4.4.5 用区段叠加法作静定梁的内力图解析

合集下载

第6章-梁的内力PPT课件

第6章-梁的内力PPT课件
l ql l M CLM Cq4L l2 FA2240
(3)计算截面C稍右处的剪力FsR、弯矩MCR。
M C
MCR
A
l/2
FA
Fy 0
FsR
ql FsRFA2 0
MCF0
解之得:
FsR
ql 4
M CR MFA2 lq 2 l4 l0
精选PPT课M件CR 0
14
建筑力学
❖ 计算剪力和弯矩的规律
(1) 梁内任一截面上的剪力,其大小等于该截面左侧(或右侧) 梁上所有外力的代数和;梁内任一截面的弯矩,其大小等 于该截面左侧(或右侧)梁上所有外力对于该截面形心之矩的
★ 由平衡方程 F得y ,0
F s x F s x d s x F q x d 0 x
dFsx qx
dx
(9-1)
几何意义:剪力图上某点处的切线斜率等于该点处荷载
集度的大小。
精选PPT课件
23
建筑力学
★ 由平衡方程 MC 得,0
M x dx M M x F sx d q x x d d 2 x 0 x
(3)列出各段的剪力方程和弯矩方程:各段列剪力方程和弯矩方程时, 所取的坐标原点与坐标轴x的正向可视计算方便而定,不必一 致。
(4) 画剪力图和弯矩图:先根据剪力方程(或弯矩方程)判断剪力图(或 弯矩图)的形状,确定其控制截面,再根据剪力方程(或弯矩方 程)计算其相应截面的剪力值(或弯矩值),然后描点并画出整个 全梁的剪力图(或弯矩图)
解之得: Fs 4kN 精选PPTM 课件144 kNm
12
[例]
简支梁受均布荷载q和集中力偶M=ql2/4的作用,如图所示。求截面C 的剪力和弯矩。
M
q

梁的内力分析

梁的内力分析

FQ 3 为负剪力, M 3 为正弯矩。
在计算梁的剪力和弯矩时,可以通过下面的结论直接计算: (1)某截面上的剪力等于该截面左侧(或右侧)梁段上所 有横向外力的代数和。(左上右下剪力为正;反之则为负) 以该截面左侧杆段上的外力进行计算时,则向上的外力产生 正剪力,反之为负。以该截面右侧杆段的外力计算时,则 向下的外力产生正剪力,反之为负。 (2)某截面上的弯矩等于该截面左侧(或右侧)所有外力对该 截面之矩的代数和。(左顺右逆弯矩为正;反之则为负) 以左侧的外力进行计算时,则绕截面顺转的外力产生正弯矩, 反之为负。以右侧的外力计算时,绕截面逆转的外力产生 正弯矩,反之为负。
F
Q1
、 M 1 为正值,表示该截面上剪力和弯矩与所设方向一致,故为正剪力,正弯矩。
例 7- 1
(3)求 2-2 截面的内力。用截面法把梁从 2-2 截面处切成两段,取左段为研究对象,受 力如图 7-6c。图中剪力和弯矩都假设为正。由平衡方程得 ∑Fy=0,
FA - F Q 2 =0, F Q 2 = FA =2 kN
FQ1 FA 2kN M1 FA 2 2 2 4kN m

FQ2=FA-F=2-3=-1kN
M 2 FA 2 2 2 4kN m
(3)求3-3和4-4截面的剪力和弯矩,取右侧计算。
FQ 3 FB 1kN
M3 FB 4 m 1 4 2 2kN m
MA 0
MB ql ql 2 l 0 2 2 ql l q l ql 2 M C ( )2 2 2 2 2 8
当x =l 时
当x=l/2时,
时将三点用一光滑曲线连成一抛物线即得梁的弯矩图,见图7-9c。

