2018-2019学年北京市海淀区高一第一学期期末数学试卷〖详解版〗

合集下载

2018-2019学度北京海淀区高一上年末数学试卷(含解析解析).doc.doc

2018-2019学度北京海淀区高一上年末数学试卷(含解析解析).doc.doc

2018-2019学度北京海淀区高一上年末数学试卷(含解析解析)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

一.选择题〔每题4分,共32分,每题给出的四个选项中,只有一个是符合题目要求的〕1、〔4分〕集合U={1,2,3,4,5,6},M={1,5},P={2,4},那么以下结论正确的选项是〔〕A、1∈∁U 〔M∪P〕B、2∈∁U〔M∪P〕C、3∈∁U〔M∪P〕D、6∉∁U〔M∪P〕2、〔4分〕以下函数在区间〔﹣∞,0〕上是增函数的是〔〕A、f〔x〕=x2﹣4xB、g〔x〕=3x+1C、h〔x〕=3﹣xD、t〔x〕=tanx3、〔4分〕向量=〔1,3〕,=〔3,t〕,假设∥,那么实数t的值为〔〕A、﹣9B、﹣1C、1D、94、〔4分〕以下函数中,对于任意的x∈R,满足条件f〔x〕+f〔﹣x〕=0的函数是〔〕A、f〔x〕=xB、f〔x〕=sinxC、f〔x〕=cosxD、f〔x〕=log2〔x2+1〕5、〔4分〕代数式sin〔+〕+cos〔﹣〕的值为〔〕A、﹣1B、0C、1D、6、〔4分〕在边长为1的正方形ABCD中,向量=,=,那么向量,的夹角为〔〕A、B、C、D、7、〔4分〕如果函数f〔x〕=3sin〔2x+φ〕的图象关于点〔,0〕成中心对称〔|φ|《〕,那么函数f〔x〕图象的一条对称轴是〔〕A、x=﹣B、x=C、x=D、x=8、〔4分〕函数f〔x〕=其中M∪P=R,那么以下结论中一定正确的选项是〔〕A、函数f〔x〕一定存在最大值B、函数f〔x〕一定存在最小值C、函数f〔x〕一定不存在最大值D、函数f〔x〕一定不存在最小值二.填空题〔本大题6小题,每题4分,共24分〕9、〔4分〕函数y=的定义域为、4,那么a,b,c从小到大的排列为、10、〔4分〕a=40.5,b=0.54,c=log0.511、〔4分〕角α终边上有一点P〔x,1〕,且cosα=﹣,那么tanα=、12、〔4分〕△ABC中,点A〔﹣2,0〕,B〔2,0〕,C〔x,1〕〔i〕假设∠ACB是直角,那么x=〔ii〕假设△ABC是锐角三角形,那么x的取值范围是、13、〔4分〕燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog、假设两岁燕子耗氧量2达到40个单位时,其飞行速度为v=10m/s,那么两岁燕子飞行速度为25m/s 时,耗氧量达到单位、14、〔4分〕函数f〔x〕=|ax﹣1|﹣〔a﹣1〕x〔1〕当a=时,满足不等式f〔x〕》1的x的取值范围为;〔2〕假设函数f〔x〕的图象与x轴没有交点,那么实数a的取值范围为、三.解答题〔本大题共4小题,共44分〕15、〔12分〕函数f〔x〕=x2+bx+c,其对称轴为y轴〔其中b,c为常数〕〔Ⅰ〕求实数b的值;〔Ⅱ〕记函数g〔x〕=f〔x〕﹣2,假设函数g〔x〕有两个不同的零点,求实数c的取值范围;〔Ⅲ〕求证:不等式f〔c2+1〕》f〔c〕对任意c∈R成立、16、〔12分〕如表为“五点法”绘制函数f〔x〕=Asin〔ωx+φ〕图象时的五,|φ|《π〕〔Ⅱ〕求函数f〔x〕的单调递减区间;〔Ⅲ〕求函数f〔x〕在区间【0,】上的取值范围、17、〔10分〕如图,在平面直角坐标系中,点A〔﹣,0〕,B〔,0〕,锐角α的终边与单位圆O交于点P、〔Ⅰ〕用α的三角函数表示点P的坐标;〔Ⅱ〕当•=﹣时,求α的值;〔Ⅲ〕在x轴上是否存在定点M,使得||=||恒成立?假设存在,求出点M的横坐标;假设不存在,请说明理由、18、〔10分〕函数f〔x〕的定义域为R,假设存在常数T≠0,使得f〔x〕=Tf 〔x+T〕对任意的x∈R成立,那么称函数f〔x〕是Ω函数、〔Ⅰ〕判断函数f〔x〕=x,g〔x〕=sinπx是否是Ω函数;〔只需写出结论〕〔Ⅱ〕说明:请在〔i〕、〔ii〕问中选择一问解答即可,两问都作答的按选择〔i〕计分〔i〕求证:假设函数f〔x〕是Ω函数,且f〔x〕是偶函数,那么f〔x〕是周期函数;〔ii〕求证:假设函数f〔x〕是Ω函数,且f〔x〕是奇函数,那么f〔x〕是周期函数;〔Ⅲ〕求证:当a》1时,函数f〔x〕=a x一定是Ω函数、选做题〔此题总分值10分〕19、〔10分〕记所有非零向量构成的集合为V,对于,∈V,≠,定义V〔,〕=|x∈V|x•=x•|〔1〕请你任意写出两个平面向量,,并写出集合V〔,〕中的三个元素;〔2〕请根据你在〔1〕中写出的三个元素,猜想集合V〔,〕中元素的关系,并试着给出证明;〔3〕假设V〔,〕=V〔,〕,其中≠,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2、2016-2017学年北京市海淀区高一〔上〕期末数学试卷参考答案与试题解析一.选择题〔每题4分,共32分,每题给出的四个选项中,只有一个是符合题目要求的〕1、〔4分〕集合U={1,2,3,4,5,6},M={1,5},P={2,4},那么以下结论正确的选项是〔〕A、1∈∁U 〔M∪P〕B、2∈∁U〔M∪P〕C、3∈∁U〔M∪P〕D、6∉∁U〔M∪P〕【解答】解:由得到M∪P={1,5,2,4};所以∁U〔M∪P〕={3,6};故A、B、D错误;应选:C、2、〔4分〕以下函数在区间〔﹣∞,0〕上是增函数的是〔〕A、f〔x〕=x2﹣4xB、g〔x〕=3x+1C、h〔x〕=3﹣xD、t〔x〕=tanx【解答】解:对于A,f〔x〕=x2﹣4x=〔x﹣2〕2﹣4,在〔﹣∞,0〕上是单调减函数,不满足题意;对于B,g〔x〕=3x+1在〔﹣∞,0〕上是单调增函数,满足题意;对于C,h〔x〕=3﹣x=是〔﹣∞,0〕上的单调减函数,不满足题意;对于D,t〔x〕=tanx在区间〔﹣∞,0〕上是周期函数,不是单调函数,不满足题意、应选:B、3、〔4分〕向量=〔1,3〕,=〔3,t〕,假设∥,那么实数t的值为〔〕A、﹣9B、﹣1C、1D、9【解答】解:向量=〔1,3〕,=〔3,t〕,假设∥,可得t=9、应选:D、4、〔4分〕以下函数中,对于任意的x∈R,满足条件f〔x〕+f〔﹣x〕=0的函数是〔〕A、f〔x〕=xB、f〔x〕=sinxC、f〔x〕=cosxD、f〔x〕=log2〔x2+1〕【解答】解:对于任意的x∈R,满足条件f〔x〕+f〔﹣x〕=0的函数是奇函数、A,非奇非偶函数;B奇函数,C,D是偶函数,应选B、5、〔4分〕代数式sin〔+〕+cos〔﹣〕的值为〔〕A、﹣1B、0C、1D、【解答】解:sin〔+〕+cos〔﹣〕=、应选:C、6、〔4分〕在边长为1的正方形ABCD中,向量=,=,那么向量,的夹角为〔〕A、B、C、D、【解答】解:设向量,的夹角为θ,以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,∴A〔0,0〕,B〔1.0〕,C〔1,1〕,D〔0,1〕,∵向量=,=,∴E〔,1〕,F〔1,〕,∴=〔,1〕,=〔1,〕,∴||=,=,•=+=,∴cosθ===,∴θ=,应选:B7、〔4分〕如果函数f〔x〕=3sin〔2x+φ〕的图象关于点〔,0〕成中心对称〔|φ|《〕,那么函数f〔x〕图象的一条对称轴是〔〕A、x=﹣B、x=C、x=D、x=【解答】解:∵函数f〔x〕=3sin〔2x+φ〕的图象关于点〔,0〕成中心对称,∴2×+φ=kπ,k∈Z,解得:φ=kπ﹣,k∈Z,∵|φ|《,∴φ=,可得:f〔x〕=3sin〔2x+〕,∴令2x+=kπ+,k∈Z,可得:x=+,k∈Z,∴当k=0时,可得函数的对称轴为x=、应选:B、8、〔4分〕函数f〔x〕=其中M∪P=R,那么以下结论中一定正确的选项是〔〕A、函数f〔x〕一定存在最大值B、函数f〔x〕一定存在最小值C、函数f〔x〕一定不存在最大值D、函数f〔x〕一定不存在最小值【解答】解:由函数y=2x的值域为〔0,+∞〕,y=x2的值域为【0,+∞〕,且M∪P=R,假设M=〔0,+∞〕,P=〔﹣∞,0】,那么f〔x〕的最小值为0,故D错;假设M=〔﹣∞,2〕,P=【2,+∞〕,那么f〔x〕无最小值为,故B错;由M∪P=R,可得图象无限上升,那么f〔x〕无最大值、应选:C、二.填空题〔本大题6小题,每题4分,共24分〕9、〔4分〕函数y=的定义域为【2,+∞〕、【解答】解:由2x﹣4≥0,得2x≥4,那么x≥2、∴函数y=的定义域为【2,+∞〕、故答案为:【2,+∞〕、10、〔4分〕a=40.5,b=0.54,c=log0.54,那么a,b,c从小到大的排列为c《b 《a、【解答】解:∵a=40.5》40=1,0《b=0.54《0.50=1,c=log0.54《log0.51=0,∴a,b,c从小到大的排列为c《b《A、故答案为:c《b《A、11、〔4分〕角α终边上有一点P〔x,1〕,且cosα=﹣,那么tanα=﹣、【解答】解:∵角α终边上有一点P〔x,1〕,且cosα=﹣=,∴x=﹣,∴tanα==﹣,故答案为:﹣、12、〔4分〕△ABC中,点A〔﹣2,0〕,B〔2,0〕,C〔x,1〕〔i〕假设∠ACB是直角,那么x=〔ii〕假设△ABC是锐角三角形,那么x的取值范围是〔﹣2,﹣〕∪〔2,+∞〕、【解答】解:〔i〕∵△ABC中,点A〔﹣2,0〕,B〔2,0〕,C〔x,1〕,∴=〔﹣2﹣x,﹣1〕,=〔2﹣x,﹣1〕,∵∠ACB是直角,∴=〔﹣2﹣x〕〔2﹣x〕+〔﹣1〕〔﹣1〕=x2﹣3=0,解得x=、〔ii〕∵△ABC中,点A〔﹣2,0〕,B〔2,0〕,C〔x,1〕,∴=〔﹣2﹣x,﹣1〕,=〔2﹣x,﹣1〕,=〔x+2,1〕,=〔4,0〕,=〔x﹣2,1〕,=〔﹣4,0〕,∵△ABC是锐角三角形,∴,解得﹣2《x《﹣或x》2、∴x的取值范围是〔﹣2,﹣〕∪〔2,+∞〕、故答案为:,〔﹣2,﹣〕∪〔2,+∞〕、13、〔4分〕燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog、假设两岁燕子耗氧量2达到40个单位时,其飞行速度为v=10m/s,那么两岁燕子飞行速度为25m/s 时,耗氧量达到320单位、【解答】解:由题意,令x=40,v=1010=alog4;所以a=5;2v=25m/s,25=5log,得到x=320单位、故答案为:320、14、〔4分〕函数f〔x〕=|ax﹣1|﹣〔a﹣1〕x〔1〕当a=时,满足不等式f〔x〕》1的x的取值范围为〔2,+∞〕;〔2〕假设函数f〔x〕的图象与x轴没有交点,那么实数a的取值范围为【,1〕、【解答】解:〔1〕a=时,f〔x〕=|x﹣1|+x=,∵f〔x〕》1,∴,解得x》2,故x的取值范围为〔2,+∞〕,〔2〕函数f〔x〕的图象与x轴没有交点,①当a≥1时,f〔x〕=|ax﹣1|与g〔x〕=〔a﹣1〕x的图象:两函数的图象恒有交点,②当0《a《1时,f〔x〕=|ax﹣1|与g〔x〕=〔a﹣1〕x的图象:要使两个图象无交点,斜率满足:a﹣1≥﹣a,∴a≥,故≤≤a《1③当a≤0时,f〔x〕=|ax﹣1|与g〔x〕=〔a﹣1〕x的图象:两函数的图象恒有交点,综上①②③知:≤a《1故答案为:〔2,+∞〕,【,1〕三.解答题〔本大题共4小题,共44分〕15、〔12分〕函数f〔x〕=x2+bx+c,其对称轴为y轴〔其中b,c为常数〕〔Ⅰ〕求实数b的值;〔Ⅱ〕记函数g〔x〕=f〔x〕﹣2,假设函数g〔x〕有两个不同的零点,求实数c的取值范围;〔Ⅲ〕求证:不等式f〔c2+1〕》f〔c〕对任意c∈R成立、【解答】解:〔Ⅰ〕∵函数f〔x〕=x2+bx+c,其对称轴为y轴,∴=0,解得:b=0;〔Ⅱ〕由〔I〕得:f〔x〕=x2+c,那么g〔x〕=f〔x〕﹣2=x2+c﹣2,假设函数g〔x〕有两个不同的零点,那么△=﹣4〔c﹣2〕》0,解得:c《2;〔Ⅲ〕证明:函数f〔x〕=x2+c的开口朝上,∵|c2+1|2﹣|c|2=c4+c2+1=〔c2+〕2+》0恒成立,故|c2+1|》|c|,故不等式f〔c2+1〕》f〔c〕对任意c∈R成立、16、〔12分〕如表为“五点法”绘制函数f〔x〕=Asin〔ωx+φ〕图象时的五,|φ|《π〕〔Ⅱ〕求函数f〔x〕的单调递减区间;〔Ⅲ〕求函数f〔x〕在区间【0,】上的取值范围、【解答】解:〔Ⅰ〕由表格可得A=2,=+,∴ω=2,结合五点法作图可得2•+φ=,∴φ=,∴f〔x〕=2sin〔2x+〕,它的最小正周期为=π、〔Ⅱ〕令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,可得函数f〔x〕的单调递减区间为【kπ+,kπ+】,k∈Z、〔Ⅲ〕在区间【0,】上,2x+∈【,】,sin〔2x+〕∈【﹣,1】,f〔x〕∈【﹣,2】,即函数f〔x〕的值域为【﹣,2】、17、〔10分〕如图,在平面直角坐标系中,点A〔﹣,0〕,B〔,0〕,锐角α的终边与单位圆O交于点P、〔Ⅰ〕用α的三角函数表示点P的坐标;〔Ⅱ〕当•=﹣时,求α的值;〔Ⅲ〕在x轴上是否存在定点M,使得||=||恒成立?假设存在,求出点M的横坐标;假设不存在,请说明理由、【解答】解:锐角α的终边与单位圆O交于点P、〔Ⅰ〕用α的三角函数表示点P的坐标为〔cosα,sinα〕;〔Ⅱ〕,,•=﹣时,即〔cos〕〔cos〕+sin2α=,整理得到cos,所以锐角α=60°;〔Ⅲ〕在x轴上假设存在定点M,设M〔x,0〕,,那么由||=||恒成立,得到=,整理得2cosα〔2+x〕=x2﹣4,所以存在x=﹣2时等式恒成立,所以存在M〔﹣2,0〕、18、〔10分〕函数f〔x〕的定义域为R,假设存在常数T≠0,使得f〔x〕=Tf 〔x+T〕对任意的x∈R成立,那么称函数f〔x〕是Ω函数、〔Ⅰ〕判断函数f〔x〕=x,g〔x〕=sinπx是否是Ω函数;〔只需写出结论〕〔Ⅱ〕说明:请在〔i〕、〔ii〕问中选择一问解答即可,两问都作答的按选择〔i〕计分〔i〕求证:假设函数f〔x〕是Ω函数,且f〔x〕是偶函数,那么f〔x〕是周期函数;〔ii〕求证:假设函数f〔x〕是Ω函数,且f〔x〕是奇函数,那么f〔x〕是周期函数;〔Ⅲ〕求证:当a》1时,函数f〔x〕=a x一定是Ω函数、【解答】解:〔I〕①对于函数f〔x〕=x是Ω函数,假设存在非零常数T,Tf〔x +T〕=f〔x〕,那么T〔x+T〕=x,取x=0时,那么T=0,与T≠0矛盾,因此假设不成立,即函数f〔x〕=x不是Ω函数、②对于g〔x〕=sinπx是Ω函数,令T=﹣1,那么sin〔πx﹣π〕=﹣sin〔π﹣πx〕=﹣sinπx、即﹣sin〔π〔x﹣1〕〕=sinπx、∴Tsin〔πx+πT〕=sinπx成立,即函数f〔x〕=sinπx对任意x∈R,有Tf〔x+T〕=f〔x〕成立、〔II〕〔i〕证明:∵函数f〔x〕是Ω函数,∴存在非零常数T,Tf〔x+T〕=f 〔x〕,Tf〔﹣x+T〕=f〔﹣x〕、又f〔x〕是偶函数,∴f〔﹣x〕=f〔x〕,∴Tf〔﹣x+T〕=Tf〔x+T〕,T≠0,化为:f〔x+T〕=f〔﹣x+T〕,令x﹣T=t,那么x=T+t,∴f〔2T+t〕=f〔﹣t〕=f〔t〕,可得:f〔2T+t〕=f〔t〕,因此函数f〔x〕是周期为2T的周期函数、〔ii〕证明:∵函数f〔x〕是Ω函数,∴存在非零常数T,Tf〔x+T〕=f〔x〕,Tf〔﹣x+T〕=f〔﹣x〕、又f〔x〕是奇函数,∴f〔﹣x〕=﹣f〔x〕,∴﹣Tf〔x+T〕=Tf〔﹣x+T〕,T ≠0,化为:﹣f〔x+T〕=f〔﹣x+T〕,令x﹣T=t,那么x=T+t,∴﹣f〔2T+t〕=f〔﹣t〕=﹣f〔t〕,可得:f〔2T +t〕=f〔t〕,因此函数f〔x〕是周期为2T的周期函数、〔III〕证明:当a》1时,假设函数f〔x〕=a x是Ω函数,那么存在非零常数T,Tf〔x+T〕=f〔x〕,∴Ta x+T=a x,化为:Ta T a x=a x,∵a x》0,∴Ta T=1,即a T=,此方程有非0的实数根,因此T≠0且存在,∴当a》1时,函数f〔x〕=a x一定是Ω函数、选做题〔此题总分值10分〕19、〔10分〕记所有非零向量构成的集合为V,对于,∈V,≠,定义V〔,〕=|x∈V|x•=x•|〔1〕请你任意写出两个平面向量,,并写出集合V〔,〕中的三个元素;〔2〕请根据你在〔1〕中写出的三个元素,猜想集合V〔,〕中元素的关系,并试着给出证明;〔3〕假设V〔,〕=V〔,〕,其中≠,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2、【解答】解:〔1〕比如=〔1,2〕,=〔3,4〕,设=〔x,y〕,由•=•,可得x+2y=3x+4y,即为x+y=0,那么集合V〔,〕中的三个元素为〔1,﹣1〕,〔2,﹣2〕,〔3,﹣3〕;〔2〕由〔1〕可得这些向量共线、理由:设=〔s,t〕,=〔a,b〕,=〔c,d〕,由•=•,可得as+bt=cs+dt,即有s=t,即=〔t,t〕,故集合V〔,〕中元素的关系为共线;〔3〕证明:设=〔s,t〕,=〔a,b〕,=〔c,d〕,=〔u,v〕,=〔e,f〕,假设V〔,〕=V〔,〕,即有as+bt=cs+dt,au+bv=ue+fv,解得a=•c+•e+,可令d=f,可得λ1=,λ2=,那么一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2、。

