高考数学一轮复习 2-1函数的概念及其表示课件 理

合集下载

高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理

高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理

【2019最新】精选高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理考纲展示► 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).考点1 函数的概念1.函数与映射的概念确定2.函数由定义域、________和值域三个要素构成.答案:对应关系3.相等函数:如果两个函数的________和________完全一致,则这两个函数相等,这是判断两函数相等的依据.答案:定义域对应关系[教材习题改编]以下属于函数的有________.①y=±x;②y2=x+1;③y=+;④y=x2-2(x∈N).答案:④解析:①②中,对于定义域内任意一个数x,可能有两个不同的y 值,不满足对应的唯一性,所以①②错误;③中,定义域是空集,而函数的定义域是非空的数集,所以③错误.函数与映射理解的误区:唯一性;非空数集.如图表示的是从集合A到集合B的对应,其中________是映射,________是函数.答案:①②④①②解析:函数与映射都要求对于集合A中的任一元素在集合B中都有唯一确定的元素与之对应,所以③不是映射也不是函数;①②④表示的对应是映射;①②是函数,由于④中集合A,B不是数集,所以不是函数.[典题1] (1)下列四个图象中,是函数图象是( )A.① B.①③④C.①②③ D.③④[答案] B[解析] ②中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象;①③④中每一个x的值对应唯一的y值,因此是函数图象.故选B.(2)下列各组函数中,表示同一函数的是( )A.f(x)=|x|,g(x)=x2B.f(x)=,g(x)=()2C.f(x)=,g(x)=x+1D.f(x)=·,g(x)=x2-1[答案] A[解析] A中,g(x)=|x|,∴f(x)=g(x);B中,f(x)=|x|(x∈R),g(x)=x(x≥0),∴两函数的定义域不同;C中,f(x)=x+1(x≠1),g(x)=x+1(x∈R),∴两函数的定义域不同;D中,f(x)=·(x+1≥0且x-1≥0),f(x)的定义域为{x|x≥1};g(x)=(x2-1≥0),g(x)的定义域为{x|x≥1或x≤-1}.∴两函数的定义域不同.故选A.(3)下列集合A到集合B的对应f中:①A={-1,0,1},B={-1,0,1},f:A中的数平方;②A={0,1},B={-1,0,1},f:A中的数开方;③A=Z,B=Q,f:A中的数取倒数;④A=R,B={正实数},f:A中的数取绝对值.是从集合A到集合B的函数的为________.[答案] ①[解析] ②中,由于1的开方数不唯一,因此f不是A到B的函数;③中,A中的元素0在B中没有对应元素;④中,A中的元素0在B中没有对应元素.[点石成金] 函数的三要素:定义域、值域、对应法则.这三要素不是独立的,值域可由定义域和对应法则唯一确定.因此当且仅当定义域和对应法则都相同时,函数才是同一函数.特别值得说明的是,对应法则是就效果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同)不是指形式上的.即对应法则是否相同,不能只看外形,要看本质;若是用解析式表示的,要看化简后的形式才能正确判断.考点2 函数的定义域对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做值域.(1)[教材习题改编]函数f(x)=+的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)答案:C (2)[教材习题改编]若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )A BC D答案:B 定义域问题的两个易错点:忽略定义域;化简后求定义域.(1)已知长方形的周长为12,设一边长为x,则其面积y关于x的函数解析式为________.答案:y=x(6-x)(0<x<6)解析:因为长方形一边长为x,则另一边长为=6-x,所以y=x(6-x).又x>0,6-x>0,所以0<x<6.如果不考虑x的范围,会扩大x的范围,这样会使实际问题失去意义.(2)函数y=的定义域为________.答案:(-∞,1)∪(1,+∞)解析:要使函数有意义,应使x-1≠0,即x≠1,所以函数定义域为(-∞,1)∪(1,+∞).本题如果对解析式化简会有y===x+2,从而得函数定义域为R,所以在求解定义域时,不能对函数变形、化简,以免定义域发生变化.[考情聚焦] 函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.主要有以下几个命题角度:角度一求给定函数解析式的定义域[典题2] (1)[2017·山东淄博月考]函数f(x)=的定义域是( )A.(0,2)B.(0,1)∪(1,2)D.(0,1)∪(1,2]C.(0,2][答案] D [解析] 要使函数有意义,则有即所以0<x≤2且x≠1,所以函数f(x)的定义域为(0,1)∪(1,2],故选D. (2)[2017·山东青州高三模拟]函数f(x)=ln(x-1)+的定义域为( )A .(1,2)B .[1,2)C .(1,2]D .[1,2][答案] A[解析] 函数f(x)=ln(x -1)+的定义域为⇒1<x<2,故选A.