聚类分析部分.ppt
合集下载
聚类分析-基因芯片ppt课件
§6.4 动态聚类法
❖ 动态聚类法的基本思想是,选择一批凝聚点或给出 一个初始的分类,让样品按某种原则向凝聚点凝聚, 对凝聚点进行不断的修改或迭代,直至分类比较合 理或迭代稳定为止。类的个数k可以事先指定,也可 以在聚类过程中确定。选择初始凝聚点(或给出初始 分类)的一种简单方法是采用随机抽选(或随机分割) 样品的方法。
❖ 聚类分析根据分类对象不同分为Q型和R型聚类分析。
§6.2 距离和相似系数
❖ 相似性度量:距离和相似系数。 ❖ 距离常用来度量样品之间的相似性,相似系数常用
来度量变量之间的相似性。 ❖ 样品之间的距离和相似系数有着各种不同的定义,
而这些定义与变量的类型有着非常密切的关系。
变量的测量尺度
❖ 通常变量按测量尺度的不同可以分为间隔、有序和 名义尺度变量三类。
2
分别为第 j
个
最常用的两个相似系数
❖ 相似系数除常用来度量变量之间的相似性外有时也
用来度量样品之间的相似性,同样,距离有时也用 来度量变量之间的相似性。
❖ 由距离来构造相似系数总是可能的,如令
cij
1 1 d ij
这里d i j 为第 i 个样品与第 j 个样品的距离,显然 c i j 满 足定义相似系数的三个条件,故可作为相似系数。
❖ 距离必须满足定义距离的四个条件,所以不是总能 由相似系数构造。高尔(Gower)证明,当相似系
数矩阵 c ij 为非负定时,如令
dij 21cij
则 d i j 满足距离定义的四个条件。
§6.3 系统聚类法
❖ 系统聚类法是聚类分析诸方法中用得最多的一种。 ❖ 基本思想是:开始将个样品各自作为一类,并规定
❖ (4) 对 D 1 重复上述对D 0 的两步得 D 2 ,如此下去直 至所有元素合并成一类为止。
聚类分析详解ppt
编号
购物环境
样本
A商厦
73
B商厦
66
C商厦
84
D商厦
91
E商厦
94
服务质量 68 64 82 88 90
• 把商厦分成两类:A、B为一类,C、D、E为一类 • 把商厦分为三类:A、B为一类,C为一类,D、E为一类 • 没有指定分类标准,大家为什么会这么分呢? • 从数据出发,根据性质上的亲疏程度进行分类!
(3) 计算新类G M 与任一G 类J
之间距离的递
推公式为 D M Ji G m M ,ijn G Jdij m ini G m K,ijn G Jdij,i G m L,ijn G Jdij
m inD K J,D L J
-
最短距离法的聚类步骤
在D 0 中G ,K G L 和
所在的行和列合并成一
个新行新G列M ,对应
,该行列上的新距离值由
(6.3.2)式求得,其余行列上的距离值不变,这
样就得到新的距离矩D 阵1 ,记作
。
(4) 对D 1
重复上述D 0对
的D两 2 步得
,
如此下去直至所有元素合并成一类为止。
如果某一步D m 中最小的元素不止一个,则称 此现象为结(tie),对应这些最小元素的类可以任 选一对合并或同时合并。
xiaxjb,a(0) b i, j i, j
cij 1
-
相似系数
c ij 1 cij c ji
xiaxjb,a(0) b i, j i, j
cij 1
-
相似系数
编号 A商厦
B商厦
购物环境 73 66
服务质量 68 64
-
相似系数
参考教材:《应用多元统计分析》高惠璇,北京大学出版社
聚类分析 PPT课件
(f) (f) p dij f 1 ij d (i, j) (f) p f 1 ij
f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise f is ordinal Compute ranks rif and Treat zif as interval-scaled
x1 x2 x3 x4
x1 0 3.61 5.1 4.24
x2 0 5.1 1
x3
x4
5
0 5.39
0
第二节 相似性的量度
一 样品相似性的度量
二 变量相似性的度量
含名义变量样本相似性度量
例: 学员资料包含六个属性:性别(男或女);外语语种
(英、日或俄);专业(统计、会计或金融);职业(教师 或非教师);居住处(校内或校外);学历(本科或本科以 下) 现有两名学员: X1=(男,英,统计,非教师,校外,本科)′ X2=(女,英,金融,教师,校外,本科以下)′ 对应变量取值相同称为配合的,否则称为不配合的 记配合的变量数为m1,不配合的变量数为m2,则样本之间 的距离可定义为
第五章 聚类分析
第一节 第二节 第三节 第四节 第五节 引言 相似性的量度 系统聚类分析法 K均值聚类分析 K中心点聚类
第六节
R codes
第一节 引言
“物以类聚,人以群分” 无监督分类聚类分析 分析如何对样品(或变量)进行量化分类的 问题 Q型聚类—对样品进行分类 R型聚类—对变量进行分类
用他们的序代替xif
zif
rif 1 M f 1
10
混合型属性
A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal 可以用加权法计算合并的影响
