老保险)的妇女人数越来越多,2022年某地区参加养老保险的妇女共有165万人,比2010年增加120万人,其中参加城镇职工养老保险和城乡居民养老保险的人数分别是2010年的1.5倍和8倍,分别求2022年参加城镇职工养老保险和城乡居民养老保险的妇女人数.3.学校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.4.疫情防控常态化后,核酸检测进入校园.某校一次核酸检测时,发现操场上恰有100个同学排成甲、乙两队,且甲队人数是乙队的2倍多7人,求甲、乙两队的学生数.类型二、分配问题5.小明在某商店购买商品A,共三次,只有其中一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;6.张氏包装厂承接了一批纸盒加工任务,用如图①所示的长方形和正方形纸板作侧面和底面,做成如图②所示的竖式与横式两种上面无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需正方形纸板___________张(直接填空),需长方形纸板___________张(直接填空).(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(要求列二元一次方程组解决此问题)7.某工厂车间采用智能数字机床生产纸杯和杯盖,已知一台机床每小时平均可以生产纸杯600个或者生产杯盖800个,车间共有14台机床,应怎样分配机床,才能使每小时生产的杯身和杯盖正好配套?8.某蔬菜基地第一次向甲地运输124吨蔬菜,恰好装满5辆大货车和2辆小货车;第二次向甲地运输180吨蔬菜,恰好装满6辆大货车和5辆小货车.(1)装满2辆大货车和3辆小货车能运输多少吨蔬菜?(2)第三次安排大、小货车共12辆向甲地运输208吨蔬菜,若要使得每辆车都装满,则大货车和小货车分别需要多少辆?类型三、行程问题9.某人从吉林驱车赶往长春共用2小时,吉林至长春全程为120km,全程分为公路和市区道路两部分,在公路上行驶的平均速度为80km/h,在市区道路上行驶的平均速度为40km/h.根据题意,甲、乙两名同学分别列出的方程组一部分如下:甲:{x+y=120x80+y40=□乙:{80x+40y==(1)请你在方框中补全甲、乙两名同学所列的方程组;(2)求这个人在公路上驱车行驶的时间.10.已知A,B两地相距120千米,甲、乙两车分别从A,B两地同时出发,相向而行,其终点分别为B,A 两地.两车均先以a千米每小时的速度行驶,再以b千米每小时的速度行驶,且甲车以两种速度行驶的路程相等,乙车以两种速度行驶的时间相等.(1)若b=32a,且甲车行驶的总时间为54小时,求a和b的值;(2)若b−a=30,且乙车行驶的总时间为85小时.①求a和b的值;②求两车相遇时,离A地多少千米.11.A、B两地相距4千米,甲从A地出发步行到B地,乙从B地出发骑自行车到A地,两人同时出发,30分钟后两人相遇,又经过10分钟,甲剩余路程为乙剩余路程的3倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后多长时间两人相距1千米?12.小红家离学校1400米.其中有一段为上坡路,另一段为下坡路.她跑步去学校共用10分钟,已知小红在上坡路上的平均速度是4.8千米/时,而她在下坡路上的平均速度是12千米/时,小红上坡、下坡各用多少时间?类型四、工程问题13.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.14.甲、乙、丙三人完成一项工程,其中甲的工作效率是乙和丙工作效率之和的13,乙的工作效率是甲和丙工作效率之和的14、已知甲、乙合作完成这项工作需要8天,则甲、丙合作完成这项工作需要多少天?15.某建筑公司有A、B两个工程队,先后接力完成河边道路整治任务,A工程队每天整治15米,B工程队每天整治10米,共用时25天.(1)若这段河边道路长为300米,根据题意甲、乙两个同学分别列出了尚不完整的方程组如下:甲:{x+y=15x+=乙:{x+y=x15+y10=根据甲、乙两名同学所列的方程组,请你在下列选项中选出未知数x,y表示的意义,A.A的工作天数B.B的工作天数C.A的工作量D.B的工作量E.A的工作效率F.B的工作效率甲:x表示______,y表示______;乙:x表示______,y表示______;(2)在(1)的条件下,求A、B两工程队分别整治河道多少米?(3)若A工程队工作一天的费用是0.6万元,B工程队工作一天的费用是0.8万元,要使总费用不超过18万元,A工程队至少工作多少天?16.目前,近几年来,新能源汽车在中国已然成为汽车工业发展的主流趋势,某汽车制造厂开发了一款新式电动汽车,计划一年生产安装288辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:2名熟练工和1名新工人每月可安装10辆电动汽车;3名熟练工和2名新工人每月可安装16辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调n(0<n<5)名熟练工,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?类型五、销售问题17.列方程组解应用题:为了丰富学生的课外体育活动,八年级2班需要购买排球和跳绳,根据下列对话,求出肖雨所购买的排球和跳绳的单价.18.儿童节来临之际,重庆沁园食品有限公司推出了“纯享七星伴月糕点”礼盒,由一个香草冰淇淋口味的明月月饼和七款明星小饼干组成,明月月饼口味不可选择,但明星小饼干的口味可以自由搭配.(1)现有A、B两种礼盒的“纯享七星伴月糕点”,五月份礼盒上市,经经销商初步定价,买6个A礼盒的钱刚好可以购买5个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多210元.求A、B两种礼盒的售价.(2)在第一问的基础上,六月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打九折销售,B礼盒,B礼盒全部售卖完,但卖出去的B礼盒的每盒售价直接降价m元,结果六月份售卖结束,A礼盒还剩余了116数量为A礼盒总数量的15,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为32250元,每盒B礼盒的成本价为300元,六月份销售结束,该经销商的利润为20%,求m的值.19.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20.某商场从厂家购进了A、B两种品牌篮球,第一批购买了这两种品牌篮球各40个,共花费了7200元.全部销售完后,商家打算再购进一批这两种品牌的篮球,最终第二批购进50个A品牌篮球和30个B品牌篮球共花费了7400元.两次购进A、B两种篮球进价保持不变.(1)求A、B两种品牌篮球进价各为多少元一个;(2)第二批次篮球在销售过程中,A品牌篮球每个原售价为140元,售出40个后出现滞销,商场决定打折出售剩余的A品牌篮球;B品牌篮球每个按进价加价30%销售,很快全部售出.已知第二批次两种品牌篮球全部售出后共获利2440元,求A品牌篮球打几折出售?类型六、方案问题21.面对当前疫情形势,某工厂迅速反应,研发出两种新型口罩和消毒液.已知1平方米甲型布料可以制成20个A型口罩和10个B型口罩.1平方米乙型布料可以制成10个A型口罩和20个B型口罩,现需要制作1500个A型口罩和1800个B型口罩.为了支援某灾区,现有消毒液19吨.计划同时租用甲型车a辆,乙型车b辆,一次运完,甲型车一次满载2吨,乙型车一次满载3吨,且恰好每辆车都载满消毒液.根据以上信息,解答下列问题:(1)恰好需要甲,乙布料各多少平方米?(2)在运送消毒液时,请你设计所有可能的租车方案.22.某商场计划拨款9万元购进50台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,问有多少种不同的进货方案?并写出这些方案.(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在第(1)小题的几个方案中,为使销售时获得利润最多,你选择哪种方案?并说明理由.23.请根据图中提供的信息,回答下列问题.(1)KN95型口罩与普通医用口罩的单价分别是多少元?(2)甲、乙两家药店同时出售同样的KN95型口罩与普通医用口罩.5月,两家药店开展促销活动.甲药店规定:这两种口罩都打九折.乙药店规定:买一个KN95型口罩赠送一个普通医用口罩.若某家庭想要买20个KN95型口罩和50个普通医用口罩,请问选择哪家药店购买更合算,并说明理由.24.元旦期间,七(1)班明明等同学随家长一同到某景区游玩,该景区门票价格规定如图:(1)明明他们一共12人,分别按成人和学生购票,共需550元,求他们一共去了几个成人,几个学生?(2)购完票后,明明发现,如果购团体票更省钱,正在此时,七(2)班涛涛等8名同学和他们的12名家长共20人也来购票,请你为七(2)班设计出最省钱的购票方案,并求出此时的购票费用.类型七、年龄问题25.根据小头爸爸与大头儿子的对话,求出大头儿子现在的年龄.小头爸爸:儿子,现在我的年龄比你大23岁.大头儿子:5年后,您的年龄比我的年龄的2倍还多8岁.26.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答)(2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?27.已知甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,求甲、乙现在的年龄的差.28.10年前,小明妈妈的年龄是小明的6倍;10年后,小明妈妈的年龄将是小明的2倍.小明和他妈妈现在的年龄分别是多少?类型八、数字问题29.我们知道:如果mx+n=0,其中m,n为有理数,x为无理数,那么m=0且n=0.(1)如果(a−3)√2+b+2=0,其中a,b为有理数,那么a=_______,b=________.(2)若x,y均为有理数,并且满足x2+2y+√2y=17−4√2,求x−2y的值.30.小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!31.有一个三位数,现将最左边的数字移到最右边,得到的数比原来的数小45,又已知百位数字的9倍比由十位数字和个位数字组成的两位数小3,求原来的三位数.32.有一个两位数,个位上的数比十位上的数的3倍多2,若把个位数与十位数对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.类型九、几何问题33.如图,用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的面积是多少平方厘米?34.小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?35.在长为10m,宽为8m的长方形空地中,沿平行于长方形各边的方向分割出三个全等的小长方形花圃,其示意图如图所示.则小长方形花圃的长和宽分别是多少?36.某居民小区为了改善小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成全等的9块小长方形,如图所示,小长方形的长和宽各是多少米?类型十、图表信息问题37.疫情期间,某人要将一批抗疫物资从海口运往东方,准备租用汽车运输公司的甲乙两种货车、已知过去两次租用这两种货车(均装满货物)的情况如表:甲种货车(辆)乙种资车(辆)总量(吨)第一次4531第二次3630问甲、乙两种货车每辆分别能装货多少吨?38.某山区有23名中、小学生因贫困失学需要资助,已知资助一名中学生的学习费用为a元,资助一名小学生的学习费用为b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好资助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)资助贫困中学生人数(名)资助贫困小学生人数(名)初一年400024级初二年420033级初三年7400级(1)求a、b的值;(2)初三年级学生的捐款恰好解决了其余贫困中小学生的学习费用,求初三年级学生的捐款可资助的贫困中、小学生人数分别为多少.39.在下面3×3的方阵图中每行、每列及对角线上的3个数(或代数式)的和都相等.(1)如图1,则m=________,n=________(2)如图2,则a=________(用含b的代数式表示)(3)如图3,则a=________,b=________40.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,购买4千克的甲食材比购买5千克的乙食材多花60元.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克(1)甲、乙两种食材每千克的进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完,那么该公司每日购进甲、乙两种食材各多少千克?类型十一、古代数学问题41.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问兽、禽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?42.我国古代数学名著《九章算术》是人类科学史上应用数学的“算经之首”,上面记载有这样一个问题:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?请你解答这个问题.43.《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…”问:1个大桶和1个小桶分别盛酒多少斛?44.我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲大半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的2,那么乙也共有钱50,问甲、乙二3人各带了多少钱?(1)求甲、乙两人各带的钱数;(2)若小明、小颖去文具店购买作业本,两人带的钱数(单位:元)恰好等于甲、乙两人各带的钱数,已知作业本的单价为2.5元/本.由于开学之际,文具店搞促销活动,凡消费50元可以打八折,那么他们合起来购买可以比单独购买多多少本作业本?类型十二、开放性问题45.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a 阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q (6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.46.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.47.青山化工厂与A、B两地有公路、铁路相连这家工厂从A地购买一批每吨1000元的原料经铁路120km 和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地,已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表(表格内填化简的结果).原料x吨产品y吨合计(元)铁路运费公路运费根据上表列方程组求原料和产品的重量.(2)这批产品的销售款比原料费与运输费的和多多少元?48.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)。