角度二求抽象函数的定义域[典题3] (1)若函数f(x2+1)的定义域为[-1,1],则f(lg x)的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2][答案] C[解析] 因为f(x2+1)的定义域为[-1,1],则-1≤x≤1,故0≤x2≤1,所以1≤x2+1≤2.因为f(x2+1)与f(lg x)是同一个对应法则,所以1≤lg x≤2,即10≤x≤100, 所以函数f(lg x)的定义域为[10,100].(2)[2017·河北唐山模拟]已知函数f(x)的定义域是[0,2],则函数g(x)=f +f 的定义域是________.[答案] ⎣⎢⎡⎦⎥⎤12,32 [解析] 因为函数f(x)的定义域是[0,2],所以函数g(x)=f +f中的自变量x 需要满足⎩⎪⎨⎪⎧0≤x+12≤2,0≤x-12≤2,解得≤x≤,所以函数g(x)的定义域是.角度三已知定义域确定参数问题[典题4] [2017·安徽合肥模拟]若函数f(x)=的定义域为R,则a的取值范围为________.[答案] [-1,0][解析] 函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥20,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.[点石成金] 求函数定义域的两种方法函数的表示法表示函数的常用方法有:________、________、________.答案:解析法图象法列表法[典题5] (1)已知f=lg x,则f(x)=________.[答案] lg (x>1)[解析] 令t =+1(t >1),则x =,∴f(t)=lg ,即f(x)=lg (x >1).(2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,则f(x)=________. [答案] 2x +7[解析] 设f(x)=ax +b(a≠0),则3f(x +1)-2f(x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴解得⎩⎪⎨⎪⎧a =2,b =7,∴f(x)=2x +7.(3)已知f(x)满足2f(x)+f =3x ,则f(x)=________.[答案] 2x -(x≠0)[解析] ∵2f (x)+f =3x ,① 以代替①式中的x(x≠0),得2f +f(x)=.②①×2-②,得3f(x)=6x -,∴f(x)=2x -(x ≠0).(4)[2017·山东青岛一中检测]奇函数f(x)在(0,+∞)上的表达式为f(x)=x +,则在(-∞,0)上f(x)的表达式为f(x)=________.[答案] x --x[解析] 设x<0,则-x>0,∴f(-x)=-x +.又f(x)为奇函数,∴f(x)=-f(-x)=x -, 即x∈(-∞,0)时,f(x)=x -. [点石成金] 求函数解析式的方法1.已知f(+1)=x +2,则f(x)=________.答案:x2-1(x≥1)解析:令t =+1,∴t≥1,x =(t -1)2,则f(t)=(t -1)2+2(t -1)=t2-1,∴f(x)=x2-1(x ≥1).2.已知f(x)为二次函数且f(0)=3,f(x +2)-f(x)=4x +2,则f(x)的解析式为________. 答案:f(x)=x2-x +3解析:设f(x)=ax2+bx +c(a≠0), 又f(0)=c =3,∴f(x)=ax2+bx +3,∴f(x +2)-f(x)=a(x +2)2+b(x +2)+3-(ax2+bx +3)=4ax+4a +2b =4x +2. ∴∴⎩⎪⎨⎪⎧a =1,b =-1.∴f(x)=x2-x +3.考点4 分段函数及其应用1.分段函数的定义若函数在其定义域内,对于定义域内的不同取值区间,有着不同的________,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.答案:对应关系 2.分段函数的性质(1)分段函数的定义域是各段函数解析式中自变量的取值集合的________.(2)分段函数的值域是各段函数值的________,它的最大值取各段最大值中最大的,最小值取各段最小值中最小的.(3)分段函数的单调性,首先应该判断各段函数的单调性,若每一段函数单调性一致,再判断分界点处函数值的关系,若符合单调性定义,则该函数在整个定义域上单调递增或递减;若不符合,则必须分区间说明单调性.答案:(1)并集(2)并集[考情聚焦] 分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为中低档题.主要有以下几个命题角度:角度一求分段函数的函数值或取值范围[典题6] [2017·广东广州模拟]设函数f(x)=则f(f(4))=________;若f(a)<-1,则a的取值范围为________.[答案] 5 ∪(1,+∞)[解析] f(4)=-2×42+1=-31,f(f(4))=f(-31)=log2(1+31)=5.当a≥1时,由-2a2+1<-1,得a2>1,解得a>1;当a<1时,由log2(1-a)<-1,得log2(1-a)<log2,∴0<1-a<,∴<a<1.即a的取值范围为∪(1,+∞).角度二分段函数的图象与性质的应用[典题7] 对任意实数a ,b 定义运算“⊗”:a ⊗b =设f(x)=(x2-1)⊗(4+x),若函数y =f(x)+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)[答案] D[解析] 解不等式x2-1-(4+x)≥1,得x≤-2或x≥3.