海淀区2018-2019学年第一学期期末高一数学试题及答案

海淀区2018-2019学年第一学期期末高一数学试题及答案

高一年级期末统一练习数 学2019.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,2}A =,{|02}B x x =<<,则AB = ( )(A ){1} (B ){1,2} (C ){0,1,2} (D ){02}x x <≤ (2)已知向量(,6)m =a ,(1,3)=-b ,且ab ,则m = ( )(A )18 (B )2 (C )18- (D )2-(3)下列函数中,既是奇函数又在(0,)+∞上是增函数的是 ( )(A )()2x f x -= (B )3()f x x = (C )()lg f x x = (D )()sin f x x =(4)命题2:2,10p x x ∀>->,则p ⌝是 ( )(A )22,10x x ∀>-≤ (B )22,10x x ∀≤-> (C )22,10x x ∃>-≤ (D )22,10x x ∃≤-≤ (5)已知3tan 4α=,sin 0α<,则c o s α= ( )(A )35 (B )35- (C )45 (D )45- (6)若角α的终边经过点0(1,)y ,则下列三角函数值恒为正的是( )(A )sin α (B )cos α(C )tan α(D )sin(π)α+(7)为了得到函数πsin()3y x =--的图象,只需把函数sin y x =的图象上的所有点( )(A ) 向左平移2π3个单位长度 (B ) 向左平移π3个单位长度 (C ) 向右平移π3个单位长度 (D ) 向右平移5π3个单位长度(8)如图,在平面直角坐标系xOy 中,角α以Ox 为始边,终边与单位圆O 相交于点P .过点P 的圆O 的切线交x 轴于点T ,点T 的横坐标关于角α的函数记为()f α. 则下列关于函数()f α的说法正确的是 ( )(A )()f α的定义域是π{|2π,}2k k αα≠+∈Z (B )()f α的图象的对称中心是π(π,0),2k k +∈Z(C )()f α的单调递增区间是[2π,2ππ],k k k +∈Z (D )()f α对定义域内的α均满足(π)()f f αα-= 二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)已知()ln f x x =,则2(e )f = .(10)已知(1,2)=a ,(3,4)=b ,则⋅=a b ______;2-=a b ______. (11)已知集合{1,2,3,4,5}A =,{3,5}B =,集合S 满足S A ¹Ì,SB A =.则一个满足条件的集合S 是 .(12)已知()f x 是定义域为R 的偶函数,当0x ³时,()f x x =,则不等式()20f x ->的解集是 .(13)如图,扇形AOB 中,半径为1,AB 的长为2,则AB 所对的圆心角的大小为 弧度;若点P 是AB 上的一个动点,则当OA OP OB OP ⋅-⋅取得最大值时,,O AO P <>= .(14)已知函数122, ,()2,.x x a f x x a x a -⎧<=⎨-+≥⎩(Ⅰ)若函数()f x 没有零点,则实数a 的取值范围是________;(Ⅱ)称实数a 为函数()f x 的包容数,如果函数()f x 满足对任意1(,)x a ∈-∞,都存在2(,)x a ∈+∞,使得21()()f x f x =.BO在①12-;②12;③132中,函数()f x的包容数是_____ ___.(填出所有正确答案的序号)三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)已知函数π()2sin(2)3 f x x=+.(Ⅰ)求()f x的最小正周期T;(Ⅱ)求()f x的单调递增区间;(Ⅲ)在给定的坐标系中作出函数ππ()([,])66f x x T∈--+的简图,并直接写出函数()f x在区间π2[,π]63上的取值范围.已知函数2()f x x bx c =++,存在不等于1的实数0x 使得00(2)()f x f x -=.(Ⅰ)求b 的值;(Ⅱ)判断函数()f x 在(1,)+∞上的单调性,并用单调性定义证明; (Ⅲ)直接写出(3)c f 与(2)c f 的大小关系.(17)(本小题共11分)如图,在四边形OBCD 中,2CD BO =,2OA AD =,90D ∠=︒,且1BO AD ==. (Ⅰ)用,OA OB 表示CB ; (Ⅱ)点P 在线段AB 上,且3AB AP =,求cos PCB ∠的值.PDCBAO设函数()f x 定义域为I ,对于区间D I ⊆,如果存在12,x x D ∈,12x x ≠,使得12()()2f x f x +=,则称区间D 为函数()f x 的ℱ区间.(Ⅰ)判断(,)-∞+∞是否是函数31xy =+的ℱ区间;(Ⅱ)若1[,2]2是函数log a y x =(其中0,1a a >≠)的ℱ区间,求a 的取值范围; (Ⅲ)设ω为正实数,若[π,2π]是函数cos y x ω=的ℱ区间,求ω的取值范围.附加题:(本题满分5分。

北京市海淀区2018-2019学年高一数学上学期期末调研测试题

北京市海淀区2018-2019学年高一数学上学期期末调研测试题

北京市海淀区2018-2019学年高一数学上学期期末调研测试题一、选择题1.5名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A .24种 B .48种 C .96种D .120种2.从某校高二年级随机抽取的5名女同学的身高x (厘米)和体重y (千克)数据如下表:根据上表可得回归直线方程为,则( ) A .93.5-B .93.5C .96.8-D .96.83.针对我校某次考试有关的命题P :所有理科学生都会做第1题,那么命题P 的否定是( ) A .所有理科学生都不会做第1题 B .存在一个理科学生不会做第1题 C .存在一个理科学生会做第1题D .至少有一个理科学生会做第1题4.设命题甲为:15x -<<,命题乙为:|2|4x -<,那么甲是乙的 A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件5.已知数列{}n a 满足:12a =,0n a >,()22*14n n a a n N +-=∈,那么使5n a <成立的n 的最大值为( ) A.4B.5C.24D.256.命题“若+a b 是偶数,则a ,b 都是偶数”的否命题为A.若+a b 不是偶数,则a ,b 都不是偶数B.若+a b 不是偶数,则a ,b 不都是偶数C.若+a b 是偶数,则a ,b 不都是偶数D.若+a b 是偶数,则a ,b 都不是偶数7.设是非零实数,若,则下列不等式成立的是( )A .B .C .D .8.设全集U =R ,集合2{|20}A x x x =-≥,22|log 1{()}B x y x ==-,则U BA=ð( )A .[1,2)B .(1,2)C .(1,2]D .(,1)[0,2]-∞-9.设斜率为k 且过点()3,1P 的直线与圆22(3)4x y -+=相交于A ,B 两点已知p :0k =,q :AB =p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10.直线l 与抛物线2y x =交于A ,C 两点,B 为抛物线上一点,A ,B ,C 三点的横坐标依次成等差数列.若ABC ∆中,AC 边上的中线BP 的长为3,则ABC ∆的面积为( )B. C.2D.11.某学校在数学联赛的成绩中抽取100名学生的笔试成绩,统计后得到如图所示的分布直方图,这100名学生成绩的中位数估值为( )A.80B.82C.82.5D.8412.已知tan απ2<α<π,那么cos α-sin α的值是( )A .BCD 二、填空题13.微信支付诞生于微信红包,早期知识作为社交的一部分“发红包”而诞生的,在发红包之余才发现,原来微信支付不仅可以用来发红包,还可以用来支付,现在微信支付被越来越多的人们所接受,现从某市市民中随机抽取300为对是否使用微信支付进行调查,得到下列22⨯的列联表:其中2(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++ 14.直线是曲线的一条切线,则实数.15.已知ABC ∆中,已知01,2,60b c A ===,则a =______.16.若双曲线22221(0,0)x y a b a b-=>>e =_____.三、解答题 17.设命题:函数的定义域为;命题:关于的方程有实根. (1)如果是真命题,求实数的取值范围.(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.18.某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:昼夜温差就诊人数选取的一组数据进行检验.(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出关于的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?参考公式:, .19.如图是某市年月日至日的空气质量指数趋势图,某人随机选择年月日至月日中的某一天到达该市,并停留天.(1)求此人到达当日空气质量指数大于的概率;(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)20.在平面直角坐标系中,曲线的参数方程为 (为参数),直线的参数方程为(为参数).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.(1)写出直线的普通方程以及曲线的极坐标方程(2)若直线与曲线的两个交点分别为,直线与轴的交点为,求的值.21.如图,抛物线关于轴对称,顶点在坐标原点,点,,均在抛物线上.(1)求抛物线的标准方程;(2)当直线与的斜率存在且互为相反数时,求的值及直线的斜率.22.已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。

