直流调速系统课设

合集下载

基于单片机的直流电机调速系统设计

基于单片机的直流电机调速系统设计

直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)

课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。

改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。

直流开环调速系统课设

直流开环调速系统课设

中南大学电力电子技术课程设计题目:直流开环调速系统专业:电气工程及其自动化班级:学号姓名:指导老师:前言此次课程设计的要求,是完成直流开环调速系统的设计。

从电网里供给的电流,经过整流变压器后,再进行整流,使得三相交流电变成三相直流电,供给电动机。

电路的设计以此调速系统的安全可靠为目标,除了完成必要的调速功能,对于系统的开关时刻所产生的过电压和过电流,均采取措施来抑制以保证电路的安全稳定性。

在此系统中,采用晶闸管整流,整流电路采用三相桥式全控整流,其六脉波整流方式能够使波形更加平稳。

过电压保护采用RC过电压抑制电路,过电流保护采用快速熔断器。

在实际情况下,脉动电流会增加电机的发热,同时产生脉动转矩,对电动机不利。

所以,我还设置了一个平坡电抗器才抑制电流脉动。

另外,作为电力电子主电路和控制电路的接口的电力电子器件的驱动电路,对于晶闸管这类半控型器件,采用电流驱动,只需要提供开通信号。

这里,采用磁隔离将控制电路和主电路隔离开来,同时有脉冲的放大和输出环节的触发电路。

这个系统虽然提供了很多防止开断过电流过电压的控制方法,但是在实际运用的过程中仍然有很多不足。

同时也没有指出具体的控制电路的设计方法。

文内各种不足和错误,殷切期望老师批评指正。

目录1引言 (4)2 直流开环调速系统原理和总体设计 (5)2.1 原理 (5)2.2 系统总体方案设计 (6)3 主电路设计 (7)3.1 整流电路 (7)3.2 整流变压器 (8)3.3驱动触发电路 (8)3.4 保护电路 (12)4 电路参数计算 (13)4.1晶闸管的选取 (13)4.2 变压器的参数及容量 (14)4.3 滤波电容的选择 (14)4.4 续流二极管的选择 (15)4.5 平波电抗器的计算 (15)5 总结和体会 (15)1引言以前的直流电动机的控制均以模拟电路为基础,采用运算放大器,非线性集成电路以及少量的数字电路组成。

控制系统的硬件非常复杂,功能单一,而且系统非常不灵活,调试困难,阻碍电动机控制技术的发展和应用范围的推广。

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

SHi-MAML;皿;TI hlHI 门JI iljCi g ^iJtKJ-h直流拖动控制系统课程设计报告目: 双闭环直流调速系统设计院: 沈阳工业大学工程学院业: 电气工程及其自动化级: 1101 班名: 孔令慧号: 120112724指导教师: 佟维妍起止日期:2014年6月16日〜2014年6月22日设计概述.2... 第一章系统总体设计 3...1.1 系统电路结构 3...1.2 两个调节器的作用.4..第二章整体电路分析 6...2.1 电流环设计 6...2.2 转速环设计 6...2.3 典型 I 型系统介绍2.4 典型n型系统介绍.8..2.5 转速调节器的实现.9..2.6 电流调节器的实现.9..2.7 校核转速超调量9...第三章参数计算 1..03.1 相关参数 1...03.2 主要参数计算.1..03.2.1 电流环参数计算 1...03.2.2 转速环参数的计算 1..2 MATLAB 仿真 1..5课程设计体会 1...9.双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点。

在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。

由于直流电机双闭环调速是各种电机调速系统的基础,本人就直流电机调速进行了比较系统的研究,从直流电机的基本特性到单闭环调速系统,再进行双闭环直流电机设计方案的研究,用实际系统进行工程设计,并用所学的MATLABS 行仿真,分析了双闭环调速系统的工程设计方法中由于忽略和简化造成的误差。

在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计需从动态校正的需要来解决,设计每个调节器是,都必须先求该闭环的原始系统开环对数频率特性,再根据性能指标确定校正后系统的预期特性,对于经常正反转运动的系统,尽量缩短启、制动过程的时间是提高生产率的重要因素。