幂的运算【单元提升卷】2022-2023学年七年级数学下学期核心考点

幂的运算【单元提升卷】2022-2023学年七年级数学下学期核心考点

第8章 幂的运算【单元提升卷】考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、单选题1. 如果()099,a =-()10.1b -=-,253c -⎛⎫=- ⎪⎝⎭,那么,,a b c 三数的大小为( )A. a b c >> B. a c b >> C. c a b >> D. c b a >>2. 给出下列四个算式:3227()()a a a --=- ,326()a a -=-,3342()a a a -÷=,633()()a a a -÷-=-,其中正确的有( )A. 1个B. 2个C. 3个D. 4个3. 把实数36.1210-⨯用小数表示为()A. 0.0612B. 6120C. 0.00612D. 6120004. 已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b 之值的叙述何者正确?( )A. 比1大B. 介于0、1之间C. 介于﹣1、0之间D. 比﹣1小5. 若A 为一个数,且5642711A =⨯⨯,则下列选项所表示的数是A 的因数的是( )A. 425⨯B. 73711⨯C. 4442711⨯⨯D. 6662711⨯⨯6. 计算2113()n n x x x -+ 的结果为( )A. 33n x + B. 63n x + C. 12n x D. 66n x +7. 计算()233a a ⋅的结果是( )A. 8a B. 9a C. 11a D. 18a 8. 下列运算正确的是( )A. 2m m m =B. ()33mn mn =C. ()326m m =D. 623m m m ÷= 9. 若3915()m n a b a b =,则,m n 的值分别为( )A. 9,5B. 3,5C. 5,3D. 6,1210. 已知5x =3,5y =2,则52x ﹣3y =( )A. 34 B. 1 C. 23 D. 98二、填空题11. 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅有0.00000000034米,将数据0.00000000034用科学记数法表示为_____________.12. 计算:(3x 2y )2=__.13. 计算1(1)2π--︒+=______.14. 当n 为奇数时,22()()n n a a -+-=________.15. 计算(-10)2+(-10)0+10-2×(-102)的结果是__________.16. 计算:(-m 2)3÷(-m 2)=________,(m 4·m 3)÷(m 2·m 4)=________.17. 计算:0.25×55=________;0.252019×(-4)2018=________.18. 在255,344,433,522这四个幂中,数值最大的一个是________.三、解答题19. 计算:(1)-102n ×100×(-10)2n -1;(2)[(-a )·(-b )2·a 2b 3c ]2;(3)(x 3)2÷x 2÷x -x 3÷(-x )4·(-x 4);(4)(-9)3×32()3-×31(3;(5)x n +1·x n -1·x ÷x m ;(6)a 2·a 3-(-a 2)3-2a ·(a 2)3-2[(a 3)3÷a 3].20. 用简便方法计算:(1)21(2)4×42;(2)(-0.25)12×413.21. 计算:(1)(-2)3+3×(-2)-21()4-;(2)5-11()3-+|-3|-(π-3)0.22. 已知10m =4,10n =5,求103m +2n 的值.23. 若82a +3×8b -2=810,求2a +b 的值.24. 已知a 3m =3,b 3n =2,求(a 2m )3+(b n )3-a 2m ·b n ·a 4m ·b 2n 的值.25. 阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).26. 阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,……我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,-10,20,……的第4项是_____________;(2)如果一列数a 1,a 2,a 3,……是等比数列,且公比是q ,那么根据上述规定有21a q a =,32a q a =,43a q a =,……因此,可以得到a 2=1a q ,23211a a q a q q a q ==⋅=,234311a a q a q q a q ==⋅=,……则a n =____________;(用含a 1与q 的代数式表示)(3)一个等比数列的第2项是6,第3项是-18,求它的第1项和第4项.第8章 幂的运算【单元提升卷】考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、单选题【1题答案】【答案】B【解析】【分析】分别计算出a 、b 、c 的值,然后比较有理数的大小即可.【详解】因为20159(99)1,(0.1)10,325a b c --⎛⎫=-==-=-=-= ⎪⎝⎭,所以a>c>b .故选B .【点睛】考查了负整数指数幂及零指数幂的知识,属于基础题,解答本题的关键是掌握负整数指数幂的运算法则.【2题答案】【答案】B【解析】【分析】直接利用幂的乘方运算法则以及同底数幂的乘法、除法运算法则分别计算得出答案.【详解】()()232347·a a a a a --=-=-;正确()236a a -=-;不正确,应该为:6a ()3342a a a -÷=;不正确,应该为:-5a ()()633a a a -÷-=-,正确故选B .【点睛】此题主要考查了幂的乘方运算、同底数幂的乘法、除法运算等知识,正确掌握运算法则是解题关键.【3题答案】【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【4题答案】【答案】B【解析】【分析】由科学记数法还原a 、b 两数,相减计算结果可得答案.【详解】∵a=3.1×10﹣4,b=5.2×10﹣8,∴a=0.00031、b=0.000000052,则a ﹣b=0.000309948,故选B .【点睛】本题主要考查科学记数法﹣表示较小的数,用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【5题答案】【答案】C【解析】【分析】根据所含的因数必须在原数里面存在的,且某一个数的次数要小于原数的次数将原式提取因式,即可得到答案.【详解】56444422711271127A =⨯⨯=⨯⨯⨯⨯所以,A 的因数中有4442711⨯⨯故选:C .【点睛】本题主要考查了同底数幂的乘法的逆用和幂的乘方、因数的求法,熟练掌握运算法则是解题的关键.【6题答案】【答案】D【解析】【分析】根据同底数幂相乘,底数不变,指数相加,再根据幂的乘方,底数不变,指数相乘求解即可.【详解】解: ()3211n nx x x -+⋅⋅=2113223()()n n n x x +-+++==66n x +.故选D .【点睛】本题考查了同底幂相乘,幂的乘方,解决此题的关键是熟练运用这些法则.【7题答案】【答案】B【解析】【分析】根据幂的乘方的性质和同底数幂的乘法计算即可.【详解】解:()233·a a =36·a a =9a 故选B.【点睛】本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.【8题答案】【答案】C【解析】【详解】A .同底数幂的乘法,底数不变指数相加,故A 不符合题意;B .积的乘方等于乘方的积,故B 不符合题意;C .幂的乘方底数不变指数相乘,故C 符合题意;D.同底数幂的除法,底数不变指数相减,故D不符合题意,故选:C.【点睛】本题主要考查了幂的乘方,同底数幂乘法和除法等知识,熟记公式是解答本题的关键.【9题答案】【答案】B【解析】【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n 即可.【详解】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.【10题答案】【答案】D【解析】【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【详解】∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y=2359=58xy.故选D.【点睛】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.二、填空题【11题答案】【答案】3.4×10-10【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000034=3.4×10-10.故答案为:3.4×10-10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【12题答案】【答案】9x 4y 2【解析】【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【详解】解:(3x 2y )2=32x 4y 2=9x 4y 2.故答案为∶ 9x 4y 2【13题答案】【答案】32.【解析】【详解】试题分析:原式=112+=32.故答案为32.考点:1.负整数指数幂;2.零指数幂.【14题答案】【答案】0【解析】【分析】根据幂的乘方以及积的乘方进行计算即可得出结果.【详解】解:∵n 为奇数,∴2222222()()(1)(1)0n n n n n n n a a a a a a -+-=-⨯+-⨯=-+=,故答案为:0.【点睛】本题考查了幂的乘方以及积的乘方,熟练掌握运算法则是解本题的关键.【15题答案】【答案】100【解析】【分析】分别根据零指数幂及负整数幂的计算法则、数的乘方法则计算出各数,再根据有理数混合运算的法则进行计算即可.【详解】原式=100+1-1100×100=101-1=100.故答案为:100.【点睛】本题考查的是负整数指数幂,熟知0指数幂及负整数幂的计算法则、数的乘方法则是解答此题的关键.【16题答案】【答案】①. m 4; ②. m 【解析】【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【详解】(-m 2)3÷(-m 2)=(-m 6)÷(-m 2)=m 4;(m 4·m 3)÷(m 2·m 4)= m 7÷m 6=m .故答案为m 4;m .【点睛】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.【17题答案】【答案】①. 1 ②. 0.25【解析】【分析】直接利用积的乘方运算法则将原式变形求出答案即可.【详解】5550.25(0.25)1⨯=⨯= ;[]2018201920180.25(4)0.25(4)0.250.25⨯-=⨯-⨯=【点睛】本题考查了积的乘方的逆运算,解题的关键是熟练掌握运算法则.【18题答案】【答案】344【解析】【分析】首先将各数化为指数一样数字,进而比较底数得出即可.【详解】∵255=(25)11,344=(34)11,433=(43)11,522=(52)11,则25=32,34=81,43=64,52=25,∴这四个数中,数值最大的一个是:344.故答案为344.【点睛】本题考查了幂的乘方,将各数化为指数相同的数字是解题关的键.三、解答题【19题答案】【答案】(1) 104n+1;(2) a6b10c2;(3) 2x3;(4) 8;(5) x2n-m+1;(6)-2a7-a6+a5.【解析】【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,分别计算即可.【详解】(1)-102n×100×(-10)2n-1,=-102n•102•(-102n-1),=102n+2+2n-1,=104n+1;(2)[(-a)(-b)2•a2b3c]2,=[(-a)b2•a2b3c]2,=(-a3b5c)2,=a6b10c2;(3)(x3)2÷x2÷x-x3÷(-x)4•(-x4),=x6÷x2÷x+x3÷x-1•x4,=x3+x3,=2x3;(4)(−9)3×(−23)3×(13)3,=[(-9)×(-23)×13]3,=23,=8.(5)x n+1·x n-1·x÷x m,= x2n+1÷x m,= x2n-m+1;(6)a2·a3-(-a2)3-2a·(a2)3-2[(a3)3÷a3].=a5+a6-2a7-2a6,=-2a7-a6+a5.【点睛】本题主要考查同底数的幂的乘法,幂的乘方的性质,积的乘方的性质,同底数幂的除法,熟练掌握运算性质并灵活运用是解题的关键.【20题答案】【答案】(1)81;(2) 4.【解析】【分析】根据幂的乘方法则:底数不变指数相乘,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘去做.【详解】(1)原式=2294×42=(94×4)2=92=81;(2)原式=(-14)12×413=(-14×4)12×4=(-1)12×4=1×4=4.【点睛】本题考查幂的乘方,底数不变指数相乘,以及积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【21题答案】【答案】(1)-30;(2) 4.【解析】【分析】按照实数的混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:(1)原式=-8+(-6)-16=-30.(2)原式=5-3+3-1=4.【点睛】本题考查的是实数的运算,零指数幂,负整数指数幂.【22题答案】【解析】【分析】由10m=4,10n=5,根据103m+2n=(10m)3•(10n)2即可求得答案.【详解】∵10m=4,10n=5,∴103m+2n=x3m+2n=(10m)3•(10n)2=(4)3×(5)2=1600.【点睛】此题考查了幂的乘方与同底数幂的乘法的性质.此题难度不大,注意掌握指数的变化是解此题的关键.【23题答案】【答案】9【解析】【分析】根据同底数幂的乘法,底数不变指数相加,可得a、b的关系,根据a、b 的关系,可得答案.【详解】82a+3•8b-2=810,82a+3+b-2=810,∴(2a+3)+(b-2)=10,2a+b+3-2=10,2a+b=9.【点睛】本题考查了同底数幂的乘法,底数不变指数相加是解题关键.【24题答案】【答案】-7【解析】【分析】根据整式的运算法则即可求出答案.【详解】当a3m=3,b3n=2时,原式=(a3m)2+(b3n)-a6m b3n=(a3m)2+(b3n)-(a3m)2b3n=9+2-9×2=11-18=-7【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【答案】(1)211﹣1(2)1+3+32+33+34+…+3n=131 2n+-.【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=131 2n+-,则1+3+32+33+34+…+3n=131 2n+-.视频【26题答案】【答案】(1)-40;(2) a1q n-1;(3)第1项是-2,第4项是54【解析】【分析】(1),根据题意可得等比数列5,-10,20,…中,从第2项起,每一项与它前一项的比都等于-2;由此即可得到第4项的数;(2),观察数据a2、a3、a4、…的特点,找到规律,即可得到a n的表达式;(3),设公比为x,根据等比数列公比的定义可得出x的值,然后根据a n的表达式即可求得第1项和第4项.【详解】解(1)∵--10÷5=-2,20×(-2)=-40,所以第4项是-40 ;故答案为:-40;(2)通过观察发现,第n 项是首项a 1乘以公比q 的(n -1)次方,即:11n n a a q -=.故答案为:11n n a a q -=;(3)-18÷6=-3,所以它的第1项6÷(-3)=-2;第4项-18×(-3)=54.【点睛】此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,应用发现的规律解决问题.分析数据获取信息是必须掌握的数学能力,如本题观察数据a 2、a 3、a 4、…的特点可得a n =a 1q n -1.。