2019年1月北京市海淀区2018~2019学年度高三年级第一学期期末考文科数学试题及参考答案

2019年1月北京市海淀区2018~2019学年度高三年级第一学期期末考文科数学试题及参考答案

北京市海淀区2018~2019学年度高三年级第一学期期末考文科数学试题及参考答案2019.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.1.双曲线22122x y -=的左焦点坐标为A.(2,0)-B.(C.(1,0)-D. (4,0)-2.已知向量,a b 满足=((t =),,1)a 2,0b , 且a⋅=a b ,则,a b 的夹角大小为A.6πB.4πC.3πD.512π3.已知等差数列{}n a 满足1=2a ,公差0d ≠,且125,,a a a 成等比数列,则=dA. 0B.12±C.1±D.4.直线+1y kx =被圆222x y +=截得的弦长为2,则k 的值为 A.6πB.4πC.3πD.5.已正六边形的6个顶点中的三个座位顶点的三角形中,等腰三角形的个数为 A.6B.7C.8D.126.已知函数()=ln af x x x +,则“0a <”是“函数()f x 在区间(1,)+∞上存在零点”的A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件 7.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的是 A.函数()f x 的值域与()g x 的值域相同B.若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点C.把函数()f x 的图像向右平移2π个单位,就可以得到函数()g x 的图像D.函数()f x 和()g x 在区间(,4π-)4π上都是增函数8.已知集合{}(,)150,150,,A s t s t s N t N =≤≤≤≤∈∈.若B A ⊆,且对任意的(,)a b B ∈,(,)x y B ∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为A.25B.49C.75D.99二、填空题共6小题,每小题5分,共30分.9.以抛物线24y x =的焦点F 为圆心,且与其准线相切的圆的方程为 .10.执行如下图所示的程序框图,当输入的M 值为15,n 值为4 时,输出的S 值为.11.某三棱锥的三视图如上图所示,则这个三棱锥中最长的棱与最短的棱的长度分别为 , .12.设关于,x y 的不等式组,4,2,y x x y kx ≤⎧⎪≤⎨⎪≥-⎩表示的平面区域为Ω,若点A(1,-2),B(3,0),C(2,-3)中有且仅有两个点在Ω内,则k 的最大值为 . 13.在 ABC 中,b =,且cos 2cos A B =,则cos A = .14.正方体1111ABCD A BC D -的棱长为1,动点M 在线段CC 1上,动点P 在平面1111A B C D 上,且AP ⊥平面1MBD .(Ⅰ)当点M 与点C 重合时,线段AP 的长度为 ;(Ⅱ)线段AP 长度的最小值为 .三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)已知函数()s()cos22f x aco x xπ=--(Ⅰ)比较()6f π和()2f π的大小;(Ⅱ)求函数()f x 在区间[,]22ππ-的最小值.16.(本小题满分13分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X ≥为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图: (Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率; (Ⅱ)从图中考核成绩满足[70,79]X ∈的学生中任取3人,设Y 表示这3人重成绩满足8510X -≤的人数,求Y 的分布列和数学期望;(Ⅲ)根据以往培训数据,规定当85(1)0.510X P -≤≥时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.17.(本小题满分14分)在四棱锥P ABCD -中,平面ABCD ⊥平面PCD ,底面ABCD 为梯形,//AB CD ,AD PC ⊥且01,2,120AB AD DC DP PDC ====∠=(Ⅰ)求证:AD PDC ⊥平面; (Ⅱ)求二面角B-PD-C 的余弦值;(Ⅲ)若M 是棱PA 的中点,求证:对于棱BC 上任意一点F,MF 与PC 都不平行. 18.(本小题满分14分)椭圆2212x y +=的左焦点为F ,过点(2,0)M -的直线l 与椭圆交于不同两点A,B(Ⅰ)求椭圆的离心率;(Ⅱ)若点B 关于x 轴的对称点为B ’,求'AB 的取值范围. 19. (本小题满分14分)已知函数2()xa x f x e -=. (Ⅰ)当1a =-时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当0a >时,求证:2()f x e >-对任意(0,)x ∈+∞成立.20.(本小题满分13分) 设n 为不小于3的正整数,集合{}{}12(,,...)0,1,1,2,...,n n i x x x x i nΩ=∈=,对于集合nΩ中的任意元素12(,,...,)n x x x α=,12(,,...,)n y y y β=记11112222()()...()n n n n x y x y x y x y x y x y αβ*=+-++-+++- (Ⅰ)当3n =时,若(1,1,0)α=,请写出满足3αβ*=的所有元素β (Ⅱ)设n αβ∈Ω,且+n ααββ**=,求αβ*的最大值和最小值;(Ⅲ)设S 是n Ω的子集,且满足:对于S 中的任意两个不同元素αβ,,有1n αβ*≥-成立,求集合S 中元素个数的最大值.海淀区高三年级第一学期期末练习参考答案 数学(理科)2019.01一、选择题:本大题共8小题,每小题5分,共40分. 1.A 2.B3.D4.A5.C6.C7.C8.D二、填空题:本大题共6小题,每小题5分,共30分.9.22(1)4x y -+=10. 2411.212.0 13.2 三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为π1(),622a f =- π()12f a =+所以ππ13()()(1)()262222a a f f a -=+--=+因为0a >,所以3022a +>,所以ππ()()26f f > (Ⅱ)因为()sin cos2f x a x x =-2sin (12sin )a x x =--22sin sin 1x a x =+-设sin ,t x =ππ[,]22x ∈-,所以[1,1]t ∈- 所以221y t at =+-其对称轴为4a t =-当14at =-<-,即4a >时,在1t =-时函数取得最小值1a - 当14a t =-≥-,即04a <≤时,在4at =-时函数取得最小值218a --16.解:(Ⅰ)设该名学生考核成绩优秀为事件A由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀所以所求概率()P A 约为730(Ⅱ)Y 的所有可能取值为0,1,2,3因为成绩[70,80]X ∈的学生共有8人,其中满足|75|10X -≤的学生有5人所以33381(0)56C P Y C ===,21353815(1)56C C P Y C === 12353830(2)56C C P Y C ===,353810(3)56C P Y C ===随机变量Y 的分布列为115301015()0123565656568E Y =⨯+⨯+⨯+⨯=(Ⅲ)根据表格中的数据,满足85110X -≤的成绩有16个所以8516810.5103015X P ⎛-⎫≤==> ⎪⎝⎭ 所以可以认为此次冰雪培训活动有效.17.解:(Ⅰ)在平面PCD 中过点D 作DH DC ⊥,交PC 于H 因为平面ABCD ⊥平面PCDDH ⊂平面PCD平面ABCD I 平面PCD CD = 所以DH ⊥平面ABCD 因为AD ⊂平面ABCD 所以DH AD ⊥又AD PC ⊥,且PC DH H =I 所以AD ⊥平面PCD(Ⅱ)因为AD ⊥平面PCD ,所以AD CD ⊥ 又DH CD ⊥,DH AD ⊥以D 为原点,DA DC DH ,,所在直线分别为,,x y z 轴,建立空间直角坐标系所以(,,),(,,),(,(,,),(,,)D A P C B -00020001020210,因为AD ⊥平面PCD ,所以取平面PCD 的法向量为(,,)DA =200u u u r 设平面PBD 的法向量为(,,)n x y z =r因为(,(,,)DP DB =-=01210u u u r u u u r,所以n DP n DB ⎧⋅=⎪⎨⋅=⎪⎩00r uu u r r uu u r所以y x y ⎧-=⎪⎨+=⎪⎩020令2z = ,则y x =-=所以()n =2r所以cos ,||||AD n AD n AD n ⋅<>===uuu r ruuu r r uuu u r r由题知B PD C --为锐角,所以B PD C --的余弦值为19(Ⅲ) 法一:假设棱BC 上存在点F ,使得MF PC ,显然F 与点C 不同 所以,,,P M F C 四点共面于α 所以FC ⊂α,PM ⊂α 所以B FC ∈⊂α,A PM ∈⊂α所以α就是点,,A B C 确定的平面,所以P ∈α这与P ABCD -为四棱锥矛盾,所以假设错误,即问题得证 法二:假设棱BC 上存在点F ,使得MF PC 连接AC ,取其中点N在PAC ∆中,因为,M N 分别为,PA CA 的中点,所以MN PC因为过直线外一点只有一条直线和已知直线平行,所以MF 与MN 重合 所以点F 在线段AC 上,所以F 是AC ,BC 的交点C ,即MF 就是MC 而MC 与PC 相交,矛盾,所以假设错误,问题得证 法三:假设棱BC 上存在点F ,使得MF PC ,设BF BC λ= ,所以3(1,,(2,1,0)2MF MB BF λ=+=+-因为MF PC ,所以(0,3,MF PC μμ==所以有120332λλμ⎧⎪-=⎪⎪+=⎨⎪⎪=⎪⎩,这个方程组无解所以假设错误,即问题得证 18.解:(Ⅰ)因为,a b ==2221,所以,a b c ===11所以离心率c e a ==(Ⅱ)法一: 设1122(,),(,)A x y B x y显然直线l 存在斜率,设直线l 的方程为(2)y k x =+所以()x y y k x ⎧+=⎪⎨⎪=+⎩22122,所以()k x k x k +++-=2222218820 28160k ∆=->,所以k <212所以k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩212221228218221 因为22'(,)B x y -所以|'|AB 因为22212121222816()()4(21)k x x x x x x k --=+-=+12121224(2)(2)()421k y y k x k x k x x k +=+++=++=+所以|'|AB ==因为k ≤<2102,所以|'|AB ∈法二:设1122(,),(,)A x y B x y当直线l 是x 轴时,|'|AB =当直线l 不是x 轴时,设直线l 的方程为2x t y =-所以x y x t y ⎧+=⎪⎨⎪=-⎩22122,所以()t y t y ++=-222420, 28160t ∆=->,所以t >22所以t y y t y y t ⎧+=⎪⎪+⎨⎪=⎪+⎩1221224222 因为22'(,)B x y -所以|'|AB 因为 2222222212121212122216()()()[()4](1)(2)t x x ty ty t y y t y y y y t t -=-=-=+-=++所以|'|AB=22)2t ==-+因为t >22,所以|'|AB ∈综上,|'|AB的取值范围是.19.解:(Ⅰ)因为()x ax x f x -=e 2所以()'()x x a x af x -++=e 22 当a =-1时,'()x x xf x --=e 21所以'()f -=e 11,而()f -=e 21 曲线()yf x =在(1,(1))f 处的切线方程为21()(1)e e y x --=-- 化简得到11e e y x =--(Ⅱ)法一:因为()'()xx a x a f x -++=e 22,令()'()x x a x af x -++==e 220得x x ==12当a >0时,x ,'()f x ,()f x 在区间(0,)+∞的变化情况如下表:所以()f x 在[,)+∞0上的最小值为(),()f f x 20中较小的值,而2(0)0e f =>-,所以只需要证明()f x >-e 22因为()x a x a -++=22220,所以()x x a f x ax x x -=-=e e 22222222 设()x a x F x -=e 2,其中x >0,所以()()'()x x a x x a F x ----+==e e 2222令'()F x =0,得a x +=322,当a >0时,x ,'()F x ,()F x 在区间(0,)+∞的变化情况如下表:所以()F x 在(,)+∞0上的最小值为()a a F ++-=e 12222,而()a a F ++--=>e e 122222注意到x =>20,所以(())f x x F =>-e 222,问题得证 法二:因为“对任意的x >0,22e e x ax x ->-”等价于“对任意的x >0,220e e xax x -+>” 即“x >0,2+12e e()0e x x ax x +->”,故只需证“x >0,22e e()0x ax x +->”设2()2e e()x g x ax x =+-,所以'()2e e(2)x g x a x =+-设()'()h x g x =,'()2e 2e xh x =- 令'()F x =0,得x =31当a >0时,x ,'()h x ,()h x 在区间(0,)+∞的变化情况如下表:所以()h x (,)+∞0上的最小值为()h 1,而(1)2e e(2)e 0h a a =+-=> 所以x >0时,'()2e e(2)0xg x a x =+->,所以()g x 在(,)+∞0上单调递增 所以()(0)g x g >而(0)20g =>,所以()0g x >,问题得证 法三:“对任意的x >0,2()e f x >-”等价于“()f x 在(,)+∞0上的最小值大于2e -”因为()'()x x a x af x -++=e 22,令'()f x =0得x x ==12当a >0时,x ,'()f x ,()f x 在在(,)∞+0上的变化情况如下表:所以()f x 在[,)+∞0上的最小值为(),()f f x 20中较小的值,而2(0)0e f =>-,所以只需要证明()f x >-e 22因为()x a x a -++=22220,所以()x x x ax x x x x a f =---=>e e e 22222222222注意到x 2和a >0,所以x >22设()x xF x -=e 2,其中x >2 所以()()'()x x x x F x --=-=e e 2121当x >2时,'()F x >0,所以()F x 单调递增,所以()()F x F >=-e 242而()--=-->e e e e 2242240 所以()()f x F x >->e 222,问题得证法四:因为a >0,所以当x >0时,()xxax x x f x --=>e e 22设()xx F x -=e 2,其中x >0 所以()'()x x x F x -=e 2所以x ,'()F x ,()F x 的变化情况如下表: 以()F x 在x =2时取得最小值所()F =-e 224,而()--=-->e e e e 224224所以x >0时,2()e F x >-所以()()f x F x >>-e 220.解:(Ⅰ)满足3αβ*=的元素为(0,0,1),(1,0,1),(0,1,1),(1,1,1) (Ⅱ)记12(,,,)n x x x α= ,12(,,,)n y y y β= , 注意到{0,1}i x ∈,所以(1)0i i x x -=,所以11112222()()()n n n n x x x y x x x x x x x x αα*=+-++-+++-12n x x x =+++12n y y y ββ*=+++因为n ααββ*+*=,所以1212n n x x x y y y n +++++++= 所以1212,,,,,,,n n x x x y y y 中有n 个量的值为1,n 个量的值为0. 显然111122220()()()n n n n x y x y x y x y x y x y αβ≤*=+-++-+++-1122n n x y x y x y n ≤++++++= ,当(1,1,,1)α= ,(0,0,,0)β= 时,αβ,满足n ααββ*+*=,n αβ*=.所以αβ*的最大值为n又11112222()()()n n n n x y x y x y x y x y x y αβ*=+-++-+++-1122()n n n x y x y x y =-+++注意到只有1i i x y ==时,1i i x y =,否则0i i x y =而1212,,,,,,,n n x x x y y y 中n 个量的值为1,n 个量的值为0所以满足1i i x y =这样的元素i 至多有2n个,当n 为偶数时,22n n n αβ*≥-=.当22(1,1,,1,0,0,,0)nn αβ==个个时,满足n ααββ*+*=,且2n αβ*=.所以αβ*的最小值为2n当n 为奇数时,且1i i x y =,这样的元素i 至多有12n -个,所以1122n n n αβ-+*≥-=.当1122(1,1,,1,0,0,,0)n n α+-= 个个,1122(1,1,,1,0,0,,0)n n β-+=个个时,满足n ααββ*+*=,12n αβ-*=. 所以αβ*的最小值为12n -综上:αβ*的最大值为n ,当n 为偶数时,αβ*的最小值为2n ,当n 为奇数时,12n αβ-*=. (Ⅲ)S 中的元素个数最大值为222n n ++设集合S 是满足条件的集合中元素个数最多的一个记1S ={}1212(,,,)|1,n n x x x x x x n S αα=+++≥-∈ ,{}21212(,,,)|2,n n S x x x x x x n S αα==+++≤-∈显然1212S S S S S ==∅ ,集合1S 中元素个数不超过1n +个,下面我们证明集合2S 中元素个数不超过2n C 个212,(,,,)n S x x x αα∀∈= ,则122n x x x n +++≤- 则12n x x x ,,,中至少存在两个元素0i j x x ==212,(,,,)n S y y y ββ∀∈= ,βα≠因为1n αβ*≥-,所以,i jy y 不能同时为0所以对1i j n ≤<≤中的一组数,i j 而言,在集合2S 中至多有一个元素12(,,,)n x x x α= 满足i j x x,同时为0所以集合2S 中元素个数不超过2n C 个所以集合S 中的元素个数为至多为2211n n C n n ++=++记1T ={}1212(,,,)|1,n n n x x x x x x n αα=+++≥-∈Ω ,则1T 中共1n +个元素,对于任意的1T α∈,n β∈Ω,1n αβ*≥-.对1i j n ≤<≤,记,12(,,,),i j n x x x β= 其中0i j x x ==,1t x =,,t i t j≠≠ 记2,{|1}i j T i j n β=≤<≤,显然2,S αβ∀∈,αβ≠,均有1n αβ*≥-.记12S T T = ,S 中的元素个数为21n n ++,且满足,S αβ∀∈,αβ≠,均有1n αβ*≥-.综上所述,S 中的元素个数最大值为21n n ++.。