解x2-1-(4+x)<1,得-2<x<3.所以f(x)=⎩⎪⎨⎪⎧x +4,-∞,-2]∪[3,+,x2-1,-2,其图象如图实线所示.由图可知,当-2≤k<1时,函数y =f(x)+k 的图象与x 轴恰有三个不同交点,故选D.[点石成金] 分段函数应用的常见题型与破解策略间进行分别求解,然后整合.[方法技巧] 1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、解方程组法.[易错防范] 1.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域,如已知f()=x +1,求函数f(x)的解析式时,通过换元的方法可得f(x)=x2+1,这个函数的定义域是[0,+∞),而不是(-∞,+∞).2.求分段函数应注意的问题:在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式.真题演练集训1.[2013·大纲全国卷]已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1 答案:B解析:∵f(x)的定义域为(-1,0),∴-1<2x +1<0,∴-1<x<-. 2.[2015·新课标全国卷Ⅱ]设函数f(x)=则f(-2)+f(log212)=( )A .3B .6C .9D .12答案:C解析:∵ -2<1,∴ f(-2)=1+log2(2+2)=1+log24=1+2=3.∵ log212>1,∴ f(log212)=2log212-1==6.∴ f(-2)+f(log212)=3+6=9.故选C. 3.[2015·浙江卷]存在函数f(x)满足:对任意x∈R都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|答案:D解析:取特殊值法.取x=0,,可得f(0)=0,1,这与函数的定义矛盾,所以选项A错误;取x=0,π,可得f(0)=0,π2+π,这与函数的定义矛盾,所以选项B错误;取x=1,-1,可得f(2)=2,0,这与函数的定义矛盾,所以选项C错误;取f(x)=,则对任意x∈R都有f(x2+2x)==|x+1|,故选项D正确.综上可知,故选D.4.[2014·山东卷]函数f(x)=的定义域为( )A.B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)答案:C解析:(log2x)2-1>0,即log2x>1或log2x<-1,解得x>2或0<x<,故所求的定义域是∪(2,+∞).5.[2014·上海卷]设f(x)=若f(0)是f(x)的最小值,则a的取值范围为( )B.[-1,0]A.[-1,2]D.[0,2]C.[1,2]答案:D解析:∵当x≤0时,f(x)=(x-a)2,又f(0)是f(x)的最小值,∴a≥0.当x>0时,f(x)=x++a≥2+a,当且仅当x=1时等号成立.要满足f(0)是f(x)的最小值,需2+a≥f(0)=a2,即a2-a-2≤0,解得-1≤a≤2,∴a的取值范围是0≤a≤2.故选D.6.[2016·江苏卷]函数y=的定义域是________.答案:[-3,1]解析:要使函数y=有意义,则3-2x-x2≥0,解得-3≤x≤1,则函数y=的定义域是[-3,1].课外拓展阅读已知定义域求参数问题[典例1] 已知函数y=的定义域为R,求实数k的值.[解] 函数y=的定义域即使k2x2+3kx+1≠0的实数x的集合.由函数的定义域为R,得方程k2x2+3kx+1=0无解.当k=0时,函数y==1,函数的定义域为R,因此k=0符合题意;当k≠0时,k2x2+3kx+1=0无解,即Δ=9k2-4k2=5k2<0,不等式不成立.所以实数k的值为0.归纳总结已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.如本题中将求参问题转化为方程无解的问题.[典例2] 已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[解] 由题意知ax+1≥0,a<0,所以x≤-,即函数的定义域为.因为函数在(-∞,1]上有意义,所以(-∞,1]⊆,所以-≥1.又a<0,所以-1≤a<0,即a的取值范围是[-1,0).温馨提示函数在(-∞,1]上有意义,说明函数的定义域包含区间(-∞,1],使函数有意义的自变量的集合是定义域的子集.已知分段函数图象求解析式已知函数的图象求函数的解析式y=f(x),如果自变量x在不同的区间上变化时,函数y=f(x)的解析式也不同,应分类求解.此时应根据图象,结合已学过的基本函数的图象,选择相应的解析式,用待定系数法求解,其函数解析式一般为分段函数.要注意写解析式时各区间端点的值,做到不重也不漏.[典例3] 根据如图所示的函数y=f(x)的图象,写出函数的解析式.[解] 当-3≤x<-1时,函数y=f(x)的图象是一条线段(右端点除外),设f(x)=ax +b(a≠0),将点(-3,1),(-1,-2)代入,可得f(x)=-x -;当-1≤x<1时,同理可设f(x)=cx +d(c≠0),将点(-1,-2),(1,1)代入,可得f(x)=x -; 当1≤x<2时,f(x)=1.综上f(x)=⎩⎪⎨⎪⎧-32x -72,-3≤x<-1,32x -12,-1≤x<1,1,1≤x<2.方法探究由图象求函数的解析式,需充分挖掘图象中提供的点的坐标,合理利用待定系数法求解.对于分段函数,需观察各段图象的端点是空心点还是实心点,正确写出各段解析式对应的自变量的范围.。