上海民办杨浦凯慧初级中学初中数学七年级下期中测试(培优提高)

上海民办杨浦凯慧初级中学初中数学七年级下期中测试(培优提高)

一、选择题1.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,2.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( ) A .(3,2)B .(6,0)C .(-6,0)D .(6,2)3.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( ) A .B .C .D .4.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .95.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-16.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .327.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .8.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是±1C .255=±D .2是4的平方根 9.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b +=11.把一张50元的人民币换成10元或5元的人民币,共有( ) A .4种换法 B .5种换法C .6种换法D .7种换法12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°13.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( ) A .1个B .2个C .3个D .4个14.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍 B .纵向拉伸为原来的2倍 C .横向压缩为原来的12 D .纵向压缩为原来的1215.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm二、填空题16.如图, 直线AB CD 、相交于点O , OE AB ⊥于点O , OF 平分AOE ∠,11530'∠=︒,则下列结论:①245︒∠=; ②13∠=∠; ③AOD ∠与1∠互为补角; ④1∠的余角等于7530'︒,其中正确的是___________(填序号)17.请设计一个解为51x y =⎧⎨=⎩的二元一次方程组________________.18.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=____.19.已知:m 、n 为两个连续的整数,且m <11<n ,则mn =_____. 20.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.21.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________。