静定结构的内力计算图文

静定结构的内力计算图文

30 30
4m
4m
4m
4m
12kN
12kN 12kN
M 图(kN·m)
9kN
9kN
2kN/m
7kN
5kN
9kN
4.5kN
7.5kN
39
第40页/共76页
作业
习题3-5、3-6、3-9 习题3-10、3-12
40
第41页/共76页
§3-3 三铰拱
41
第42页/共76页
一、 概述
1、定义:
通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
AC段受力图:
q
MC
t
C
FNC
FQC
n
x
FAY
FAYSinα
(2)求内力方程:
MC = 0 Ft = 0 Fn= 0
M = 1 qlx 1 qx2 (0 x l) 22
FN
=
q(1 l 2
x) sin
(0 x l)
FQ
=
q(1 2
l
x) cos
(0 x l)
FAYcosα
FAY
M中 =162 / 8 6.23/ 2 =1.385kN.m(下拉)
弯矩图见下图。
1kN/m
6.23 D
C 1.385
6.23 E
1.385kN A
4.5kN
M 图(kN.m)
B 1.385kN
1. 5kN
38
第39页/共76页
例:主从刚架弯矩图。
12kN
2kN/m
36 36
6m
12 42 30
F
F
曲梁

f / l : 高跨比(1~1/10)

结构力学---第十九章 静定结构的内力分析

结构力学---第十九章 静定结构的内力分析

第十九章 静定结构的内力分析一. 内容提要1. 静定梁(1) 单跨静定梁用截面法求内力 平面结构在任意荷载作用下,其杆件横截面上一般有三种内力,即弯矩M 、剪力F Q 和轴力F N .内力符号通常规定如下:弯矩以使梁的下侧纤维受拉为E ;剪力以使隔离体有順时针方向转动趋势者为E ,轴力以拉力为E 。

计算内力用截面法的规律,即梁内任一横截面上的弯矩等于该截面一侧所有外力对该截面形心的力矩的代数和;梁内任一横截面上的剪力等于该截面一侧与截面平行的所有外力的代数和。

内力图 表示内力沿轴线变化规律的图形称为内力图。

内力图包括弯矩图、剪力图和轴力图。

通常情况下,作内力图用简捷法,而作弯矩图常用叠加法。

(2) 斜梁简支斜梁在沿水平方向均布荷载作用下,支座反力与相应水平简支梁相同,而内力表达式为KK M M = αcos 0Q K Q K F F = αsin 0Q K NK F F -= 根据表达式作出共同内力图(3)多跨静定梁多跨静定梁由基本部分和附属部分组成。

其受力特点是;外力作用在基本部分都受力,按照附属部分依赖于基本部分的特点,可把多跨静定梁用层次图表示,层次图把多跨静定梁拆成若干单跨静定梁,计算出各单跨静定梁,然后将各单跨静定梁的内力图连在一起即得多跨静定梁的内力图。

多跨静定梁的计算顺序是先计算附属部分,再计算基本部分。

2. 静定平面刚架静定平面刚架的内力计算原则上与静定梁相同。

通常先由平衡条件求出支座反力,然后按静定梁计算内力的方法逐杆绘制内力图。

在绘制刚架的弯矩图时,不定义弯矩的正负号,但必须将弯矩图绘在杆件的受拉侧,剪力、轴力的正负号规定与静定梁相同,剪力图和轴力图可以画在轴线的任一侧,但需标明正负。

3. 静定平面桁架理想桁架中的各杆都是二力杆,只产生轴力,计算轴力是可均设拉力。

求解桁架内力的方法有:结点法、截面法、联合法。

结点法是取桁架法结点为隔离体,由平面汇交力系的平衡条件求杆件的轴力,这种方法通常适用求简单桁架所有杆件的轴力;联合应用结点法和截面法求桁架的轴力,称为联合法,适用于联合横架和复杂横架的内力计算。

