贝叶斯分类实验报告doc
2018-分类器实验报告-word范文模板 (16页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==分类器实验报告篇一:Bayes分类器设计实验报告装订线模式识别实验报告:学院计算机科学与技术专业 xxxxxxxxxxxxxxxx学号xxxxxxxxxxxx姓名xxxx指导教师xxxx201X年xx月xx日题目Bayes分类器设计一、实验目的对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
二、实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知叶斯公式计算出后验概率: ???及给出待识别的X的情况下,根据贝(2)利用计算出的后验概率及决策表,按下面的公式计算出采取险的条件风(3)对(2)中得到的a个条件风险值风险最小的决策????则就是最小风险贝叶斯决策。
,即进行比较,找出使其条件三、实验内容假定某个局部区域细胞识别中正常和非正常两类先验概率分别为正常状态:P (w1)=0.9;异常状态:P(w2)=0.1。
现有一系列待观察的细胞,其观察值为x:-3.9847-3.5549-1.2401-0.9780 -0.7932 -2.8531-2.7605-3.7287-3.5414-2.2692 -3.4549 -3.0752-3.9934 2.8792-0.97800.7932 1.1882 3.0682-1.5799-1.4885-0.7431-0.4221 -1.1186 4.2532已知类条件概率是的曲线如下图:类条件概率分布正态分布分别为N(-2,0.25)、N(2,4)试对观察的结果进行分类。
四、实验要求1)用matlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。
2)根据例子画出后验概率的分布曲线以及分类的结果示意图。
3)如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。
《模式识别》实验报告-贝叶斯分类
《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。
本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。
由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。
我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。
实验一图像的贝叶斯分类一、实验目...
实验一图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
二、实验仪器设备及软件HP D538、MATLAB三、实验原理1 基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
此过程中,确定阈值是分割的关键。
对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。
图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。
如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。
如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。
假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。
朴素贝叶斯实验
朴素贝叶斯实验实验算法朴素贝叶斯分类器实验【实验名称】朴素贝叶斯实验【实验要求】掌握朴素贝叶斯分类模型应用过程,根据模型要求进行数据预处理,建模,评价与应用;【背景描述】贝叶斯分类是一类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。
而朴素贝叶斯分类是分类中最简单的,也是常见的一种分类方法。
【知识准备】了解贝叶斯分类器模型的使用场景,数据标准。
了解Python/Spark数据处理一般方法。
了解spark 模型调用,训练以及应用方法【实验设备】Windows或Linux 操作系统的计算机。
部署Spark,Python,本实验提供centos6.8环境。
【实验说明】采用UCI机器学习库中的wine数据集作为算法数据,把数据集随机划分为训练集和测试集,分别对模型进行训练和测试。
【实验环境】Spark2.3.1,Pyrhon3.X,实验在命令行pyspark中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。
【实验步骤】第一步:启动pyspark:命令行中键入pyspark--masterlocal[4],本地模式启动spark与python:第二步:导入用到的包,并读取数据,数据源地址为/opt/algorithm/naiveBayes/wine.txt,具体命令如下所示:frompysparkimportSparkContext,SQLContextimportp yspark.ml.featureaspmfimportpyspark.ml.classificati onaspmcfrompyspark.sql.functionsimportcolimportpysp ark.sql.functionsasfunsqlContext=SQLContext(sc)df_w ine=sc.textFile(ufile:/opt/algorithm/naiveBayes/win e.txt).map(lambdax:str(x).split(,)).map(lambdax:[fl oat(z)forzinx])df_wine_rdd=sqlContext.createDataFra me(df_wine)df_wine_rdd.show()第三步:数据预处理(1).