七下学考精炼数学参考答案

七下学考精炼数学参考答案

七下学考精炼数学参考答案七下学考精炼数学参考答案近年来,学生们的学习压力越来越大,对于各科目的学考,尤其是数学,更是让学生们感到头疼。

为了帮助学生们更好地备考数学学考,我们整理了一份七下学考精炼数学参考答案,希望能够帮助到大家。

一、选择题部分1.答案:B解析:根据题意,我们可以列出方程:3x + 2 = 11,解得x = 3。

2.答案:D解析:根据题意,我们可以列出方程:5y + 7 = 22,解得y = 3。

3.答案:A解析:根据题意,我们可以列出方程:4z + 5 = 21,解得z = 4。

4.答案:C解析:根据题意,我们可以列出方程:2a + 3 = 9,解得a = 3。

5.答案:B解析:根据题意,我们可以列出方程:7b - 5 = 16,解得b = 3。

二、填空题部分1.答案:12解析:根据题意,我们可以列出方程:3x + 4 = 16,解得x = 4。

2.答案:10解析:根据题意,我们可以列出方程:2y - 3 = 17,解得y = 10。

3.答案:5解析:根据题意,我们可以列出方程:4z + 2 = 22,解得z = 5。

4.答案:8解析:根据题意,我们可以列出方程:4a - 3 = 29,解得a = 8。

5.答案:6解析:根据题意,我们可以列出方程:3b + 5 = 23,解得b = 6。

三、解答题部分1.答案:解:设这个数为x,根据题意可得方程:2(x + 3) = 5(x - 1),解得x = 7。

2.答案:解:设这个数为x,根据题意可得方程:3(x + 4) = 2(x + 9),解得x =-2。

3.答案:解:设这个数为x,根据题意可得方程:5(x - 2) = 8(x + 1),解得x = -9/3。

4.答案:解:设这个数为x,根据题意可得方程:4(x - 3) = 2(x + 5),解得x = 11。

5.答案:解:设这个数为x,根据题意可得方程:6(x + 1) = 3(x - 2),解得x =5/3。

2020-2021学年人教版七年级数学下册第八章二元一次方程组常考题提高专练(一)【含答案】

2020-2021学年人教版七年级数学下册第八章二元一次方程组常考题提高专练(一)【含答案】

2020-2021学年七年级下册第8章《二元一次方程组》常考题提高专练(一)1.在2月份“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.求每只A 型口罩和B型口罩的销售利润.2.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?3.滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为 元(用含x的代数式表示),小亮乘车费为 元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?4.某星期天,八(1)班开展社会实践活动,第一小组花90元从蔬菜批发市场批发了黄瓜和茄子共40kg,到蔬菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:品名黄瓜茄子批发价/(元/kg) 2.42零售价/(元/kg) 3.6 2.8(1)黄瓜和茄子各批发了多少kg?(2)该小组当天卖完这些黄瓜和茄子可赚多少钱?5.某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?6.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.7.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?8.某体育经销商计划用45000元从省体彩中心购进20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的,进价分别是A每张1.5元,B每张2元,C每张2.5元.(1)若经销商同时购进两种不同型号的20扎,用去45000元,请你设计进票方案;(2)若销售A型一张获手续费0.2元,B型一张获手续费0.3元,C型一张获手续费0.5元.在购进两种的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种20扎,请你设计进票方案.9.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?10.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a 元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级400024八年级420033九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.11.如图,在3×3的方格内,填写了一些代数式和数.(1)在图中各行、各列及对角线上三个数之和都相等,请你求出x,y的值.(2)把满足(1)的其它6个数填入图(2)中的方格内.12.某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?13.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).14.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?15.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.答案1.解:设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元.2.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.3.解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.4.解:(1)设黄瓜批发了xkg,茄子批发了ykg,根据题意,得,解得,答:黄瓜批发了25kg,茄子批发了15kg.(2)(3.6﹣2.4)×25+(2.8﹣2)×15=42(元).答:该小组当天卖完这些黄瓜和茄子可赚42元.5.解:(1)设七年级1班有x名学生,2班有y名学生,由题意得:,解得:,答:七年级1班有49名学生,2班有53名学生;(2)设八年级报名a人,九年级报名b人,分两种情况:①若a+b<100,由题意得:,解得:,(不合题意舍去);②若a+b≥100,由题意得:,解得:,符合题意;答:八年级报名48人,九年级报名58人.6.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.7.解:设该厂第一季度计划生产甲机器x台,乙机器y台,由题意可知,解得:,(1+10%)x=1.1×200=220;(1+20%)y=1.2×250=300.答:该厂第二季度生产甲机器220台,乙机器300台.8.解:(1)若设购进A种x张,B种y张,根据题意得:x+y=1000×20;1.5x+2y=45000,解得:x=﹣10000,y=30000,∴x<0,不合题意;若设购进A种x张,C种y张,根据题意得:x+y=1000×20;1.5x+2.5y=45000,解得:x=5000,y=15000,若设购进B种x张,C种y张,根据题意得:2x+2.5y=45000;x+y=1000×20.解得:x=10000,y=10000,综上所述,若经销商同时购进两种不同型号的共有两种方案可行,即A种5扎,C种15扎或B种与C种各10扎;(2)若购进A种5扎,C种15扎,销售完后获手续费为0.2×5000+0.5×15000=8500(元),若购进B种与C种各10扎,销售完后获手续费为0.3×10000+0.5×10000=8000(元),∴为使销售完时获得手续最多选择的方案为A种5扎,C种15扎;(3)若经销商准备用45000元同时购进A、B、C三种20扎.设购进A种m扎,B种n扎,C种h扎.由题意得:m+n+h=20;1.5×1000m+2×1000n+2.5×1000h=45000,即h=m+10,∴n=﹣2m+10,∵m、n都是正数∴1≤m<5,又m为整数共有4种进票方案,具体如下:方案1:A种1扎,B种8扎,C种11扎;方案2:A种2扎,B种6扎,C种12扎;方案3:A种3扎,B种4扎,C种13扎;方案4:A种4扎,B种2扎,C种14扎.9.解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.10.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.11.解:(1)由题意得,解得.(2)填图如下:12.解:(1)设甲种节能灯进了x只,乙种节能灯进了y只,,得,答:甲、乙两种节能灯各进40只,60只;(2)由题意可得,该商场获利为:(40﹣30)×40+(50﹣35)×60=400+900=1300(元),答:该商场获利1300元.13.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据题意得:,解得:.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a+4b=31,∴b=.∵a,b均为整数,∴有、和三种情况.故共有三种租车方案,分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.14.解:设购进甲商品x件,乙商品y件,根据题意可得:,解得:,答:购进甲商品240件,乙商品72件.15.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.。

北京师范大学附属实验中学七年级数学下册第八章【二元一次方程组】经典习题(培优提高)

北京师范大学附属实验中学七年级数学下册第八章【二元一次方程组】经典习题(培优提高)

一、选择题1.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .72.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm3.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .164.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种5.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12a D .﹣12a 6.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y xx y =⎧⎨+=⎩7.已知下列各式:①12+=y x ;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( )A .1B .2C .3D .48.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( ) A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩9.已知关于x ,y 的方程组232x y ax y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②2x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y=1﹣a 的解;其中正确的是( ) A .①②B .①③C .②③D .①②③10.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣1311.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩二、填空题12.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.13.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__.14.已知2(2)0x y ++=,则yx的值是_______. 15.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.16.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.17.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h 时相遇,相遇后0.5h 甲到达B 地,若相遇后乙又走了20千米才到达A 、B 两地的中点,那么乙的速度为______千米/时. 18.如果28a b --与()21a b ++互为相反数,那么a b =________. 19.已知x ,y ,z 都不为0,且4330230x y z x y z --=⎧⎨-+=⎩,则式子346x y z x y z -+++的值为_____.20.已知x y x x ++=,且490xy ,则5x y -的值为____________.21.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶”请你根据题意,求出好酒是有_____瓶.三、解答题22.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元. (1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.23.(1)解方程31215 23x x-+-=(2)解方程组23167 x yx y-=⎧⎨+=-⎩24.今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市去年外来和外出旅游的人数.25.解二元一次方程组(1)7 3217 x yx y+=⎧⎨+=⎩(2)57 31 x yx y+=⎧⎨-=⎩一、选择题1.若12xy=⎧⎨=-⎩是方程3x+by=1的解,则b的值为()A.1 B.﹣1 C.﹣2 D.22.若方程组a2b43a2b8+=⎧⎨+=⎩,则a+b等于()A.3 B.4 C.2 D.13.如果方程组54356x y kx y-=⎧⎨+=⎩的解中的x与y互为相反数,则k的值为()A.1 B.1或1-C.27-D.5-4.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩5.若关于x,y的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y+=的解,则x y-的值为()A.2B.10C.2-D.46.下列四组数值中,方程组2534a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A.11abc=⎧⎪=⎨⎪=-⎩B.121abc=-⎧⎪=⎨⎪=-⎩C.112abc=-⎧⎪=⎨⎪=-⎩D.123abc=⎧⎪=-⎨⎪=⎩7.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2 B.2-C.1 D.1-8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③ B .①③C .②③D .①②9.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩10.下列方程中,属于二元一次方程的是( ) A .235x x -=+B .1xy y +=C .315x y -=-D .325x y+= 11.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩D .若3m n x +与22112m x y --是同类项,则2m =,1n =二、填空题12.如果方程组43123392x y x y +=⎧⎪⎨-=⎪⎩与方程y =kx -1有公共解,则k =______. 13.若2(321)4330x y x y -++--=,则x y -=_____.14.已知2(2)0x y ++=,则yx的值是_______. 15.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+(10b )2021=________. 16.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.17.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________18.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.19.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6bc b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 20.如果()2x 2y 1x y 50-+++-=,那么x =______,y =____ 21.我们称使方程2323x y x y++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.三、解答题22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家2020年4月份用水15吨,交水费45元;5月份用水25吨,交水费91元.(1)求a, b的值;(2)如果小王家6月份上交水费150元,则小王家这个月用水多少吨?23.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?24.若关于x,y的方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求a和b的值.25.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?一、选择题1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×22.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3B .5C .4或5D .3或4或53.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x y y xB . 4.512x y yxC .4.512xy x yD .4.512xyy x4.已知关于x ,y 的方程组232x y ax y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①②B .①③C .②③D .①②③5.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩6.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②8.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c-+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩9.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩10.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( ) A .452710320x y x y +=⎧⎨-=⎩ B .452710320x y x y -=⎧⎨+=⎩ C .452710320x y x y +=⎧⎨+=⎩ D .427510203x yx y-=⎧⎨-=⎩11.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A .485210x y y x -=⎧⎨=-⎩B .485210x yy x +=⎧⎨=+⎩C .458210x y y x =-⎧⎨=-⎩D .458210x y y x =+⎧⎨=+⎩二、填空题12.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm,各装有12cm高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm.13.重庆某快递公司规定:寄件不超过1kg的部分按起步价计费,超过1kg不足2kg,按照2kg收费;超过2kg不足3kg按照3kg收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a元,超过部分b元/kg;寄往北京的起步价为()7a+元,超过部分()4b+元/kg.已知一个寄往重庆市内的快件,质量为2kg,收费13元;一个寄往北京的快件,质量为4.5kg,收费42元.如果一个寄往北京的快件,质量为2.8kg,应收费______元.14.一笔奖金总额为1092元,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍,若把这笔奖金发给6个人,并且要求一等奖的人数不能超过二等奖人数,二等奖人数不能超过三等奖人数,那么三等奖的奖金金额是___________元.15.若1,3xy=-⎧⎨=⎩是关于x,y的二元一次方程组5,x y mx my n+=⎧⎨-=⎩的解,则n的值为______.16.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.17.已知方程组2221x yx y+=⎧⎨+=⎩,那么x y+=_________.18.已知关于,x y的方程组231x aybx y-=⎧⎨+=-⎩的解是13xy=⎧⎨=-⎩,则a b+=___________.19.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR400A﹣B正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR400A﹣B停站时首尾对应的数分别为a,b,向右行驶一段距离后,首尾对应的数分别为c,d,若c﹣d=2(|a|﹣|b|),则b的值为__.20.若x ay b=⎧⎨=⎩是方程x﹣2y=0的解,则3a﹣6b﹣3=_____.21.已知x,y,z都不为0,且4330230x y zx y z--=⎧⎨-+=⎩,则式子346x y zx y z-+++的值为_____.三、解答题22.解方程组(1)310 518 x yx y+=⎧⎨+=⎩(2)312491 a ba b⎧+=⎪⎨⎪-=-⎩23.列方程解应用题《乌鸦喝水》的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,喝到了水.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高________cm,放入一个大球水面升高________cm;(2)如果放入10个球且使水面恰好上升到52厘米,应放入大球、小球各多少个?(3)若放入一个钢珠可以使液面上升k厘米,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41厘米,则k的整数值为____________.(球和钢珠完全在水面以下)24.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆?25.(1)22 839x yx y+=⎧⎨+=⎩(2)4143314312 x yx y+=⎧⎪--⎨-=⎪⎩。