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

图10
图11
图12
3.3.2
多跨静定梁的内力计算
由层次图可见,作用于基本部分上的荷载,并不 影响附属部分,而作用于附属部分上的荷载,会以支 座反力的形式影响基本部分,因此在多跨静定梁的内 力计算时,应先计算高层次的附属部分,后计算低层 次的附属部分,然后将附属部分的支座反力反向作用 于基本部分,计算其内力,最后将各单跨梁的内力图 联成一体,即为多跨静定梁的内力图。
例6 试作出如图13(a)所示的四跨静定梁的弯矩图和剪 力图。
解:(1) 绘制层次图,如图13(b)所示。
(2) 计算支座反力,先从高层次的附属部分开 始,逐层向下计算:
① EF段:由静力平衡条件得
∑ME=0: ∑Y=0: YF×4-10×2=0 YF=5kN YE=20+10-YF=25kN
解:(1)求支座反力 先假设反力方向如图所示,以 整梁为研究对象: ∑X=0: XA-P=0 XA=P=4kN ∑MB=0: YA*l-q*l*0.5*l=0 YA=0.5ql =0.5×3×4kN=6kN ∑Y=0: YA+YB=ql YB=ql-VA =(3×4-6) kN=6kN
即:
q′l′=ql q=q′l′/l=q′/cosα
下面以承受沿水平向分布的均布荷载的斜梁为例进 行内力分析,如图(b)所示。 根据平衡条件,可以求出支座反力为: XA=0, YA=YB=1/2ql
则距A支座距离为x的截面上的内力可由取隔离体求出。 如图(c)所示,荷载qx、YA,在梁轴方向(t方向)的分 力分别为qxsinα、YAsinα;在梁法线方向(n方向) 的分力分别为:qxcosα、YAcosα。则由平衡条件得: ∑T=0: YAsinα-qxsinα+NX=0 NX=(qx-1/2ql)sinα ∑N=0: YAcosα-qxcosα-QX=0 QX=(1/2ql-qx)cosα ∑MX=0: YAx-qx· x/2-MX=0 MX=1/2qx(1-x)

静定梁内力图

静定梁内力图

§3.2 内力图形状特征
• 内力图的形状特征
⑴在自由端、铰结点、铰支座处的截面上无集中力 偶作用时,该截面弯矩等于零(如图1-(a)C右截面、 图1-(b)A截面),有集中力偶作用时,该截面弯矩 等于这个集中力偶,受拉侧可由力偶的转向直接确 定(如图1-(a)C左截面和D截面)。 ⑵在刚结点上,不仅要满足力的投影平衡,各杆 端弯矩还要满力矩平衡条件∑M=0。尤其是两杆相 交刚结点上无外力偶作用时,两杆端弯矩等值,同 侧受拉(如图1-(a)结点B、图1-(b)结点B)。 ⑶定向支座、定向连接处Q=0,Q=0段M图平行 轴线(如图1-(a)AB杆端、图1-(b)BC、CD段)。 ⑷内力图与荷载的对应关系见表3-1。
10kN/m
↓↓↓↓↓↓↓
2m 2m
60kN.m
15kN
2m
2m
55
30 20 30 5 m/2 m m/2 M 图 (kN.m) 30
ห้องสมุดไป่ตู้
8kN
A B 1m RA=17kN 1m
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
4kN/m
C 2m 2m E
16kN.m
G F 1m 1m RB=7kN 7 23 8 8
↓↓↓↓↓↓↓↓↓↓↓
a
a
a
2a
a
a
a
qa 2qa
qa
qa
qa
q
↓↓↓↓↓↓↓↓↓↓↓
qa/2
qa/2
qa/2
-3qa/4
9qa/4
qa
q
↓↓↓↓↓↓↓↓↓↓↓
qa
a
a
2qa
qa

a 3qa/4 qa qa/4
2a

静定结构内力计算全解[详细]

静定结构内力计算全解[详细]
➢ 杆件结构的组成和分析是两个相关的过程,应当 把受力分析与组成分析联系起来,根据结构的组 成特点确定受力分析的合理途径。
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy

静定结构的内力分析习题解答分解

静定结构的内力分析习题解答分解

静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。

( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。

( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。

( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。

( )ABCDEF习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。

( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。

( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。

( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。

( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。

从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。

荷载发生改变时,合理拱轴线将发生变化; (7)错误。

合理拱轴线与荷载大小无关;(8)错误。

一般从仅包含两个未知轴力的结点开始。

习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。

ABCDElllllP F PF PF PF习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

6k N /m4k N /m6m AB C D4m 4m习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。

结构力学-静定结构的内力分析

结构力学-静定结构的内力分析

计算多跨梁的原则:先附属,后基本。
多跨梁
单跨梁
单跨梁内力图
多跨梁内力28 图
[例1] 作多跨静定梁的弯矩图和剪力图
40KN/m
120KN
A
D
B
C
3m
8m
2m
6m
解: (1)作层次图
40KN/m
C
A B
120KN D
29
(2)求反力
40KN/m A
B 8m
C 2m
120KN D
3m 6m
C
120KN D
A
mC 0
FAH
FBH
FAV
l 2 FP1 f
l 2 a1
FA0V
a2
C
FP2
f
B FBH
FBV
l
FP2
C
B
FH
M
0 C
f
FB0V 55
三、 静定拱的内力计算:
1. 静定拱的内力有: M、 FQ 、FN 。
弯矩:使拱内侧受拉为正。
145KN 8m
60KN
60KN
B 235KN
3m
2m
6m
60KN
32
[例2] 作多跨静定梁的弯矩图和剪力图
q
A
B
C
qa
D
E
2qa2 F
a/2 a/2
a
a
a/2 a/2
q
AB
C 7qa/ 8
3qa/8 D
qa D
2qa2
E
F
3qa/8
6qa/8
11qa3/38
作弯矩图: 3qa2
qa2
8
8

4.4.3静定梁的内力方程及内力图

4.4.3静定梁的内力方程及内力图
1443梁的内力方程及内力图剪力图和弯矩图若以横坐标x表示横截面在梁轴线上的位置则各横截面上的剪力和弯矩皆可表示为坐标x的函数即qqxmmx以上两函数表达了剪力和弯矩沿梁轴线的变化规律分别称为梁的剪力方程和弯矩方程
4.4.3
梁的内力方程及 内力图
剪力图和弯矩图
剪力方程和弯矩方程
• 若以横坐标x表示横截面在梁轴线上的 位置,则各横截面上的剪力和弯矩皆可表示 为坐标x的函数,即 • Q=Q(x) • M=M(x) • 以上两函数表达了剪力和弯矩沿梁轴线 的变化规律,分别称为梁的剪力方程和弯矩 方程。
பைடு நூலகம் x=0,MA=0
x=l/2,MC=ql2/8 x=l,MB=0 弯矩图如图9.15(c)所示。 从所作的内力图可知,最大剪力发生在梁端,其值为|Qmax|=ql/2,最 大弯矩发生在剪力为零的跨截面,其值为|Mmax|=ql2/8。
【例 9.6】简支梁受集中力P作用如图9.16(a)所示,试画出梁的剪力图和弯矩 图。 【解】(1) 求支座反力 以整梁为研究对象,由平衡方程求支座反力。 ∑mB(F)= 0,-RAl+Pb=0 RA=Pb/l ∑Fy=0,RA+RB-P=0 RB=Pa/l (2) 列剪力方程和弯矩方程 梁在C截面处有集中力P作用,AC段和CB段所受的外力不同,其剪力方 程和弯矩方程也不相同,需分段列出。取梁左端A为坐标原点
剪力图和弯矩图
为了形象地表示剪力和弯矩沿梁轴的变化规律, 把剪力方程和弯矩方程用其图像表示,称为剪力图 和弯矩图。 剪力图和弯矩图的画法与轴力图、扭矩图很相 似,用平行于梁轴的横坐标x表示梁横截面的位置, 用垂直于梁轴的纵坐标表示相应截面的剪力和弯矩。
在土建工程中,习惯上将正剪力画在x轴上方, 负剪力画在x轴的下方;正弯矩画在x轴下方,负弯 矩画在x轴的上方,即把弯矩图画在梁受拉的一侧。