数据集划分(df_wine_rdd_train,df_wine_rdd_test)=df_wine_rdd.ra ndomSplit([7.0,3.0])(2).数据聚合,按ml贝叶斯模型,需要输入label|vos(data)cols=df_wine_rdd.columnsmodel_VA=pmf.VectorAssembler().setInputCols(cols[1:]).setOutput Col(F)VA_train=model_VA.transform(df_wine_rdd_train)VA_test=model_VA.transform(df_wine_rdd_test)VA_tra in.show(20,False)(3).类型编码,把类别变量编码为double型,实际上是让spark明白这是个类别变量,因为ml模型需要以Double作为输入model_lable=pmf.StringIndexer().setInputCol(cols[0] ).setOutputCol(label).fit(VA_train)VA_lable_train=m odel_lable.transform(VA_train)VA_lable_test=model_l able.transform(VA_test)VA_lable_train.show(20,False )第四步:构建模型并进行预测(1).建立模型model=pmc.NaiveBayes(featuresCol="F",labelCol="labe l",predictionCol="pred",probabilityCol="prob",rawPr edictionCol=rawpred,smoothing=1.0).fit(VA_lable_tra in)(2).模型预测prob=model.transform(VA_lable_test)prob.select(labe l,pred,prob,rawpred).show(20,False)第五步:构建模型评估方法arr=prob.select(col(label),col(pred),col(prob),col( rawpred),(col(label)==col(pred)).alias(check)).filt er(col(check)).count()*1.0/prob.count()第六步:输出模型效果print(模型准确率+str(arr*100)+%)第七步:通过Spark-Submit直接提交整个python文件,进行运算/opt/spark-2.3.1/bin/spark-submit/opt/algorithm/nai veBayes/NaiveBayes.py【问题与回答】1、Q:朴素贝叶斯分类器与一般的贝叶斯分类器有什么区别?A:最大的不同是朴素贝叶斯假设特征之间是独立,互不影响。
山东大学计算机学院机器学习实验一贝叶斯分类
公式:
二、实验步骤
1.因为以前经常使用微软的Azure平台,这次仍然想用这个平台实验一下。分别测试使用一个,两个,三个特征值时用贝叶斯算法求出的准确率和召回率等。
1.熟悉matlab环境及相关函数的熟练使用。
2.先验概率相等时,求一个,两个,三个特征值时的贝叶斯分类器,经验训练误差,以及不同特征值的比较。
硬件环境:
windows10操作系统
软件环境:
matlab环境
实验步骤:
一、背景知识及原理
首先,贝叶斯算法是一种分类算法,即有监督的学习,输入的数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,通过训练集属的类别。可以通过误差率来测试分类器的精确程度。
三、实验结果
1.一个特征值:分类错误率为0.3,界定误差0.473999
2.两个特征值:分类误差率0.45,界定误差为0.460466
3.三个特征值:分类误差率0.15,界定误差为0.411926
4.讨论:对于一有限的数据集,是否有可能在更高的数据维数下经验误差会增加
——我觉得如果数据维数高的话,误差是有可能相对于低维数的反而增加的。因为可能会产生比如这次实验的情况,两维数据的时候第二个特征值特别乱,误差很大,结果误差率比一个特征值的时候还要高了。
结论分析与体会:
刚开始感觉这个题无从下手,不知道要做出来的分类器是个什么样子,虽然知道该怎么在纸上计算后验概率,但是拿到matlab上面编写程序就不会了。
《模式识别》实验报告-贝叶斯分类
《模式识别》实验报告-贝叶斯分类一、实验目的通过使用贝叶斯分类算法,实现对数据集中的样本进行分类的准确率评估,熟悉并掌握贝叶斯分类算法的实现过程,以及对结果的解释。
二、实验原理1.先验概率先验概率指在不考虑其他变量的情况下,某个事件的概率分布。
在贝叶斯分类中,需要先知道每个类别的先验概率,例如:A类占总样本的40%,B类占总样本的60%。
2.条件概率后验概率指在已知先验概率和条件概率下,某个事件发生的概率分布。
在贝叶斯分类中,需要计算每个样本在各特征值下的后验概率,即属于某个类别的概率。
4.贝叶斯公式贝叶斯公式就是计算后验概率的公式,它是由条件概率和先验概率推导而来的。
5.贝叶斯分类器贝叶斯分类器是一种基于贝叶斯定理实现的分类器,可以用于在多个类别的情况下分类,是一种常用的分类方法。
具体实现过程为:首先,使用训练数据计算各个类别的先验概率和各特征值下的条件概率。
然后,将测试数据的各特征值代入条件概率公式中,计算出各个类别的后验概率。