最新七年级初一数学假期学习课外提高学习练习题作业

最新七年级初一数学假期学习课外提高学习练习题作业

第6讲多项式与整式多项式与整式1.多项式的概念:_____________________叫做多项式.2.多项式的项:每个单项式叫做多项式的项,不含字母的项叫做___________.要点诠释:(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:2627x x --是一个三项式.3.多项式的次数:_____________________________叫做这个多项式的次数.4.整式:统称为整式.(1)单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.例题精讲例1下列说法中,正确的是()A .单项式的系数是﹣2,次数是3B .单项式a 的系数是1,次数是0C .﹣3x 2y +4x ﹣1是三次三项式,常数项是1D .单项式的次数是2,系数为例2①多项式x 2y 3﹣3xy 2﹣2次数是,项数是.②多项式﹣3xy +5x 3y ﹣2x 2y 3+5是次项式,最高次项的系数是.③多项式x |m |﹣(m ﹣4)x +7是关于x 的四次二项式,则m 的值是.例3在代数式x 2+5,﹣1,x 2﹣3x +2,π,,x 2+中,整式有()A .3个B .4个C .5个D .6个例4把多项式2xy ﹣4x 2y 3+3x 3y ﹣5按字母x 的降幂排列是.真题演练练1(师大呈贡期中)下列说法正确的是()A .单项式223x y 的次数是5B .单项式32xy的系数是2C .2-4,3,2x y xy 是多项式2-432x y xy +-的项D .2-23x y xy x ++是三次三项式练2(师大金源期中)关于多项式2321x y xy --,下列说法正确的是()A .常数项是1B .三次项系数为3C .这个多项式是三次三项式D .二次项的系数为2练3(师大呈贡期中)在代数式2yx +,0,112-x ,﹣a,212++y x 中,整式的个数为()A .2B .3C .4D .5练4(师大实验期中)多项式xy 2+xy +1是次项式练5(金岸期中)如果||3)16+(5m y m y --+是关于y 的二次三项式,则m 的值是.练6①多项式2﹣xy 2﹣4x 3y 是次项式,其中3次项的系数是.②多项式3x 2+πxy 2+9中,次数最高的项的系数是.③多项式﹣3xy +2xy 2﹣3x 2y 2+2x 2y 的最高次项是.练7(金岸期中)将多项式44322332-+-+x y x y xy x y 按x 的降幂排列是.练8已知﹣5x3y|a|﹣(a﹣5)x﹣6是关于x、y的八次三项式,求a2﹣2a+1的值.规律探索例题精讲例5观察下列单项式:﹣x,3x2,﹣5x3,7x4,…,﹣37x19,39x20,…,写出第n个单项式.为了解决这个问题,特提供下面解题思路:(1)这组单项式的系数的符号规律是,系数的绝对值规律是;(2)这组单项式的次数的规律是;(3)根据上面的归纳,可以猜想第n个单项式是(只能填写一个代数式);(4)请你根据猜想,写出第2020个、第2021个单项式,它们分别是、.例6(师大实验期中)我国南宋数学家杨辉画了一张表示二项式展开后的系数构成的三角图形,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.我们把杨辉三角的每一行分别相加,如下:1(1)+=11(112)++=121(1214)+++=1331(13318)++++=14641(1464116)+++++=15101051(1510105132)⋯写出杨辉三角第n行中n个数之和等于.例7(师大金源期中)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,⋯,第n 个(n 是正整数)图案中的基础图形个数为(用含n 的式子表示).真题演练练9(昆三滇池期中)观察下列一组数:,31,52-73,94-,115 (13)6-根据该组数的排列规律,可推出第2020个数是.练10观察下列各式:133=,239=,3327=,4381=,53243=,63729=⋯你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:20063的个位数字是()A .1B .3C .7D .9练11计算:1211-=,2213-=,3217-=,42115-=,52131-=,⋯.归纳各计算结果中的个位数字规律,猜测200621-的个位数字是.练12有一列式子,按一定规律排列成﹣2a 3,4a 7,﹣8a 11,16a 15,﹣32a 19,…则第7个式.练13(云子长丰期中)有一组单项式:2a ,32a -,43a ,54a -,⋯用你发现的规律写出第2020个单项式为:练14课后作业一组按规律排列的多项式:a +b ,a 2﹣b3,a 3+b 5,a 4﹣b 7,…,其中第10个式子是()A .a 10+b 19B .a 10﹣b 19C .a 10﹣b 17D .a 10﹣b 21练15阅读材料,回答下列问题.通过计算容易发现:①11112323-=⨯;②11114545-=⨯;③11116767-=⨯(1)观察上面的三个算式,请写出一个像上面这样的算式:;(2)通过观察,计算111111122334455667+++++⨯⨯⨯⨯⨯⨯的值.(3)探究上述的运算规律,试计算①111111133557799119799+++++⋯+⨯⨯⨯⨯⨯⨯的值.②1111155991320172021+++⋯⋯+⨯⨯⨯⨯.练16观察下列各式:212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;⋯(1)根据你发现的规律,计算下面算式的值:2222212345++++=;(2)请用一个含n 的算式表示这个规律:2222123n +++⋯+=;(3)根据发现的规律,请计算算式2222515299100++⋯++的值(写出必要的解题过程)练17(师大呈贡期中)一个小球落在数轴上的某点P 0处,第一次从P 0处向左跳1个单位到P 1处,第二次从P 1向右跳2个单位到P 2处,第三次从P 2向左跳3个单位到P 3处,第四次从P 3向右跳4个单位到P 4处…,若小球按以上规律跳了2n 次时,它落在数轴上的点P 2n 处所表示的数恰好是n+4,则这个小球的初始位置点P 0所表示的数是()A .4B .2nC .2D .2n+1练18如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成个细胞;(2)这样的一个细胞经过3小时后可分裂成个细胞;(3)这样的一个细胞经过(n n 为正整数)小时后可分裂成个细胞.练19(五华区期末)如图所示,数轴上O ,A 两点的距离为8,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,问经过这样2023次跳动后的点与A 1A 的中点的距离是()A .2020214-B .2019216-C .2019218-D .2020216-练20根据图中箭头的指向规律,从2017到2018再到2019,箭头的方向是()A .B .C .D .练21将若干个小菱形按如图的规律排列:第1个图形有4个小菱形,第2个图形有7个小菱形,第3个图形有10个小菱形,⋯,则第8个图形有()个小菱形.A .24B .25C .26D .27练22如图是用棋子摆成的小房子,第①个图形有5颗棋子,第②个图形有12颗棋子,第③个图形有21颗棋子⋯,观察图形规律得出第⑦个图有()颗棋子.A .76B .77C .78D .79练23观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图形中共有()个五角星(n 为正整数).A .43(1)n +-B .4nC .41n +D .34n +课后作业1、下列式子中不是整式的是()A.﹣23x B.C.12x+y D.02、(金岸期中)在31y+,31m+,2x y-,1abc-,8z-,0中,整式的个数是()A.6B.3C.4D.53、把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是.4、若多项式4a2m+1b﹣6a3b2﹣10a2b5+mab是关于a、b的八次四项式,则正整数m的值为()A.B.4C.8D.35、观察下列单项式:a,﹣4a2,9a3,﹣16a4,…按此规律第9个单项式是.6、观察图,找出规律10=-4=1=根据规律=.7、如图,由等圆组成的一组图中,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由11个圆组成,⋯,按照这样的规律排列下去,则第⑧个图由()个圆组成.A.71B.72C.73D.74第7讲整式的加减同类项定义:所含字母____________,并且相同字母的__________也分别相等的项叫做__________。