建筑力学第11章静定结构的内力计算

建筑力学第11章静定结构的内力计算
2)联合桁架 由几个简单桁架按几何不变规律 联合组成的桁架(图 11.28(c)所示)。 3)复杂桁架 不按上述两种方式组成的其他形 式的桁架(图 11.28(d)所示)。 46
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。

静定结构的内力分析

静定结构的内力分析

40
第 三 章80 静定结构的内力计算
D
FNDE FNED
E
30
30
FNDC
FNEB
FQ
40 kN
FN 30 kN
80 kN
练习:
第三章
静定结构的内力计算
解: (1) 求支座反力。
F=qa
C
D
由 X 0
E
FxA q 2a 0
q
a B
得 FAx 2qa
a
由 M A 0
FxA
A
FyB
2qa a F a FyB 2a 0
首先进行定性分析。
由内力图的外观校核。杆上无分布荷载FS图为水 平直线;M图为斜直线。杆上有分布荷载FS图为斜直 线;M图为二次抛物线。 FS图为零的截面M为极值。 杆上集中荷载作用的截面, FS图上有突变;M图上有折 弯。根据这些特征来检查,本题的M图、FS图均无误。
第 三 章 静定结构的内力计算
6
FA=58 kN 26
10
18 FB=12 kN
q ME
FQE
MF
FS 图 ( kN )
FQF
第 三 章 静定结构的内力计算
二、 多跨静定梁 (multi-span statically determinate beam)
附属部分--依赖基本
基本部分--不依赖其它
部分的存在才维持几
部分而能独立地维持其

3.外力与杆轴关系(平行,垂直,重合) 4.特殊部分(悬臂部分,简支部分)
5.区段叠加法作弯矩图
第 三 章 静定结构的内力计算
结点平衡条件的应用:
一、铰结点: (集中力偶只能作用于杆端处)
M

