Hough变换原理简介

合集下载

hough变换直线检测主要原理

hough变换直线检测主要原理

hough变换直线检测主要原理
霍夫变换是一种在图像空间进行几何形状检测的方法,用于检测平面上的直线。

主要原理如下:
1. 点与直线的表示:霍夫变换使用极坐标系来表示直线,每个点在图像中表示一条通过该点的直线。

直线可以用两个参数表示:r表示离原点的距离,θ表示与x轴的夹角。

2. 累加过程:对每个点,遍历所有可能的直线参数,并在霍夫空间中进行累加。

对于每个点,对应于通过该点的所有直线,累加器中相应位置的值加1。

这个累加过程可以在霍夫空间中的一个二维数组中进行。

3. 阈值检测:当累加器中的某个值超过预设的阈值时,认为该直线存在。

这个阈值可以根据应用需求进行设置。

4. 参数反算:根据累加器中的峰值,反算出对应的直线参数(r和θ),并在图像中绘制出检测到的直线。

霍夫变换的主要优点是对于存在噪声和局部遮挡的图像仍然能够有效地检测直线。

但是其缺点是计算复杂度较高,直线的参数空间较大,需要处理大量的累加器。

同时,霍夫变换对于直线的精确定位和参数估计准确性不高,对于曲线的检测效果较差。

hough变换方法

hough变换方法

hough变换方法Hough变换方法引言Hough变换是一种图像处理方法,主要用于检测和提取图像中的几何形状,如直线、圆等。

它在计算机视觉和模式识别领域有着广泛的应用。

本文将介绍Hough变换的原理、算法和应用,并探讨其优缺点以及未来的发展方向。

一、Hough变换的原理Hough变换的核心思想是将图像中的几何形状转化为参数空间中的曲线或点的形式,从而简化形状检测的问题。

对于直线检测来说,Hough变换可以将直线表示为参数空间中的一个点,通过在参数空间中进行累加操作,找到曲线交点最多的点,从而确定图像中的直线。

二、Hough变换的算法1. 边缘检测:在进行Hough变换之前,需要对图像进行边缘检测,以提取形状的边缘信息。

常用的边缘检测算法包括Sobel、Canny 等。

2. 构建参数空间:对于直线检测来说,参数空间可以理解为直线在参数空间中的表示形式。

通常使用极坐标系表示直线,即每个直线由一个长度和一个角度唯一确定。

3. 累加操作:对于图像中的每个边缘点,计算其在参数空间中的曲线或点,并进行累加操作。

通过累加操作,可以找到曲线交点最多的点,从而确定图像中的直线。

4. 阈值判断:根据累加结果,可以设置一个阈值,只有当累加值超过该阈值时,才认为该点对应的直线存在。

5. 参数反变换:将参数空间中的曲线或点反变换回图像空间,得到检测到的直线。

三、Hough变换的应用1. 直线检测:Hough变换最常见的应用就是直线检测。

在工业检测、路标检测等领域中,直线的检测是一项基础任务,Hough变换可以实现准确地直线检测,从而为后续处理提供便利。

2. 圆检测:除了直线检测,Hough变换还可以用于圆的检测。

通过在参数空间中寻找曲线交点最多的点,可以确定图像中的圆的位置和半径。

3. 图像分割:Hough变换可以将图像中的不同几何形状分割出来,从而实现图像的分割处理。

在医学图像处理、目标跟踪等领域中,图像分割是一项重要的任务。

Halcon学习之hough直线变换

Halcon学习之hough直线变换

Halcon学习之hough直线变换*Detect lines in an image with the help of the Hough transform*using the edge direction as additional information and return it both in HNF and as *regionshough变换指的是把空间系坐标转化到另一个坐标系,减少直线或者其他形状被描述时候需要的维数,通过转换后的累积,可以确定直线的位置或者圆的圆心。

个人的理解hough直线变换:把(x, y) 坐标系中可能对直线做出贡献的点,利用梯度信息把其所有可能形成的所有直线(和梯度方向垂直),转化为极坐标系中的一点(Rou, Theta)(任意一条直线与原点的垂线段,角度和长度组成极坐标值),这样通过把(x,y)坐标系中所有的点进行转化,并把结果在极坐标系中进行累积,可以在累积空间中把真正直线所在的一些点累积的很高,从而可以确定直线的极坐标,转换回去就是直线。

read_image( Image,'fabrik')rectangle1_domain(Image, ImageReduced, 170,280,310,360)注意:这里是一个重要的剪切出ROI区域操作,通过图形窗口的‘创建ROI’功能可以手动创建,这里依然对此函数的各个参数做出说明,方便以后非人工操作时候的程序编写:rectangle1_domain(Image : ImageReduced : Row1, Column1, Row2, Column2 : )后面四个参数是矩形的两个对角点。