f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise f is ordinal Compute ranks rif and Treat zif as interval-scaled
x1 x2 x3 x4
x1 0 3.61 5.1 4.24
x2 0 5.1 1
x3
x4
5
0 5.39
0
第二节 相似性的量度
一 样品相似性的度量
二 变量相似性的度量
含名义变量样本相似性度量
例: 学员资料包含六个属性:性别(男或女);外语语种
(英、日或俄);专业(统计、会计或金融);职业(教师 或非教师);居住处(校内或校外);学历(本科或本科以 下) 现有两名学员: X1=(男,英,统计,非教师,校外,本科)′ X2=(女,英,金融,教师,校外,本科以下)′ 对应变量取值相同称为配合的,否则称为不配合的 记配合的变量数为m1,不配合的变量数为m2,则样本之间 的距离可定义为
第五章 聚类分析
第一节 第二节 第三节 第四节 第五节 引言 相似性的量度 系统聚类分析法 K均值聚类分析 K中心点聚类
第六节
R codes
第一节 引言
“物以类聚,人以群分” 无监督分类聚类分析 分析如何对样品(或变量)进行量化分类的 问题 Q型聚类—对样品进行分类 R型聚类—对变量进行分类
用他们的序代替xif
zif
rif 1 M f 1
10
混合型属性
A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal 可以用加权法计算合并的影响
聚类分析(共8张PPT)
第4页,共8页。
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析法ppt课件全
8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
《数据挖掘》课程PPT-聚类分析
图像处理
1 2 3
图像分割
在图像处理中,聚类分析可以用于将图像分割成 多个区域或对象,以便进行更细致的分析和处理。
特征提取
通过聚类分析,可以提取图像中的关键特征,如 颜色、形状、纹理等,以实现图像分类、识别和 检索。
图像压缩
通过聚类分析,可以将图像中的像素进行聚类, 从而减少图像数据的维度和复杂度,实现图像压 缩。
03 推荐系统
利用聚类分析对用户和物品进行分类,为用户推 荐相似或相关的物品或服务。
02
聚类分析的常用算法
K-means算法
• 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
• · 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
03 基于模型的聚类
根据某种模型对数据进行拟合,将数据点分配给 不同的模型,常见的算法有EM算法、高斯混合模 型等。
聚类分析的应用场景
01 客户细分
将客户按照其特征和行为划分为不同的细分市场, 以便更好地了解客户需求并提供定制化服务。
02 异常检测
通过聚类分析发现数据中的异常值或离群点,以 便及时发现潜在的问题或风险。
生物信息学
基因表达分析
在生物信息学中,聚类分析可以用于分析基因表达数据, 将相似的基因聚类在一起,以揭示基因之间的功能关联和 调控机制。
蛋白质组学分析
通过聚类分析,可以研究蛋白质之间的相互作用和功能模 块,以深入了解生物系统的复杂性和动态性。
个性化医疗
通过聚类分析,可以根据个体的基因型、表型等特征进行 分类,为个性化医疗提供依据和支持。
机器学习之聚类分析(PPT48页)
间中两点间的距离公式。 两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的
欧氏距离:
聚类的相似性度量
2. 曼哈顿距离(Manhattan Distance) 想象你在曼哈顿要从一个十字路口开车到另外一个十字
路口,驾驶距离是两点间的直线距离吗?显然不是,除非 你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”, 也称为城市街区距离(City Block distance)。 两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼 哈顿距离
密度聚类——DBSCAN
3)密度直达:如果xi位于xj的ε-邻域中,且xj是核心对象,则称xi由xj密 度直达。注意反之不一定成立, 除非且xi也是核心对象。
4)密度可达:对于xi和xj,如果存在样本序列p1,p2,...,pT满足 p1=xi,pT=xj且pt+1由pt密度直达,则称xj由xi密度可达。密度可达满足传递 性。此时序列中的传递样本p1,p2,...,pT−1均为核心对象,因为只有核心 对象才能使其他样本密度直达。 5)密度相连:对于xi和xj,如果存在核心对象样本xk,使xi和xj均由xk密度 可达,则称xi和xj密度相连。
什么是聚类?