15-内力与荷载之间的关系+叠加法做梁的内力图

15-内力与荷载之间的关系+叠加法做梁的内力图

αtanαtanα内力图特点1. 无外力作用的区段,剪力图是平行于梁轴线的直线段。

2. 集中力作用的位置,剪力图有突变,突变值等集中力的大小。

当从左向右作剪力图时,突变方向与外力一致。

3. 均布荷载作用的区段,剪力图是倾斜直线段,倾斜值等于均布荷载的合力。

当从左向右作剪力图时,倾斜方向与外力一致。

4. 集中力偶作用位置,剪力图不受影响。

剪力图与荷载的关系内力图特点5. 无外力作用的区段,弯矩图是直线段(倾斜或平行轴线)。

6. 集中力作用的位置,弯矩图发生转折,转折方向与外力一致。

7. 均布荷载作用的位置,弯矩图是二次抛物线,抛物线凹凸方向与外力一致。

8. 集中力偶作用的位置,弯矩图发生突变,突变值等于集中力偶矩的大小。

当从左向右作弯矩图时,顺时针的力偶引起从负向正(即从上向下的突变),逆时针的力偶相反。

弯矩图与荷载的关系内力图特点9. 弯矩图上任意点切线的斜率值等于该点对应的剪力图的剪力值。

10. 从基线(梁轴线)到弯矩图上任一点切线的锐角转动如果为顺时针的,那么该点对应的剪力图上的剪力值为正。

反之为负。

11. 弯矩图如为二次抛物线,剪力图为倾斜直线;弯矩图如为倾斜直线,剪力图为平行于梁轴线的直线;弯矩图如为平行梁轴线的直线,剪力图是零。

12. 弯矩图上的极值点对应着剪力图上的零点以及左右截面上的剪力具有不同正负号的间断点,或端点。

弯矩图与剪力图的关系9.5 用区段叠加法作梁的内力图叠加原理:多个载荷同时作用于结构而引起的内力等于每个载荷单独作用于结构而引起的内力的代数和。

按叠加原理作内力图步骤:①分别作出各项荷载单独作用下梁的内力图;②将每个荷载作用下的内力图叠加。

结构力学静定梁的内力分析

结构力学静定梁的内力分析

(d)
M M M FQdx m 0
M m
(e)
以上两式,为荷载与内力的增量 关系。式(e)忽略了一阶微量。
增量关系的几 何意义
在集中力作用点(集中力垂直 与杆轴或有垂直于杆轴的分量) 两侧截面,剪力有突变,突变 值即为该集中力或垂直于杆轴 的分量;弯矩相同。
在集中力偶作用截面两侧,弯矩 有突变,突变值即为该集中力偶; 剪力相同。
a
M
0
M1
1 2
qa 2
FAy a
M
用文字写 明受拉侧
取截面1右侧为隔离体 计算可得同样结果
3.直接法求指定 截面的内力
由例3-1-1内力计算结果 分析,指定截面的内力可 用该截面一侧的外力直接 表示,即:
轴力 (FN)
截面一侧所有外力在指定 截面法线方向投影的代数 和,以与截面外法线方向 相反为正。
剪力 (FQ)
截面一侧所有外力在指定 截面切线方向投影的代数 和,左上、右下为正。
弯矩(M)
截面一侧所有外力对 指定截面形心力矩的 代数和。
例3-1-2 用直接法,求例 3-1-1图(a)所示伸臂梁截 面2上的内力。
M
(a)

支座反力计算同例3-1-1。内力 可由右图所示受力图直接计算:
M
F A x F A y
3a 2
FP
4 5
a
(↓)
(箭头标出 实际方向)
MA 0
FBy
3a
M
q 3a
3a 2
FP
4 5
4a
0
(↑) FBy
1 M 3a
q 3a
3a 2
FP
4 4a 5
箭头标出实 际方向

结构力学——静定多跨梁讲解

结构力学——静定多跨梁讲解

B
FP1
FP FP1 FP2

FP1x
i

FP1 y
j
FP2 xi
FP2 y
j
x

( FP1x

FP2 x
)i
(FP1y FP2 y ) j
2. 力对点的矩,合力矩定理
理力、材力相关内容复习

平面的情况 FP FPiAB iAB AB / AB
FAy ql / 2 M / l FAy
FBy
MB ql2 / 2 M FAyl 0 FBy ql / 2 M / l M A ql2 / 2 M FByl 0
理力、材力相关内容复习
悬臂梁AB受图示荷载作用,试求A的支
座反力。
MA
q
M
Fx FAx 0 FAx A
RAY2
RBY2
由 MB 0 得
1 RAY2 2 ql
由 M A 0

1 RBY 2 2 ql
注意:1. 为什么两端支座反力(剪力)计算公式反号?
2. 如果为悬臂梁,须特殊讨论吗?
第三章 静定结构的 受力分析
3-2 静定多跨梁
多跨静定梁
(multi-span statically determinate beam)
FPy