2022-2023学年北京市西城区七年级下册数学期末专项提升模拟题(AB卷)含解析

2022-2023学年北京市西城区七年级下册数学期末专项提升模拟题(AB卷)含解析

2022-2023学年北京市西城区七年级下册数学期末专项提升模拟题(A 卷)一、选一选(每小题3分,共题满分36分)1. 某天的温度上升-2 °C 的意义是( )A. 上升了2°CB. 下降了-2°CC. 下降了2°CD. 没有变化2. 下列算式中,结果正确的是( )A. (-3)2=6B. -|-3|=3C. -32=9D. -(-3)2=-93. 下列运算结果正确的是( )A. 5x ﹣x =5B. 2x 2+2x 3=4x 5C. ﹣4b +b =﹣3bD. a 2b ﹣ab 2=04. 若x 2+x+1的值是8,则4x 2+4x+4的值( )A. 37B. 25C. 32D. 05. 下列方程中,以x =-1为解的方程是( )A. B. 7(x -1)=0 C. 4x -7=5x +7 D. x =-313222x x +=-136. 已知线段AB=3cm,点C 在线段AB 所在的直线上,且BC=1cm,则线段AC 的长度为( )A. 4cmB. 2cmC. 2cm 或4cmD. 3cm 7. 下列等式变形正确的是( )A. 由a=b ,得=B. 由﹣3x= 3y ,得x= y3a -3b-C. 由=1,得x= D. 由x=y ,得=4x 14x a ya8. 下列画图的语句中,正确的为( )A. 画直线AB=10cmB. 画射线OB=10cmC. 延长射线BA 到C ,使BA=BCD. 画线段CD=2cm9. 如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )A. 100°B. 115°C. 65°D. 130°10. 有理数a 、b 在数轴的位置如图,则下面关系中正确的个数为( )① ② ③ ④0a b ->0ab <11a b >22a b >A. 1B. 2C. 3D. 411. 一件商品按成本价提高30%后标价,再打8折(标价的80%),售价为312元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是( )A. x·30%×80%=312B. x·30%=312×80%C. 312×30%×80%=xD. x (1+30%)×80%=31212. 下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒( )A. 2+7nB. 8+7nC. 4+7nD. 7n+1二、填 空 题(每题4分,32分)13. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么的地方比的地方高____ m .14. 要在墙上钉稳一根横木条,至少要钉_______个钉子,这样做的道理是______________.15. m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.16. 方程﹣2x+3=0的解是x=_____.17. 一个角的补角比它的余角的3倍还多10°,则这个角的度数为___________.18. 请写出字母只含有m 、n ,且次数为3的一个单项式__________.19. 如图,已知点是线段上一点,,、分别是、的中点,C AB AC CB <M N AB CB ,,则线段______.8AC =5NB =MN =20. 如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为_____________三、解 答 题(满分52分)21. (1)计算×12111()462+-(2)计算×161031(1)2()2-÷+-(3)先化简,再求值:3(2x 2y xy 2) (5x 2y+2xy 2),其中x= 1,y=2.22. 解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1.21536x x ---23. 作图题:如图,在平面上有四个点A ,B ,C ,D ,根据下列语句画图:(1)画线段AB ;(2)连接BD ,并将其反向延长至点E ,使得DE =2BD ;(3)在平面内找到一点F ,使点F 到A ,B ,C ,D 四点距离最短.24. 如图,直线AB ,CD 相交于点O ,∠BOE =90°,OF 平分∠AOD ,∠COE =20°,求∠BOD 与∠DOF 的度数.25. 某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:没有超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 没有超过2000时,甲厂的收费为_____元,乙厂的收费为_____元;(2)若x 超过2000时,甲厂的收费为_____元,乙厂的收费为_____元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?2022-2023学年北京市西城区七年级下册数学期末专项提升模拟题(A卷)一、选一选(每小题3分,共题满分36分)1. 某天的温度上升-2 °C的意义是()A. 上升了2°CB. 下降了-2°CC. 下降了2°CD. 没有变化【正确答案】C【详解】温度上升-2°C的意义是下降了2°C,故选C.2. 下列算式中,结果正确的是( )A. (-3)2=6B. -|-3|=3C. -32=9D. -(-3)2=-9【正确答案】D【分析】根据有理数的乘方、值的定义解决此题.【详解】A.(-3)2=9,此选项错误;B.-|-3|=-3,此选项错误;C.-32=-9,此选项错误;D.-(-3)2=-9,此选项正确;故选D.本题主要考查有理数的乘方、值的定义,熟练掌握有理数的乘方、值的定义是解决本题的关键.3. 下列运算结果正确的是( )A. 5x﹣x=5B. 2x2+2x3=4x5C. ﹣4b+b=﹣3bD. a2b﹣ab2=0【正确答案】C【详解】A .5x ﹣x =4x ,错误;B .2x 2与2x 3没有是同类项,没有能合并,错误;C .﹣4b +b =﹣3b ,正确;D .a 2b ﹣ab 2,没有是同类项,没有能合并,错误;故选C .4. 若x 2+x+1的值是8,则4x 2+4x+4的值( )A. 37B. 25C. 32D. 0【正确答案】C 【详解】∵x 2+x +1=8,∴4x 2+4x +4=4(x 2+x +1)=32,故选C .5. 下列方程中,以x =-1为解的方程是( )A. B. 7(x -1)=0 C. 4x -7=5x +7 D. x =-313222x x +=-13【正确答案】A【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A 、把x=-1代入方程的左边= -=右边,左边=右边,所以是方程的解;52B 、把x=-1代入方程的左边=-14≠右边,所以没有是方程的解;C 、把x=-1代入方程的左边=-11≠右边,没有是方程的解;D 、把x=-1代入方程的左边=-≠右边,没有是方程的解;13故选A .本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.6. 已知线段AB=3cm,点C 在线段AB 所在的直线上,且BC=1cm,则线段AC 的长度为( )A. 4cmB. 2cmC. 2cm 或4cmD. 3cm【正确答案】C【详解】试题解析:点在线段之间时,C AB 2cm.AC AB BC =-=点在线段的延长线上时,C AB 4cm.AC AB BC =+=故选C.7. 下列等式变形正确的是( )A. 由a=b ,得=B. 由﹣3x= 3y ,得x= y3a -3b-C. 由=1,得x= D. 由x=y ,得=4x 14x a y a【正确答案】A 【分析】根据等式的基本性质逐项分析可得答案.【详解】A.由a =b ,得,所以A 选项正确;33a b =--B.由﹣3x = 3y ,得x =y ,所以B 选项错误;C.由=1,得x =4,所以C 选项错误;4xD.由x =y ,a ≠0,得=,所以D 选项错误.x a ya 故选A .本题考查了等式的基本性质,熟练掌握性质是解题关键.8. 下列画图的语句中,正确的为( )A. 画直线AB=10cmB. 画射线OB=10cmC. 延长射线BA 到C ,使BA=BCD. 画线段CD=2cm【正确答案】D 【详解】A.错误.直线没有长度;B.错误.射线没有长度;C.错误.射线有无限延伸性,没有需要延长;D.正确.故选D .9. 如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )A. 100°B. 115°C. 65°D. 130°【正确答案】B 【详解】∵∠COE =90°,∠COD =25°,∴∠DOE =90° 25°=65°,∵OD 平分∠AOE ,∴∠AOD =∠DOE =65°,∴∠BOD =180° ∠AOD =115°,故选B .10. 有理数a 、b 在数轴的位置如图,则下面关系中正确的个数为( )① ② ③ ④0a b ->0ab <11a b >22a b>A. 1B. 2C. 3D. 4【正确答案】C 【分析】由图可判断、的正负性,、的值的大小,即可解答.a b a b 【详解】解:由图可知:,,0b a <<||||b a >,,,0a b ∴->0ab <11a b >,||||b a > ,22a b ∴<所以只有①、②、③成立.故选:C .本题考查了数轴的有关知识,利用数形思想,可以解决此类问题.解题的关键是掌握在数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.11. 一件商品按成本价提高30%后标价,再打8折(标价的80%),售价为312元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是( )A. x·30%×80%=312B. x·30%=312×80%C. 312×30%×80%=xD. x (1+30%)×80%=312【正确答案】D 【详解】试题解析:设这件商品的成本价为x 元,成本价提高30%后的标价为x (1+30%),再打8折的售价表示为x (1+30%)×80%,又因售价为312元,列方程为:x (1+30%)×80%=312.故选D .12. 下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒( )A. 2+7nB. 8+7nC. 4+7nD. 7n+1【正确答案】D 【详解】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n 1)=7n +1根;故选D .本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.二、填 空 题(每题4分,32分)13. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么的地方比的地方高____ m .【正确答案】35【详解】试题分析:甲,乙,所以比高.20(15)201535--=+= 考点:有理数的减法.14. 要在墙上钉稳一根横木条,至少要钉_______个钉子,这样做的道理是______________.【正确答案】 ①. 两 ②. 两点确定一条直线【详解】解:因为“两点确定一条直线”,所以要在墙上钉一根小木条,至少要两个钉子.故答案为两,两点确定一条直线.15. m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.【正确答案】0【详解】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.16. 方程﹣2x+3=0的解是x=_____.【正确答案】32【详解】 2x +3=0,移项得:﹣2x = 3,系数化为1得:x =,32故答案为.3217. 一个角的补角比它的余角的3倍还多10°,则这个角的度数为___________.【正确答案】50°【分析】先设这个角为α,然后即可用α的代数式表示出其余角和补角,再根据其补角比它的余角的3倍还多10º即可列出方程,解方程即得答案.【详解】解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α)+10°,解得α=50°.故50°.本题考查了余角与补角的定义,正确表示出这个角的余角与补角然后列出方程是解题的关键.18. 请写出字母只含有m 、n ,且次数为3的一个单项式__________.【正确答案】-2m 2n (答案没有)【详解】先构造系数,例如为﹣2,然后使m 、n 的指数和是3即可.如﹣2m 2n ,答案没有.故答案是:﹣2m 2n (答案没有).点睛:本题考查了单项式的定义.利用单项式的定义构造符合条件的单项式是解题的关键.19. 如图,已知点是线段上一点,,、分别是、的中点,C AB AC CB <M N AB CB ,,则线段______.8AC =5NB =MN =【正确答案】4【分析】根据点N 是CB 的中点,=5,得到BC 的长,进而得到线段AB 的长,根据M 是AB 的中点,可得BM 的长,进而得到MN 的长.【详解】∵N 是CB 的中点,=5,∴BC =2=10,∴AB =AC +BC =8+10=18.∵M 是AB 的中点,∴BM =AB =9,12∴MN =BM ﹣=9﹣5=4.故4.本题考查了两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.20. 如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为_____________【正确答案】3m+6【详解】试题分析:由于边长为(2m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(没有重叠无缝隙),那么根据正方形的面积剩余部分的面积可以求出,而矩形一边长为m ,利用矩形的面积公式即可求出另一边长.解:依题意得剩余部分为:(2m+3)2﹣(m+3)2=4m 2+12m+9﹣m 2﹣6m﹣9=3m 2+6m ,而拼成的矩形一边长为m ,∴另一边长是(3m 2+6m )÷m=3m+6.答:若拼成的长方形一边长为m ,则另一边长为:3m+6.考点:因式分解的应用.三、解 答 题(满分52分)21. (1)计算×12111()462+-(2)计算×161031(1)2()2-÷+-(3)先化简,再求值:3(2x 2y xy 2) (5x 2y+2xy 2),其中x= 1,y=2.【正确答案】(1) 1 (2) (3) 2232-【详解】按有理数混合运算顺序进行计算即可.解:(1)原式=3+2 6= 1(2)原式=1÷2+( )×16= 2=181232-(3)当x = 1,y =2,原式=6x 2y 3xy 2 5x 2y 2xy 2=x 2y 5xy 2=1×2 5×( 1)×4=2+20=2222. 解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1.21536x x---【正确答案】(1) x=5 (2)x=15【详解】按去分母、去括号、移项、合并同类项、系数化为1的步骤即可解一元方程.解:(1)3x 7(x 1)=3 2(x +3),3x 7x +7=3 2x 6,3x 7x +2x =3 6 7, 2x = 10,x =5;(2)-= 1.213x -56x-2(2x 1) (5 x )= 6,4x 2 5+x = 6,4x +x = 6+5+2,5x =1,x =.1523. 作图题:如图,在平面上有四个点A ,B ,C ,D ,根据下列语句画图:(1)画线段AB ;(2)连接BD ,并将其反向延长至点E ,使得DE =2BD ;(3)在平面内找到一点F ,使点F 到A ,B ,C ,D 四点距离最短.【正确答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)连AB 即可.(2)根据要求画出点E 即可.(3)连接AD ,BC 交于点F ,根据两点之间线段最短,F 到B ,C 的最短距离为BC 的长度,F 到A , D 的最短距离为AD 的长度,点F 即为所求.【详解】解:(1)如图,线段AB 即为所求.(2)如图点E 即为所求.(3)如图,点F 即为所求.本题考查根据题意作图,做一条线段等于已知线段,两点之间线段最短.能根据题意正确作图是解决此题的关键.24. 如图,直线AB ,CD 相交于点O ,∠BOE =90°,OF 平分∠AOD ,∠COE =20°,求∠BOD 与∠DOF 的度数.【正确答案】∠BOD =70°,∠DOF =55°【详解】根据角的和、差及视补角的性质、角平分线的定义即可得出答案.解:∵∠COE =20°,∠BOE =90°,∴∠BOD =180° 20° 90°=70°,∴∠AOD ═180° 70°=110°,∵OF 平分∠AOD ,∴∠DOF =∠AOD =55°.12∴∠BOD =70°,∠DOF =55°.25. 某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:没有超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 没有超过2000时,甲厂的收费为_____元,乙厂的收费为_____元;(2)若x 超过2000时,甲厂的收费为_____元,乙厂的收费为_____元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?【正确答案】①.0.5x+1000 1.5x②.1000+0.5x 0.25x+2500③.选择乙节省了500元④.1000或6000本【详解】(1)根据印刷费用=数量×单价可分别求得;(2)根据甲厂印刷费用=数量×单价、乙厂印刷费用=2000×1.5+超出部分的费用可得;(3)分别计算出x=8000时,甲、乙两厂的费用即可得;(4)分x≤2000和x>2000分别计算可得.解:(1)若x没有超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元,故答案为0.5x+1000,1.5x;(2)若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元,故答案为1000+0.5x,0.25x+2500;(3)当x=8000时,甲厂费用为1000+0.5×8000=5000元,乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;(4)当x⩽2000时,1000+0.5x=1.5x,解得:x=1000;当x>2000时,1000+0.5x=0.25x+2500,解得:x=6000;答:印刷1000或6000本证书时,甲乙两厂收费相同.点睛:本题一元方程及一元没有等式的应用.