当自动取RoI时候,需要用到:gen_rectangle2( : Rectangle : Row, Column, Phi, Length1, Length2 : )中心点位置,角度Phi,半个变长的长度Lengh1,Lengh2,然后利用reduce_domain来确定ROIsobel_dir(ImageReduced,EdgeAmplitude,EdgeDirection,' sum_abs', 3)sobel算子来计算边缘的幅值和方向,幅值计算方式是绝对值和除以4,模板大小是3注意这里面的EdgeDirection结果是一个direction类型的图dev_set_color('red')threshold(EdgeAmplitude, Region, 55,255)reduce_domain(EdgeDirection,Region,EdgeDirectionReduce d)* start use hough transform using the direction informationhough_lines_dir( EdgeDirectionReduced,HoughImage, Lines, 4, 2, 'mean', 3, 25, 5, 5, 'true', Angle, Dist)hough_lines_dir(ImageDir : HoughImage, Lines : DirectionUncertainty, AngleResolution, Smoothing, FilterSize, Threshold, AngleGap, DistGap, GenLines : Angle, Dist)利用边缘的梯度信息进行hough变换来检测直线,并把结果以Hessian normal form (HNF)格式返回(最后得到一组angle和dist)gen_region_hline(LinesHNF, Angle,Dist)生成这些Hessian线条dev_display('margin')setcolor,show......总结:Hough_line_dir主要用到了经过阈值处理后的边缘方向,即梯度信息来生成相应的Hessian线条。

Hough变换检测直线

Hough变换检测直线

Hough 变换检测直线实验报告一,实验要求用hough 算法检测图像中的直线算法。

使用这一算法来求一幅图像中的所有大于规定长度的直线段,设规定的长度为20点。

二,Hough 变换简介Hough 变换是图像处理中从图像中识别几何形状的基本方法之一。

Hough 变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。

这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。

图1 Hough 变换)sin(sin cos 00θαθθρ+=+=A y x如上图所示,在图像空间,直线上一点),(00y x 转换到参数空间就是一条曲线,而且,图像空间同一直线上的点转换到参数空间的曲线一定相交于一点,即参数空间各曲线的交点对应着图像空间的一条直线,这样,检测参数空间曲线交点就检测出了图像空间的直线。

三,实验过程和结果分析用Hough 变换之前, 首先要对图像进行边缘检测的处理,也即霍夫线变换的直接输入只能是边缘二值图像。

本实验基于VS2008和OPENCV 来实现。

实验的步骤如下:(1)读入图像,转换成灰度图像OPENCV 中用cvLoadImage 函数来读取图像,函数原型:IplImage* cvLoadImage( const char* filename, int flags=CV_LOAD_IMAGE_COLOR );filename :要被读入的文件的文件名(包括后缀);flags :指定读入图像的颜色和深度;例如:cvLoadImage( fileame, -n1 ); //默认读取图像的原通道数cvLoadImage( filename, 0 ); //强制转化读取图像为灰度图 cvLoadImage( filename, 1 ); //读取彩色图(2)进行边缘检测本实验选择Canny算子的边缘检测,OPENCV中用Canny函数来进行Canny 算子的边缘检测,函数原型为:void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size=3 );image:单通道输入图像edges:单通道存储边缘的输出图像threshold1 :第一个阈值threshold2 :第二个阈值aperture_size :算子内核大小3,对检测出的二值图像进行Hough变换OPENCV中用cvHoughLines2函数来进行Hough变换,函数原型为:CvSeq* cvHonghLines2(CvArr* image,void* line_storage,int mehtod,double rho,double theta,int threshold,double param1 =0,double param2 =0);Image:输入8-比特、单通道(二值)图像line_storage:检测到的线段存储仓Method:Hough 变换变量,是下面变量的其中之一CV_HOUGH_STANDARD ——传统或标准Hough 变换CV_HOUGH_PROBABILISTIC——概率Hough 变换CV_HOUGH_MULTI_SCALE ——传统Hough 变换多尺度变种Rho:以象素为单位的距离精度,一般取1Theta:以弧度为单位角度精度,一般取CV_PI/180Threshold:阈值参数,当在一条直线上的像素点数大于threshold时,才将该直线作为检测结果显示出来,该值越大,得到直线越少。

霍夫变换(hough transform)

霍夫变换(hough transform)