北京市海淀区2017-2018学年第一学期高一期末数学试题(word版含答案)

北京市海淀区2017-2018学年第一学期高一期末数学试题(word版含答案)

海淀区高一年级第一学期期末练习数学 2018.1第一部分(选择题 共40分)一、选择题(共8小题,每小题4分,共32分。

在每小题列出的四个选项中,只有一项是符合题目要求的)(1)已知集合{}1,3,5A ={},(1)(3=0B x x x =--),则AB = A. Φ B. {}1 C. {}3 D. {}1,3(2)2sin()3π-=A. 12- C. 12(3)若幂函数()y f x =的图像经过点(2,4)-,则在定义域内 A.为增函数B.为减函数C.有最小值D.有最大值(4)下列函数为奇函数的是A. 2xy = B. sin ,[0,2]y x x π=∈ C. 3y x = D. lg y x = (5)如图,在平面内放置两个相同的三角板,其中030A ∠=,且,,B C D 三点共线,则下列结论不成立的是 A. 3CD BC = B. 0CA CE •= C. AB 与DE D. CA CB •=CE CD •(6)函数()f x 的图像如图所示,为了得到2sin y x 函数的图像,可以把函数()f x 的图像A.每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位 B.每个点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位 C. 先向左平移6π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变), D.先向左平移3π个单位,再把所得各点的横坐标缩短到原来的12(纵坐标不变)(7)已知21()log ()2x f x x =-,若实数,,a b c 满足0a b c ,且()()()0f a f b f c ,实数0x 满足0()0f x =,那么下列不等式中,一定成立的是A.0x a B. 0x a C. 0x c D. 0x c(8)如图,以AB 为直径在正方形内部作半圆O ,P 为半圆上与,A B 不重合的一动点,下面关于PA PB PC PD +++的说法正确的是A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值第二部分(非选择题共110分)二、填空题(本大题共6小题,每小题4分,共24分,把答案填在题中横线上)=,写出一个与a共线的非零向量的坐标 .(9)已知向量a(1,2)-,则cosθ= .(10)已知角θ的终边经过点(3,4)(11)已知向量a,在边长为1 的正方形网格中的位置如图所示,则a•b= .(12)函数2,(),0x x t f x x x t⎧≥=⎨⎩(0)t是区间(0,)+∞上的增函数,则t 的取值范围是 .(13)有关数据显示,中国快递行业产生的包装垃圾在20XX 年约为400万吨,20XX 年的年增长率为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从 年开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg 20.3010,lg30.4771≈≈)(14)函数()sin f x x ω= 在区间(0,)6π上是增函数,则下列结论正确的是(将所有符合题意的序号填在横线上)①函数()sin f x x ω=在区间(,0)6π-上是增函数;②满足条件的正整数ω的最大值为3; ③()4f π≥()12f π.三、解答题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题10分)已知向量a (sin ,1)x =, b (1,)k =,()f x =a •b .(Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若1()3f k α=+且(0,)απ∈,求tan α.(16)(本小题12分)已知二次函数2()f x x bx c =++满足(1)f =(3)3f =-.(Ⅰ)求,b c 的值;(Ⅱ)若函数()g x 是奇函数,当0x ≥时,()g x =()f x , (ⅰ1)直接写出()g x 的单调递减区间: ; (2ⅱ)若()g a a ,求a 的取值范围.(17)(本小题12分)某同学用“五点法”画函数()sin()f x A x ωϕ=+(0,0,)2Aπωϕ在某一个周期内的图像时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,函数()f x 的解析式为()f x = (直接写出结果即可); (Ⅱ)求函数()f x 的单调递增区间;π(18)(本小题13分)定义:若函数()f x 的定义域为R ,且存在非零常数T ,对任意x R ∈,()()f x T f x T +=+恒成立,则称()f x 为线周期函数,T 为()f x 的线周期.(Ⅰ)下列函数,①2x y =,②2l g y o x =,③[]y x =,(其中[]x 表示不超过x 的最大整数),是线周期函数的是 (直接填写序号);(Ⅱ)若()g x 为线周期函数,其线周期为 T ,求证:函数()()G x g x x =-为线周期函数; (Ⅲ)若()sin x x kx ϕ=+为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参考答案2018.1数学阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数.2.其它正确解法可以参照评分标准按相应步骤给分.一、选择题:本大题共8小题,每小题4分,共32分.二、填空题:本大题共6小题,每小题4分,共24分.9.答案不唯一,纵坐标为横坐标2倍即可,例如()24,等.10. 3511.312.1t≥13.202114.①②③三、解答题: 本大题共4小题,共44分.15.解:(Ⅰ)∵向量=(sin ,1)x a ,=(1,)k b ,()f x =⋅a b ,∴()f x =⋅a b =sin +x k .--------------------------2分关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解.--------------------------3分 ∵[]sin 11x ∈-,,∴当[]111k ,-∈-时,方程有解.--------------------------4分则实数k 的取值范围为[]02,.--------------------------5分 (Ⅱ)因为1()3f k α=+,所以1sin ++3k =k α,即1sin 3=α.--------------------------6分当π(0]2,α∈时,cos 3α==,sin tan cos 4=ααα=.---------------------8分当π(,π)2α∈时,cos 3α==-,tan 4=α-.-------------------------10分 16.解:(Ⅰ)4b =-;--------------------------2分0c =.--------------------------4分(Ⅱ)(ⅰ)[]22,-. --------------------------6分 (ⅱ)由(Ⅰ)知2()4f x x x =-,则当0x ≥时,2()4g x x x =-;当0x <时,0x ->,则22()()4()4g x x x x x -=---=+因为()g x 是奇函数,所以2()()4g x g x x x =--=--. -------------------------8分若()g a a >,则20,4;a a a a >⎧⎨->⎩或20,4.a a a a ≤⎧⎨-->⎩--------------------------10分 解得5a >或50a -<<.--------------------------12分综上,a 的取值范围为5a >或50a -<<.17. 解:(Ⅰ)分解析式为:π()2sin(2)6f x x =+--------------------------6分 (Ⅱ)函数()f x 的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈.---------------------------8分 (Ⅲ)因为π02x -≤≤,所以5πππ2666x -≤+≤. 得:π11sin(2)62x -≤+≤. 所以,当ππ262x +=-即π3x =-时,()f x 在区间[,0]2π-上的最小值为2-.-----------10分 当ππ266x +=即0x =时,()f x 在区间[,0]2π-上的最大值为1.--------------------12分18.解:(Ⅰ)③;--------------------------2分(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T +=+恒成立. ∵()()G x g x x =-,∴(+)()()G x T g x T x T =+-+()()g x T x T =+-+()g x x =-()G x =. ∴()()G x g x x =-为周期函数.--------------------------6分(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,sin()()sin x T k x T x kx T +++=++. ∴sin()sin x T kT x T ++=+.令0x =,得sin T kT T +=;---------------------①令πx =,得sin T kT T -+=;---------------②①②两式相加,得22kT T =.∵0T ≠,∴1k =.--------------------------8分检验:当1k =时,()sin x x x ϕ=+.存在非零常数2π,对任意x ∈R ,(2π)sin(2π)2πsin 2π()2πx x x x x x ϕϕ+=+++=++=+, ∴()sin x x x ϕ=+为线周期函数.综上,1k =. --------------------------10分。

最新版北京市海淀区高一上学期期末考试数学试题Word版含答案

最新版北京市海淀区高一上学期期末考试数学试题Word版含答案

海淀区高一年级第一学期期末练习数学一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,3,5A =,()(){}130B x x x =--=,则A B =I ( ) A .∅ B .{}1 C .{}3 D .{}1,3 2.2sin 3π⎛⎫-= ⎪⎝⎭( )A ..12- C .123.若幂函数()y f x =的图象经过点()2,4-,则()f x 在定义域内( ) A .为增函数 B .为减函数 C .有最小值 D .有最大值 4.下列函数为奇函数的是( )A .2x y =B .[]sin ,0,2y x x π=∈ C .3y x = D .lg y x = 5.如图,在平面内放置两个相同的直角三角板,其中30A ∠=︒,且,,B C D 三点共线,则下列结论不成立的是( )A .CD =uu u r u rB .0CA CE ⋅=u u r u u rC .AB uu u r 与DE 共线D .CA CB CE CD ⋅=⋅u u r u u r u u r u u u r6.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象( )A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位 B .每个点的横坐标缩短到原来的2倍(纵坐标不变),再向左平移6π个单位 C .先向左平移6π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变) D .先向左平移3π个单位,再把所得各点的横坐标伸长到原来的12(纵坐标不变)7.已知()21log 2xf x x ⎛⎫=- ⎪⎝⎭,若实数,,a b c 满足0a b c <<<,且()()()0f a f b f c <,实数0x 满足()00f x =,那么下列不等式中,一定成立的是( ) A .0x a < B .0x a > C .0x c < D .0x c >8.如图,以AB 为直径在正方形ABCD 内部作半圆O ,P 为半圆上与,A B 不重合的一动点,下面关于PA PB PC PD +++uu r uu r uu u r uu u r的说法正确的是( )A .无最大值,但有最小值B .既有最大值,又有最小值C .有最大值,但无最小值D .既无最大值,又无最小值二、填空题(每题4分,满分24分,将答案填在答题纸上)9.已知向量()1,2a =r,写出一个与a r 共线的非零向量的坐标 .10.已知角θ的终边过点()3,4-,则cos θ= .11.向量,a b r r 在边长为1的正方形网格中的位置如图所示,则a b ⋅=r r.12.函数()2,,,0.x x t f x x x t ⎧≥=⎨<<⎩()0t >是区间()0,+∞上的增函数,则t 的取值范围是 .13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从 年开始,快递业产生的包装垃圾超过4000万吨. (参考数据:lg 20.3010≈,lg30.4771≈) 14.已知函数()sin f x x ω=在区间0,6π⎛⎫⎪⎝⎭上是增函数,则下列结论正确的是 (将所有符合题意的序号填在横线上). ①函数()sin f x x ω=在区间,06π⎛⎫-⎪⎝⎭上是增函数; ②满足条件的正整数ω的最大值为3; ③412f f ππ⎛⎫⎛⎫≥⎪ ⎪⎝⎭⎝⎭. 三、解答题 (本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r .(Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若()13f k α=+且()0,απ∈,求tan α. 16.已知二次函数()2f x x bx c =++满足()()133f f ==-. (Ⅰ)求,b c 的值;(Ⅱ)若函数()g x 是奇函数,当0x ≥时,()()g x f x =, (ⅰ)直接写出()g x 的单调递减区间: ;(ⅱ)若()g a a >,求a 的取值范围.17.某同学用“五点法”画函数()sin y A x ωϕ=+0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,函数()f x 的解析式()f x = (直接写出结果即可)(Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 18.定义:若函数()f x 的定义域为R ,且存在非零常数T ,对任意x ∈R ,()()f x T f x T +=+恒成立,则称()f x 为线周期函数,T 为()f x 的线周期.(Ⅰ)下列函数①2xy =,②2l o gy x =,③[]y x =(其中[]x 表示不超过x 的最大整数),是线周期函数的是 (直接填写序号);(Ⅱ)若()g x 为线周期函数,其线周期为T ,求证:函数()()G x g x x =-为周期函数; (Ⅲ)若()sin x x kx ϕ=+为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参考答案数学一、选择题1-4:DACC 5-8:DCBA 二、填空题9.答案不唯一,纵坐标为横坐标2倍即可,例如()2,4等 10.3511.3 12.1t ≥ 13.2021 14.①②③ 三、解答题15.解:(Ⅰ)∵向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r, ∴()sin f x a b x k =⋅=+r r.关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解. ∵[]sin 1,1x ∈-,∴当[]11,1k -∈-时,方程有解. 则实数k 的取值范围为[]0,2. (Ⅱ)因为()13f k α=+,所以1sin 3k k α+=+,即1sin 3α=.当0,2πα⎛⎤∈ ⎥⎝⎦时,cos 3α==,sin tan cos 4ααα==.当,2παπ⎛⎫∈⎪⎝⎭时,cos α==,tan α=. 16.解:(Ⅰ)4b =-;0c =.(Ⅱ)(ⅰ)[]2,2-.(ⅱ)由(Ⅰ)知()24f x x x =-,则当0x ≥时,()24g x x x =-;当0x <时,0x ->,则()()()2244g x x x x x -=---=+因为()g x 是奇函数,所以()()24g x g x x x =--=--.若()g a a >,则20,4,a a a a >⎧⎨->⎩或20,4,a a a a ≤⎧⎨-->⎩ 解得5a >或50a -<<.综上,a 的取值范围为5a >或50a -<<. 17.解:(Ⅰ)解析式为:()2sin 26f x x π⎛⎫=+⎪⎝⎭(Ⅱ)函数()f x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(Ⅲ)因为02x π-≤≤,所以52666x πππ-≤+≤. 得:11sin 262x π⎛⎫-≤+≤ ⎪⎝⎭. 所以,当262x ππ+=-即3x π=-时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为-2. 当266x ππ+=即0x =时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为1. 18.解:(Ⅰ)③(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T -=+恒成立. ∵()()G x g x x =-,∴()()()G x T g x T x T +=+-+=()()()()g x T x T g x x G x +-+=-=.∴()()G x g x x =-为周期函数.(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,()()sin sin x T k x T x kx T +++=++. ∴()sin sin x T kT x T ++=+.令0x =,得sin T kT T +=;…………① 令x π=,得sin T kT T -+=;…………② ①②两式相加,得22kT T =. ∵0T ≠, ∴1k =. 检验:当2k =时,()sin x x x ϕ=+. 存在非零常数2π,对任意x ∈R ,()()2sin 22x x x ϕπππ+=+++=()sin 22x x x πϕπ++=+,∴()sin x x x ϕ=+为线周期函数. 综上,1k =.。