高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

奇偶性
定义
图象特点
如果对于函数f(x)的定义域内任意一个x, 偶函数 都有 f(-x)=f(x) ,那么函数f(x)是偶 关于
y轴


函数
奇函数
如果对于函数f(x)的定义域内任意一个x, 都有 f(-x)=-f(x) ,那么函数f(x)是奇 关于
原点


函数
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使 得当x取定义域内的任何值时,都有f(x+T)= f(x) ,那么就 称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最 小的正数,那么这个 最小 正数就叫做f(x)的最小正周期.
数f(x)在区间D上是减函数
(2)单调性、单调区间的定义 若函数f(x)在区间D上是增函数或 减函数 ,则称函数f(x)在这 一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间. 2.函数的最值
前提 设函数y=f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有 f(x)≤M ;
2
减函数,故 f(x)的单调递增区间为(-∞,-1).故选 C.
答案 C [点评] 判断函数的单调性,应首先求出函数的定义域,在定
义域内求解.
函数的奇偶性解题方略 奇偶性的判断 (1)定义法
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)[函数的单调递增(减)区间有多个时,不能用并集表示,:可
以 用 逗 号 或 “ 和 ”] 函 数
f(x)
=xBiblioteka +1 x的



人教版高中数学高考一轮复习--函数的概念及其表示(课件)

人教版高中数学高考一轮复习--函数的概念及其表示(课件)
202X
高中总复习优化设计
GAO ZHONG ZONG FU XI YOU HUA SHE JI
第二章
2.1 函数的概念及其表示
课标要求
1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关
系刻画函数,建立完整的函数概念.
2.体会集合语言和对应关系在刻画函数概念中的作用,了解构成函数的要
图象、求值及方程(不等式)问题,提升数学运算和数学抽象素养.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
1.函数的概念
内容
两个集合 A,B
函数
设 A,B 是两个非空数集
如果按照某种确定的对应关系 f,使对于集合 A 中的
对应关系 f:A→B 任意一个数 x,在集合 B 中都有唯一确定的数 y 和它
[-1,2]
.
因为 y=f(x2-1)的定义域为[-√3, √3],
所以 x∈[-√3, √3],x2-1∈[-1,2],所以 y=f(x)的定义域为[-1,2].
能力形成点3
例4
求函数的解析:式
2
(1)已知 f + 1 =lg x,求 f(x);
(2)已知 f(x)是二次函数,且 f(0)=2,f(x+1)-f(x)=x-1,求 f(x);
4.设 f(x)= 0, = 0,g(x)=
则 f(g(π))的值为( B )
0,为无理数,
1, < 0,
A.1
B.0
C.-1
D.π

2024届新高考一轮复习人教A版 第二章 第1节 函数的概念及其表示 课件(38张)

2024届新高考一轮复习人教A版 第二章 第1节 函数的概念及其表示 课件(38张)

C )


g(x)=

C.f(x)= 与 g(x)=|x|
0
D.f(x)=1,x∈R 与 g(x)=x
解析:A选项中函数f(x)的定义域为[1,+∞),g(x)的定义域为R,定义域不同,不是同
一个函数;B选项中函数f(x)的定义域为R,g(x)的定义域为(-∞,0)∪(0,+∞),定义
域不同,不是同一个函数;C选项中函数f(x),g(x)的定义域均为R,对应法则也相同,
2
所以函数 f(x)的解析式为 f(x)=x -x+3.
义域.
求函数的解析式


1.(2022·黑龙江哈尔滨月考)已知 f( +1)=lg x,则 f(x)的解析式为


解析:令 +1=t(t>1),则 x=
所以 f(t)=lg
所以 f(x)=lg

(t>1),
-

(x>1).
-

答案:f(x)=lg
(x>1)
பைடு நூலகம்-

,
-
.
2.若f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)的解析式为
所以f(x)的定义域为[-5,5],所以f(1-2x)满足-5≤1-2x≤5,所以-2≤x≤3,
所以函数f(1-2x)的定义域为[-2,3].
3.若函数f(x)的定义域为[0,2],则函数f(x-1)的定义域为
解析:因为f(x)的定义域为[0,2],
所以0≤x-1≤2,即1≤x≤3,
所以函数f(x-1)的定义域为[1,3].
答案:[1,3]

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.