霍夫变换(hough transform)霍夫变换(Hough Transform)霍夫变换是一种图像处理技术,用于在图像中检测直线、圆形等几何形状。

它最早由Paul Hough在1962年提出。

霍夫变换在计算机视觉和模式识别领域得到广泛应用,特别在边缘检测和形状分析中表现出色。

一、霍夫变换原理1. 直线检测霍夫变换的直线检测基于极坐标下的直线方程:ρ = xcosθ + ysinθ。

其中,ρ表示直线与原点的距离,θ为直线与x轴的夹角。

霍夫变换通过在ρ-θ空间中进行投票,找到出现频率最高的ρ和θ组合,即可以确定一条直线。

2. 圆形检测霍夫变换的圆形检测考虑到圆心坐标和半径。

以圆心坐标(xc, yc)和半径r为变量,对每个像素点进行投票。

根据累加器中出现频率最高的圆心和半径组合,即可确定一个圆。

二、霍夫变换的步骤1. 边缘检测霍夫变换需要基于边缘图像进行处理,因此首先需要对原始图像进行边缘检测。

常用的边缘检测算法有Canny边缘检测和Sobel算子等。

2. 构建累加器对于直线检测,构建一个二维累加器数组,用于记录直线参数的出现频率。

对于圆形检测,构建一个三维累加器数组,用于记录圆心和半径的出现频率。

3. 参数空间搜索遍历边缘图像上的每个像素点,对于每个边缘像素,计算对应的ρ和θ(直线检测)或圆心坐标和半径(圆形检测)。

在累加器中相应位置加1。

4. 参数估计根据累加器中出现频率最高的位置,估计出最佳直线或圆形的参数。

可以设定一个阈值,只接受出现频率高于该阈值的参数。

5. 绘制检测结果根据参数估计的结果,在原始图像上绘制检测出的直线或圆形。

三、霍夫变换的应用1. 直线检测霍夫变换的直线检测广泛应用于计算机视觉领域。

例如,道路标线检测、物体边缘检测、图像中的几何形状检测等。

通过直线检测,可以提取出图像中的重要几何特征,为后续的图像处理和分析提供基础。

2. 圆形检测霍夫变换的圆形检测可以应用于许多领域,例如医学图像处理、目标跟踪、光学字符识别等。

霍夫变换原理检测圆的原理

霍夫变换原理检测圆的原理

霍夫变换原理检测圆的原理霍夫变换(Hough Transform)是一种数字图像处理技术,主要用于检测图像中的模式或物品,如直线、圆或任何其他形状。

其中,检测圆的原理是基于霍夫变换的圆检测算法。

首先,需要明确圆的数学表达式。

圆的一般方程为:(x –a)^2 + (y –b)^2 = r^2其中,a和b表示圆心的坐标,r表示半径。

基于这个数学表达式,可以推导出霍夫圆变换的算法原理。

相比于霍夫直线变换,霍夫圆变换需要考虑三个参数:圆心x坐标、圆心y坐标和半径r。

因此,在霍夫圆变换中,需要构建一个三维空间来表示所有满足圆方程的点。

具体而言,可以将三个参数分别设定成三个坐标轴,其中,x轴表示圆心x坐标,y轴表示圆心y坐标,z轴表示半径r。

接下来,对于给定的图像,利用霍夫圆变换来检测其中所有圆。

步骤如下:1. 选择图像中的一个点。

2. 在三维空间中,遍历所有可能的圆心位置和半径大小。

3. 如果当前遍历到的圆心和半径位置满足圆的方程,那么就在三维空间中标记这个点。

4. 重复步骤1~3,对于所有图像中的点进行遍历。

5. 经过遍历后,在三维空间中,所有标记的点都应该落在同一频繁性最高的球面上。

6. 在球面上,可以定义一个圆心和半径,这个圆心和半径就是最终检测出的圆的位置和大小。

7. 重复步骤1~6,对于所有图像中的圆进行遍历。

霍夫圆变换需要对所有可能的圆心位置和半径大小进行遍历,因此计算量非常大。

为了减少计算时间,通常采用一些优化方法,例如逐步增加圆的半径大小或设定一个半径范围。

总体而言,霍夫圆变换是一种有效的圆检测算法,它不仅可以检测出图像中的所有圆,还可以确定它们的位置和大小。

在计算机视觉、医学图像处理等领域广泛应用。

霍夫变换(hough transform)

霍夫变换(hough transform)