20181海淀区高一数学期末试卷(有答案)

20181海淀区高一数学期末试卷(有答案)

海淀区高一年级第一学期期末练习数学2018.1第一部分(选择题共 40分)一、选择题(共 8 小题,每题 4 分,共 32 分。

在每题列出的四个选项中,只有一项为哪一项切合题目要求的)( 1)已知会合A1,3,5, B x ( x1)(x3)=0,则AIB A. B.1 C.3 D. 1,3( 2)sin(2)3A.3131B. C. D.2 222( 3)若幂函数y f ( x) 的图像经过点 ( 2,4),则在定义域内A. 为增函数B.为减函数C.有最小值D.有最大值( 4)以下函数为奇函数的是A. y2xB. y sin x, x [0,2 ]C. y x3D.y lg x( 5)如图,在平面内搁置两个同样的三角板,此中A300,且 B,C , D 三点共线,则以下结论不建立的是uuur uuurB.uuur uuuruuur uuur uuur uuur uuur uuurA. CD 3 BC CA ?CE C. AB与DE D. CA ?CB CE ?CD( 6)函数 f (x) 的图像以下图,为了获得y 2sin x 函数的图像,能够把函数 f (x) 的图像A. 每个点的横坐标缩短到本来的1(纵坐标不变) ,再向左平移个单位23B. 每个点的横坐标伸长到本来的2 倍(纵坐标不变) ,再向左平移个单位6C. 先向左平移个单位,再把所得各点的横坐标伸长到本来的2 倍(纵坐标不变) ,61(纵坐标不变)D. 先向左平移个单位,再把所得各点的横坐标缩短到本来的32( 7)已知 f ( x)log 2 x( 1)x ,若实数 a, b, c 知足 0 p a p b p c ,且 f (a) f (b) f (c) p 0 ,实数 x 0 知足2f (x 0 ) 0 ,那么以下不等式中,必定建立的是A. x 0 p aB. x 0 f aC. x 0 p cD. x 0 f c( 8 )如图,以 AB 为直径在正方形内部作半圆O , P 为半圆上与 A, B 不重合的一动点,下边对于uuur uuur uuur uuurPA PB PC PD 的说法正确的选项是A. 无最大值,但有最小值B. 既有最大值,又有最小值C.有最大值,但无最小值D. 既无最大值,又无最小值第二部分(非选择题共 110 分)二、填空题(本大题共6 小题,每题4 分,共 24 分,把答案填在题中横线上)( 9)已知向量a(1,2) ,写出一个与 a 共线的非零向量的坐标.( 10)已知角的终边经过点(3, 4) ,则 cos.( 11)已知向量a,在边长为 1 的正方形网格中的地点以下图,则 a ? b.( 12)函数x2 ,x t(0,) 上的增函数,则t 的取值范围是.f (x)(t f 0) 是区间x,0 p x p t( 13)相关数据显示,中国快递行业产生的包装垃圾在2020 学年约为400 万吨, 2020 学年的年增加率为50%.有专家展望,假如不采纳举措,将来包装垃圾还将以此增加率增加,从年开始,快递行业产生的包装垃圾超出4000 万吨 .(参照数据:lg 2 0.3010,lg30.4771 )( 14)函数 f (x) sin x 在区间 (0,) 上是增函数,则以下结论正确的选项是6(将全部切合题意的序号填在横线上)①函数 f ( x)sin x 在区间 (,0) 上是增函数;63;②知足条件的正整数的最大值为③ f ( ) f () .412三、解答题共 4 小题,共44 分 .解答应写出文字说明,证明过程或演算步骤.( 15)(本小题10 分)已知向量 a(sin x,1) ,b(1,k ) , f ( x) a ?b.(Ⅰ)若对于x 的方程 f ( x) 1 有解,务实数 k 的取值范围;(Ⅱ)若 f ()1(0, ) ,求tan.k 且3( 16)(本小题 12 分)已知二次函数 f ( x) x 2bx c 知足 f (1) f (3)3 . (Ⅰ)求 b, c 的值;(Ⅱ)若函数g(x) 是奇函数,当 x 0 时, g( x)f (x) ,(ⅰ 1 )直接写出 g (x)的单一递减区间 :;(2ⅱ)若g (a) fa,求 a的取值范围 .( 17)(本小题 12 分)某同学用“五点法”画函数f ( x)Asin( x) ( A f 0, f 0,p ) 在某一个周期内的图像时,列表2并填入了部分数据,以下表:x3 2x222 y Asin( x )632 0(Ⅰ)请将上表数据增补完好,函数 f ( x) 的分析式为 f ( x) (直接写出结果即可) ;(Ⅱ)求函数 f (x) 的单一递加区间;(Ⅲ)求函数 f (x) 在区间 [,0] 上的最大值和最小值 . 2( 18)(本小题 13 分)定义:若函数 f (x) 的定义域为R,且存在非零常数T ,对随意x R , f ( x T) f ( x)T 恒建立,则称 f (x) 为线周期函数,T 为f ( x)的线周期.(Ⅰ)以下函数,① y2x,② y l o g2 x ,③ y[ x] ,(此中 [ x] 表示不超出x的最大整数),是线周期函数的是(直接填写序号);(Ⅱ)若 g( x)为线周期函数,其线周期为T ,求证:函数 G (x)g( x) x 为线周期函数;(Ⅲ)若 ( x)sin x kx 为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参照答案2018.1数学阅卷须知 :1.评分参照取所注分数,表示考生正确做到此步应得的累加分数.2.其余正确解法能够参照评分标准按相应步骤给分.一、选择题:本大题共8 小题,每题 4 分,共 32 分.题号12345678答案D A C C D C B A二、填空题:本大题共 6 小题,每题 4 分,共 24 分.9.答案不独一,纵坐标为横坐标 2 倍即可,比如2,4 等.310.11.312. t 1 13.202114.①②③5注:第 14 题选对一个给 1 分,选对两个给 2 分,选对三个给 4 分 .三、解答题 : 本大题共 4 小题,共 44 分.15.解:(Ⅰ)∵向量 a=(sinx,1) , b=(1,k) , f (x) a b ,∴ f (x) a b =sinx+k.-------------------------- 2 分对于 x 的方程f (x)1有解,即对于x 的方程sinx 1k 有解.--------------------------3 分∵ sinx1,1 ,∴当 1 k11, 时,方程有解.--------------------------4分则实数 k 的取值范围为0,2 .--------------------------5 分(Ⅱ)由于 f () 1 k ,因此 sin +k = 1+k ,即 sin = 1 .--------------------------6 分3 3 3(0 , π1 sin22 2 , tan= sin2 .--------------------- 8 当] 时, cos分23cos4当( π, π) 时, cos 1 sin 222, tan =2.-------------------------10分23416.解:(Ⅰ) b4 ;--------------------------2 分c 0 .--------------------------4分(Ⅱ)(ⅰ)2,2 . --------------------------6 分(ⅱ)由(Ⅰ)知f (x) x 2 4x ,则当 x 0 时, g(x) x 2 4x ;当 x0 时, x 0 ,则 g( x) ( x)2 4( x) x 2 4x由于 g(x) 是奇函数,因此g(x)g( x) x 2 4x .-------------------------8 分若 g(a) a ,则a 0, 或a 0,--------------------------10 分a 24a a 2 4a a;a.解得 a5 或 5 a0 .--------------------------12 分综上, a 的取值范围为a 5 或 5 a 0 .17. 解:(Ⅰ)xπ π3π 2π2 2xπ π 5π 2π 11 π126 12 312yA sin( x)22--------------------------4 分分析式为: f ( x) 2sin(2 xπ分) --------------------------66(Ⅱ)函数 f ( x ) 的单一递加区间为,, k Z.---------------------------8 分πk ππk π36(Ⅲ)由于π0 ,因此5π 2 x π π.x2π 1666得: 1 sin(2 x.)26因此 ,当ππ即π时,f ( x ) 在区间 [,0] 上的最小值为.-----------10分2 xx23226当2 x π π即 x0时,f( x ) 在区间[,0] 上的最大值为1.--------------------12分66218.解:(Ⅰ)③; --------------------------2分(Ⅱ)证明:∵g( x) 为线周期函数,其线周期为T ,∴存在非零常数T ,对随意x R ,g ( x T ) g ( x )T恒建立.∵ G ( x)g ( x)x ,∴ G ( x+T ) g ( x T ) ( x T )g ( x) T ( x T )g ( x) x G ( x) .∴ G ( x)g ( x)x 为周期函数.-------------------------- 6 分(Ⅲ)∵( x)sin x kx 为线周期函数,∴存在非零常数T,对随意x R ,sin( x T )k (x T )sin x kx T .∴ sin( x T )kT sin x T.令 x0,得 sinT kT T ;---------------------①令 xπ,得sinT kT T ;---------------②①②两式相加,得 2kT2T .∵ T0,∴ k 1 .--------------------------8分查验:当 k 1 时,(x)sin x x .存在非零常数2π,对随意 x R ,( x)2π( x 2π)sin( x2π) x2π sin x x2π,∴ ( x)sin x x 为线周期函数.综上, k 1 .--------------------------10分。

3_2019北京海淀高一(上)期末数学

3_2019北京海淀高一(上)期末数学
(17) (本小题共 11 分)
如图,在四边形 OBCD 中, CD 2BO , OA 2 AD , D 90 ,且 BO AD 1 .
(Ⅰ)用 OA,OB 表示 CB ; (Ⅱ)点 P 在线段 AB 上,且 AB 3AP ,求 cos PCB 的值 .
C
B
P
O
A
D
3 / 11
(18) (本小题共 12 分)
2019 北京海淀高一(上)期末 数学
2019.01
学校班级姓名 成绩
一、选择题:本大题共 8 小题,每小题 4 分,共 32 分. 在每小题给出的四个选项中,只有一项是符合题目要求的
.
( 1)已知集合 A {1,2} , B { x | 0 x 2} ,则 A B
()
( A) {1}
( B) {1,2}
OA,OP .
( 14)已知函数 f ( x)
2x 1,
x a,
x2 2a, x a.
B P
(Ⅰ)若函数 f ( x) 没有零点,则实数 a 的取值范围是
O
A ________;
(Ⅱ)称实数 a 为函数 f ( x) 的包容数,如果函数 f ( x2 ) f ( x1) .
f ( x)0 x 2}
( 2)已知向量 a (m,6) , b ( 1,3) ,且 a b ,则 m
()
( A) 18
( B) 2
( C) 18
(D) 2
( 3)下列函数中,既是奇函数又在 (0, ) 上是增函数的是
( A) f (x) 2 x
3
( B) f (x) x ( C) f ( x) lg x
, a) ,都存在 x2 (a,
) ,使得

3.海淀101中学高一数学期末

3.海淀101中学高一数学期末

北京一零一中2018-2019学年度第一学期期末考试高一数学命题:高一数学组审核:张燕菱一、选择题共8小题。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.若sin 2παα=<<,则cos α=()A .3-B .12-C .12D .32.集合{|,},{|,}244k k M x x k Z N x x k Z πππ==+∈==∈,则()A .M N⊆B .N M⊆C .M N =∅D .RM N = 3.下列命题中正确的是()A .共线向量都相等B .单位向量都相等C .平行向量不一定是共线向量D .模为0的向量与任意一个向量平行4.下列函数为奇函数,且在(),0-∞上单调递减的是()A .2()f x x -=B .1()f x x -=C .2()log f x x=D .()3xf x =5.已知函数()sin()(,0)4f x x x R πωω=+∈>的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象()A .向左平移8π个单位长度B .向右平移8π个单位长度C .向左平移4π个单位长度D .向右平移4π个单位长度6.如图所示,函数3cos |tan |(0)22y x x x x ππ=≤<≠且的图象是()A .B .C .D .7.函数sin (0)y x ωω=>在区间[0,1]上至少出现在0次最大值,则ω的最小值是()A .10πB .20πC .372πD .392π8.设偶函数()log ||a f x x b =-在(),0-∞上是增函数,则()1f a +与() 2f b +的大小关系()A .(1)(2)f a f b +=+B .(1)(2)f a f b +<+C .(1)(2)f a f b +>+D .不确定二、填空题共6小题。

9.求值:221log lg134812()lg 1)27100--++=_______.10.已知向量(1,1),(sin ,cos ),(0,)x x x π==-∈a b ,若//a b ,则x 的值是_______.11.若tan 3θ=,则222sin sin cos cos θθθθ--=_______.12若函数*()cos()()6f x x N πωω=+∈的图象的个对称中心是(,0)6π,则ω的最小值为____.13.函数y =的值域是_______.14.已知点O 为ABC △内一点,23OA OB OC ++=0 ,则ABC AOCSS =△△_______.三、解答题共5小题。