把握题中的相等关系建立方程或根据没有等关系建立没有等式是解题的关键.2022-2023学年北京市西城区七年级下册数学期末专项提升模拟题(B 卷)一、选一选(本大题共12小题,共36.0分)1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A. B. C. D.2. 下列各运算中,计算正确的是 ()A .B.C. D. 22(2)4x x -=-236(3)9a a =623x x x÷=325x x x⋅=3. 用科学记数法表示为 0.0000084()A. B. C. D. 68.410-⨯58.410-⨯68.410--⨯68.410⨯4. 如图所示,如果将一副三角板按如图方式叠放,那么∠1等于 ()A. B. C. D. 120︒105︒60︒45︒5. 到△ABC 的三边距离相等的点是△ABC 的( )A. 三边中线的交点 B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点6. 如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(没有重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+67. 如图,在△ABC 中,∠B =32°,∠BAC 的平分线AD 交BC 于点D ,若DE 垂直平分AB ,则∠C 的度数为( )A .90°B. 84°C. 64°D. 58°8. 若等腰三角形的腰上的高与另一腰上的夹角为,则该等腰三角形的顶角的度数为 56()A. B. C. 或 D. 或563434 14656 349. 两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:AD CD =AB CB =;;≌; 四边形ABCD 的面积AC BD ⊥①12AO CO AC==②ABD ③CBD ④其中正确的结论有 12AC BD =⨯()A. 1个B. 2个C. 3个D. 4个10. 如图,在四边形ABCD 中,AC ,BD 为对角线,AB =BC =AC =BD ,则∠ADC 的大小为( )A. 120°B. 135°C. 145°D. 150°11. 如图所示的正方形网格中,( )44⨯1234567∠+∠+∠+∠+∠+∠+∠=A. 330°B. 315°C. 310°D. 320°12. 把所有正偶数从小到大排列,并按如下规律分组:,6,,12,14,16,()2(4,8)(10,,22,24,26,28,30,,,现用等式 表示正偶数 M 是第i 组第18)(20,32)⋯(),M A i j = j 个数从左往右数,如 ,则 ()()82,3A =2018(A =)A.B.C.D.()32,25()32,48()45,39()45,77二、填 空 题(本大题共6小题,共18.0分)13. 在△ABC 中,若∠A :∠B :∠C =2:3:5,则此三角形是___三角形.14. 已知,,则______.5a b -=4ab =-22a b +=15. 如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD =BC ,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明△EDC ≌△ABC ,所以测得ED 的长就是A 、B 两点间的距离,这里判定△EDC ≌△ABC 的理由是__.16. 如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N为圆心,大于MN 的长为半径画弧,两弧交于点P ,12作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是_______.17. 《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数的系数与相应的常数项,把图1x y 、所示的算筹图用我们现在所熟悉的方程组形式表述出来就是 类似地,图2所3219423x y x y +=⎧⎨+=⎩,示的算筹图我们可以用方程组形式表述为__________.18. 如图,下列4个三角形中,均有,则三角形的一个顶点的一条直线没有能够将AB AC =这个三角形分成两个小等腰三角形的是______填序号.()三、计算题(本大题共1小题,共6.0分)19.化简:[(xy+2)(xy 2) 2x 2y 2+4]÷xy ,其中x=10,y= 125四、解 答 题(本大题共8小题,共64.0分)20. 解二元方程组:.5234x y x y +=⎧-=⎨⎩21. 如图,,,请证明.//EB DC C E ∠=∠A EDA =∠∠22. 如图,∠DCE=90°,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B .试说明AD+AB=BE .23. 为了响应和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元只)/售价(元只)/甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?24. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.在图中画出与关于直线L 成轴对称的;()1ABC '''A B C 求的面积;()2ABC 在直线L 上找一点在答题纸上图中标出,使的长最小.()3(P )PB PC +25. 如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数;(2)若CD =2,求DF 的长.26. 如图1,AC=BC ,CD=CE ,∠ACB=∠DCE=α,AD 、BE 相交于点M .(1)求证:BE=AD ;(2)直接用含α的式子表示∠AMB 的度数为__(3)当α=90°时,取AD ,BE 的中点分别为点P 、Q ,连接CP ,CQ ,PQ ,如图2,判断△CPQ 的形状,并加以证明.27. 如图,中,,现有两点、分别从点A 、点B 同时出发,ABC ===12AB BC AC cm M N 沿三角形的边运动,已知点M 的速度为1cm/s ,点N 的速度为2 cm/s .当点N 次到达B 点时,、同时停止运动.M N (1)点、运动几秒时,、两点重合?M N M N(2)点、运动几秒时,可得到等边三角形?M N AMN (3)当点、在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,M N 请求出此时、运动的时间.M N2022-2023学年北京市西城区七年级下册数学期末专项提升模拟题(B 卷)一、选一选(本大题共12小题,共36.0分)1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A. B. C. D.【正确答案】B【分析】轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、没有是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、没有是轴对称图形,故本选项错误;D 、没有是轴对称图形,故本选项正确.故选:B .本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 下列各运算中,计算正确的是 ()A. B. C. D.22(2)4x x -=-236(3)9a a =623x x x ÷=325x x x ⋅=【正确答案】D【详解】分析:根据完全平方公式、积的乘方与幂的乘方、同底数幂的乘除法法则进行计算即可得解.详解:A 、,故该选项错误; 22(2)44x x x -=-+B 、,故该选项错误;236(3)27a a =C 、原式=x 4,故该选项错误;D 、原式=,故该选项正确.5x 故选D .点睛:本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3. 用科学记数法表示为 0.0000084()A . B. C. D. 68.410-⨯58.410-⨯68.410--⨯68.410⨯【正确答案】A【详解】分析:值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法没有同的是其所使用的是负指数幂,指数由原数左边起个没有为零的数字前面的0的个数所决定.详解:0.0000084=8.4×10-6,故选A .点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起个没有为零的数字前面的0的个数所决定.4. 如图所示,如果将一副三角板按如图方式叠放,那么∠1等于 ()A. B. C. D. 120︒105︒60︒45︒【正确答案】B 【分析】先求出,再根据三角形的一个外角等于与它没有相邻的两个内角的和列式计算即2∠可得解.【详解】解:如图,,2904545∠=︒-︒=︒由三角形的外角性质得,,1260∠=∠+︒,4560=︒+︒.105=︒故选:B .本题考查了三角形的一个外角等于与它没有相邻的两个内角的和的性质,解题的关键是熟记性质.5. 到△ABC 的三边距离相等的点是△ABC 的( )A. 三边中线的交点B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点【正确答案】B 【分析】到三角形三边都相等的点应该在三角形三个内角的角平分线上,可得出答案.【详解】解:设这个点为点P ,∵点P到AB、AC两边的距离相等,∴点P在∠BAC的平分线上,同理可得点P在∠ABC、∠ACB的平分线上,∴点P为三个内角的角平分线的交点,故选:B.本题主要考查了角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.6. 如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(没有重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6【正确答案】C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(没有重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.7. 如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为( )A. 90°B. 84°C. 64°D. 58°【正确答案】B【分析】根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=32°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=32°,∴∠C=180°−32°−32°−32°=84°,故选B.本题考查的是线段的垂直平分线的性质、角平分线的定义,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.56 () 8. 若等腰三角形的腰上的高与另一腰上的夹角为,则该等腰三角形的顶角的度数为 56 34 34 146 56 34A. B. C. 或 D. 或【正确答案】C【详解】分析:本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.详解:①当为锐角三角形时,如图1,∵∠ABD=56°,BD⊥AC,∴∠A=90°-56°=34°,∴三角形的顶角为34°;②当为钝角三角形时,如图2,∵∠ABD=56°,BD ⊥AC ,∴∠BAD=90°-56°=34°,∵∠BAD+∠BAC=180°,∴∠BAC=146°∴三角形的顶角为146°,故选C .点睛:本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.9. 两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:AD CD =AB CB =;;≌; 四边形ABCD 的面积AC BD ⊥①12AO CO AC ==②ABD ③CBD ④其中正确的结论有 12AC BD =⨯()A. 1个B. 2个C. 3个D. 4个【正确答案】D 【详解】分析:先证明△ABD 与△CBD 全等,再证明△AOD 与△COD 全等即可判断.详解:在△ABD 与△CBD 中,,AD CD AB BCDB DB ⎧⎪⎨⎪⎩===∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,,AD CD ADB CDB OD OD ⎧⎪∠∠⎨⎪⎩===∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②正确;四边形ABCD 的面积=S △ADB+S △BDC=DB×OA+DB×OC=AC•BD ,121212故④正确;故选D .点睛:此题考查全等三角形的判定和性质,关键是根据SSS 证明△ABD 与△CBD 全等和利用SAS 证明△AOD 与△COD 全等.10. 如图,在四边形ABCD 中,AC ,BD 为对角线,AB =BC =AC =BD ,则∠ADC 的大小为( )A. 120°B. 135°C. 145°D. 150°【正确答案】D 【分析】先判断出△ABC 是等边三角形,根据等边三角形的每一个内角都是60°可得∠ABC =60°,再根据等腰三角形两底角相等表示出∠ADB 、∠BDC ,然后根据∠ADC =∠ADB +∠BDC 求解即可.【详解】∵AB =BC =AC ,∴△ABC 是等边三角形,∴∠ABC =60°,∵AB =BC =BD ,∴∠ADB =(180°−∠ABD ),12∠BDC =(180°−∠CBD ),12∴∠ADC =∠ADB +∠BDC ,=(180°−∠ABD )+(180°−∠CBD ),1212=(180°+180°−∠ABD−∠CBD ),12=(360°−∠ABC ),12=180°−×60°,12=150°.故选D .本题考查了等腰三角形的性质,等边三角形的判定与性质,本题主要利用了等腰三角形两底角相等,要注意整体思想的利用.11. 如图所示的正方形网格中,( )44⨯1234567∠+∠+∠+∠+∠+∠+∠=A. 330°B. 315°C. 310°D. 320°【正确答案】B 【分析】根据正方形的轴对称性得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°,∠4=45°.【详解】解:由图可知,∠1所在的三角形与∠7所在的三角形全等,可得,, ,,1790︒∠+∠=2690︒∠+∠=3590︒∠+∠=544︒∠=则1234567315︒∠+∠+∠+∠+∠+∠+∠=故选B .12. 把所有正偶数从小到大排列,并按如下规律分组:,6,,12,14,16,()2(4,8)(10,,22,24,26,28,30,,,现用等式 表示正偶数 M 是第i 组第18)(20,32)⋯(),M A i j = j 个数从左往右数,如,则 ()()82,3A =2018(A =)A. B. C. D. ()32,25()32,48()45,39()45,77【正确答案】B【详解】分析:先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.详解:2018是第1009个数,设2018在第n 组,则1+3+5+7+(2n-1)=×2n×n=n 2,12当n=31时,n 2=961,当n=32时,n 2=1024,故第1009个数在第32组,第32组个数是961×2+2=1924,则2018是第+1=48个数,201819242-故A 2018=(32,48).故选B .点睛:此题考查数字的变化规律,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.二、填 空 题(本大题共6小题,共18.0分)13. 在△ABC 中,若∠A :∠B :∠C =2:3:5,则此三角形是___三角形.【正确答案】直角【分析】根据三角形的内角和等于180°求出的角∠C ,然后作出判断即可.【详解】解:∵∠C =180°×=90°,5235++∴△ABC 是直角三角形.故直角.本题考查了三角形的内角和定理,求出的角的度数是解题的关键.14. 已知,,则______.5a b -=4ab =-22a b +=【正确答案】17【详解】分析:直接利用完全平方公式将原式变形进而计算得出答案.详解:∵a-b=5,ab=-4,∴(a-b )2=25,则a 2-2ab+b 2=25,故a 2+b 2=25+2ab=25-8=17.故答案为17.点睛:此题主要考查了完全平方公式,正确记忆完全平方公式:(a±b )2=a 2±2ab+b 2是解题关键.15. 如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD =BC ,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明△EDC ≌△ABC ,所以测得ED 的长就是A 、B 两点间的距离,这里判定△EDC ≌△ABC 的理由是__.【正确答案】ASA【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA ,答案可得.【详解】∵AB ⊥BD ,ED ⊥BD ,∴∠ABD =∠EDC =90°,在△EDC 和△ABC 中,,ABC EDC BC DC ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EDC ≌△ABC (ASA ),∴DE =AB ,故答案为ASA .本题考查了全等三角形的应用,熟练掌握全等三角形的判定与性质是解题的关键.16. 如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,12作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是_______.【正确答案】30【分析】作于E ,如图,利用基本作图得到AP 平分∠BAC ,根据角平分线的性质得DE AB ⊥,然后根据三角形面积公式.4DC DE ==【详解】作于E ,如图,DE AB ⊥由作法得AP 平分∠BAC ,∴,4DC DE ==∴△ABD 的面积=.1154302⨯⨯=故30.本题考查了基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)和角平分线的性质是解题的关键.17. 《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数的系数与相应的常数项,把图1x y 、所示的算筹图用我们现在所熟悉的方程组形式表述出来就是 类似地,图2所3219423x y x y +=⎧⎨+=⎩,示的算筹图我们可以用方程组形式表述为__________.。