一、概述霍夫变换是一种常用的图像处理技术,它可以用于检测图像中的直线、圆或者其他形状。

它具有很好的鲁棒性,可以应对图像中存在的噪声和其他干扰。

霍夫变换在计算机视觉、图像处理和模式识别领域有着广泛的应用,成为了处理图像中几何形状的重要工具。

二、霍夫变换的原理霍夫变换最初是由美国科学家保罗·霍夫在1962年提出的,用于检测图像中的直线。

后来,霍夫变换被扩展到检测圆或者其他形状。

霍夫变换的基本原理是将空间域中的坐标转换到参数域中,在参数域中对应的曲线经过的点在空间域中具有共线的特点。

通过累加空间域中的点的参数,可以找到曲线或者形状的参数方程,从而实现对图像中形状的检测。

具体来说,对于检测直线来说,可以通过霍夫变换将直线表示为参数空间中的斜率和截距,从而可以在参数空间中进行累加,最终找到直线的参数方程。

三、霍夫变换在直线检测中的应用1. 边缘检测在使用霍夫变换检测直线之前,通常需要对图像进行边缘检测。

边缘检测可以帮助找到图像中明显的过渡区域,这些过渡区域通常对应着直线的轮廓。

常用的边缘检测算法包括Sobel算子、Canny算子等。

2. 参数空间的设置为了使用霍夫变换来检测直线,需要设定参数空间的范围。

对于直线检测来说,一般可以设定直线的斜率和截距的取值范围。

3. 累加过程在设定好参数空间后,需要对图像中的边缘点进行霍夫变换的累加过程。

对于每一个边缘点,都可以在参数空间中找到对应的直线,通过对参数空间的累加,可以找到参数空间中的峰值,这些峰值对应着图像中的直线。

4. 直线检测可以根据参数空间中的峰值来确定图像中的直线。

通常可以设定一个阈值来筛选参数空间中的峰值,从而得到最终的直线检测结果。

四、霍夫变换在圆检测中的应用除了直线检测,霍夫变换也可以用于检测图像中的圆。

与直线检测类似,圆检测也需要进行边缘检测和参数空间的设定。

不同的是,在圆检测中,需要设定圆心和半径的参数空间范围。

五、霍夫变换的改进和应用1. 累加数组的优化在传统的霍夫变换中,需要对参数空间进行离散化,这会导致计算量较大。

hough变换检测圆的原理

hough变换检测圆的原理

hough变换检测圆的原理Hough变换是一种常用的图像处理算法,可以用于检测图像中的圆形。

它的原理是将图像空间中的圆形转化为参数空间中的一个点,通过在参数空间中搜索最大投票数来确定图像中的圆形。

Hough变换的基本思想是将图像中的每个边缘点映射到参数空间中,并在参数空间中进行累加。

对于圆形检测来说,参数空间通常是三维的,包括圆心的x坐标、y坐标以及圆的半径。

因此,对于图像中的每个边缘点,都会在参数空间中生成一条曲线。

如果曲线上的点足够多,那么交点所对应的参数就是图像中的圆形。

具体来说,Hough变换的过程如下:1. 初始化参数空间:根据图像的大小和期望的圆形半径范围,初始化一个三维数组作为参数空间。

数组的每个元素对应一个圆心位置和半径。

2. 边缘检测:通过使用边缘检测算法(如Canny边缘检测)获得图像中的边缘点。

3. 参数空间累加:对于每个边缘点,在参数空间中生成一条曲线。

具体的方法是遍历所有可能的圆心位置和半径,计算曲线上的点,并在参数空间中进行累加。

4. 搜索最大投票数:在参数空间中搜索累加值最大的点,该点对应的参数即为检测到的圆形。

5. 圆形绘制:利用检测到的圆心和半径,在图像上绘制检测到的圆形。

Hough变换的优点是对图像中的噪声具有较好的鲁棒性,可以检测到不完整或部分遮挡的圆形。

然而,由于参数空间的维度较高,计算复杂度较高,因此在实际应用中需要进行优化。

总结起来,Hough变换是一种基于参数空间的图像处理算法,可以用于检测图像中的圆形。

通过将图像中的边缘点映射到参数空间中,并在参数空间中进行累加,可以找到最大投票数对应的圆形参数。

虽然Hough变换具有一定的计算复杂度,但其在圆形检测方面具有较好的鲁棒性和准确性,因此被广泛应用于计算机视觉和图像处理领域。

霍夫变换直线检测原理

霍夫变换直线检测原理

霍夫变换直线检测原理
霍夫变换(Hough Transform)是一种用来检测图像中的直线的算法,它在图像处理领域非常重要,它可以用来检测图像中的线条,圆和椭圆。

霍夫变换的基本原理是,将输入图像中的每个像素点看作是坐标系中的一个点,然后通过一些函数来确定是否存在直线,圆或椭圆,并将这些函数称为霍夫变换函数。

霍夫变换的直线检测是一个非常重要的过程,它的基本原理是将输入图像中的每个像素点看作是坐标系中的一个点,然后用霍夫变换函数来检测输入图像中是否存在直线。

霍夫变换函数有两种,一种是极坐标函数,另一种是直角坐标函数。

在极坐标函数中,霍夫变换函数的形式是:r=xcosθ+ysinθ,在直角坐标函数中,霍夫变换函数的形式是:y=mx+b。

霍夫变换直线检测的过程大致分为以下几步:首先,将输入图像转换为灰度图像,然后使用适当的滤波算法去除噪声;其次,使用边缘检测算法检测图像的边缘,并获得边缘的像素点坐标;然后,使用霍夫变换函数对边缘的像素点进行拟合,获得直线的参数;最后,使用拟合后的参数对直线进行绘制,完成图像中直线检测的任务。

总而言之,霍夫变换是一种用来检测图像中的直线的算法,它是一种极其重要的算法,它可以有效地检测图像中的线条,圆和椭圆,而其直线检测的原理是,将输入图像中的每个像素点看作是坐标系
中的一个点,然后使用霍夫变换函数拟合像素点,获得直线的参数,最后使用参数对直线进行绘制。