中国人民大学附属中学2018-2019学年上学期高一期末测试

中国人民大学附属中学2018-2019学年上学期高一期末测试

2018~2019学年北京海淀区中国人民大学附属中学高一下学期期末数学试卷一、选择题(本大题共27小题,每小题3分,共81分)1.A.B.C.D.已知集合,,那么( ).2. A.B.C.﹒D.过点和点的直线的斜率为( ).3. A.B.C.D.已知角的终边经过点,那么( ).4. A.B.C.D.已知向量,,,那么的值为( ).5. A.B.C.D.函数的最小正周期是( ).6. A.B.C.D.已知直线与直线垂直,那么的值为( ).7. A.B.C.D.某学校为调查中学生对北京世园会的了解情况,计划从初一名学生和高一名学生中抽取名学生进行问卷调查,如果用分层抽样的方法抽取样本,那么高一应抽取的人数为( ).8. A. B.C.D.下列函数中,既是奇函数,又在区间上单调递减的是( ).9. A.B.C.D.直线与直线的距离为( ).10.A.B.C.D.计算:的结果为( ).11.A.B.C.D.已知某三棱锥的三视图如图所示,则该三棱锥的体积为( ).主视图侧视图俯视图12.A.向左平移个单位 B.向右平移个单位C.向左平移个单位D.向右平移个单位要得到函数的图象,只要将函数的图象( ).13.A.B.C.D.在中,,,,则( ).14.A.B.C.D.盒子里装有标着数字,,,的大小、材质完全相同的张卡片,从盒子里随机抽取张卡片,抽到的卡片上数字之积为奇数的概率是( ).15.A.B.C.D.若向量,满足,且,,则( ).16.A.B.C.D.函数的零点所在的区间是( ).17.A.B.C.D.函数在区间上的最大值为,那么等于( ).18.甲乙A.B.C.D.某品牌服装店周一至周五这天甲、乙两款服装的销售量(单位:件)用茎叶图表示如图所示.如果用,分别表示两款服装销售量的平均数,,分别表示两款服装销售量的标准差,那么( ).,,,,甲乙甲乙甲乙甲乙甲乙甲乙甲乙甲乙甲乙甲乙19.A.B.C.D.某社区共有户住户,五月份用水量的频率分布直方图如图所示,则五月份用水量不超过的住户数为( ).立方米用水量频率组距20.A.B.C.D.任取,满足的概率为( ).21.A. B.C.D.过点且与直线平行的直线方程为( ).22.A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形在中,已知,那么这个三角形是( ).23.A.B.C.D.已知幂函数的定义域为,则的值可能为( ).24.A.①B.②C.③D.④设是直线,,是两个不同的平面,在下列四个命题中:①如果,,那么;②如果,,那么;③如果,,那么;④如果,,那么.其中正确的命题是( ).25.A.B.C.D.假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下关系:使用年限维修费用如果对的线性回归方程,那么( ).该种设备使用年限为年时,维修费用为万元该种设备使用年限为年时,维修费用为万元该种设备使用年限每增加一年,维修费用平均增加万元该种设备使用年限每增加一年,维修费用平均增加万元26.A.外离B.外切C.内含D.内切已知,,那么这两个圆的位置关系不可能是().27.A. B.C.D.已知函数若存在,,使得成立,则实数的取值范围是( ).二、解答题(本大题共4题,共19分)28.(1)(2)已知函数的一条对称轴方程为..求的单调递减区间.29.(1)(2)如图,在三棱锥中,,.求证:.若点、分别是棱、上的点,且,求证:.30.(1)(2)(3)已知⊙,直线经过点.若直线与⊙相离,则实数的取值范围是 .若直线与⊙相切,则切点的坐标为 .设直线与⊙相交于、两点,为坐标原点,求证:.31.(1)(2)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,若某地上班族中的成员仅以自驾、公交、自行车三种方式通勤.研究数据表明:当中有的成员自驾时,自驾群体的人均通勤时间(单位:分钟)为,而公交、自行车群体的人均通勤时间不受的影响,恒为分钟.当时,自驾群体比公交、自行车群体的人均通勤少.求该地上班族的人均通勤时间的表达式;分析的单调性及其实际意义.三、不定项选择题(本大题共3小题,每小题5分,共15分)32.A.B.C. D.将一组数据在平面直角坐标系中画成散点图,则图中直线最有可能是这组数据的回归直线的是().33.A.B.C.D.已知实数,满足,则当时,的可能取值是( ).34.A.B.C.D.如图,一张矩形纸张长,宽,,,,分别是其四边的中点,现将其沿途图中虚线折起,使得,,,四点重合为一点,得到一个多面体,下列关于该多面体的说法中,正确的有( ).面数小于体积小于外接球的半径为四、填空题(本大题共3小题,每小题5分,共15分)35.(1)(2)各个面为全等的正多边形的多面体称为正多面体,以正多面体的每个面的中心为顶点的多面体称为的“伴生多面体”.若正多面体的“伴生多面体”为正四面体,则的棱数为 .棱长为的正方体的“伴生多面体”的体积是 .36.(1)(2)已知直线,,可以围成一个三角形,则:实数的取值范围是 .所围成的三角形面积的最小值为 .37.(1)(2)在一副没有大小王的扑克牌中,把看成,看成,看成,看成.对于其中五张扑克牌:如果它们的花色都相同,则称这种组合为“同花”;如果它们是连续的,如,,,,,则称这种组合为“顺子”小波先从这副扑克牌中抽取了三张牌,牌面如下:他再从剩下的牌中抽取两张(不考虑抽取顺序),构成一个五张牌的组合.该组合为“同花”的情形共有种 .该组合为“顺子”的概率是 .五、解答题(本大题共2小题,每小题10分,共20分)38.12(1)(2)已知正方体的棱长为,点是棱的中点,点为棱的中点.记过点且与垂直的平面为,过点且与垂直的平面为.设平面与正方体的表面相交形成的图形为.请在图中直接画出图形.图形的周长为 .设,证明:.39.(1)(2)在平面直角坐标系中,圆的圆心在直线上,圆与轴相切,且与轴的正半轴交于、两点,在的上方,且.求圆的标准方程.设点是以原点为圆心、为半径的圆上一动点,且点不在轴上,直线与圆相交于另一点,判断是否存在,使得直线与直线关于轴对称?若存在,求出的值;若不存在,说明理由.。

北京海淀区2018-2019学年高三第一学期期末数学(文)试题及答案

北京海淀区2018-2019学年高三第一学期期末数学(文)试题及答案

海淀区高三年级第一学期期末练习数 学(文科) 2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线x y -=22122的左焦点的坐标为(A )(,)-20 (B )()0 (C ) (,)-10 (D )(,)-40 (2)已知等比数列{}n a 满足12a =,且12,,6a a 成等差数列,则4a =(A )6 (B )8 (C )16 (D )32 (3)若lg lg a -=221,则a =(A )4 (B )10 (C )20 (D )40 (4)已知向量(,),(,)t ==201a b ,且||⋅=a b a ,则-=a b(A )(1,1) (B )(1,1)- (C )(1,1)- (D )(1,1)-- (5)直线y kx =+1被圆x y +=222截得的弦长为2,则k 的值为(A )0 (B )12± (C )1± (D )(6)已知函数()af x x,则“a <0”是“函数()f x 在区间(,)+∞0上存在零点”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)已知函数()sin cos ,()f x x x g x =-为()f x 的导函数,则下列结论中正确的是 (A )函数()f x 的值域与()g x 的值域不同(B )存在0x ,使得函数()f x 和g()x 都在0x 处取得最值 (C )把函数()f x 的图象向左平移π2个单位,就可以得到函数()g x 的图象 (D )函数()f x 和g()x 在区间π(0,)2上都是增函数(8)已知集合{1,2,3,4,5,6}I =,{(,)|,}A s t s I t I =∈∈. 若B A ⊆,且对任意的(,),(,)a b B x y B ∈∈,均有()()0a x b y --<,则集合B 中元素个数的最大值为(A )5 (B )6 (C )11 (D )13n 0,0k S == S S n =+1k k =+S M ≥ 第二部分(非选择题 共110分) 二、填空题共6小题,每小题5分,共30分。

2018-2019北京市海淀区高三第一学期期末数学(理科)试卷

2018-2019北京市海淀区高三第一学期期末数学(理科)试卷

海淀区高三年级第一学期期末练习数 学(理科) 2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线x y -=22122的左焦点的坐标为(A )(,)-20 (B )()0 (C ) (,)-10 (D )(,)-40 (2)已知向量(,),(,)t ==201a b ,且||⋅=a b a ,则,a b 的夹角大小为 (A )π6 (B )π4 (C )π3 (D )5π12(3)已知等差数列{}n a 满足12a =,公差d ≠0,且125,,a a a 成等比数列,则d = (A )1 (B )2 (C )3 (D )4(4)直线y kx =+1被圆x y +=222截得的弦长为2,则k 的值为(A )0 (B )12±(C )1± (D )2(5)以正六边形的6个顶点中的3个作为顶点的三角形中,等腰三角形的个数为 (A )6 (B )7 (C )8 (D )12 (6)已知函数()ln af x x x=+ ,则“a <0”是“函数()f x 在区间(,)+∞1 上存在零点”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)已知函数()sin cos ,()f x x x g x =-是()f x 的导函数,则下列结论中错误的是 (A )函数()f x 的值域与()g x 的值域相同(B )若0x 是函数()f x 的极值点,则0x 是函数g()x 的零点(C )把函数()f x 的图象向右平移π2个单位,就可以得到函数()g x 的图象 (D )函数()f x 和g()x 在区间ππ(,)44-上都是增函数(8)已知集合{(,)|150,150,,}A s t s t s t =≤≤≤≤∈∈N N . 若B A ⊆,且对任意的(,),(,)a b B x y B ∈∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为(A )25 (B )49 (C )75 (D )99第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019北京海淀高一(上)期末数学

2019北京海淀高一(上)期末数学

2019北京海淀高一(上)期末数学2019.01学校班级姓名成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,2}A,{|02}B x x ,则A B( )(A ){1}(B ){1,2}(C ){0,1,2}(D ){02}x x (2)已知向量(,6)m a,(1,3)b,且a b ,则m( )(A )18(B )2(C )18(D )2(3)下列函数中,既是奇函数又在(0,)上是增函数的是()(A )()2xf x (B )3()f x x(C )()lg f x x(D )()sin f x x(4)命题2:2,10p xx,则p 是()(A )22,10x x (B )22,10x x (C )22,1xx(D )22,1xx(5)已知3tan4,sin 0,则cos()(A )35(B )35(C )45(D )45(6)若角的终边经过点0(1,)y ,则下列三角函数值恒为正的是()(A )sin(B )cos(C )tan(D )sin(π)(7)为了得到函数πsin()3y x的图象,只需把函数sin y x 的图象上的所有点()(A )向左平移2π3个单位长度(B )向左平移π3个单位长度(C )向右平移π3个单位长度(D )向右平移5π3个单位长度(8)如图,在平面直角坐标系xOy 中,角以Ox 为始边,终边与单位圆O 相交于点P .过点P 的圆O 的切线交x 轴于点T ,点T 的横坐标关于角的函数记为()f . 则下列关于函数()f 的说法正确的是()(A )()f 的定义域是π{|2π,}2k kZ (B )()f 的图象的对称中心是π(π,0),2k kZ(C )()f 的单调递增区间是[2π,2ππ],k k k Z(D )()f 对定义域内的均满足(π)()f f 二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)已知()ln f x x =,则2(e )f = .(10)已知(1,2)a,(3,4)b,则a b ______;2ab______.(11)已知集合{1,2,3,4,5}A ,{3,5}B ,集合S 满足S A 1ì,SB A .则一个满足条件的集合S是 . (12)已知()f x 是定义域为R 的偶函数,当0x 3时,()f x x x =+,则不等式()20f x ->的解集是 .(13)如图,扇形AOB 中,半径为1,AB 的长为2,则AB 所对的圆心角的大小为弧度;若点P 是AB 上的一个动点,则当OA OPOB OP 取得最大值时,,OA OP.(14)已知函数122,,()2,.x x a f x xa x a (Ⅰ)若函数()f x 没有零点,则实数a 的取值范围是________;(Ⅱ)称实数a 为函数()f x 的包容数,如果函数()f x 满足对任意1(,)x a ,都存在2(,)x a ,使得21()()f x f x .在①12;②12;③1;④2;⑤32中,函数()f x 的包容数是_____ ___.(填出所有正确答案的序号)TPyxO PBAO三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题共11分)已知函数π()2sin(2)3f x x. (Ⅰ)求()f x 的最小正周期T ;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)在给定的坐标系中作出函数ππ()([,])66f x x T 的简图,并直接写出函数()f x 在区间π2[,π]63上的取值范围.(16)(本小题共10分)已知函数2()f x xbxc ,存在不等于1的实数0x 使得00(2)()f x f x .(Ⅰ)求b 的值;(Ⅱ)判断函数()f x 在(1,)上的单调性,并用单调性定义证明;(Ⅲ)直接写出(3)cf 与(2)cf 的大小关系.(17)(本小题共11分)如图,在四边形OBCD 中,2CD BO ,2OA AD ,90D ,且1BOAD .-π611yxO。

北京市海淀区2018-2019学年高一上学期期末考试数学试题(解析版)

北京市海淀区2018-2019学年高一上学期期末考试数学试题(解析版)