为此,在电机最大允许电流和转矩受到限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,是电力拖动系统以最大的加速度启动,到达稳定转速时,立即让电流降下来,使转矩马上与负载相平衡,从而装入稳态运行。

v-m直流调速课程设计

v-m直流调速课程设计

v-m直流调速课程设计一、课程目标知识目标:1. 理解V-M直流调速系统的基本原理与结构;2. 掌握V-M直流调速系统中速度调节、电流调节的基本方法;3. 学会分析V-M直流调速系统的性能指标,如稳态误差、动态响应等。

技能目标:1. 能够运用所学的理论知识,设计简单的V-M直流调速系统;2. 能够运用相应的仿真软件,对V-M直流调速系统进行模拟与调试;3. 能够解决实际应用中V-M直流调速系统出现的常见问题。

情感态度价值观目标:1. 培养学生对电力电子技术及其应用的兴趣,激发学生的创新意识;2. 培养学生具备团队协作精神,提高沟通与交流能力;3. 增强学生面对工程技术问题的责任感,树立正确的工程伦理观念。

课程性质:本课程为专业核心课程,旨在帮助学生掌握V-M直流调速系统的基本理论和实践技能,提高解决实际工程问题的能力。

学生特点:学生具备一定的电力电子基础,具有较强的学习能力和动手能力,对新技术和新方法充满好奇心。

教学要求:结合学生的特点,注重理论与实践相结合,强调知识的应用性和实践性。

通过课程学习,使学生能够将所学知识应用于实际工程问题中,提高学生的综合素养。

课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. V-M直流调速系统原理- 介绍V-M直流调速系统的组成及工作原理;- 分析V-M直流调速系统的数学模型;- 探讨电机在不同运行状态下的调速性能。

2. V-M直流调速系统设计方法- 速度调节方法:比例、积分、微分控制;- 电流调节方法:PWM控制技术;- 系统设计方法:系统参数的整定与优化。

3. V-M直流调速系统性能分析- 稳态性能分析:稳态误差、稳态响应;- 动态性能分析:动态响应、过渡过程;- 系统稳定性分析:奈奎斯特稳定判据、根轨迹法。

4. V-M直流调速系统实践应用- 介绍常见的V-M直流调速系统实例;- 分析实际应用中存在的问题及解决方案;- 指导学生运用仿真软件进行系统模拟与调试。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

UPE。

从闭环结构上看,电流环在里面称为内环,转速环在外面,称作外环。

这就形成了转速,电流反馈控制直流调速系统。

图1 转速、电流反馈控制直流调速系统原理图2.双闭环的稳态结构图和静特性图2 双闭环直流调速系统的稳态结构图转速调节器ASR的输出限幅电压决定了电流给定的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压,当调节器饱和时,输出达到限幅值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;当调节器不饱和时,PI调节器工作在线性调节状态,其作用是使输入偏差电压在稳态时为零。

对于静特性来说,只有转速调节器饱和与不饱和两种情况,电流调节器不进入饱和状态 。

3.双闭环直流调速系统的动态数学模型双闭环直流调速系统的动态结构图如图3所示,图中分别表示转速调节器和电流调节器的传递函数。

为了引出电流反馈,在电动机的动态结构图中必须把电枢电流Id 显露出来。

图3 双闭环直流调速系统的动态结构图4.双闭环直流调速系统的调速方法调节转速可以有三种方法: (1)调节电枢供电电压U ; (2) 减弱励磁磁通Φ; (3) 改变电枢回路电阻R 。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。

改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。

因此,自动控制的直流调速系统往往以改变电压调速为主。

5.电流环、速度环的设计初始条件某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =;额定转速n 1460rpm =,0.132min/e V r C =⋅,允许过载倍数 1.5λ=;晶闸管装置放大系数40s K =;电枢回路总电阻0.5R =Ω;时间常数0.03,0.18l m s s T T ==;电流反馈系数0.05/V A β=;转速反馈系数0.007min/V r α=⋅。