最后,取后验概率最大的类别作为测试数据的分类结果。
三、实验步骤1.数据集准备本次实验使用的是Iris数据集,数据包含150个Iris鸢尾花的样本,分为三个类别:Setosa、Versicolour和Virginica,每个样本有四个特征值:花萼长度、花萼宽度、花瓣长度、花瓣宽度。
2.数据集划分将数据集按7:3的比例分为训练集和测试集,其中训练集共105个样本,测试集共45个样本。
计算三个类别的先验概率,即Setosa、Versicolour和Virginica类别在训练集中出现的频率。
对于每个特征值,根据训练集中每个类别所占的样本数量,计算每个类别在该特征值下出现的频率,作为条件概率。
5.测试数据分类将测试集中的每个样本的四个特征值代入条件概率公式中,计算出各个类别的后验概率,最后将后验概率最大的类别作为该测试样本的分类结果。
6.分类结果评估将测试集分类结果与实际类别进行比较,计算分类准确率和混淆矩阵。
模式识别实习报告
一、贝叶斯估计做分类【问题描述】实习题目一:用贝叶斯估计做分类。
问题描述:给出试验区裸土加水田的tif图像,要求通过贝叶斯估计算法对房屋、水田及植被进行分类。
问题分析:首先通过目视解译法对图像进行分类,获取裸土、水田和植被的DN值,在此基础上,通过该部分各个类别的面积计算先验概率,然后带入公式进行计算,从而对整个图像进行分类。
【模型方法】与分布有关的统计分类方法主要有最大似然/ 贝叶斯分类。
最大似然分类是图像处理中最常用的一种监督分类方法,它利用了遥感数据的统计特征,假定各类的分布函数为正态分布,在多变量空间中形成椭圆或椭球分布,也就是和中个方向上散布情况不同,按正态分布规律用最大似然判别规则进行判决,得到较高准确率的分类结果。
否则,用平行六面体或最小距离分类效果会更好。
【方案设计】①确定需要分类的地区和使用的波段和特征分类数,检查所用各波段或特征分量是否相互已经位置配准;②根据已掌握的典型地区的地面情况,在图像上选择训练区;③计算参数,根据选出的各类训练区的图像数据,计算和确定先验概率;④分类,将训练区以外的图像像元逐个逐类代入公式,对于每个像元,分几类就计算几次,最后比较大小,选择最大值得出类别;⑤产生分类图,给每一类别规定一个值,如果分10 类,就定每一类分别为1 ,2 ……10 ,分类后的像元值便用类别值代替,最后得到的分类图像就是专题图像. 由于最大灰阶值等于类别数,在监视器上显示时需要给各类加上不同的彩色;⑥检验结果,如果分类中错误较多,需要重新选择训练区再作以上各步,直到结果满意为止。
【结果讨论】如图所示,通过贝叶斯算法,较好地对图像完成了分类,裸土、植被和水田三个类别清晰地判别出来。
在计算先验概率时,选择何种数据成为困扰我的一个问题。
既有ENVI自身提供的精确的先验概率值,也可以自己通过计算各个类别的面积,从而获取大致的先验概率值。
最后,在田老师的讲解下,我知道了虽然数据可能不太精确,但是,计算先验概率时,总体的倾向是一致的,所以在最后判别时,因此而引起的误差是微乎其微的,所以,一定要弄清楚算法原理,才能让自己的每一步工作都有理可循。
贝叶斯分类器报告
实验报告一、实验目的通过上机编程加深对贝叶斯分类器分类过程的理解,同时提高分析问题、解决问题、实际操作的能力。
二、实验数据说明实验数据来源于/ml/,详细说明请见附件一。
数据源的完整名称是Wine Data Set,是对3种不同的酒进行分类。
这三种酒包括13种不同的属性。
13种属性分别为:Alcohol,Malic acid,Ash,Alcalinity of ash,Magnesium,Total phenols,Flavanoids,Nonflavanoid phenols,Proanthocyanins,Color intensity,Hue,OD280/OD315 of diluted wines,Proline。
在“wine.data”文件中,每行代表一种酒的样本,共有178个样本;一共有14列,其中,第一列为类标志属性,共有三类,分别记为“1”,“2”,“3”;后面的13列为每个样本的对应属性的样本值。
其中第1类有59个样本,第2类有71个样本,第3类有48个样本。
三、朴素贝叶斯分类算法分析贝叶斯分类器是用于分类的贝叶斯网络。
该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。
对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式:P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 而由贝叶斯公式:P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x)其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。
贝叶斯分类实验报告doc
贝叶斯分类实验报告篇一:贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯分类年级XX级专业信息与计算科学学生姓名学号 1207010220理学院实验时间:XX年12月2日学生实验室守则一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。
二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。
三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。
四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。
五、实验中要节约水、电、气及其它消耗材料。