新课标2023版高考数学一轮总复习第2章函数第1节函数及其表示课件

新课标2023版高考数学一轮总复习第2章函数第1节函数及其表示课件
[0,1) 解析:因为 y=f(x)的定义域为[0,2], 所以,要使 g(x)有意义应满足0x-≤12≠x≤02,, 解得 0≤x<1.所以 g(x)的定义域是[0,1).
常见函数类型的定义域 (1)分式中,分母不为 0. (2)偶次方根中,被开方数非负. (3)对于 y=x0,要求 x≠0,负指数的底数不为 0. (4)抽象函数定义域要注意对应法则下的取值范围. (5)对数式中,真数大于 0.
考向 1 分段函数求值 x2-4,x>2,
(1)(2021·浙江卷)已知 a∈R,函数 f(x)=|x-3|+a,x≤2. 若 f(f( 6))=3,则 a=__________.
x2+2x+2,x≤0, (2)设函数 f(x)=-x2,x>0. 若 f(f(a))=2,则 a=________.
AC 解析:对于 A,f(x)=x2-2x-1 的定义域为 R,g(s)=s2- 2s-1 的定义域为 R,定义域相同,对应关系也相同,是同一函数; 对于 B,f(x)= -x3=-x -x的定义域为{x|x≤0},g(x)=x -x的 定义域为{x|x≤0},对应关系不同,不是同一函数;对于 C,f(x)=xx= 1 的定义域为{x|x≠0},g(x)=x10=1 的定义域为{x|x≠0},定义域相同, 对应关系也相同,是同一函数;对于 D,f(x)=x 的定义域为 R,g(x) = x2=|x|的定义域为 R,对应关系不同,不是同一函数.故选 AC.
(√)
(5)函数 y=f(x)的图象可以是一条封闭的曲线.
(×)
2.(2021·安阳模拟)设集合 M={x|0≤x≤2},N={y|0≤y≤2}.下 面的 4 个图形中,能表示从集合 M 到集合 N 的函数关系的有( )

高考数学一轮复习第2章函数的概念及基本初等函数(Ⅰ)第1节函数及其表示课件理新人教A版

高考数学一轮复习第2章函数的概念及基本初等函数(Ⅰ)第1节函数及其表示课件理新人教A版

●命题角度三 分段函数与不等式问题
【例 4】 (2019 届湖北四地七校联考)已知函数 f(x)=12x-7,x<0,

log2(x+1),x≥0,
f(a)<1,则实数 a 的取值范围是( )
A.(-∞,-3)∪[0,1)
B.(-3,0)
C.(-3,1)
D.(-∞,-3)∪(1,+∞)
[解析] 因为 f(a)<1,所以a12<0a,-7<1或alo≥g20(,a+1)<1,得-3<a<0 或 0≤a<1.所 以实数 a 的取值范围是(-3,1),故选 C.
|跟踪训练|
1.(2019 届定州模拟)下列函数中,满足 f(x2)=[f(x)]2 的是( )
A.f(x)=ln x
B.f(x)=|x+1|
C.f(x)=x3
D.f(x)=ex
解析:选 C 对于函数 f(x)=x3,有 f(x2)=(x2)3=x6,[f(x)]2=(x3)2=x6,所以 f(x2)=[f(x)]2,
考点一 函数解析式的求法 【例 1】 (1)若 f1+1x=x12-1,则 f(x)=________. (2)若 f(x)为有理函数,且 f(x+1)+f(x-1)=2x2-4x,则 f(x)=________. (3)已知 f(x)+2f1x=x+1,则 f(x)=________.
[解析] (1)解法一(配凑法):
考点二 分段函数——多维探究 高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有:(1)分段函数求值问题;(2)分段函数的自变量求值问题;(3)分段 函数与不等式问题.
●命题角度一 分段函数求值问题
【例 2】 (2020 届成都摸底)已知函数 f(x)=sinπx+π6,x≤0,则 f(-2)+f(1)= 2x+1,x>0,

2013高考数学(理)一轮复习课件:2-1

2013高考数学(理)一轮复习课件:2-1

3 解得a=- , 2 不符合题意,舍去. (2)当a<0时,1-a>1,1+a<1, 这时f(1-a)=-(1-a)-2a=-1-a; f(1+a)=2(1+a)+a=2+3a, 由f(1-a)=f(1+a),得-1-a=2+3a, 3 解得a=- . 4 3 综合(1),(2)知a的值为-4. 答案 3 - 4
【训练2】 (1)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x) +x+1,试求f(x)的表达式. 1 (2)已知f(x)+2f( )=2x+1,求f(x). x 解 (1)由题意可设f(x)=ax2+bx(a≠0),则
a(x+1)2+b(x+1)=ax2+bx+x+1 ax2+(2a+b)x+a+b=ax2+(b+1)x+1
1 2 ∴函数y=log3(x -3x)的单调递增区间
3 3 是-∞,2,单调递减区间是2,+∞.
正解
设t=x2-3x,由t>0,得x<0或x>3,即函数的定义域
为(-∞,0)∪(3,+∞). 3 函数t的对称轴为直线x= , 2 故t在(-∞,0)上单调递减,在3,+∞上单调递增. 1 而函数y=log 3 t为单调递减函数,由复合函数的单调性可知, 1 2 函数y=log 3 (x -3x)的单调递增区间是(-∞,0),单调递减区 间是(3,+∞).
【训练1】
(2012· 天津耀华中学月考)(1)已知f(x)的定义域为
1 1 1 2 - , ,求函数y=fx -x- 的定义域; 2 2 2
(2)已知函数f(3-2x)的定义域为[-1,2],求f(x)的定义域. 1 解 (1)令x -x-2=t,
2
1 知f(t)的定义域为t-2
x+1>0, (2)要使函数有意义,必须且只须 2 -x -3x+4>0, x>-1, 即 x+4x-1<0,