三维霍夫变换

三维霍夫变换

三维霍夫变换三维霍夫变换(3D Hough Transform)是一种图像处理技术,用于在三维空间中检测物体的形状和位置。

它是二维霍夫变换的扩展,可以应用于三维模型重建、目标检测和姿态估计等领域。

本文将介绍三维霍夫变换的原理、算法以及应用。

一、原理三维霍夫变换的原理基于极坐标的转换。

在三维空间中,一个点的位置可以由它的坐标表示,即(x, y, z)。

而霍夫变换则将点的位置表示为参数空间中的一个点,该点与待检测物体的某个参数相关联。

对于三维空间中的线段,可以通过其在参数空间上的投影进行检测。

二、算法三维霍夫变换的算法与二维霍夫变换类似,主要包括以下几个步骤:1. 确定参数空间:根据待检测物体的特性选择适当的参数空间,为每个参数建立对应的投票矩阵。

2. 构建投票矩阵:遍历图像中的每个点,将每个点在参数空间上的投票结果累加到对应的投票矩阵中。

3. 提取特征:根据投票矩阵的结果,提取出具有较高得票数的参数组合,作为待检测物体的特征。

4. 检测与定位:根据提取的特征,对图像进行检测和定位,获取待检测物体的形状和位置信息。

三、应用三维霍夫变换在许多领域中有广泛的应用。

1. 三维模型重建:三维霍夫变换可以用于从多个二维视图中重建三维模型。

通过在不同视角下进行三维霍夫变换,可以将多个二维投票矩阵叠加得到最终的三维投票矩阵,从而估计出物体的三维形状。

2. 目标检测:三维霍夫变换可以用于目标检测,特别是对于三维物体的检测。

通过在参数空间中查找具有较高得票数的参数组合,可以准确地定位图像中的目标物体。

3. 姿态估计:三维霍夫变换可以用于姿态估计,即确定物体在三维空间中的方向和角度。

通过分析在不同姿态下的霍夫变换结果,可以获得物体的姿态信息。

四、总结三维霍夫变换是一种有效的图像处理技术,可以用于三维模型重建、目标检测和姿态估计等应用。

它通过将图像点的位置转换为参数空间中的投票,实现对待检测物体的形状和位置的准确提取。

随着计算机视觉技术的不断发展,三维霍夫变换在各个领域中将发挥更重要的作用。

hough变换检测直线原理matlab

hough变换检测直线原理matlab

Hough变换是一种图像处理技术,它可以被用来检测图像中的直线。

Hough变换的原理是通过将图像空间中的像素点转换到参数空间中来对直线进行检测。

在参数空间中,每条直线都可以被表示为一组参数,如直线的斜率和截距。

在matlab中,可以使用hough变换来检测图像中的直线。

下面我们来介绍一下在matlab中如何使用hough变换来检测直线。

1. 预处理图像在使用hough变换之前,首先需要对图像进行预处理。

可以通过灰度化、边缘检测等处理方法来提取出图像中的直线信息,以便于后续的检测。

2. 进行hough变换在matlab中,可以使用函数hough来进行hough变换。

该函数的调用格式为:[H,T,R] = hough(BW)其中,BW是经过预处理的二值图像,H是hough变换的结果矩阵,T和R分别是参数空间中的角度和距离。

3. 检测直线在获得了hough变换的结果矩阵之后,可以使用函数houghpeaks来检测出图像中的直线。

该函数的调用格式为:P = houghpeaks(H,5)其中,H是hough变换的结果矩阵,5表示要检测的直线数量。

4. 获取直线参数一旦检测出了直线,就可以使用函数houghlines来获取直线的参数。

该函数的调用格式为:lines = houghlines(BW,T,R,P)其中,BW是经过预处理的二值图像,T和R分别是参数空间中的角度和距离,P是检测出的直线。

5. 绘制直线可以使用函数imshow来在原图上绘制出检测到的直线。

该函数的调用格式为:imshow(BW)hold onfor k = 1:length(lines)xy = [lines(k).point1; lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');endhold off通过以上步骤,就可以在matlab中使用hough变换来检测图像中的直线。

hough变换检测直线原理

hough变换检测直线原理

hough变换检测直线原理Hough变换是一种常用的图像处理算法,用于检测图像中的直线。

该算法的原理基于直线上的点在参数空间中具有唯一的特征,通过对参数空间的投票来检测直线。

Hough变换最初是由Paul Hough于1962年提出的,用于在图像中检测直线。

该方法的基本思想是将直线表示为参数空间中的一个点,而不是在图像中的像素点。

这样可以将直线检测问题转化为参数空间中的点集聚类问题,从而简化了直线检测的过程。

在Hough变换中,直线可以表示为参数空间中的两个参数:rho (ρ)和theta(θ)。

参数rho表示直线到原点的距离,而参数theta表示直线与x轴的夹角。

对于给定的图像点(x, y),可以通过以下公式计算rho和theta的值:rho = x * cos(theta) + y * sin(theta)在Hough变换中,我们需要创建一个二维的参数空间,其中rho 的范围为[-D, D],theta的范围为[0, 180°],D是图像对角线的长度。

然后遍历图像中的每个像素点,对每个像素点计算rho和theta的值,并在参数空间中对应的位置进行投票。

投票过程中,我们将参数空间中的每个点初始化为0。

对于每个图像点,如果它处于某条直线上,那么对应的参数空间中的点就会累加投票数。

最终,参数空间中投票数较高的点对应的直线就是我们要检测的直线。

为了提高算法的效率,通常会使用累加器数组来存储参数空间中的投票数。

累加器数组的大小根据参数空间的分辨率来确定,分辨率越高,算法的精度也就越高。

在累加器数组中,每个元素对应参数空间中的一个点,其值表示该点的投票数。

在实际应用中,Hough变换通常会与边缘检测算法结合使用,以便检测图像中的直线。

常用的边缘检测算法有Canny算法和Sobel 算法。

边缘检测算法可以将图像中的边缘点提取出来,从而减少了Hough变换的计算量。

Hough变换在计算机视觉和图像处理领域有着广泛的应用。

霍夫变换原理

霍夫变换原理

霍夫变换原理
霍夫变换原理(Houghtransform)是一种图像处理技术,用于检测和识别二维图像中的几何形状。

它最初由美国数学家图灵奖得主Paul Hough于1962年提出,其原理根据许多几何形状的平面投影,将其分解为若干参数的变化,并利用参数的更改来识别几何形状。

原理上,霍夫变换以投影变换、空间变换和像素原始点变换为主要基础,其主要思想是由于几何形状元素,如直线、圆等,表示可以用方程式表示,因此我们可以通过计算几何形状在每一点处的投影转换函数来识别该几何形状。