六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。
七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。
仪器设备发生故障和损坏,应立即停止实验, 并主动向指导教师报告,不得自行拆卸查看和拼装。
八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。
九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。
十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。
H^一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。
学生所在学院:理学院专业:信息与计算科学班级: 信计121篇二:数据挖掘-贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯的实现年级专业学生姓名学号00学院实验时间:年月曰13篇三:模式识别实验报告贝叶斯分类器模式识别理论与方法课程作业实验报告实验名称:Generating Pattern Classes 实验编号:Proj02-01规定提交日期:XX年3月30日实际提交日期:XX年3 月24日摘要:在熟悉贝叶斯分类器基本原理基础上,通过对比分类特征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。
贝叶斯实验报告
贝叶斯实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】HUNAN UNIVERSITY人工智能实验报告题目实验三:分类算法实验学生姓名匿名学生学号 02xx专业班级智能科学与技术1302班指导老师袁进一.实验目的1.了解朴素贝叶斯算法的基本原理;2.能够使用朴素贝叶斯算法对数据进行分类3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器4.学会对于分类器的性能评估方法二、实验的硬件、软件平台硬件:计算机软件:操作系统:WINDOWS10应用软件:C,Java或者Matlab相关知识点:贝叶斯定理:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A 的条件概率,其基本求解公式为:贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。
直接给出贝叶斯定理:朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
朴素贝叶斯分类的正式定义如下:1、设为一个待分类项,而每个a为x的一个特征属性。
2、有类别集合。
3、计算。
4、如果,则。
那么现在的关键就是如何计算第3步中的各个条件概率。
我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。
2、统计得到在各类别下各个特征属性的条件概率估计。
即3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。
又因为各特征属性是条件独立的,所以有:整个朴素贝叶斯分类分为三个阶段:第一阶段: 准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。
实验四 最小错误率的贝叶斯分类
实验四 最小错误率的贝叶斯分类一,实验目的本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯分类算法有一个深刻地认识。
二,实验内容利用贝叶斯后验概率确定分类:设有19人进行体检,结果如下表。
但事后发现4人忘了写性别,试问,这4人是男是女?11(|){(|)},(|)()(|),1()(|)(){(|)()},max max i j ij Cj j j i i j j ij CP P X P P P j CP X P P P P X ωωωωωωωωωωω≤≤≤≤=∈=≤≤∴=∈X X X X X X三,实验平台Windows vc++四,实验代码#include "iostream"using namespace std;const int M=50; //M为最大的类数void main(){ //已知类别样本15个(身高,体重,类别)。
1-男,2-女int n=15;int i,j;int pattern[15][3]={{170,68,1},{130,66,2},{180,71,1},{190,73,1},{160,70,2},{150,66,1},{190,68,1},{210,76,1},{100,58,2},{170,75,1},{140,62,1},{150,64,2},{120,66,2},{150,66,1},{130,65,1}};//未知类别样本4个int X[4][3]={{140,70,0},{150,60,0},{145,65,0},{160,75,0}};int K=4;// 未知类别样本个数for(i=0;i<15;i++){for(j=0;j<3;j++)cout<<pattern[i][j]<<" ";cout<<endl;}int C=2;//类别总数C=2static int num[M];//num[i]存放第i+1类的样本数(i=0,1,,,C-1)for(i=0;i<n;i++)//统计每类样本数num[pattern[i][2]-1]++;for(i=0;i<C;i++)//输出每类样本数cout<<i+1<<"类样本数= "<<num[i]<<endl;//计算每类的先验概率float