高考数学一轮复习 2-1函数的概念及其表示课件 理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (1)函数的定义
• 设A,B是两个数非集空的 应法则f,对于集
,如果按某种对
唯一
• 合A中的每一个元素x,在集合B中都有 元素y=y和f(x)它,x∈A
• 对应,那么这样的对应叫做从A到B的一个 函数,记
•作
.精品
3
基础诊断
考点突破
课堂总结
•(2)函数的定义域、值域
•在函数y=f(x),x∈A中,其中所有的输入值x组 成的集合A称定为义域
精品
14
基础诊断
考点突破
课堂总结
【训练 1】 (1)函数 f(x)=log21x-2的定义域为________.
(2)函数 f(x)=ln1+1x+ 1-x2的定义域为________. 解析 (1)由题意知lxo-g22x>-02,≠0, 解得xx≠ >32, , 所以函数
f(x)的定义域为(2,3)∪(3,+∞).
精品
13
基础诊断
考点突破
课堂总结
•规律方法 (1)给出解析式的函数的定义域是使 解析式中各个部分都有意义的自变量的取值集 合 ,在求解时,要把各个部分自变量的限制条 件列成一个不等式(组),这个不等式(组)的解集 就是这个函数的定义域,函数的定义域要写成 集合或者区间的形式.(2)对于实际问题中求得 的函数解析式,在确定定义域时,除了要考虑 函数解析式有意义外,还要使实际问题有意 义.
• 第1讲 函数的概念及其表示
精品
1
基础诊断
考点突破
课堂总结
• 考试要求 1.映射、函数的概念,求简单函数 的定义域和值域,B级要求;2.选择恰当的方 法(如图象法、列表法、解析法)表示函数,B 级要求;3.简单的分段函数及应用,A级要 求.
精品
2
基础诊断
考点突破
课堂总结
• 知识梳理
• 1.函数的基本概念
• 解析 g(π)=0,f(g(π))=f(0)=0. • 答案 0
精品
11
基础诊断
考点突破
课堂总结
考点一 求函北四市模拟)函数 f(x)=
1-2x+
1的 x+3
定义域为________.
(2)函数 f(x)=lgxx-+11的定义域是________.
精品
则 f(2x+1)=3x-4 可化为 f(a)=3a2-1-4,
因为 f(a)=4,所以3a2-1-4=4,解得 a=139.
答案
19 3
精品
10
基础诊断
考点突破
课堂总结
1,x>0, 5.(苏教版必修 1P52T6 改编)设 f(x)=0,x=0,
1,x<0,
g(x)=10, ,xx为 为有 无理 理数 数, , 则 f(g(π))的值为________.
12
基础诊断
考点突破
课堂总结
解析 (1)由题意知1x+-32>x≥00,, 解得-3<x≤0,所以函数 f(x)的 定义域为(-3,0]. (2)要使函数 f(x)=lgxx-+11有意义,需满足 x+1>0 且 x-1≠0,得 x>-1 且 x≠1.
答案 (1)(-3,0] (2)(-1,1)∪(1,+∞)
•函值数域y=f(x)的
;将所有输出值y组成
的集合叫做函数定义域 对应法则 值域
•的 .
•(3) 函 数 的 三 要解素析法: 图象法 列表法 、


•(4)函数的表示法
精品
•表示函数的常用方法 基础诊断 有 考点突破
课堂总结
、4
• (5)分段函数
• 在函数的定义域内,对于自变量x的不同取 值区间对,应有法则着不
精品
8

答案 ①②④基础诊断
考点突破
课堂总结
3.(2014·山东卷改编)函数 f(x)= log12x-1的定义域为________. 解析 由题意知lxo>g20x,-1>0, 解得 x>2. 答案 (2,+∞)
精品
9
基础诊断
考点突破
课堂总结
• 解4__.析_已__令知__2f_x(+.21x=+a1,)则=x3=x-a-241,, f(a)=4,则a=
两个函×数相等.( ) • (3)函数是特殊的√映射.( ) • (4) 分 段 函 数 是 由 两 个 或 几 个× 函 数 组 成
的.( )
精品
7
基础诊断
考点突破
课堂总结
• 2.给出下列函数:①f(x)=|x|;②f(x)=x-|x|; ③f(x)=x+1;④f(x)=-x.其中满足f(2x)=2f(x) 的是______(填序号).
• 解析 将f(2x)表示出来,看与2f(x)是否相 等.
• 对于①,f(2x)=|2x|=2|x|=2f(x);
• 对于②,f(2x)=2x-|2x|=2(x-|x|)=2f(x);
• 对于③,f(2x)=2x+1≠2f(x);
• 对于④,f(2x)=-2x=2f(x),
• 故只有③不满足f(2x)=2f(x).
f(x)≥0
f1x与[f(x)]0
f(x)≠0
logaf(x)
f(x)>0
四则运算组成的函数 各个函数定义域的交集
实际问题
使实际问题有意义
精品
6
基础诊断
考点突破
课堂总结
• 诊断自测 • 1.思考辨析(在括号内打“√”或“×”) • (1)f(x)=与g(x)=x是同一×个函数.( ) • (2)若两个函数的定义域与值域相同,则这
(2)由条件知1x≠+01x,>0, 1-x2≥0
x<-1或x>0, ⇒x≠0,
-1≤x≤1
⇒x∈(0,1].
答案 (1)(2,3)∪(3,+∞) (2)(0,1]
精品
15
基础诊断
考点突破
课堂总结
考点二 求函数的解析式
【例 2】(1)如果 f 1x=1-x x,则当 x≠0 且 x≠1 时,f(x)=________. (2)已知 f(x)是一次函数,且满足 3f(x+1)-2f(x-1)=2x+17,
则 f(x)=________.
(3)已知 f(x)满足 2f(x)+f 1x=3x,则 f(x)=________. 1
解析 (1)令 t=1x,得 x=1t ,∴f(t)=1-t 1t =t-1 1,
∴f(x)=x-1 1.
精品
16
基础诊断
考点突破
课堂总结
(2)设 f(x)=ax+b(a≠0), 则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+5a+b, 即 ax+5a+b=2x+17 不论 x 为何值都成立, ∴ab= +25, a=17, 解得ab= =27, , ∴f(x)=2x+7.
• 同的 函数并.集
,这种函数称为分段
并集
• 分段函数是一个函数,分段函数的定义域 是各段定义域
•的
,值域唯是一各段值域的

• 2.映射的概念
映射
• 设A,B是两个非空集合,如果按某种对应
法则f,对于A中的 精品
5
基础诊断
考点突破
课堂总结
• 3.函数定义域的求法
类型
x 满足的条件
2n fx,n∈N*
相关文档
最新文档