FPz

FPz
k
FP

FPx

FPy

FPz

x
FPxi FPy j FPzk
y
FPx
B
A FPy
力的投影、分解和合成

第三章静定结构受力分析

第三章静定结构受力分析

内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。

轴力以拉力为正。

剪力----截面上应力沿杆轴法线方向的合力。

剪力以绕微段隔离体顺时针转者为正。

内力的概念和表示弯矩----截面上应力对截面形心的力矩。

在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。

作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。

内力的计算方法梁的内力的计算方法主要采用截面法。

截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。

2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。

3.平衡----利用隔离体的平衡条件,确定该截面的内力。

内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。

以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。

分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。

= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。

例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。

(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。

下图为简化的静定多跨连续梁。

静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。

受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。

第四章 梁的内力

第四章 梁的内力

q=2kN/m MC B
M C ( F ) 0
l ql 2 M C FB 4.5kN m 2 8
l/4 FSC
FSC
l/2
FB
图4.11
三、用直接法求剪力、弯矩 F=5kN
直接法:梁任一横
截面上的剪力在数 值上等于该截面一
(a)
q=2kN/m
F=5kN
A C l/4 FA l/4
F
A
B
x
例题:作悬臂梁的剪
x
l FS
x
力图和弯矩图。
解:建立坐标系,将坐 标原点取在梁的左端, 写出梁的剪力方程和弯 矩方程 :
FS图
F
FS (x) F
x
(0 x l) (0 x l)
M(x) Fx
M
M图
x 0时,M(0) 0 x l时, M(l) Fl
FRA
A
x
q
FRB
例题:作如图简支梁
的剪力图和弯矩图。
解:先求两个支反力
FRA FRB ql 2
B
l
FRA
A
q
M(x) FS (x)
建立坐标系,梁的剪力
x
方程和弯矩方程为:
ql FS (x) FRA qx qx (0 x l) 2 x qlx qx 2 M(x) FRA x qx (0 x l) 2 2 2
FRA
A
x
q
FRB
由弯矩方程得弯矩图为一 条二次抛物线。
B
l
x 0,
M 0
ql 2
x =l ,
解:1、求截面C的剪力和弯矩

4.梁和刚架内力分析

4.梁和刚架内力分析
静定结构的组合式刚架
静定结构的内力分析 有基、附关系的刚架
结 构 力 学
附属部分
基本部分
静定结构的内力分析
3、刚架的特点
① 刚架的内部空间大,制作施工较方便。 ②刚结点将梁柱联成一整体,增大了结构的刚度,变形小。
结 构 力 学
③刚架中的弯矩分布较为均匀,节省材料。
二、刚架的内力计算
1、刚架反力的计算
Pl/4 l/2
M1
l/2
M2 P
M1
M2
Pl/4
静定结构的内力分析
2、直杆段弯矩图叠加法
P
C q

B
A
D
结 构 力 学
lCD
q
O
q

MCD
MDC
剪力=支座反力
MCD
MDC
(MCD+MDC)/2
MDC MCD
分段叠加法的注意事项:
(1)弯矩图叠加是竖标相加,不是图形的拼合;
(2) 适用于外荷载作用下,结构材料处于线弹 性阶段OA,
3、刚架内力图绘制的举例
静定结构的内力分析
例题1. 试绘制图示悬臂刚架的内力图
q= 10 kN/m
20kN 1m 1.5m
结论
10 35 70 10
20kN
对称结构在正对称荷 载作用下,其M图与 FN图为正对称,其FQ
结 构 力 学
图为反对称。
0.5m 2m 2m 0.5m
图 (a)
35.78 17.89 20
静定结构的内力分析
刚结点处的 变形特点 刚结点处的 受力特点
90 90 90
结 构 力 学
FP
30kN 90 6m
3m