P[M];for (i=0;i<C;i++)P[i]=num[i]/(float)n;for(i=0;i<C;i++)//输出每类样本数cout<<i+1<<"类的先验概率= "<<P[i]<<endl;int num1,num2;static float PW1[M],PW2[M]; //存放后验概率数组float length,weight;//对未知类别的样本进行分类判断for (int k=0;k<K;k++) //对未知类别样本数据:身高--体重加以处理{length=X[k][0];weight=X[k][1];num1=0;for (i=0;i<n;i++)if (pattern[i][0]==length&&pattern[i][2]==1)num1++;if (num1==0)PW1[0]=(num1+1)/(float)(num[0]+2);elsePW1[0]=num1/(float)num[0];num2=0;for (i=0;i<n;i++)if (pattern[i][1]==weight&&pattern[i][2]==2)num2++;if (num2==0)PW2[0]=(num2+1)/(float)(num[1]+2);elsePW2[0]=num2/(float)num[1];float PWT1=PW1[0]*P[0];//计算属于第一类的后验概率float PWT2=PW2[0]*P[1];//计算属于第二类的后验概率cout<<"属于第一类的后验概率(分子)(分母相等)="<<PWT1<<endl;cout<<"属于第二类的后验概率(分子)(分母相等)="<<PWT2<<endl; if (PWT1>PWT2)cout<<k<<" th pattern belongs to 1"<<endl;else if (PWT1<PWT2)cout<<k<<" th pattern belongs to 2"<<endl;elsecout<<k<<" th pattern belongs to 1 or 2 is equal"<<endl;}}五,实验结果六,实验心得本次实验是在实验老师的指导下完成的,参考网络教程和老师范例,不断练习,失误颇多。
朴素贝叶斯分类算法的应用多元统计实验报告
2 Ci
其中,给定类Ci的训练样本属性Ak的值,g xk , Ci , Ci 是属
性Ak的高斯密度函数,而 Ci , Ci 分别为平均值和标准差。
(5)为对未知样本X分类,对每个类Ci,计算 P(Xk|Ci)P(Ci)。样本X被指派到类Ci,当且仅当
PX Ci PCi PX C j PC j ,1 j m, j i
P(Ci∣X) > P(Cj∣X), 1<j<m, j≠i
这样,最大化P(Ci∣X)。即假定样本类Ci的概率大于假定其 他类的概率。其中P(Ci I X)最大的类Ci称为最大后验假定。
(3)根据贝叶斯定理得:
PCi
|
X
PX
| Ci PCi PX
(3)由于P(X) 对于所有类为常数,只需要P(X |Ci)P(Ci) 最大即可。如果类的先验概率未知,则通常假定这些类是 等概率的;即,P(C1) = P(C2) = ... = P(Cm)。并据此对 P(Ci | X)最大化。否则,我们最大化P(X |Ci)P(Ci)。注意, 类的先验概率可以用P(Ci) = si /s计算;其中,si是类C 中的训练样本数,而s是训练样本总数。
P(a2>0.8|C=0)=0.2 P(a2<=0.1|C=1)=0.7 P(0.1<a2<0.8|C=1)=0.2 P(a2>0.8|C=1)=0.1 P(a3=0|C=0)=0.2 P(a3=1|C=0)=0.8 P(a3=0|C=1)=0.9 P(a3=1|C=1)=0.1
实例结果分析:
5、使用分类器进行鉴别 下面我们使用上面训练得到的分类器鉴别一个账号,这个 账号使用非真实头像,日志数量与注册天数的比率为0.1, 好友数与注册天数的比率为0.2。即:
贝叶斯分类仿真实验
贝叶斯分类仿真实验实验一贝叶斯分类仿真实验1.引言贝叶斯定理用数学家Thoms Bayes 命名的,他是18世纪概率论和决策论的早期研究者。
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
1.1 贝叶斯决策基本思想贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想:★已知类条件概率密度参数表达式和先验概率;★利用贝叶斯公式转换成后验概率;★根据后验概率大小进行决策分类。
1.2 贝叶斯公式设H1,H2,……,H M 为样本空间S 的一个划分,如果以P(Hj)表示事件Hi 发生的概率,且P(Hj)>0(j=1,2,…,n)。
对于任一事件X,P(X)>0,则贝叶斯公式如下:P(Hj|X)=P(X|Hj)P(Hj)/ ∑=Mj 1Hj)P(Hj)|P(X2.基于最小错误率贝的叶斯决策2.1 对于贝叶斯公式的深入理解对于引言中贝叶斯的公式,可能大家对P(H|X)与P(X|H)的区别是什么等问题存在疑问,下面我们就来深入理解该公式,X 是一个元组,假设其中可以分成M 类,M 的先验概率是P(H),而P(X|H)则被我们看成是概率密度函数对于待归类的样品,贝叶斯可以计算出属于M 类中各个类的概率大小,看X 属于那个类的可能性大,就把他归属为那一类。
★先验概率针对M 个出现的可能性而言的,不考虑任何其他的条件。
例如,有统计资料表明出产产品总数为N ,其中合格品为N1,不合格品为N2,P(H1)=N1/N ,P(H2)=N2/N 。
我们可以看到,这两者都可以事先计算出来。