指导书-直流调速系统课程设计

指导书-直流调速系统课程设计

直流调速系统课程设计指导书宋乐鹏主编张跃辉主审重庆科技学院电子信息工程学院注意事项:(1)室内请勿抽烟。

(2)因条件有限,请注意安全。

(3)装置上凡画有地线符号且接线帽为黑色的接线柱皆为控制回路地线,是控制回路各点电平的参考点,也是控制回路的公共点。

(4)主回路和控制回路之间无任何公共点,相互独立,两者之间不能有任何连线。

(5)示波器的两线输入都是以其外壳为参考点,即示波器两线输入之间有公共点,不是相互独立的,不可同时观察主回路和控制回路。

(6)观察幅值在40伏以上的波形时,必须用示波器的高压探头。

(7)在用万用表测量前,必须检查万用表开关所在的位置。

目录DJDK-1 型直流调速系统设计装置简介――――――――――――――― 1第一章 DJDK-1 型直流调速系统设计的基本要求和安全操作说明――――15 第二章概述――――――――――――――――――――――――――19 第三章单元调试―――――――――――――――――――――――――20 第四章参数测量与计算――――――――――――――――――――――25第五章系统调试―――――――――――――――――――――――――29 第六章系统指标测试―――――――――――――――――――――――32 第七章注意事项――――――――――――――――――――――――― 36 第八章思考题―――――――――――――――――――――――――― 37DJDK-1 型直流调速系统设计装置简介1-1 控制屏介绍及操作说明一、特点(1)设计装置采用挂件结构,可根据不同设计内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能够很好的完成《直流调速系统》课程设计。

(2)设计装置占地面积小,节约设计室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;设计装置只需三相四线的电源即可投入使用,设计室建设周期短、见效快。

(3)设计机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用设计机组。

直流电机调速系统课程设计报告指导书

直流电机调速系统课程设计报告指导书

直流电机调速系统课程设计指导书一、实验目的1、通过对KZ-D系统开环机械特性和闭环机械特性的实测及研究,加深对负反应控制的根本原理的理解。

2、掌握操作实际系统的方法和必要参数的测定方法。

3、研究系统各参数间的根本关系及各参数变化对系统的影响。

4、加深比照例积分调节器动态传输特性的认识,了解其在无静差自动控制系统中的作用。

5、通过实践掌握工程实践中常见的双闭环无静差调速系统参数设计计算和ST调试方法。

5 DD03-2电机导轨﹑测速发电机及转速表6 DJ13 直流复励发电机7 DJ15 直流并励电动机8 D42 滑线变阻器串联形式:0.41A,1.8kΩ并联形式:0.82A,900Ω9 数字存储示波器自备10 万用表自备三、实验线路及原理晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。

在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。

实验系统的组成原理图如图5-1所示。

图1-1 实验系统原理图四、实验容(1) 测定晶闸管直流调速系统主电路总电阻值R,电感值L,s K , 测定直流电动机电势常数C e 测定晶闸管直流调速系统机电时间常数T M (2) 转速调节器的调试,电流调节器的调试(3) 设计调速系统。

调速指标为D =10,S <10%;测定系统开环机械特性和∆n nom ,判断能否满足调速指标;如果不能满足,可采用转速负反应;计算及整定比例调节器参数、反应系数;测定闭环系统的机械特性。

(4) 设计及调试双闭环无静差KZ -D 调速系统要求额定转速时S ≤2%,电流超调量σi %<5%,转速起动到额定转速时,超调量σn ed n %<10%,负载扰动恢复时间小于05.s ,电动机过载倍数λ=12.,电流反应系数A V 615.4=β。

双闭环直流调速系统(课程设计)

双闭环直流调速系统(课程设计)