• “物以聚类,人以群分” • 所谓聚类,就是将相似的事物聚集在一 起,而将不相似
的事物划分到不同的类别的过程,是数据分析之中十分 重要的一种手段。
什么是聚类?
•在图像分析中,人们希望将图像分割成具有类似性质的 区域 •在文本处理中,人们希望发现具有相同主题的文本子集 •在顾客行为分析中,人们希望发现消费方式类似的顾客 群,以便制订有针对性的客户管理方式和提高营销效率
G1
G2
欧氏距离:
聚类的相似性度量
2. 曼哈顿距离(Manhattan Distance) 想象你在曼哈顿要从一个十字路口开车到另外一个十字
路口,驾驶距离是两点间的直线距离吗?显然不是,除非 你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”, 也称为城市街区距离(City Block distance)。 两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼 哈顿距离
密度聚类——DBSCAN
3)密度直达:如果xi位于xj的ε-邻域中,且xj是核心对象,则称xi由xj密 度直达。注意反之不一定成立, 除非且xi也是核心对象。
4)密度可达:对于xi和xj,如果存在样本序列p1,p2,...,pT满足 p1=xi,pT=xj且pt+1由pt密度直达,则称xj由xi密度可达。密度可达满足传递 性。此时序列中的传递样本p1,p2,...,pT−1均为核心对象,因为只有核心 对象才能使其他样本密度直达。 5)密度相连:对于xi和xj,如果存在核心对象样本xk,使xi和xj均由xk密度 可达,则称xi和xj密度相连。
什么是聚类?
• “物以聚类,人以群分” • 所谓聚类,就是将相似的事物聚集在一 起,而将不相似
的事物划分到不同的类别的过程,是数据分析之中十分 重要的一种手段。
什么是聚类?
•在图像分析中,人们希望将图像分割成具有类似性质的 区域 •在文本处理中,人们希望发现具有相同主题的文本子集 •在顾客行为分析中,人们希望发现消费方式类似的顾客 群,以便制订有针对性的客户管理方式和提高营销效率
G1
G2
聚类分析ppt课件
第七章 聚类分析
第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量的类型
通常变量按测量尺度的不同可以分为以下 三类: (1)间隔尺度变量:变量用连续的量来表示, 如长度、重量、速度、温度等; (2)有序尺度变量:变量度量时不用明确的
数 量表示,而是用等级来表示,如某产品分为一 等品、二等品、三等品等有次序的关系。 (3)名义尺度变量:变量用一些类表示,这
些 类之间既无等级关系,也无数量关系,如性别 职业、产品、 发展中国家和贫困落后国家等。
聚类分析的目的是把分类对象 按一定规则分成若干类,这些类不 是事先给定的,而是根据数据的特 征确定的,对类的数目和类的结构 不必作任何假定。
聚类分析也能用来概括数据而 不只是为了寻找“自然的”或“实 在的”分类。
判别分析与聚类分析的关系
判别分析是在已知研究对象分成若干类 型(或组别)并已取得各种类型的一批已知 样品的观测数据,在此基础上根据某些准则 建立判别式,然后对未知类型的样品进行判 别分类。对于聚类分析来说,一批给定样品 要划分的类型事先并不知道,正需要通过聚 类分析来给以确定类型。
正因为如此,判别分析和聚类 分析往往联合起来使用,例如判别 分析是要求先知道各类总体情况才 能判断新样品的归类,当总体分类 不清楚时,可先用聚类分析对原来 的一批样品进行分类,然后再用判 别分析建立判别式以对新样品进行 判别。
当xij 0,i 1, 2, , n; j 1, 2, , p 时,可以定义第i个
样品与第j个样品间的兰氏距离为
dij (L)
1 p
p k 1
xik xik
x jk x jk
距离
设xij为第i个样品的第j个指标,数据矩阵表如下:
在上表中,每个样品有p个变量,故 每个样品都可以看成是 Rp中的一个点,n 个样品就是 Rp中的n个点。在 Rp中需定义 某种距离,将第i个样品与第j个样品之间 的距离记为dij ,在聚类过程冲,相距较近的 点倾向于归为一类,相距较远的点应归属
在对样品(或变量)进行分类 时,很直观地,我们认为在同一类 里的的这些对象在某种意义上倾向 于彼此相似,而在不同类里的对象 倾向于不相似。
多元统计分析中,样品(或变 量)之间的这种相似性用距离和相 似系数来度量。
距离和相似系数
距离常用来度量样品之间的相似性 相似系数常用来度量变量之间的相似性
样品之间的距离和相似系数有着各 种不同的定义,而这些定义与变量的类 型有着非常密切的关系。
xij
xj s jj
其中
x
为第j个变量的样板均值,s
j
jj为第j个变量的样本
方差。
明氏距离特别是其中的欧氏距离是人们比 较熟悉的也是使用最多的距离。但明氏距离 存在不足之处,主要表现在两个方面:第一,
它与各指标的量纲有关;第二,它没有考虑 指标之间的相关性。
除此以外,从统计的角度上看,使用欧氏 距离要求一个向量的n个分量是不相关的且具 有相同的方差,或者说各坐标对欧氏距离的 贡献是同等的且变差大小也是相同的,这时 使用欧氏距离才合适,效果也较好,否则就 有可能不能如实反映情况,甚至导致错误的 结论。故一个合理的做法,就是对坐标加权, 这就产生了“统计距离”。
聚类分析与判别分析、主成分
分析、回归分析等方法联合起来使 用,往往效果更好。
聚类分析根据分类对象不同分
为Q型聚类分析和R型聚类分析。 Q型聚类是指对样品进行聚类,
R型聚类是指对变量进行聚类。 教材中主要介绍Q型聚类。
聚类分析内容非常丰富,有系 统聚类法、有序样品聚类法、动态 聚类法、模糊聚类法、图论聚类法、 聚类预报法等。我们主要介绍系统 聚类法。
离,这是聚类分析中最 k常1 用的一个距 离;
(3)当q=∞时,dij ()
夫距离。
max
1k p
xik
x jk
,称为契比雪
当各变量的单位不同或测量值范围相差很大时,
不应直接采用明氏距离,而应先对各变量的数据作 标准化处理,然后用标准化后的数据计算距离。最 常用的标准化处理是
x*ij
多元统计课程设计 之
聚类分析
长春工业大学
聚类分析概述
聚类分析又称群分析,它是研 究(样品或指标)分类问题的一种 多元统计方法。所谓类,通俗的说, 就是指相似元素的集合。
在社会经济领域中存在着大量
分类问题。比如,在经济学中,根 据人均国民收入、人均工农业产值 和人均消费水平等多项指标对世界 上所有国家的经济发展状况进行分 类。
比如设P x1, x2 , , xp ,Q y1, y2 , , yp
且Q的坐标是固定的,点P的坐标相互独立地变化。用
s11, s22 , , spp 表示p个变量 x1, x2 , , xp 的n次观测的
样本方差,则可定义P到Q的统计距离为:
d(P,Q) x1 y1 2 x2 y2 2
第i个样品与第j个样品间的明氏距离定义为:
p
1q
q
dij (q) xik x jk
明氏距离有以下三种特k殊1 p 形式:
(1)当q=1时,dij (1) xik x jk ,成为绝对值距离,
也常被称为“城市街区k 1”距离;
p
2 1 2
(2)当q=2时,dij (2) xik x jk ,称为欧氏距
2
xp yp
s11
s22
s pp
所加的权是 k1
1 s11
, k2
1 s22
,
,kp
1 ,即用样本方差
s pp
除相应坐标。当取 y1 y2 yp 0 时,就是点P 到原点O的距离。若 s11 s22 spp 时,为欧氏距
离。
兰氏(Lance和Williams)距离
不同的类。
距离的性质
距离dij一般应满足如下四个条件: (1)dij 0,对一切i,j; (2)dij 0,当且仅当第i个样品与第j个样品的
各变量值都相同; (3)dij d ji,对一切i,j; (4)dij dik dkj ,对一切i,j,k。
常用距离定义
Minkowski(明考夫斯基)距离(明氏距离)