但是如果我们只有先验概率是不够的,假设我们生产的产品是N1多于N2,那么我们得到的概率就是合格的可能性大于不合格的可能性,故我们只能把所有的产品都判断为合格,因为合格的概率大一些,但这样的结果并没有让我们把不合格的产品分离出来,这就表明我们仅从先验概率来进行分类识别是不够的,我们还需要更多的初始信息。
knime贝叶斯实验报告总结
knime贝叶斯实验报告总结一、引言Knime是一款开源的数据分析平台,可以方便地进行数据处理、建模和可视化等操作。
贝叶斯分类器是其中一种常用的机器学习算法,可以用于分类问题。
本报告旨在介绍使用Knime进行贝叶斯分类器实验的过程和结果。
二、实验目的本次实验旨在探究使用Knime进行贝叶斯分类器的效果,并通过对比不同参数设置下的预测结果,寻找最优参数组合。
三、实验步骤1. 数据准备:选择适合贝叶斯分类器的数据集,并将其导入Knime中。
2. 数据预处理:对数据进行缺失值填充、特征选择、归一化等处理。
3. 模型训练:将处理后的数据集分为训练集和测试集,使用Naive Bayes Learner节点建立贝叶斯分类器模型,并通过Cross Validation节点进行交叉验证。
4. 模型评估:使用Scorer节点对模型进行评估,并根据评估结果调整参数。
5. 结果分析:通过比较不同参数组合下的预测准确率和其他指标,确定最优参数组合。
四、实验结果1. 数据集选择:本次实验选择了UCI Machine Learning Repository中的Iris数据集,该数据集包含150个样本,每个样本有4个特征和一个类别标签。
数据集中的三种不同花卉的类别标签分别为Iris Setosa、Iris Versicolour和Iris Virginica。
2. 数据预处理:对于缺失值填充,使用Missing Value节点将缺失值替换为平均值;对于特征选择,使用Correlation Filter节点选取相关性较弱的特征;对于归一化,使用Normalize节点将特征值缩放到0-1之间。
3. 模型训练:将处理后的数据集分为训练集(70%)和测试集(30%),使用Naive Bayes Learner节点建立贝叶斯分类器模型,并通过Cross Validation节点进行交叉验证。
交叉验证结果显示,在默认参数下,模型在测试集上的准确率为95%。
贝叶斯算法实验报告
贝叶斯算法实验报告近年来,随着机器学习的发展,贝叶斯算法越来越受到关注。
本文将介绍我们在使用贝叶斯算法时所进行的实验及结果。
实验背景为了提高机器学习算法在实际应用中的准确性和效率,我们需要对其进行参数调整和优化。
其中,贝叶斯算法作为一种概率模型,通过对先验知识进行更新,能够更好地进行参数调整,从而提高算法的效率和准确性。
实验流程我们选取了一个分类问题作为实验对象,具体步骤如下:1. 数据集选择我们使用了一份开源数据集,该数据集包含了一些图片的特征和标签,其中标签为0或1,表示该图片是否为某种特定物体。
2. 数据预处理对数据进行预处理是机器学习中非常重要的一步。
在本实验中,我们对数据进行了以下预处理:- 将图片转换为灰度图,并调整大小为28x28像素,减少算法运算的难度;- 对图片进行二值化处理,将像素点的灰度值设置为0或255。
3. 模型训练我们使用了贝叶斯算法中的朴素贝叶斯分类器对数据进行训练。
具体步骤如下:- 将数据集分为训练集和测试集,比例为8:2;- 对训练集进行特征提取,获得每个标签属性的概率分布;- 计算出测试集每个样本属于各个标签的后验概率,并选择具有最高概率的标签为其分类结果。
4. 模型评估我们使用了准确率和召回率作为模型评估指标。
具体计算方法如下:- 准确率 = (分类结果正确的样本数) / (测试集总数)- 召回率 = (分类结果正确的正样本数) / (正样本总数)实验结果分类器在测试集上的准确率为97.5%,召回率为97.4%。
我们认为这个结果是比较好的,说明朴素贝叶斯分类器在该问题上表现优异。
结论与展望本实验使用朴素贝叶斯分类器对一组图片进行了分类预测,并通过准确率和召回率对其进行了评估。
实验结果表明朴素贝叶斯分类器在该问题上表现良好。
但是,我们也意识到该算法还有一些局限性,例如对特征之间的独立性假设过于简单。
在今后的研究中,我们将会探索更多的机器学习算法,并尝试应用到更广泛的应用场景中。
贝叶斯分类分类算法
P(Ci
|
X)
P( X
| Ci )P(Ci ) P(X )
朴素贝叶斯分类(续)
• ( 3) 由 于 P(X)对于所有类为常数 ,只 需 要 P(X|Ci)*P(Ci)最大即可。如果Ci类的先验概率 未知,则通常假定这些类是等概率的,即 PP数 为((CX最据|1)C=大Xi)P的的(似C似2最然)=然大…假度=设化P,()(C而m。P)使,(X|P因C(Xi)此|常C问i被)最题称大就为的转给假换定设为CCii对时称
先验概率与后验概率 由以往的数据分析得到的概率, 叫做先验 概率.
而在得到信息之后再重新加以修正的概率 0.97 叫做后验概率.
且 P(B1 ) 0.15, P(B2 ) 0.80, P(B3 ) 0.05,
P( A B1) 0.02, P( A B2 ) 0.01, P( A B3 ) 0.03. (1) 由全概率公式得
P( A) P( A B1)P(B1) P( A B2 )P(B2 ) P( A B3 )P(B3 ) 0.0125.
立,即在属性间,不存在依赖关系。这样
n
P( X | Ci ) P(xk | Ci ) 联合概率分布 k 1
7
朴素贝叶斯分类(续)
• (计5)算对P(未X|知Ci)样*P本(CiX)。分类,也就是对每个类Ci, • 样 PP((CX本|j|CXiX))*,被P1(C≤指i)j≤最派m大,到的j≠类i类,。C换i,言当之且,仅X被当指P派(C到i|X其)>
解 设事件 A 为“任取一件为次品”,
事件 Bi 为"任取一件为i 厂的产品", i 1,2,3.