4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。

双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。

直流调速是现代电力拖动自动控制系统中发展较早的技术。

就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。

且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。

由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。

所以加深直流电机控制原理理解有很重要的意义。

2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。

从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。

每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。

同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。

正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。

(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。

3.3速度调节器设计电流环等效时间常数1/K。

取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。

直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

沈阳理工大学课程设计摘要调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。

目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。

早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。

这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。

为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。

这种系统缺点也很明显,主要是污染环境,危害人体健康。

50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。

晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。

近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。

直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。

不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。

同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。

单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。

而基于电流和转速的双闭环直流调速系统静动态特性都很理想。

关键字:调速系统直流调速器晶闸管晶闸管-电动机调速系统沈阳理工大学课程设计目录1 绪论 (1)1.1 背景 (1)1.2 直流调速系统的方案设计 (1)1.2.1 设计已知参数 (1)1.2.2 设计指标 (2)1.2.3 现行方案的讨论与比较 (2)1.2.4 选择PWM控制系统的理由 (2)1.2.5 选择IGBT的H桥型主电路的理由 (3)1.2.6 采用转速电流双闭环的理由 (3)2 直流脉宽调速系统主电路设计 (4)2.1 主电路结构设计 (4)2.1.1 PWM变换器介绍 (4)2.1.2 泵升电路 (7)2.2 参数设计 (7)2.2.1 IGBT管的参数 (7)2.2.2 缓冲电路参数 (8)2.2.3 泵升电路参数 (8)3 直流脉宽调速系统控制电路设计 (9)3.1 PWM信号发生器 (9)3.2 转速、电流双闭环设计 (9)3.2.1 电流调节器设计 (10)3.2.2 转速调节器设计 (13)4 系统调试 (17)4.1 系统结构框图 (17)4.2 系统单元调试 (17)4.2.1 基本调速 (17)4.2.2 转速反馈调节器、电流反馈调节器的整定 (18)4.3 实验结果 (18)4.3.1 开环机械特性测试 (18)4.3.2 闭环系统调试及闭环静特性测定 (19)5 总结 (20)参考文献 (21)附录A (22)A.1 晶闸管直流调速系统参数和环节特性的测定 (22)A.2 双闭环可逆直流脉宽调速系统性能测试 (26)沈阳理工大学课程设计1 绪论背景在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。

直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。

在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。

传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。

因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。

二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。

速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。

两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。

三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。

其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。

2.软件设计软件设计包括PID控制器设计和程序编写。

PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。

程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。

四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。

2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。

3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。

五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。

其优点是调速范围广、调速精度高、调速响应快、负载能力强等。

六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。

双闭环直流调速系统的课程设计报告

双闭环直流调速系统的课程设计报告

电力传动课程设计课题:双闭环直流调速糸统班级:电气工程及其自动化1004学号:3100501091姓名:贾斌彬指导老师:康梅、乔薇日期:2014年1月9日目录第 1 章系统方案设计1.1 任务摘要 (3)1.2 任务分析. (3)1.3 设计目的、意义 (3)1.4 方案设计. (4)第 2 章晶闸管直流调速系统参数和环节特性的测定2.1 电枢回路电阻R 的测定. (5)2.2 主电路电磁时间常数的测定 (6)2.3系统机电时间常数TM的测定 (7)2.4测速电机特性UTG=f(n)的测定 (7)2.5 晶闸管触发及整流装置特性Ug=f (Ug)的测定 (7)第 3 章双闭环调速系统调节器的设计3.1 电流调节器的设计 (7)3.2 转速调节器的设计 (9)第 4 章系统特性测试4.1 系统突加给定 (11)4.2 系统突撤给定...................... 错误! 未定义书签。

4.2.2 突加负载时 (12)4.2.3 突降负载时 (12)第 5 章设计体会第 1 章系统方案设计1.1 设计一个双闭环晶闸管不可逆调速系统设计要求:电流超调(T i < 5%转速超调(T n < 10%静态特性无静差给定参数:电机额定功率185W 额定转速1600r/min 额定励磁电流<0.16A 额定电流1.1A 额定电压220V 额定励磁电压220V转速反馈系数a =0.004 V • min/r电流反馈系数B =6V/A1.2 任务分析采用转速、电流双闭环晶闸管不可逆直流调速系统为对像来设计直流电动机调速控制电路,为了实现转速和电流两种负反馈分别起作用,可在系统中设计两个调节器,电流调节器和速度调节器,为了实现电流和转速分别起作用,二者之间实行串级连接,即把转速调节器的输出当做电流调节器的输入,在把电流调节器的输出去控制晶闸管整流器的触发装置。

该双闭环调速系统的两个调节器ASR 和ACF都采用PI调节器,以便能保证系统获得良好的静态和动态性能转速调节器在双闭环直流调速系统中的作用是减小转速误差,采用PI 调节器可实现无静差;对负载变化起抗扰作用;其输出限幅决定电动机允许的最大电流; 电流调节器在双闭环直流调速系统中的作用是使电流紧紧跟随其给定电压的变化;对电网的波动起及时抗干扰作用;加快动态过程;堵转或过载时起快速自动保护作用。

直流PWM调速系统课设

直流PWM调速系统课设

(一)任务书1 性能指标稳态指标:系统无静差动态指标:σi<=5%;空载起动到额定转速时σn<=10% 。

2 给定电机及系统参数P N=220W,U N=48V,I N=3.7A,λ=2,n N=200r/min,R a=6.5欧姆电枢回路总电阻R =8欧姆电枢回路总电感L =120mH电机飞轮惯量GD2=1.29 Nm23 设计步骤及说明书要求①画出系统结构图,并简要说明工作原理②根据给定电机参数,设计整流变压器,并计算变压器容量及副边电压值;选择整流二极管及开关管的参数,并确定过流、过压保护元件参数。