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第1讲函数的概念及其表示课件

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第1讲函数的概念及其表示课件
逻辑思维 应用性 数学运算 数学运算
运算求解 综合性 逻辑推理 数学运算
运算求解 创新性 逻辑推理
考题
考点
考向
关键能力 考查要求 核心素养
2021新高 函数奇偶性 利用奇偶性求 运算求解 基础性 数学运算
考Ⅰ,13 与周期性 解参数的值
2021新高 函数奇偶性 函数奇偶性的 运算求解 基础性 数学运算
(2)如果两个函数的定义域相同,并且___对__应__关__系___完全一致,则这
两个函数为相等函数.
3.函数的表示法 表示函数的常用方法有___解__析__法___、图象法和列表法.
知识点二 分段函数 1.若函数在其定义域的不同子集上,因对函数称为分段函数.分段函数表示的是一个 函数. 2.分段函数的定义域等于各段函数的定义域的并集,其值域等于 各段函数的值域的__并__集____.
第一讲 函数的概念及其表示
知识梳理 · 双基自测
知识梳理 知识点一 函数的概念及其表示 1.函数的概念
函数
两个集合A,B
设A,B是两个__非__空__数__集____
如果按照某种确定的对应关系f,使对于集合A中 对应关系f:A→B 的__任__意____一个数x,在集合B中都有__唯__一__确__定___
x (5)函数 y= x-1定义域为 x>1.( × )
题组二 走进教材 2.(必修1P67T1改编)若函数y=f(x)的定义域为M={x|-2≤x≤2}, 值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( B )
[解析] A中函数的定义域不是[-2,2];C中图象不表示函数;D中 函数的值域不是[0,2].
的定义域为x2<x<3,且x≠52 .

2024年高考数学一轮复习课件(新高考版) 第2章 §2.1 函数的概念及其表示

2024年高考数学一轮复习课件(新高考版)  第2章 §2.1 函数的概念及其表示
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.已知 f(x3)=lg x,则 f(10)的值为
A.1
B.3 10
√C.13
1
令x3=10,则x=103.
1 D. 3 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2024年高考数学一轮复习课件(新高考版)
第二章 函 数
§2.1 函数的概念及其表示
考试要求
1.了解函数的含义. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)
表示函数. 3.了解简单的分段函数,并会简单的应用.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
教材改编题
y=x-2 1与 v=t-2 1的定义域都是(-∞,1)∪(1,+∞),对应关系也相 同,所以是同一个函数,故选项 D 正确.
教材改编题
3.已知函数 f(x)=lenx,x,x≤x>00,,
则函数
f
f
13等于
A.3
B.-3
√C.13
D.-13
由题意可知,f 13=ln 13=-ln 3,
思维升华
(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其 中的x的取值集合; (2)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出; (3)若复合函数f(g(x))的定义域为[a,b],则函数f(x)的定义域为g(x)在 [a,b]上的值域.
课时精练

一 部 分
落实主干知识
知识梳理
1.函数的概念 一般地,设A,B是 非空的实数集 ,如果对于集合A中的 任意 一个数x, 按照某种确定的对应关系f,在集合B中都有 唯一确定 的数y和它对应,那 么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的三要素 (1)函数的三要素: 定义域 、 对应关系 、 值域 . (2)如果两个函数的 定义域 相同,并且 对应关系 完全一致,则这两个函 数为同一个函数.