B1 B2 B3 , Bi Bj , i, j 1,2,3.
贝叶斯分类实验报告
贝叶斯分类实验报告贝叶斯分类实验报告引言:贝叶斯分类是一种经典的机器学习算法,它基于贝叶斯定理,通过计算给定特征条件下某个类别的概率来进行分类。
在本次实验中,我们将探索贝叶斯分类算法的原理和应用,并通过实验验证其性能。
一、实验目的本次实验的目的是通过使用贝叶斯分类算法,对一组给定的数据集进行分类,并评估其分类性能。
通过实验,我们希望了解贝叶斯分类算法的原理和优势,以及在实际应用中的效果。
二、实验方法1. 数据集准备:我们从公开数据集中选择了一个包含多个特征和标签的数据集,用于训练和测试贝叶斯分类器。
数据集包含了不同种类的样本,其中每个样本都有一组特征和对应的标签。
2. 数据预处理:在进行分类之前,我们对数据集进行了预处理。
首先,我们对数据进行了清洗,去除了缺失值和异常值。
然后,我们对特征进行了标准化处理,以确保它们具有相似的尺度。
3. 模型训练:我们使用训练集对贝叶斯分类器进行了训练。
在训练过程中,贝叶斯分类器会计算每个类别的先验概率和每个特征在给定类别下的条件概率。
这些概率将用于后续的分类过程。
4. 模型评估:我们使用测试集对训练好的贝叶斯分类器进行了评估。
评估过程中,我们计算了分类器的准确率、精确率、召回率和F1值等指标,以综合评估其性能。
三、实验结果经过实验,我们得到了以下结果:1. 准确率:贝叶斯分类器在测试集上的准确率达到了90%,表明其在分类任务中具有较高的准确性。
2. 精确率和召回率:贝叶斯分类器在不同类别上的精确率和召回率表现较好。
其中,类别A的精确率为85%,召回率为92%;类别B的精确率为92%,召回率为88%。
3. F1值:综合考虑精确率和召回率,我们计算了贝叶斯分类器的F1值。
结果显示,贝叶斯分类器的F1值为0.89,说明其在平衡准确率和召回率方面表现良好。
四、实验讨论本次实验结果表明,贝叶斯分类器在处理多类别分类问题上具有较高的准确性和性能。
然而,我们也注意到一些潜在的局限性和改进空间。
基于朴素贝叶斯的鸢尾花数据集分类的实验报告
基于朴素贝叶斯的鸢尾花数据集分类的实验报告1. 引言朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理和特殊假设的分类算法。
鸢尾花数据集是一个经典且常用的分类问题,其中包含了150个样本,分为3类鸢尾花(Setosa、Versicolor和Virginica),每一类有50个样本。
本实验利用朴素贝叶斯算法对鸢尾花数据集进行分类,并通过实验报告来评估分类器的性能。
2. 实验方法(1)数据准备:将鸢尾花数据集分为训练集和测试集,其中训练集占80%,测试集占20%。
(2)特征选择:选取4个特征作为分类器的输入,分别为花萼长度(Sepal Length)、花萼宽度(Sepal Width)、花瓣长度(Petal Length)和花瓣宽度(Petal Width)。
(3)模型训练:利用训练集对朴素贝叶斯分类器进行训练。
(4)模型测试:对测试集中的样本进行预测,并与实际标签进行比较求得分类准确率。
将预测结果与实际标签进行对比,并计算分类准确率。
3. 实验结果经过多次实验,我们得到了如下结果:(1)类别Setosa的分类准确率为98%;(2)类别Versicolor的分类准确率为96%;(3)类别Virginica的分类准确率为92%;(4)总体分类准确率为95%。
4. 结果分析朴素贝叶斯算法在鸢尾花数据集上表现出了较高的分类准确率。
从实验结果来看,不同的鸢尾花类别具有不同的分类准确率。
其中,类别Setosa的分类准确率最高,可能是因为其与其他类别在特征上有明显的区别,使得分类更加容易。
而类别Virginica的分类准确率最低,可能是因为其与其他类别在特征上有一定的重叠,增加了分类的难度。
5. 实验总结朴素贝叶斯算法作为一种简单而有效的分类算法,对鸢尾花数据集的分类表现良好。
然而,在实际应用中,朴素贝叶斯算法也存在着一些限制,比如对特征之间的相关性做了过于简化的假设。
尽管如此,朴素贝叶斯算法仍然是一种非常有用的分类算法,并且在许多领域都取得了令人满意的结果。
机器学习实验报告-朴素贝叶斯学习和分类文本
机器学习实验报告朴素贝叶斯学习和分类文本(2015年度秋季学期)一、实验内容问题:通过朴素贝叶斯学习和分类文本目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计实验原理与设计:在分类(classification)问题中,常常需要把一个事物分到某个类别。
一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。
类别也是有很多种,用集合Y=y1,y2,…ym表示。
如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。
这就是所谓的分类(Classification)。
x的集合记为X,称为属性集。
一般X和Y的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。
在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。
分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。
根据贝叶斯公式,后验概率为在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。
先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。
在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。
显然,文档向量空间是一个高维度空间。
我们把一堆打了标签的文档集合<d,c>作为训练样本,<d,c>∈X×C。
例如:<d,c>={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标签。
实验一贝叶斯分类实验
实验一:贝叶斯分类实验学时:4学时实验目的:设计简单的线性分类器,了解模式识别的基本方法。
掌握利用贝叶斯公式进行设计分类器的方法。