海淀区2018-2019高一年级期末统一考试数学一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则 ( )A. B. C. D.【答案】A【解析】【分析】直接进行交集的运算即可.【详解】,;.故选:A.【点睛】本题考查描述法、列举法的定义,以及交集的运算.2.已知向量,,且,则 ( )A. B. C. D.【答案】D【解析】【分析】根据可得出,解出m即可.【详解】;;.故选:D.【点睛】本题考查向量坐标的概念,以及平行向量的坐标关系.3.下列函数中,既是奇函数又在上是增函数的是()A. B. C. D.【答案】B【解析】【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【详解】根据题意,依次分析选项:对于A,,是指数函数,不是奇函数,不符合题意;对于B,,为幂函数,既是奇函数又在上是增函数,符合题意;对于C,,是对数函数,不是奇函数,不符合题意;对于D,,是正弦函数,在上不是增函数;故选:B.【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性.4.命题,则是()A. B.C. D.【答案】C【解析】【分析】由全称命题的否定是特称命题,得解.【详解】命题p:,,则是:,,故选:C.【点睛】本题考查特称命题与全称命题的否定,属简单题.5.已知,,则()A. B. C. D.【答案】D【解析】【分析】由已知结合平方关系即可求得的值.【详解】由,得,即,代入,得,,,为第三象限角,则.故选:D.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.6.若角的终边经过点,则下列三角函数值恒为正的是()A. B. C. D.【答案】B【解析】【分析】由题意利用任意角的三角函数的定义,得出结论.【详解】角的终边经过点,,,,故,而,正负号不确定,,正负号不确定,故选:B.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.7.为了得到函数的图象,只需把函数的图象上的所有点()A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度【答案】A【解析】【分析】由题意利用诱导公式、函数的图象变换规律,得出结论.【详解】把函数的图象上的所有点向左平移个单位长度,可得的图象,故选:A.【点睛】本题主要考查诱导公式、函数的图象变换规律,属于基础题.8.如图,在平面直角坐标系中,角以为始边,终边与单位圆相交于点.过点的圆的切线交轴于点,点的横坐标关于角的函数记为. 则下列关于函数的说法正确的()A. 的定义域是B. 的图象的对称中心是C. 的单调递增区间是D. 对定义域内的均满足【答案】B【解析】【分析】由三角函数的定义可知:P(cosα,sinα),则以点P为切点的圆的切线方程为:x cosα+y sinα=1,得:函数f(α)=,结合三角函数的性质得解.【详解】由三角函数的定义可知:P(cosα,sinα),则以点P为切点的圆的切线方程为:x cosα+y sinα=1,由已知有cosα≠0,令y=0,得:x=,即函数f(α)=,由cosα≠0,得:α≠2kπ±,即函数f(α)的定义域为:±,k∈z},故A错误,由复合函数的单调性可知:函数f(α)的增区间为:[2kπ,2k),(2k2kπ+π],k∈Z,故C错误,f(α),故D错误,函数f(α)的对称中心为(k,0),k∈Z,故B正确.故选:B.【点睛】本题考查了三角函数的定义、圆的切线方程、及三角函数的性质,属中档题.二、填空题,把答案填在题中横线上.9.已知,则_____【答案】2【解析】【分析】由,得,由此能求出结果.【详解】,.故答案为:2.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.10.已知,,则___;____.【答案】(1). 11(2).【解析】【分析】由数量积的坐标运算可求;由可求结果.【详解】,,,.故答案为:11;.【点睛】本题考查向量的数量积的应用,坐标运算,考查计算能力.11.已知集合,,集合满足,.则一个满足条件的集合是____【答案】(或或)【解析】【分析】利用子集、并集的定义直接求解.【详解】集合2,3,4,,,集合S满足S A,.一个满足条件的集合S是2,3,或2,4,或2,.故答案为:2,3,或2,4,或2,.【点睛】本题考查集合的求法,考查补集、并集定义等基础知识,考查运算求解能力,是基础题.12.已知是定义域为的偶函数,当时,,则不等式的解集是_____【答案】或【解析】【分析】容易判断偶函数在上单调递增,且,从而根据可得出,从而得出,解该绝对值不等式即可得出原不等式的解集.【详解】,为增函数,是R上的偶函数;;由得;;解得,或;原不等式的解集为或.故答案为:或.【点睛】本题考查偶函数的定义,清楚和的单调性,以及增函数的定义,绝对值不等式的解法是解本题的关键.13.如图,扇形中,半径为1,的长为2,则所对的圆心角的大小为_____ 弧度;若点是上的一个动点,则当取得最大值时,_____.【答案】(1). 2(2). 0【解析】【分析】由弧长公式得:,可求圆心角的大小,由三角函数定义可建立以点O为坐标原点,OA所在直线为x轴的直角坐标系,易得:,,,结合两角和差的正弦公式则,进而即可得解.【详解】由弧长公式得:,即所对的圆心角的大小为2弧度,由三角函数定义可建立以点O为坐标原点,OA所在直线为x轴的直角坐标系,易得:,,设,则,则,又,所以,当即时,取得最大值,故答案为:2,0.【点睛】本题考查了弧长公式及三角函数的定义及二倍角公式,两角和差的正弦公式,属中档题.14.已知函数(Ⅰ)若函数没有零点,则实数的取值范围是________;(Ⅱ)称实数为函数的包容数,如果函数满足对任意,都存在,使得.在①;②;③;④;⑤中,函数的包容数是________.(填出所有正确答案的序号)【答案】(1). Ⅰ或(2). Ⅱ②③【解析】【分析】Ⅰ考虑指数函数的值域和二次函数的单调性,即可得到所求范围;Ⅱ由题意可得的值域为的值域的子集,分别讨论五种情况,由指数函数的单调性和二次函数的单调性,求得值域,即可判断.【详解】Ⅰ函数,由时,,无零点;若时,,当时,,无零点;当时,由,即,由时,递增,可得,由,可得,无零点;综上可得或;Ⅱ由题意可得的值域为的值域的子集,当时,由时,;由时,,,,不满足题意;当时,由时,;由时,,,满足题意;当时,由时,;由时,,,满足题意;当时,由时,;由时,,,不满足题意;当时,由时,;由时,,,不满足题意.综上可得函数的包容数是②③.故答案为:或;②③.【点睛】本题考查函数的零点问题和函数的任意性、存在性问题解法,注意运用转化思想和函数的单调性,考查化简运算能力,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.15.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求的单调递增区间;(Ⅲ)在给定的坐标系中作出函数的简图,并直接写出函数在区间上的取值范围.【答案】(Ⅰ)(Ⅱ)函数的单调递增区间是:,(Ⅲ)见解析【解析】【分析】Ⅰ利用正弦函数的周期公式即可计算得解;Ⅱ利用正弦函数的单调性即可求解;Ⅲ利用五点作图法即可画出函数在一个周期内的图象,根据正弦函数的性质即可求解.【详解】(Ⅰ).(Ⅱ)由,得,.所以函数的单调递增区间是:,.(Ⅲ)函数的简图如图所示.函数在区间上的取值范围是.【点睛】本题主要考查了正弦函数的图象和性质,考查了五点法作函数的图象,考查了数形结合思想的应用,属于中档题.16.已知函数,存在不等于1的实数使得.(Ⅰ)求的值;(Ⅱ)判断函数在上的单调性,并用单调性定义证明;(Ⅲ)直接写出与的大小关系.【答案】(Ⅰ)(Ⅱ)见证明;(Ⅲ)【解析】【分析】Ⅰ根据题意,分析可得,变形可得,分析可得b的值;Ⅱ根据题意,任取,由作差法分析可得答案;Ⅲ根据题意,对c的值分2种情况讨论,结合函数的单调性分析可得答案.【详解】(Ⅰ)因为实数使得,所以,即.因为,所以,即.经检验,满足题意,所以.(Ⅱ)函数在上单调递增,证明如下:任取,,当时,.所以.所以,即.所以函数在上单调递增.(Ⅲ)当时,;当时,.【点睛】本题考查函数单调的判定以及应用,涉及函数解析式的计算,关键是求出b的值.17.如图,在四边形中,,,,且.(Ⅰ)用表示;(Ⅱ)点在线段上,且,求的值.【答案】(Ⅰ)(Ⅱ)【解析】【分析】Ⅰ直接利用向量的线性运算即可.Ⅱ以O为坐标原点,OA所在的直线为x轴,建立如图所示的平面直角坐标系可得代入各值即可.【详解】(Ⅰ)因为,所以.因为,所以(Ⅱ)因为,所以.因为,所以点共线.因为,所以.以为坐标原点,所在的直线为轴,建立如图所示的平面直角坐标系.因为,,,所以.所以,.因为点在线段上,且,所以所以.因为,所以.【点睛】本题考查了向量的线性运算,向量夹角的计算,属于中档题.18.设函数定义域为,对于区间,如果存在,,使得,则称区间为函数的ℱ区间.(Ⅰ)判断是否是函数的ℱ区间;(Ⅱ)若是函数(其中)的ℱ区间,求的取值范围;(Ⅲ)设为正实数,若是函数的ℱ区间,求的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)【解析】【分析】Ⅰ根据新定义,即可求出判断,Ⅱ根据新定义和对数函数的性质,即可求出a的取值范围,Ⅲ根据新定义和余弦函数的性质可得存在k,,使得,再分类讨论即可求出的取值范围【详解】(Ⅰ)不是函数的ℱ区间,理由如下:因为对,,所以.所以均有,即不存在,,使得.所以不是函数的ℱ区间(Ⅱ)由是函数(其中)的ℱ区间,可知存在,,使得.所以.因为所以,即.又因为且,所以.(Ⅲ)因为是函数的ℱ区间,所以存在,,使得.所以所以存在,使得不妨设. 又因为,所以.所以.即在区间内存在两个不同的偶数.①当时,区间的长度,所以区间内必存在两个相邻的偶数,故符合题意.②当时,有,所以.(i)当时,有即.所以也符合题意.(ii)当时,有即.所以符合题意.(iii)当时,有即此式无解.综上所述,的取值范围是.【点睛】本题考查了抽象函数问题,以及指数函数、对数函数,余弦函数的性质,考查了运算求解能力,转化与化归思想,属于难题19.声音靠空气震动传播,靠耳膜震动被人感知.声音可以通过类似于图①和图②的波形曲线来描述,图①和图②是一位未成年女性和一位老年男性在说“我爱中国”四个字时的声波图,其中纵坐标表示音量(单位:50分贝),横坐标代表时间(单位:秒).声音的音调由其频率所决定,未成年女性的发声频率大约为老年男性发声频率的2倍.下面的图③和图④依次为上面图①和图②中相同读音处的截取的局部波形曲线,为了简便起见,在截取时局部音量和相位做了调整,使得二者音量相当,且横坐标从0开始.已知点位于图④中波形曲线上.③④(Ⅰ)描述未成年女性声音的声波图是_____;(填写①或②)(Ⅱ)请你选择适当的函数模型来模仿图④中的波形曲线:___________________________(函数模型中的参数取值保留小数点后2位).【答案】(1). Ⅰ②(2). Ⅱ,【解析】【分析】Ⅰ由题意可设未成年女性的发声周期大约为老年男性发声周期的一半,结合图③和图④,即可得到结论;Ⅱ由图④可设,,代入,结合图形,计算可得所求解析式.【详解】Ⅰ未成年女性的发声频率大约为老年男性发声频率的2倍,即有未成年女性的发声周期大约为老年男性发声周期的一半,由图③和图④,可得图③的周期为图④周期的2倍,描述未成年女性声音的声波图为②;Ⅱ由图④可设,,由,可得,由图④可得,可得,,故答案为:②,,.【点睛】本题考查三角函数在实际问题中的应用,考查数形结合思想和待定系数法,考查运算能力,属于基础题.。

高中数学-高一上学期期末调研测试数学试题 Word版含解析72

高中数学-高一上学期期末调研测试数学试题 Word版含解析72

2018-2019学年高一上学期期末调研测试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.有一个容量为66的样本,数据的分组及各组的频数如下:,,,,根据样本的频数分布估计,大于或等于的数据约占A. B. C. D.【答案】C【解析】【分析】找到大于或等于的频数,除以总数即可.【详解】由题意知,大于或等于的数据共有:则约占:本题正确选项:【点睛】考查统计中频数与总数的关系,属于基础题.3.秦九韶算法是中国古代求多项式的值的优秀算法,若,当时,用秦九韶算法求A. 1B. 3C. 4D. 5【答案】C【解析】【分析】通过将多项式化成秦九韶算法的形式,代入可得.【详解】由题意得:则:本题正确选项:【点睛】本题考查秦九韶算法的基本形式,属于基础题.4.下列四组函数中,不表示同一函数的是A. 与B. 与C. 与D. 与【答案】D【解析】【分析】根据相同函数对定义域和解析式的要求,依次判断各个选项.【详解】相同函数要求:函数定义域相同,解析式相同三个选项均满足要求,因此是同一函数选项:定义域为;定义域为,因此不是同一函数本题正确选项:【点睛】本题考查相同函数的概念,关键在于明确相同函数要求定义域和解析式相同,从而可以判断结果.5.执行如图所示程序框图,当输入的x为2019时,输出的A. 28B. 10C. 4D. 2【答案】C【解析】【分析】的变化遵循以为公差递减的等差数列的变化规律,到时结束,得到,然后代入解析式,输出结果.【详解】时,每次赋值均为可看作是以为首项,为公差的等差数列当时输出,所以,即即:,本题正确选项:【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.6.函数的单调递增区间为A. B. C. D.【答案】C【解析】【分析】结合对数真数大于零,求出定义域;再求出在定义域内的单调递减区间,得到最终结果.【详解】或在定义域内单调递减根据复合函数单调性可知,只需单调递减即可结合定义域可得单调递增区间为:本题正确选项:【点睛】本题考查求解复合函数的单调区间,复合函数单调性遵循“同增异减”原则,易错点在于忽略了函数自身的定义域要求.7.在一不透明袋子中装着标号为1,2,3,4,5,6的六个质地、大小、颜色无差别小球,现从袋子中有放回地随机摸出两个小球,并记录标号,则两标号之和为9的概率是A. B. C. D.【答案】A【解析】【分析】确定所有可能的基本事件总数,再列出标号和为的所有基本事件,根据古典概型可求得概率. 【详解】有放回的摸出两个小球共有:种情况用表示两次取出的数字编号标号之和为有:,,,四种情况所以,概率本题正确选项:【点睛】本题考查古典概型的相关知识,对于基本事件个数较少的情况,往往采用列举法来求解,属于基础题.8.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是A. 336B. 510C. 1326D. 3603 【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.9.设,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】将化成对数的形式,然后根据真数相同,底数不同的对数的大小关系,得到结果.【详解】由题意得:又本题正确选项:【点睛】本题考查对数大小比较问题,关键在于将对数化为同底或者同真数的对数,然后利用对数函数图像来比较.10.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】试题分析:根据题意,A.错误,令定义域为,由:,所以是非奇非偶函数;B错误,令定义域为,由:即:,所以是偶函数;C.错误.令定义域为,由:,所以为非奇非偶函数;D.正确.令定义域为,由,即,所以为偶函数,正确.综上,答案为D.考点:1.函数的奇偶性;2.奇偶函数的定义域.11.已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于当时,取得两个最值本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.12.设,表示不超过实数的最大整数,则函数的值域是A. B. C. D.【答案】B【解析】【分析】根据不同的范围,求解出的值域,从而得到的值域,同理可得的值域,再根据取整运算得到可能的取值.【详解】由题意得:,①当时,则,此时,,,则②当时,,,,.③当时,则,此时,,,则综上所述:的值域为本题正确选项:【点睛】本题考查新定义运算的问题,解题关键在于能够明确新定义运算的本质,易错点在于忽略与的彼此取值影响,单纯的考虑与整体的值域,造成求解错误.二、填空题(本大题共4小题,共20.0分)13.函数的定义域是_______________【答案】【解析】由题要使函数有意义须满足14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于,则去看电影;若豆子到正方形中心的距离大于,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______豆子大小可忽略不计【答案】【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知,小明不在家写作业的概率为:本题正确结果:【点睛】本题考查几何概型中的面积型,属于基础题.15.若函数为偶函数,则______.【答案】1【解析】【分析】为定义域上的偶函数,所以利用特殊值求出的值.【详解】是定义在上的偶函数即解得:本题正确结果:【点睛】本题考查利用函数奇偶性求解参数值,对于定义域明确的函数,常常采用赋值法来进行求解,相较于定义法,计算量要更小.16.已知函数,若存在实数a,b,c,满足,其中,则abc的取值范围是______.【答案】【解析】【分析】根据解析式,画出的图像,可知函数与每段的交点位置,由此可得,再求出的范围后,可确定整体的取值范围.【详解】由解析式可知图像如下图所示:由图像可知:又且时,可知即又本题正确结果:【点睛】本题考查函数图像及方程根的问题,关键在于能够通过函数图像得到的关系.三、解答题(本大题共6小题,共70.0分)17.设集合,不等式的解集为B.当时,求集合A,B;当时,求实数a的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2.【解析】【分析】(1)直接代入集合即可得,解不等式得;(2)分别讨论和两种情况,得到关于的不等式组,求得取值范围.【详解】(1)当时,(2)若,则有:①当,即,即时,符合题意,②当,即,即时,有解得:综合①②得:【点睛】本题考查了解二次不等式、集合间的包含关系及空集的定义,属基础题.易错点在于忽略了的情况.18.在平面直角坐标系中,记满足,的点形成区域A,若点的横、纵坐标均在集合2,3,4,中随机选择,求点落在区域A内的概率;若点在区域A中均匀出现,求方程有两个不同实数根的概率;【答案】(1);(2).【解析】【分析】(1)利用列举法确定基本事件,即可求点落在区域内的概率;(2)以面积为测度,求方程有两个实数根的概率.【详解】根据题意,点的横、纵坐标在集合中随机选择,共有个基本事件,并且是等可能的其中落在,的区域内有,,,,,,,,共个基本事件所以点落在区域内的概率为(2),表示如图的正方形区域,易得面积为若方程有两个不同实数根,即,解得为如图所示直线下方的阴影部分,其面积为则方程有两个不同实数根的概率【点睛】本题考查概率的计算,要明确基本事件可数时为古典概型,基本事件个数不可数时为几何概型,属于中档题.19.计算:;若a,b分别是方程的两个实根,求的值.【答案】(1);(2)12.【解析】【分析】(1)利用指数与对数运算性质即可得出;(2)根据题意,是方程的两个实根,由韦达定理得,,利用对数换底公式及其运算性质即可得出.【详解】(1)原式(2)根据题意,是方程的两个实根由韦达定理得,原式【点睛】本题考查了指数与对数运算性质、对数换底公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.20.下面给出了2010年亚洲某些国家的国民平均寿命单位:岁.国家平均寿命国家平均寿命国家平均寿命阿曼阿富汗59 巴基斯坦巴林阿联酋马来西亚朝鲜东帝汶孟加拉国韩国柬埔寨塞浦路斯老挝卡塔尔沙特阿拉伯蒙古科威特哈萨克斯坦缅甸菲律宾印度尼西亚日本黎巴嫩土库曼斯坦65吉尔吉斯斯泰国尼泊尔68坦乌兹别克斯约旦土耳其坦越南75 伊拉克也门中国以色列文莱伊朗74 新加坡叙利亚印度根据这40个国家的样本数据,得到如图所示的频率分布直方图,其中样本数据的分组区间为:,,,,,请根据上述所提供的数据,求出频率分布直方图中的a,b;请根据统计思想,利用中的频率分布直方图估计亚洲人民的平均寿命及国民寿命的中位数保留一位小数.【答案】(1),;(2)平均寿命71.8,中位数71.4.【解析】【分析】(1)根据表中数据,亚洲这个国家中,国民平均寿命在的频数是,频率是,由此能求出,同理可求;(2)由频率分布直方图能估计亚洲人民的平均寿命及国民寿命的中位数.【详解】(1)根据表中数据,亚洲这个国家中国民平均寿命在的频数是,频率是国民平均寿命在的频数是,频率是,计算得,由频率分布直方图可知,各个小矩形的面积各个区间内的频率转换为分数分别是:,,,,,以上所有样本国家的国民平均寿命约为:前三组频率和为中位数为根据统计思想,估计亚洲人民的平均寿命大约为岁,寿命的中位数约为岁【点睛】本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21.某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:年份年 1 2 3 4 5维护费万元Ⅰ求y关于t的线性回归方程;Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.参考公式:,【答案】(Ⅰ);(2)甲更有道理.【解析】【分析】(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.【详解】(Ⅰ),,,,,所以回归方程为(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:(万元)若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:(万元)所以甲更有道理【点睛】本题考查了求回归方程问题,考查函数求值,是一道常规题.22.已知,.求在上的最小值;若关于x的方程有正实数根,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)通过讨论的范围,结合二次函数的性质求出函数的单调区间,求出函数的最小值即可;(2)得到,令,问题转化为在有实根,求出的范围即可.【详解】(1)当时,在上单调递减故最小值当时,是关于的二次函数,对称轴为当时,,此时在上单调递减故最小值当时,对称轴当,即时,在单调递减,在单调递增故最小值当时,即时,在上单调递减故最小值综上所述:(2)由题意化简得令,则方程变形为,根据题意,原方程有正实数根即关于的一元二次方程有大于的实数根而方程在有实根令,在上的值域为故【点睛】本题考查了二次函数的性质,考查函数的单调性,最值问题,考查分类讨论思想,转化思想.关键是通过换元的方式将问题转化为二次函数在区间内有实根的问题,可以用二次函数成像处理,也可以利用分离变量的方式得到结果.。