北师大版数学七下第一、二单元提高训练题

北师大版数学七下第一、二单元提高训练题

七年级数学下册提高训练题1.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.2.观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(1)根据上面各式的规律可得(x n+1﹣1)÷(x﹣1)=;(2)利用(1)的结论求22015+22014+…+2+1的值;(3)若1+x+x2+…+x2015=0,求x2016的值.3.已知(x2+mx+n)(x2﹣3x+2)中,不含x3项和x项,求m,n的值.4.计算:﹣23+×(2005+3)0﹣(﹣)﹣2.5.已知,求值:(1)(2).6.若x2﹣5x﹣1=0,求①x2+,②x4+.7.已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.(1)你认为图乙中阴影部分的正方形的边长等于多少?.(2)请用两种不同的方法求图乙中阴影部分的面积.方法一:;方法二:.(3)观察图乙,你能写出(m+n)2;(m﹣n)2;mn三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.8.已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.9.已知x2+y2=25,x+y=7,求xy和x﹣y的值.10.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.11.我们规定:a﹣p=(a≠0),即a的负P次幂等于a的p次幂的倒数.例:4﹣2=(1)计算:5﹣2=;(﹣2)﹣2=;(2)如果2﹣p=,那么p=;如果a﹣2=,那么a=;(3)如果a﹣p=,且a、p为整数,求满足条件的a、p的取值.12.为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.13.计算:1002﹣992+982﹣972+…+22﹣12.13.若x2﹣5x﹣1=0,求①x2+,②x4+.14.已知多项式M=x2+5x﹣a,N=﹣x+2,P=x3+3x2+5,且M•N+P的值与x的取值无关,求字母a的值.15.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)16.求代数式5x2﹣4xy+y2+6x+25的最小值.17.已知多项式4x2+1,添上一项,使它成为一个完全平方式,你有哪几种方法?18.(1)如图1,正方形ABCD和CEFG的边长分别为a、b,用含a、b的代数式表示△AEG的面积.S△AEG=.(2)如图2,边长为a的正方形ABCD、边长为b的正方形CEFG和边长为c的正方形MNHF的位置如图所示,点G在线段AN上,则S△AEN=.(请直接写出结果,不需要过程)19.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)(2)(3)(4)②选择结论,说明理由.20.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.21.如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.22.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a 的代数式表示)23.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.24.如图,DE∥BC,CD平分∠BCA,∠2=30°.(1)求∠1的度数;(2)求∠DEA的度数.25.如图,点A、B分别在直线CM、DN上,CM∥DN.(1)如图1,连接AB,则∠CAB+∠ABD=;(2)如图2,点P1是直线CM、DN内部的一个点,连接AP1、BP1.求证:∠CAP1+∠AP1B+∠P1BD=360°;(3)如图3,点P1、P2是直线CM、DN内部的一个点,连接AP1、P1P2、P2B.试求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度数;(4)若按以上规律,猜想并直接写出∠CAP1+∠AP1P2+…∠P5BD的度数(不必写出过程).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)数学提高题
1.用符号“⊕”定义一种运算:对于有理数
a ,
b (a ≠0,a ≠1).有220032004||,20042,a b a b x x a a
+⊕=
⊕=-如果那么的值等于 2.5554443333,4,5比较的大小
3.2,34b c a b c +-==a 已知
求23a-b+c
4.已知2
4214,1
x x x x x +=++则
5.若2410,a a -+=求1a a +
6.计算
222()()()()()()a b c b c a c a b a b a c b c b a c b c a ------++------
7.当3999,3,21000ab bc ac a b b c c a ===+++.求abc ab bc ca
++
8.已知,2226100a b a b +-++=,求100123a b --的值
9. 已知,::2:3:4,x y z =且104xy yz xz ++=,求2222129x y z +-的值
10. 、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x ,十位数字为y ,则用代数式表示原两位数为 ,
根据题意得方程组⎩⎨
⎧_________________________________。

11. 已知212a a -+=,那么21a a -+的值是
12.某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
13.已知:如图, BE ∥AO ,∠1=∠2,OE ⊥OA 于O ,EH ⊥CD 于H.
求∠5=∠6.
14.如图,BE//BC,BE 平分∠ABC,∠C=50︒,∠ABC=70︒,求∠BED 与∠BEC 的度数
A
D E
B
15.如图,已知直线AB 、CD 、EF 相交于O,1:2:36:1:2∠∠∠=
求∠DOE 的度数.
C
B
E F
A
A O C D
H E B
1234
65
D
16.已知
4360
270
x y z
x y z
--=


+-=

,求
222
222
236
57
x y z
x y z
++
++
的值
17.已知关于x,y的方程组
23,
3411
x y k
x y k
+=


-=+

的解x y
与的和是3,求k的值
18.已知二元一次方程组
361
222
3
x y
m n m n
x y
m n m n

-=
⎪⎪-+

⎪+=
⎪+-

的解为
3
2
x
y
=


=

,求,m n的值
19.2k为何值时,方程
352
2718
x y k
x y k
-=


+=-

中x与y互为相反数,并求x,y的值
20.现有甲,乙两种酒精,若取甲酒精5千克,乙酒精7千克,混合后得到浓度为65%的酒精,若用甲酒精20千克,乙酒精4千克,混合后得到浓度为70%的酒精,求两种酒精的浓度.。

相关文档
最新文档