③分析PWM变换器,脉宽调制器(UPW)及逻辑延时(DLD)工作原理。

④设计ACR、ASR并满足给定性能指标要求。

⑤完成说明书,对构成系统的各环节分析时,应先画出本环节原理图,对照分析。

⑥打印说明书(B5),打印电气原理图(A2)。

并交软盘(一组)一张。

目录(二) 实验设计方法及其步骤一、 概述该系统是运用H 型双极模式PWM 控制的原理,采用电流速度双闭环控制方式,设计的一个基于PWM 控制的直流电机控制系统,并设计了软启动电路和完善的保护电路,确保直流电机控制系统准确、可靠地运行。

在主电路设计上,三相交流电经整流电路整流、电容滤波,再由4个IGBT 组成的H 型双极模式转换电路进行调压控制电机速度。

在控制电路中,采用双闭环控制系统,内环是电流环,外环是速度环。

电流检测采用根据磁场补偿原理制成的新型霍尔效应电流互感器—LEM 模块[1].,电流环调节器采用PI 调节,电流调节器输出控制脉冲宽度调制电路产生PWM 波,再通过脉冲分配电路和驱动电路控制IGBT 实现功率变换。

速度检测采用直流测速发电机,其结构简单可靠,准确度高。

为使整个系统能正常安全地运行,设计了过流、过载、过压、欠压保护电路,另外还有过压吸收电路。

确保了系统可靠运行。

二、 系统结构框图及工作原理2.1 系统结构框图如下:双闭环脉宽调速系统的原理框图如图2-1所示。

vm双闭环直流调速系统课程设计

vm双闭环直流调速系统课程设计

vm双闭环直流调速系统课程设计以vm双闭环直流调速系统为主题的课程设计是电气工程专业中的一门重要课程。

该课程旨在培养学生对直流调速系统的设计和实现能力,以及对电力电子技术的理解和应用能力。

本文将围绕该课程的设计和实施方案展开讨论。

一、引言直流调速系统是电气工程中常用的一种调速控制系统,广泛应用于工业自动化领域。

通过对电机电压和电流进行调节,实现对电机转速的精确控制。

而vm双闭环直流调速系统则是在传统的单闭环调速系统基础上,进一步引入了速度环和电流环,提高了系统的稳定性和响应速度。

二、系统设计方案1. 系统结构vm双闭环直流调速系统由速度环、电流环和功率模块组成。

速度环负责测量和控制电机的转速,电流环负责测量和控制电机的电流,功率模块负责将输入电压转换为电机所需的控制信号。

2. 系统参数设置为了实现精确的转速控制,需要对系统的参数进行准确的设置。

包括电机的额定转速、额定电流和转矩常数等。

同时还需要根据具体的应用场景,确定速度环和电流环的控制参数,如比例增益、积分时间等。

3. 闭环控制算法vm双闭环直流调速系统采用基于PID控制算法的闭环控制策略。

通过对速度和电流的反馈信号进行处理,计算出合适的控制信号,实现对电机转速和电流的精确控制。

三、系统实施方案1. 硬件实施在实际的电气工程中,需要使用电机、编码器、传感器等硬件设备来搭建vm双闭环直流调速系统。

其中,电机负责转动,编码器负责测量转速,传感器负责测量电流。

这些硬件设备需要按照设计方案进行连接和配置。

2. 软件实施vm双闭环直流调速系统的软件实施主要包括控制算法的编程和参数调试。

通过编写控制程序,实现对速度环和电流环的控制。

同时,还需要进行参数调试,优化控制算法的性能。

3. 系统测试与优化在实际应用中,需要对vm双闭环直流调速系统进行测试和优化。

通过对系统的实时性、稳定性和精确性进行评估,找出存在的问题并进行改进。

同时,还可以根据不同的应用需求,对系统的性能进行优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录 (2) (2)内容 (2)要求 (2) (3) (3) (3) (4) (4) (4) (5) (7) (8) (11) (12) (12) (14)仿真波形结果 (18)转速 (18)电流 (19) (19)五 (19)一、课程设计要求1.设计参数直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V ,电枢绕组电阻Ra=Ω,主电路总电阻R =Ω,Ks=,电磁时间常数TL=,机电时间常数Tm=,滤波时间常数Ton=Toi=,过载倍数λ=,电流给定最大值 8V U im =*,速度给定最大值10V U n =* 2.设计内容1)根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。