通过测量投影函数参数的变化,我们可以检测到图像中的几何形状,并对它们进行分类。

此外,霍夫变换还有一种比较特殊的扩展,即概率霍夫变换(Probabilistic Hough Transform)。

该算法允许多个参数来拟合投影参数,并通过一组高斯随机变量,具有高精度和更大的漂移容忍度。

在空间变换中,概率霍夫变换可以用于检测更复杂的几何形状,如椭圆、心形等,并用于椭圆和圆的识别,从而提高检测的准确率。

此外,霍夫变换可以用于特征提取,特征提取是指从图像中提取特定的信息。

霍夫变换的特征提取利用几何特征模板来提取指定的几何元素。

例如,可以使用霍夫变换找到水平直线和垂直直线,从而找到图像中最重要的特征点。

总之,霍夫变换是一种有效的图像处理技术,具有检测和识别几何形状、特征提取和更改参数等功能,被广泛应用于计算机视觉、机器视觉、遥感图像处理、计算机图形学等领域,对与图像处理有着重
要的作用。

霍夫直线变换原理

霍夫直线变换原理

霍夫直线变换原理
霍夫直线变换原理是一种在计算机视觉和图像处理领域广泛应用的技术,它通过检测图像中的直线来实现目标检测、图像分割等功能。

本文将介绍霍夫直线变换原理的基本概念、应用场景以及实现方法。

霍夫直线变换原理是由霍夫(Hough)在1962年提出的,旨在解决在图像中检测直线的问题。

其基本原理是将直线表示为参数空间中的一个点,并通过累加来检测出直线。

具体来说,对于图像中的每个像素点,如果它可能属于某条直线,就在参数空间中为该直线的参数进行累加。

最终,累加值最大的点即为检测到的直线。

在实际应用中,霍夫直线变换可以用于很多领域,如道路标线检测、边缘检测、医学图像分析等。

以道路标线检测为例,通过霍夫直线变换,可以准确地检测出道路上的直线标线,为自动驾驶系统提供关键信息。

要实现霍夫直线变换,首先需要进行边缘检测,以获取图像中的直线信息。

常用的边缘检测算法包括Sobel算子、Canny算子等。

然后,对于每个边缘点,通过霍夫变换算法计算其在参数空间中的累加值,并找出累加值最大的点,即为检测到的直线。

除了传统的霍夫直线变换算法外,还有一些改进的算法,如累计霍夫变换(Accumulator Hough Transform)、多分辨率霍夫变换(Multiscale Hough Transform)等,可以提高算法的效率和准确性。

总的来说,霍夫直线变换原理是一种强大的图像处理技术,可以在很多领域发挥重要作用。

通过检测图像中的直线,可以实现目标检测、图像分割等功能,为计算机视觉和图像处理领域带来了很大的便利。

希望本文的介绍能够帮助读者更好地了解霍夫直线变换原理,从而在实际应用中更好地应用这一技术。

Hough变换原理解析

Hough变换原理解析

一、霍夫变换的基本原理1.1图像空间到参数空间的转换对于图像中共线的点集{(x0,y0), (x1,y1), ...}都经过直线y=kx+b,先在我们换一个说法,“斜率为k,截距为b的直线y=kx+b包含了所有在该直线上的点”。

一种强调的是图像中的点集,另一种强调的是直线的参数k和b,通过直线的点集去描述这条直线明显没有直接通过k,b两个参数去描述那样直接方便。

而Hough变换就是将我们“点共线”的思维转化到参数空间{k,b}进行描述,图像空间中所有经过y=kx+b的点经过Hough变换后在参数空间都会相交于点(k,b),这样,通过Hough变换,就可以将图像空间中直线的检测转化为参数空间中对点的检测。

我们不妨将y=kx+b进行一下变形:这就是Hough变换将图像空间坐标(x,y)转化为参数空间(k,b)的Hough变换式。

Hough变换的步骤(执行过程):1.在参数空间中建立一个二维(分别对应k,b)计数器,实际就是二维数组kbcnt,k维度为图像中直线斜率可能范围,b维度为图像中截距可能范围;数组中所有值都初始化为0;2.扫描图像空间中的所有点(xi,yi),Hough变换式进行图像空间到参数空间的变换(ki,bi),计数kbcnt(ki,bi)++3.设定阈值thr(图像中有多少个点共线才认为存在直线),kbcnt(ki,bi)>thr的ki,bi组成图像中的直线y=ki*x+bi然而,上面的检测直线的方案貌似还有些问题:如果图像中存在竖直的直线呢,那kbcnt的k维度岂不是要无穷大!因此,才有了另一种参数空间的方案:利用极坐标参数而非“斜率-截距式”描述直线。