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例 9.11】简支梁受荷载P和q作用如图9.22(a)所示。试用叠加法画梁的弯矩
【解】将作用在梁上的荷载分为P与q两组。 先分别画出P、q单独作用下的弯矩图,如图9.22(b)、(c)所示。然后将这
两个弯矩图的相应纵坐标叠加起来,如图9.22(a)所示,就是简支梁在集中荷 载P和均布荷载q
【例 9.12】外伸梁受荷载作用如图9.23(a)所示,试用叠加法画梁的弯矩图。
用在简支梁上时的弯矩图,为此必须先求出MA 和MB。
区段叠加法画弯矩图的具体步骤如下:
▲ 首先把杆件分成若干段,求出分段点上的弯矩 值,按比例标在杆件相应的点上,然后每两点间 连以直线。
▲ 如果分段杆件的中间没有荷载作用这直线就是 杆件的弯矩图。如果分段杆件的中间还有荷载作用, 那么在直线上还要叠加上荷载单独在相应简支梁上 产生的弯矩图形。
4.4.5 用区段叠加法作 梁的弯矩图
学习目标:学会用叠加法作内力图
叠加法画弯矩图
根据叠加原理来绘制内力图的方法称为叠加法。 用叠加法画弯矩图,绘图时先把作用在梁上的 复杂的荷载分成几组简单的荷载,分别作出各简单 荷载单独作用下的弯矩图,然后将它们相应的纵坐 标叠加,就得到梁在复杂荷载作用下的弯矩图。例 如图9.21(a)、(b)、(c)所示。 用叠加法画弯矩图时,一般先画直线形的弯矩 图,再叠画上曲线形的弯矩图。
图9.23
二、用区段叠加法画弯矩图
对图示简支梁把其 中的AB段取出,其隔 离体如图所示:
把AB隔离体与相 应的简支梁作一对 比:
Fp
q
A
L
q
MA
A
FQAB
q MA
显然两者是完全
A
相同的。
MA
A
FYA
M
B
MB
B
FQBA
MB
B
MB
B
FYB
Fp
q
M
A
L
B
因此上图梁中AB段的弯矩图可以用与简支梁 相同的方法绘制,即把MA和MB标在杆端,并连 以直线,然后在此直线上叠加上节间荷载单独作
c、求分段点C、G点的弯矩值:
取AC为隔离体
1m
A 17
8 1m
MC C
FQCA
MC 0
MC 17 2 81 26kN m
取EG为隔离体
ME
ME 0
FQEG
M E 7 2 16 30kN m
E 1m
16kN∙m
G 1m
FYG
d、 把A、C、E、G四点的弯矩值标在杆上,点
【解】将荷载分为q与P两组。 先分别画出q、P单独作用下的弯矩图,如图9.23(b)、(c)所示。由于荷载
q与P单独作用时弯矩图有不同的正负号,叠加时可以先画直线弯矩,再叠 画上曲线弯矩图,如图9.23(a)所示,使两图相互重叠部分正值和负值的纵坐 标互相抵消,则剩下的部分就是外伸梁在荷载q和P
图9.22
分段点→外力不连续点:集中力 及力偶作用点、均布荷载起讫点
各段梁内力图形状(微分关系) →选定控制截面→截面法求控制 截面内力→内力图上标出控制点 竖标
根据各段梁内力图形状(微分关 系)+区段叠加法将控制点相连
练习
练习
单跨静定梁小结
❖要求: ➢1)理解内力、内力图的概念; ➢2)了解梁的主要受力、变形特点; ➢3)理解并掌握截面法计算内力的方法; ➢4)熟练掌握用叠加法做直杆段的弯矩图。
与点之间连以直线。
然后在AC段叠加上集中力在相应简支梁上产 生的弯矩图;在CE段叠加上均布荷载在相应
简支梁上产生的弯矩图;在EG段叠加上集中
力矩在相应简支梁上产生的弯矩图。最后弯
矩图如下所示:
A
C
26 2
8
E
G
30 8
弯矩图
求反力
内 力 分段 图 绘 定点 制 步 骤 连线
校核
取全梁为隔离体,建立力系平 衡方程,悬臂梁可不求反力
❖难点及重点: ➢1)内力正、负号的判断; ➢2)叠加法做弯矩图。
注意事项
细节
➢符号表示规范:F-力,FS-剪力,FN-轴力,M弯矩、力矩; ➢内力图标明图名、单位,(参数为符号时无需单 位); ➢内力图绘制尽量成比例 ➢做题计算过程中有单位的应注明单位 ➢三个内力图尽量上下对齐,以便校核
注意事项
例:用区段叠加法画出图示简支梁的弯矩图。
8kN
4kN/m
16kN∙m
A C
E
G
1m 1m 2m
2m
1m 1m
解:a、把梁分成三段:AC、CE、EG。 b、求反力:
MA 0 FYG (81 4 4 4 16) 8 7kN
Y 0 FY A 8 4 4 7 17kN
存在错误 ➢分清内力图正负规定,要与材料力学的规定区分开 来。注意内力图竖标线的标示,不要乱涂。 ➢内力图无需画坐标轴,与控制部位处注明内力大小 ➢注意集中力偶处弯矩突变方向的判断 ➢注意均布荷载下抛物线凸出方向,指明三点说明抛 物线形状 ➢图形无转折处需过度平滑 ➢无计算过程
相关文档
最新文档