2) 调速系统主电路元部件的确定及其参数计算。

3)驱动控制电路的选型设计。

4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。

5) 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。

3.设计要求:1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。

2)系统静特性良好,无静差(静差率2S ≤)。

3)动态性能指标:转速超调量8%n δ<,电流超调量5%i δ<,动态最大转速降810%n ∆≤~,调速系统的过渡过程时间(调节时间)1st s 。

4)系统在5%负载以上变化的运行范围内电流连续。

5)调速系统中设置有过电压、过电流保护,并且有制动措施。

6)主电路采用三项全控桥。

二双闭环直流调速系统的工作原理晶闸管-电动机直流调速系统简介图是V-M系统的简单原理图[1,3,5]。

-晶闸管-电动机直流调速系统(V-M系统)双闭环直流调速系统动态结构图双闭环直流调速系统动态结构图M++_LGTU cU d~三控制系统的设计双闭环直流调速系统的组成该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。

因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。

一般的调速系统要求以稳和准为主,采用PI 调节器便能保证系统获得良好的静态和动态性能。

图转速、电流双闭环直流调速系统图中U*n、U n—转速给定电压和转速反馈电压 U*i、U i—电流给定电压和电流反馈电压ASR—转速调节器 ACR—电流调节器 TG—测速发电机 TA—电流互感器UPE—电力电子变换器主电路的结构形式图 V-W系统原理图图主电路原理图主电路的设计1.变流变压器的设计为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压2U只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压2U。

影响2U值的因素有:(1)2U值的大小首先要保证满足负载所需求的最大电流值的m axdI。

(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用TV 表示。

(3)变压器漏抗的存在会产生换相压降。

(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。

(5)电枢电阻的压降。

综合以上因素得到的2U精确表达式为:max2max[1(1)]%[]100dN a TddKdIU r nUIUICUA BIε+-+=-⋅式(3-1)式中NU为电动机额定电压;2UUA d=;ddUUBα=及C见表1-1;NN a U R I r ∑=,N I 为电动及额定电流,∑R 为电动机电枢电路总电阻;T nU 表示主电路中电流经过几个串联晶闸管的管压降;ε为电网电压波动系数,通常取0.9 1.05~,供电质量较差,电压波动较大的情况ε应取较小值; %K U 为变压器的短路电压百分比,100千伏安以下的变压器取5%=K U ,100~1000千伏安的变压器取%510K U =~;max d I -- 负载电流最大值;max d dN I I λ=所以max d dNI I λ=,λ表示允许过载倍数。

2U 也可以用下述简化公式计算2U =()B A Ua ε或 2U =()AUa 其中,系数()和()为考虑各种因素的安全系数,a U 为整流输出电压。

对于本设计:为了保证电动机负载能在额定转速下运转,计算所得2U 应有一定的裕量,根据经验所知,公式中的控制角α应取300为宜。

9.0=ε,34.2=A ,2330cos cos ===O B α,5.0=C ,5%=K U ,(其中A 、B 、C 可以查表3-1中三相全控桥),NN a U R I r ∑=18.044045.0180=⨯=,max d dN I I λ== 表3-1 变流变压器的计算系数把已知条件代入式(3-1)可得结果:max 2max [1(1)]%[]100d N a T d d K d I U r nU I U I CU A B I ε+-+=-⋅=()[]⎥⎦⎤⎢⎣⎡⨯⨯-⨯⨯+-+7.1100%55.0239.034.21217.181.01440=272.890V根据主电路的不同接线方式,有表3-1查的22/I d K I I =,即可得二次侧电流的有效值22I d K I I ⨯=,从而求出变压器二次侧容量2222S m U I =。

而一次相电流有效值21I I =/()21/U U ,所以一次侧容量 =1S 2222I U m S =。

一次相电压有效值1U 取决于电网电压,所以变流变压器的平均容量为121()2S S S =+222I U m =对于本设计2I K 816.0= , 2m =3 ,22I d K I I ⨯==2I N K I ⨯⨯λ05.1843816.02207.1=⨯⨯= A121()2S S S =+222I U m =KVA 248.84405.1843272.8903=⨯⨯=设计时留取一定的裕量,可以取容量为A KV ⋅350的整流变压器。