2023届高考人教A版数学一轮复习课件:函数的概念及其表示

2023届高考人教A版数学一轮复习课件:函数的概念及其表示

A.0
)
B.2
C.3
D.-3
2 ()
(2)(2021广东珠海高三期中)若一次函数f(x)满足f(f(x))=x+1,则g(x)=

(x>0)的值域为
.
答案 (1)D
(2)[2,+∞)
解析 (1)由 f(x)-2f
1
f(x)=3

2
+

1

=x+2,可得
1

1
-2f(x)= +2,联立两式可得

(2)(2021湖南长沙长郡中学高三二模)已知函数f(x)= ( + 2), ≤ 0, 则
f(-5)=
.
答案 (1)B (2)e
解析 (1)当a≤0时,f(a)=a2+1=5,解得a=-2;当a>0时,f(a)=2a+3=5,解得a=1.
故选B.
e , > 0,
(2)由f(x)= ( + 2), ≤ 0, 得f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(1+2)=f(1)=e.
的定义域是[1,+∞),则
2
+ -1
函数y=f(x)的定义域是
.
答案 (1)D
解析
(2)(1,2]
(1)因为函数 f(x)的定义域为[-2,1],所以对于函数
(3-2)
y=
,有
lg(1-)
-2 ≤ 3-2 ≤ 1,
(3-2)
解得 0<x<1,因此函数 y=
的定义域为(0,1).
1- > 0,
-2,代入 x=2 可得 f(2)=-3,故选 D.

2014高考数学一轮复习课件_2.1函数及其表示

2014高考数学一轮复习课件_2.1函数及其表示

计2014年仍以分段函数及应用为重点,同时应特别之二
数形结合求解分段函数问题
|x2-1| (2012· 天津高考)已知函数y= 的图象与函数y=kx x-1 -2的图象恰有两个交点,则实数k的取值范围是 ________.
【解析】 根据绝对值的意义, |x2-1| x+1(x>1或x<-1), y= = x-1 -x-1(-1≤x<1). 在直角坐标系中作出该函数的图象, 如图中实线所示.根据图象可知, 当0<k<1或1<k<4时两函数的图象 有两个交点.
4.分段函数 对应关系 若函数在其定义域的不同子集上,因__________不同而
分别用几个不同的式子来表示,这种函数称为分段函数.
1.若两个函数的定义域与值域相同,则一定是相等函
数,这种说法对吗?
【提示】 不对.如y=sin x和y=cos x的定义域都为
R,值域都为[-1,1],但不是相等函数判定两个函数是同 一函数,当且仅当两个函数的定义域和对应关系都分别相 同.
-x-1(-1≤x<0), (2)已知函数f(x)= 则f(x)-f(- -x+1(0<x≤1).
x)>-1的解集为(
)
1 A.(-∞,-1)∪(1,+∞) B.[-1,- )∪(0,1] 2 1 C.(-∞,0)∪(1,+∞) D.[-1,- ]∪(0,1) 2
【思路点拨】 可列方程组求解. (1)由x≥A时,f(x)=15知,4<A,从而
有意义,则必须有
1 故函数g(x)的定义域为[ ,1) 2 1 【答案】 (1)C (2)[ ,1) 2
2 (1)已知f( +1)=lg x,求f(x); x (2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x- 1,求f(x); 2 【审题视点】 (1)用换元法,令 +1=t; x (2)本题已给出函数的基本特征,即二次函数,可采用 待定系数法求解. 2 2 【尝试解答】 (1)令t= +1,则x= , x t-1 2 ∴f(t)=lg , t-1 2 即f(x)=lg . x-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (1)函数的定义
• 设A,B是两个数非集空的 应法则f,对于集
,如果按某种对
唯一
• 合A中的每一个元素x,在集合B中都有 元素y=y和f(x)它,x∈A
• 对应,那么这样的对应叫做从A到B的一个 函数,记
•作
.精品
3
基础诊断
考点突破
课堂总结
•(2)函数的定义域、值域
•在函数y=f(x),x∈A中,其中所有的输入值x组 成的集合A称定为义域
精品
14
基础诊断
考点突破
课堂总结
【训练 1】 (1)函数 f(x)=log21x-2的定义域为________.
(2)函数 f(x)=ln1+1x+ 1-x2的定义域为________. 解析 (1)由题意知lxo-g22x>-02,≠0, 解得xx≠ >32, , 所以函数
f(x)的定义域为(2,3)∪(3,+∞).
精品
13
基础诊断
考点突破
课堂总结
•规律方法 (1)给出解析式的函数的定义域是使 解析式中各个部分都有意义的自变量的取值集 合 ,在求解时,要把各个部分自变量的限制条 件列成一个不等式(组),这个不等式(组)的解集 就是这个函数的定义域,函数的定义域要写成 集合或者区间的形式.(2)对于实际问题中求得 的函数解析式,在确定定义域时,除了要考虑 函数解析式有意义外,还要使实际问题有意 义.
• 第1讲 函数的概念及其表示
精品
1
基础诊断
考点突破
课堂总结
• 考试要求 1.映射、函数的概念,求简单函数 的定义域和值域,B级要求;2.选择恰当的方 法(如图象法、列表法、解析法)表示函数,B 级要求;3.简单的分段函数及应用,A级要 求.
精品
2
基础诊断
考点突破
课堂总结
• 知识梳理
• 1.函数的基本概念
• 解析 g(π)=0,f(g(π))=f(0)=0. • 答案 0
精品
11
基础诊断
考点突破
课堂总结
考点一 求函北四市模拟)函数 f(x)=
1-2x+
1的 x+3
定义域为________.
(2)函数 f(x)=lgxx-+11的定义域是________.
精品
则 f(2x+1)=3x-4 可化为 f(a)=3a2-1-4,
因为 f(a)=4,所以3a2-1-4=4,解得 a=139.
答案
19 3
精品
10
基础诊断
考点突破
课堂总结
1,x>0, 5.(苏教版必修 1P52T6 改编)设 f(x)=0,x=0,
1,x<0,
g(x)=10, ,xx为 为有 无理 理数 数, , 则 f(g(π))的值为________.
12
基础诊断
考点突破
课堂总结
解析 (1)由题意知1x+-32>x≥00,, 解得-3<x≤0,所以函数 f(x)的 定义域为(-3,0]. (2)要使函数 f(x)=lgxx-+11有意义,需满足 x+1>0 且 x-1≠0,得 x>-1 且 x≠1.
答案 (1)(-3,0] (2)(-1,1)∪(1,+∞)
•函值数域y=f(x)的
;将所有输出值y组成
的集合叫做函数定义域 对应法则 值域
•的 .
•(3) 函 数 的 三 要解素析法: 图象法 列表法 、