极坐标中的直线表示极坐标中的直线方程为将其改写成Hough变换式,即自变量(x,y)到参数变量(r,theta)的映射:使用极坐标参数空间,Hough变换的步骤不变,只不过将kbcnt替换成rthcnt,r范围是图像对角线的长度,th范围是0~2*pi。

Hough变换原理

Hough变换原理

Hough变换原理Hough变换是图像处理中从图像中识别几何形状的基本方法之一。

Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。

这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。

也即把检测整体特性转化为检测局部特性。

比如直线、椭圆、圆、弧线等。

Hough变换的基本思想设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。

我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。

过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。

即点(x0,y0)确定了一族直线。

方程y0=kx0+b在参数k--b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。

这样,图像x--y平面上的一个前景像素点就对应到参数平面上的一条直线。

我们举个例子说明解决前面那个问题的原理。

设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。

可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。

 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。

这个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。

假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。

简而言之,Hough变换思想为:在原始图像坐标系下的一个点对应了参数坐标系中的一条直线,同样参数坐标系的一条直线对应了原始坐标系下的一个点,然后,原始坐标系下呈现直线的所有点,它们的斜率和截距是相同的,所以它们在参数坐标系下对应于同一个点。

Hough变换

Hough变换

b [0, y max] a [0, x max] min(y max , x max) r [0, ] 2
2.累加器是由b,a,r三个元素组成的三维数组 3.进行hough变换,累加 4.设阈值,进行hough逆变换
经典的Hough圆检测
缺点:由于参数的累加器是三维数组,所以上述方法的算法复杂度太高,
直线的Hough 变换是一个两参数的参数空间,推而广之,其它常见曲线也存 在对应的参数空间。在坐标平面上确定一个圆需要三个参数 ——圆的半径、 圆心的x轴坐标和 y轴坐标,因此圆的 Hough变换是一个以圆的半径和圆心坐
标为参数的三维空间。
Hough变换检测圆
1.经典Hough变换检测圆方法 2.一种快速Hough变换检测圆的方法
直线的法线与x轴的夹角
图像空间直线
参数空间弦函数
检测步骤
1.确定 和 的取值范围 设图像位于直角坐标系的第一象限,长度分别为x0,y0。那么
的最大值应为
x y ,所以 [0,
2 2
( x 2 y 2) ]
通常
[0, ] (每一度为一个点,分成180段)
2.建立一个累加数组(参数变量为2个,数组为二维数组)
Hough变换原理
• Hough变换算法主要应用于二值图像 ( 即边缘图像),因此在对灰度图像进行
Hough变换前需要对其进行预处理(包括图像的滤波与边缘检测)。Hough变换 是一种使用表决原理的参数估计技术。其原理是利用图像空间和 Hough参数 空间的点-线对偶性,把图像空间中的检测问题转换到参数空间。通过在参 数空间里进行简单的累加统计,然后在Hough参数空间寻找累加器峰值的方
望的信息检测不到反而做出错误判断,进而产生大量的冗余数据。

霍夫变换的原理

霍夫变换的原理

霍夫变换的原理概述霍夫变换(Hough Transform)是一种图像处理中常用的算法,主要用于在图像中检测几何形状的存在以及对其进行分割和参数估计。

它是由霍夫于1962年提出的,通过一系列数学变换来将图像中的直线或者圆等曲线进行检测和提取。

霍夫变换的基本原理霍夫变换的基本原理是将空间坐标的点转换到参数空间中的曲线,通过对曲线在参数空间内的交点进行统计,就可以检测出图像中的特定形状。

主要包括以下几个步骤:1.边缘检测:首先对图像进行边缘检测,将图像中的边缘提取出来。

这可以使用Canny算子等边缘检测算法来实现。

2.构建霍夫空间:对于图像中的每个边缘点,在参数空间内生成曲线。

对于直线检测而言,曲线可以用参数表示:极坐标方程 r = x * cos(theta) + y* sin(theta),其中 (x, y) 是边缘点的坐标,(r, theta) 是参数空间中的点。