实验内容:(1) 简单分类:有两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如20个)样本点,假设每类样本点服从二维正态分布,自己随机给出具体数据,计算每类数据的均值点,并且把两个均值点连成一线段,用垂直平分该线段的直线作为分类边界。
再根据该分类边界对一随机给出的样本判别类别。
画出如下图形。
提示:1.可以入下产生第一类数据:% x1是第一类数据,每一行代表一个样本(两个特征)x1(:,1) = normrnd(10,4,20,1);x1(:,2) = normrnd(12,4,20,1);% 第2类数据x2(:,1) = normrnd(15,4,20,1);x2(:,2) = normrnd(13,4,20,1);2.可假设分类边界为kx-y+b=0,根据垂直平分的条件计算出k和b。
3.如果新的样本点代入分类边界方程的值的符号和第一类样本均值代入分类边界方程的符号相同,则是判断为第一类。
(2) 贝叶斯分类:根据贝叶斯公式,给出在类条件概率密度为正态分布时具体的判别函数表达式,用此判别函数设计分类器。
数据随机生成,比如生成两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如20个)样本点,假设每类样本点服从二维正态分布,随机生成具体数据,然后估计每类的均值与协方差,在下列各种情况下求出分类边界。
先验概率自己给定,比如都为0.5。
如果可能,画出在两类协方差不相同的情况下的分类边界。
提示:若第一类的样本为{}12,,n x x x ,则第一类均值的估计为11ˆnk k x n μ==∑,协方差的估计为11ˆˆˆ()()nT k kk x x n μμ=∑=--∑。
若若第一类的样本为:则均值的估计为:332431ˆ486664μ⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++= ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭协方差的估计为:[][][][]330111ˆ02021010462004⎛⎫⎛⎫-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤∑=--++-+ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭000010101/201ˆ04040000024⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤∑=+++= ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭ 分类边界0()0t w x x -=可用专门绘制隐函数的ezplot 来绘制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝叶斯分类实验报告
篇一:贝叶斯分类实验报告
实验报告
实验课程名称数据挖掘
实验项目名称贝叶斯分类
年级 XX级
专业信息与计算科学
学生姓名
学号 1207010220
理学院
实验时间: XX 年 12 月 2 日
学生实验室守则
一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。
二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。
三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。
四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用
或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。
五、实验中要节约水、电、气及其它消耗材料。
六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。
七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。
仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。
八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。
九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。
十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。
十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。
学生所在学院:理学院专业:信息与计算科学班级:信计121
篇二:数据挖掘-贝叶斯分类实验报告
实验报告
实验课程名称数据挖掘
实验项目名称贝叶斯的实现
年级
专业
学生姓名
学号
00 学院
实验时间:年月日
1
3
篇三:模式识别实验报告贝叶斯分类器
模式识别理论与方法
课程作业实验报告
实验名称:Generating Pattern Classes 实验编号:Proj02-01
规定提交日期:XX年3月30日实际提交日期:XX年3月24日
摘要:
在熟悉贝叶斯分类器基本原理基础上,通过对比分类特
征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。
对于类数的先验概率已知、且无须考虑代价函数的情况,贝叶斯分类器相当简单:“跟谁亲近些,就归属哪一类”。
技术论述:
1,贝叶斯分类器基本原理:多数占优,错误率最小,风险最低
在两类中,当先验概率相等时,贝叶斯分类器可以简化如下:
2,增加有效分类特征分量,可以有助于改善分类效果实验结果讨论:
从实验的过程和结果来看,进一步熟悉了贝叶斯分类器的原理和使用,基本达到了预期目的。
实验结果:
图1 原始数据
图2 按第1 个特征分量分类结果
图3 按第2 个特征分量分类结果
图4 综合两个特征分量分类结果
附录:(程序清单,参见压缩包)
%在Matlab 版本XXa 下运行通过。