整流元件晶闸管的选型KV U U RM TM 006.2~337.1272.89045.2)3~2()3~2(=⨯⨯== 取 V 2000 。

晶闸管额定电流)(AV T I 的有效值大于流过元件实际电流的最大有效值。

一般取按此原则所得计算结果的~2倍。

已知 A I I N d 3061807.1max =⨯==λ ==max 31d VT I I A 176.581可得晶闸管的额定电流)(AV T I 计算结果 :()A I I VT AV T 224.943~168.70857.1)2~5.1(== 取300A 本设计选用晶闸管的型号为KP (3CT )-300A ( 螺栓型)额定电压: VDRM 2000V 额定电流: IT(AV) 300A 门极触发电压:VGT ≤30 V 门极触发电流:IGT ≤400 A 电抗器的设计(1)交流侧电抗器的选择为限制短路电流,所以在线路中应接入一个空心的电抗器,称为进线电抗器。

(2)直流侧电抗器的选择直流侧电抗器的主要作用为限制直流电流脉动;轻载或空载时维持电流连续;在有环流可逆系统中限制环流;限制直流侧短路电流上升率。

限制输出电流脉动的电感量m L 的计算()di d dm m I S U f U U L 232210π⨯= 式(3-2) 式中,i S -----电流脉动系数,取5%~20%,本设计取10%。

d f -----输出电流的基波频率,单位为Z H ,对于三相全控桥300d Z f H =输出电流保持连续的临界电感量L L 的计算:L min 2/d L I U K = 式(3-3) 式中,m in d I 为要求连续的最小负载的平均值,本设计中min 5%N I I =;2U 为变流装置交流侧相电压有效值。

代入已知参数,可求的 m L =L L =m L 和L L 包括了电动机电枢电感量D L 和折算到变流变压器二次侧的每相绕组漏电感B L ,所以应扣除D L 和B L ,才是实际的限制电流脉动的电感ma L 和维持电流连续的实际临界电感La L 。

3102⨯=NN D D pnI U K L 式(3-4)B L =N K B I U U K 100%2 式(3-5) 式中, K D ---计算系数,对于一般无补偿绕组电动机K D =8~12,对于快速无补偿绕组电动机K D =6~8,对于有补偿绕组电动机K D =5~6,其余系数均为电动机额定值,这里K D 取10。

n p ----极对数,取n p =2。

k U %-----变压器短路比,一般取为5%;B K ------为计算系数,三相全控桥 3.9B K =。

即 D L =17.410220120022440103=⨯⨯⨯⨯mH B L =286.022********.3229.3=⨯⨯⨯mH 实际要接入的平波电抗器电感K L()59.15286.0217.433.202,m ax =⨯--=--=B D L m k L L L L L mH 电枢回路总电感∑LmH L L L L D B k 33.2017.4286.0259.152=+⨯+=++=∑ 可取20mH(1)过电压保护图3-5 二次侧过电压压敏电阻保护压敏电阻额定电压的选择可按下式计算:⨯≥9.0~8.01εmA U 压敏电阻承受的额定电压峰值 式(3-6) 式中 1mA U ------压敏电阻的额定电压, VYJ 型压敏电阻的额定电压有:100V 、200V 、440、760V 、1000V 等;ε为电网电压升高系数,可取10.1~05.1。

压敏电阻承受的额定电压峰值就是晶闸管控制角α=300时输出电压d U α。

由此可将式(3-6)转化成 αcos 69.0~8.005.121U U mA ⨯≥ 可得压敏电阻额定电压 V U mA 63.898~78.79823755.32269.0~8.005.11=⨯⨯⨯≥ 所以压敏电阻额定电压取850V 型压敏电阻。

(2)过电流保护在本设计中,选用快速熔断器与电流互感器配合进行三相交流电路的一次侧过电流保护,保护原理图3-6如下:图3-6 一次侧过电流保护电路(1)熔断器额定电压选择:其额定电压应大于或等于线路的工作电压。

本设计中变压器的一次侧的线电压为760V ,熔断器额定电压可选择800V 。

(2)熔断器额定电流选择:其额定电流应大于或等于电路的工作电流。

相关文档
最新文档