•(4)函数的表示法
精品
•表示函数的常用方法 基础诊断 有 考点突破
课堂总结
、4
• (5)分段函数
• 在函数的定义域内,对于自变量x的不同取 值区间对,应有法则着不
精品
8

答案 ①②④基础诊断
考点突破
课堂总结
3.(2014·山东卷改编)函数 f(x)= log12x-1的定义域为________. 解析 由题意知lxo>g20x,-1>0, 解得 x>2. 答案 (2,+∞)
精品
9
基础诊断
考点突破
课堂总结
• 解4__.析_已__令知__2f_x(+.21x=+a1,)则=x3=x-a-241,, f(a)=4,则a=
两个函×数相等.( ) • (3)函数是特殊的√映射.( ) • (4) 分 段 函 数 是 由 两 个 或 几 个× 函 数 组 成
的.( )
精品
7
基础诊断
考点突破
课堂总结
• 2.给出下列函数:①f(x)=|x|;②f(x)=x-|x|; ③f(x)=x+1;④f(x)=-x.其中满足f(2x)=2f(x) 的是______(填序号).
• 解析 将f(2x)表示出来,看与2f(x)是否相 等.
• 对于①,f(2x)=|2x|=2|x|=2f(x);
• 对于②,f(2x)=2x-|2x|=2(x-|x|)=2f(x);
• 对于③,f(2x)=2x+1≠2f(x);
• 对于④,f(2x)=-2x=2f(x),
• 故只有③不满足f(2x)=2f(x).
f(x)≥0
f1x与[f(x)]0
f(x)≠0
logaf(x)
f(x)>0
四则运算组成的函数 各个函数定义域的交集
实际问题
使实际问题有意义
精品
6
基础诊断
考点突破
课堂总结
• 诊断自测 • 1.思考辨析(在括号内打“√”或“×”) • (1)f(x)=与g(x)=x是同一×个函数.( ) • (2)若两个函数的定义域与值域相同,则这
(2)由条件知1x≠+01x,>0, 1-x2≥0
x<-1或x>0, ⇒x≠0,
-1≤x≤1
⇒x∈(0,1].
答案 (1)(2,3)∪(3,+∞) (2)(0,1]
精品
15
基础诊断
考点突破
课堂总结
考点二 求函数的解析式
【例 2】(1)如果 f 1x=1-x x,则当 x≠0 且 x≠1 时,f(x)=________. (2)已知 f(x)是一次函数,且满足 3f(x+1)-2f(x-1)=2x+17,
则 f(x)=________.
(3)已知 f(x)满足 2f(x)+f 1x=3x,则 f(x)=________. 1
解析 (1)令 t=1x,得 x=1t ,∴f(t)=1-t 1t =t-1 1,
∴f(x)=x-1 1.
精品
16
基础诊断
考点突破
课堂总结
(2)设 f(x)=ax+b(a≠0), 则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+5a+b, 即 ax+5a+b=2x+17 不论 x 为何值都成立, ∴ab= +25, a=17, 解得ab= =27, , ∴f(x)=2x+7.
• 同的 函数并.集
,这种函数称为分段
并集
• 分段函数是一个函数,分段函数的定义域 是各段定义域
•的
,值域唯是一各段值域的

• 2.映射的概念
映射
• 设A,B是两个非空集合,如果按某种对应
法则f,对于A中的 精品
5
基础诊断
考点突破
课堂总结
• 3.函数定义域的求法
类型
x 满足的条件
2n fx,n∈N*
相关文档
最新文档