3.统计霍夫空间:对霍夫空间内的曲线进行统计,找到交点最多的曲线,它们所代表的直线或者圆形状就是图像中的目标。

通过统计算法,可以找到这些曲线在霍夫空间内的峰值。

4.参数估计:根据霍夫空间内的统计结果,可以得到目标的参数估计。

对于直线检测而言,可以得到直线的斜率和截距;对于圆的检测而言,可以得到圆心的坐标和半径。

霍夫变换的应用领域霍夫变换广泛应用于图像处理和计算机视觉的领域,主要包括以下几个方面:直线检测霍夫变换可以用于检测图像中的直线。

由于直线的数学表示存在一定的困难,直接从图像中提取直线是比较复杂的。

通过将直线的参数转换到霍夫空间内,就可以通过统计算法来检测图像中的直线。

圆检测霍夫变换也可以用于检测图像中的圆。

与直线检测类似,将圆的参数转换到霍夫空间内,通过统计算法找到霍夫空间内的峰值,就可以检测出图像中的圆。

图像分割在图像分割中,霍夫变换可以用于将图像中的目标对象与背景进行分离。

通过检测目标对象所对应的曲线,在霍夫空间内找到峰值,就可以划分出目标对象的区域。

Hough变换

Hough变换

经典的Hough圆检测
缺点:由于参数的累加器是三维数组,所以上述方法的算法复杂度太高, 资源需求大,处理时间长。在大噪声和具有复杂图像背景的情况下,大 量的无用的点也会参与投票,使算法性能大大降低,甚至影响到检测结 果。
一种快速Hough变换检测圆的方法
原理:
未知圆上的三个点可以确定该圆的方程,即可以得到a,b,r。那么在 图像中的三个点可以确定一组参数,即确定一个圆。本方法应用此原理, 在图像空间中随机取三个点,确定一组参数,然后再取三个点,再确定 一组参数,后者与前者相比较,若相同,则此参数的累加器加一,若不 同则将其作为一个新的参数源,放入参数表中,以此类推,直到有一个 参数组的累加器达到我们设定的阈值,或者达到我们设定的循环次数上 限,检测停止。
• Hough变换算法主要应用于二值图像(即边缘图像),因此在对灰度图像进行 Hough变换前需要对其进行预处理(包括图像的滤波与边缘检测)。Hough变换 是一种使用表决原理的参数估计技术。其原理是利用图像空间和Hough参数 空间的点-线对偶性,把图像空间中的检测问题转换到参数空间。通过在参 数空间里进行简单的累加统计,然后在Hough参数空间寻找累加器峰值的方 法检测直线。Hough变换的实质是将图像空间内具有一定关系的像元进行聚 类,寻找能把这些像元用某一解析形式联系起来的参数空间累积对应点。
的最大值应为 x2 y2 ,所以 [0, (x2 y2)]
通常 [0, ](每一度为一个点,分成180段) 2.建立一个累加数组(参数变量为2个,数组为二维数组)
检测步骤
3.对图像空间中的点进行hough变换,即算出该点在参数空间上的对应曲线, 并在相应的累加器加1;(图片大小为614*768)
经典的Hough圆检测

霍夫变换(Hough)

霍夫变换(Hough)

霍夫变换(Hough)⼀、霍夫变换(Hough) A-基本原理⼀条直线可由两个点A=(X1,Y1)和B=(X2,Y2)确定(笛卡尔坐标)另⼀⽅⾯,也可以写成关于(k,q)的函数表达式(霍夫空间):对应的变换可以通过图形直观表⽰:变换后的空间成为霍夫空间。

即:笛卡尔坐标系中⼀条直线,对应霍夫空间的⼀个点。

反过来同样成⽴(霍夫空间的⼀条直线,对应笛卡尔坐标系的⼀个点):再来看看A、B两个点,对应霍夫空间的情形:⼀步步来,再看⼀下三个点共线的情况:可以看出如果笛卡尔坐标系的点共线,这些点在霍夫空间对应的直线交于⼀点:这也是必然,共线只有⼀种取值可能。

如果不⽌⼀条直线呢?再看看多个点的情况(有两条直线):其实(3,2)与(4,1)也可以组成直线,只不过它有两个点确定,⽽图中A、B两点是由三条直线汇成,这也是霍夫变换的后处理的基本⽅式:选择由尽可能多直线汇成的点。

看看,霍夫空间:选择由三条交汇直线确定的点(中间图),对应的笛卡尔坐标系的直线(右图)。

到这⾥问题似乎解决了,已经完成了霍夫变换的求解,但是如果像下图这种情况呢?k=∞是不⽅便表⽰的,⽽且q怎么取值呢,这样不是办法。

因此考虑将笛卡尔坐标系换为:极坐标表⽰。

在极坐标系下,其实是⼀样的:极坐标的点→霍夫空间的直线,只不过霍夫空间不再是[k,q]的参数,⽽是的参数,给出对⽐图:是不是就⼀⽬了然了?给出霍夫变换的算法步骤:对应code:1 function [ Hough, theta_range, rho_range ] = naiveHough(I)2 %NAIVEHOUGH Peforms the Hough transform in a straightforward way.3 %4 [rows, cols] = size(I);56 theta_maximum = 90;7 rho_maximum = floor(sqrt(rows^2 + cols^2)) - 1;8 theta_range = -theta_maximum:theta_maximum - 1;9 rho_range = -rho_maximum:rho_maximum;1011 Hough = zeros(length(rho_range), length(theta_range));12for row = 1:rows13for col = 1:cols14if I(row, col) > 0 %only find: pixel > 015 x = col - 1;16 y = row - 1;17for theta = theta_range18 rho = round((x * cosd(theta)) + (y * sind(theta))); %approximate19 rho_index = rho + rho_maximum + 1;20 theta_index = theta + theta_maximum + 1;21 Hough(rho_index, theta_index) = Hough(rho_index, theta_index) + 1;22 end23 end24 end25 end其实本质上就是:交点怎么求解呢?细化成坐标形式,取整后将交点对应的坐标进⾏累加,最后找到数值最⼤的点就是求解的,也就求解出了直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档