海淀区高一年级第一学期期末练习参考答案20180117

海淀区高一年级第一学期期末练习参考答案20180117

海淀区高一年级第一学期期末练习参考答案2018.1数学阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数.2.其它正确解法可以参照评分标准按相应步骤给分.一、选择题:本大题共8小题,每小题4分,共32分.二、填空题:本大题共6小题,每小题4分,共24分.9.答案不唯一,纵坐标为横坐标2倍即可,例如()24,等.10.3511.312.1t ≥13.202114.①②③ 注:第14题选对一个给1分,选对两个给2分,选对三个给4分.三、解答题: 本大题共4小题,共44分.15. 解:(Ⅰ)∵向量=(sin ,1)x a ,=(1,)k b ,()f x =⋅a b , ∴()f x =⋅a b =sin +x k .--------------------------2分关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解.--------------------------3分∵[]sin 11x ∈-,,∴当[]111k ,-∈-时,方程有解.--------------------------4分 则实数k 的取值范围为[]02,.--------------------------5分 (Ⅱ)因为1()3f k α=+,所以1sin ++3k =k α,即1sin 3=α.--------------------------6分当π(0]2,α∈时,cos 3α==,sin tan cos 4=ααα=.---------------------8分当π(,π)2α∈时,cos 3α==-,tan 4=α-.-------------------------10分16.解:(Ⅰ)4b =-;--------------------------2分0c =.--------------------------4分(Ⅱ)(ⅰ)[]22,-. --------------------------6分 (ⅱ)由(Ⅰ)知2()4f x x x =-,则当0x ≥时,2()4g x x x =-;当0x <时,0x ->,则22()()4()4g x x x x x -=---=+因为()g x 是奇函数,所以2()()4g x g x x x =--=--. -------------------------8分 若()g a a >,则20,4;a a a a >⎧⎨->⎩或20,4.a a a a ≤⎧⎨-->⎩--------------------------10分 解得5a >或50a -<<.--------------------------12分 综上,a 的取值范围为5a >或50a -<<.17. 解:分解析式为:π()2sin(2)6f x x =+--------------------------6分 (Ⅱ)函数()f x 的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈.---------------------------8分 (Ⅲ)因为π02x -≤≤,所以5πππ2666x -≤+≤. 得:π11sin(2)62x -≤+≤.所以,当ππ262x +=-即π3x =-时,()f x 在区间[,0]2π-上的最小值为2-.-----------10分当ππ266x +=即0x =时,()f x 在区间[,0]2π-上的最大值为1.--------------------12分18.解:(Ⅰ)③;--------------------------2分(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T +=+恒成立.∵()()G x g x x =-,∴(+)()()G x T g x T x T =+-+()()g x T x T =+-+()g x x =-()G x =. ∴()()G x g x x =-为周期函数.--------------------------6分(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,sin()()sin x T k x T x kx T +++=++. ∴sin()sin x T kT x T ++=+.令0x =,得sin T kT T +=;---------------------① 令πx =,得sin T kT T -+=;---------------② ①②两式相加,得22kT T =. ∵0T ≠,∴1k =.--------------------------8分 检验:当1k =时,()sin x x x ϕ=+.存在非零常数2π,对任意x ∈R ,(2π)sin(2π)2πsin 2π()2πx x x x x x ϕϕ+=+++=++=+,∴()sin x x x ϕ=+为线周期函数.综上,1k =. --------------------------10分。

2018-2019学年北京市高一上期末数学试卷(含答案解析)

2018-2019学年北京市高一上期末数学试卷(含答案解析)

2018-2019学年高一(上)期末数学试卷一、选择题(共8小题,每小题4分,共32分.在每小题列出的四个选项中,只有一项是符合题目要求的)1.(4分)已知集合A={1,3,5},B={x|(x﹣1)(x﹣3)=0},则A∩B=()A.ΦB.{1}C.{3}D.{1,3}2.(4分)=()A.B.C.D.3.(4分)若幂函数y=f(x)的图象经过点(﹣2,4),则在定义域内()A.为增函数B.为减函数C.有最小值D.有最大值4.(4分)下列函数为奇函数的是()A.y=2x B.y=sinx,x∈[0,2π]C.y=x3 D.y=lg|x|5.(4分)如图,在平面内放置两个相同的三角板,其中∠A=30°,且B,C,D 三点共线,则下列结论不成立的是()A.B.C.与共线 D.=6.(4分)函数f(x)的图象如图所示,为了得到y=2sinx函数的图象,可以把函数f(x)的图象()A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)7.(4分)已知,若实数a,b,c满足0<a<b<c,且f(a)f(b)f(c)<0,实数x0满足f(x0)=0,那么下列不等式中,一定成立的是()A.x0<a B.x0>a C.x0<c D.x0>c8.(4分)如图,以AB为直径在正方形内部作半圆O,P为半圆上与A,B不重合的一动点,下面关于的说法正确的是()A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值二、填空题(本大题共6小题,每小题4分,共24分,把答案填在题中横线上)9.(4分)已知向量=(1,2),写出一个与共线的非零向量的坐标.10.(4分)已知角θ的终边经过点(3,﹣4),则cosθ=.11.(4分)已知向量,在边长为 1 的正方形网格中的位置如图所示,则=.12.(4分)函数(t>0)是区间(0,+∞)上的增函数,则t的取值范围是.13.(4分)有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从年开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg2≈0.3010,lg3≈0.4771)14.(4分)函数f(x)=sinωx在区间上是增函数,则下列结论正确的是(将所有符合题意的序号填在横线上)①函数f(x)=sinωx在区间上是增函数;②满足条件的正整数ω的最大值为3;③.三、解答题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知向量=(sinx,1),=(1,k),f(x)=.(Ⅰ)若关于x的方程f(x)=1有解,求实数k的取值范围;(Ⅱ)若且α∈(0,π),求tanα.16.(12分)已知二次函数f(x)=x2+bx+c满足f(1)=f(3)=﹣3.(Ⅰ)求b,c的值;(Ⅱ)若函数g(x)是奇函数,当x≥0时,g(x)=f(x),(ⅰ)直接写出g(x)的单调递减区间:;(ⅱ)若g(a)>a,求a的取值范围.17.(12分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(Ⅰ)请将上表数据补充完整,函数f(x)的解析式为f(x)=(直接写出结果即可);(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)求函数f(x)在区间上的最大值和最小值.18.(10分)定义:若函数f(x)的定义域为R,且存在非零常数T,对任意x ∈R,f(x+T)=f(x)+T恒成立,则称f(x)为线周期函数,T为f(x)的线周期.(Ⅰ)下列函数,①y=2x,②y=log2x,③y=[x],(其中[x]表示不超过x的最大整数),是线周期函数的是(直接填写序号);(Ⅱ)若g(x)为线周期函数,其线周期为T,求证:函数G(x)=g(x)﹣x 为线周期函数;(Ⅲ)若φ(x)=sinx+kx为线周期函数,求k的值.高一(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,共32分.在每小题列出的四个选项中,只有一项是符合题目要求的)1.(4分)已知集合A={1,3,5},B={x|(x﹣1)(x﹣3)=0},则A∩B=()A.ΦB.{1}C.{3}D.{1,3}【解答】解:∵B={x|(x﹣1)(x﹣3)=0}={1,3},∴A∩B={1,3},故选:D2.(4分)=()A.B.C.D.【解答】解:=﹣sin=﹣.故选:A.3.(4分)若幂函数y=f(x)的图象经过点(﹣2,4),则在定义域内()A.为增函数B.为减函数C.有最小值D.有最大值【解答】解:设幂函数f(x)=xα,由f(﹣2)=4,得(﹣2)α=4=(﹣2)2,在α=2,即f(x)=x2,则在定义域内有最小值0,故选:C.4.(4分)下列函数为奇函数的是()A.y=2x B.y=sinx,x∈[0,2π]C.y=x3 D.y=lg|x|【解答】解:y=2x为指数函数,没有奇偶性;y=sinx,x∈[0,2π],定义域不关于原点对称,没有奇偶性;y=x3定义域为R,f(﹣x)=﹣f(x),为奇函数;y=lg|x|的定义域为{x|x≠0},且f(﹣x)=f(x),为偶函数.故选:C.5.(4分)如图,在平面内放置两个相同的三角板,其中∠A=30°,且B,C,D 三点共线,则下列结论不成立的是()A.B.C.与共线 D.=【解答】解:设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,∴,,故A、B、C成立;故选:D6.(4分)函数f(x)的图象如图所示,为了得到y=2sinx函数的图象,可以把函数f(x)的图象()A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)【解答】解:根据函数f(x)的图象,设f(x)=Asin(ωx+φ),可得A=2,=﹣,∴ω=2.再根据五点法作图可得2×+φ=0,∴φ=﹣,f(x)=2sin(2x﹣),故可以把函数f(x)的图象先向左平移个单位,得到y=2sin(2x+﹣)=2sin2x的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到y=2sinx函数的图象,故选:C.7.(4分)已知,若实数a,b,c满足0<a<b<c,且f(a)f(b)f(c)<0,实数x0满足f(x0)=0,那么下列不等式中,一定成立的是()A.x0<a B.x0>a C.x0<c D.x0>c【解答】解:∵f(x)=log2x﹣()x在(0,+∞)上是增函数,0<a<b<c,且f(a)f(b)f(c)<0,∴f(a)、f(b)、f(c)中一项为负,两项为正数;或者三项均为负数;即:f(a)<0,0<f(b)<f(c);或f(a)<f(b)<f(c)<0;由于实数x0是函数y=f(x)的一个零点,当f(a)<0,0<f(b)<f(c)时,a<x0<b,当f(a)<f(b)<f(c)<0时,x0>a,故选:B.8.(4分)如图,以AB为直径在正方形内部作半圆O,P为半圆上与A,B不重合的一动点,下面关于的说法正确的是()A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值【解答】解:设正方形的边长为2,如图建立平面直角坐标系,则D(﹣1,2),P(cosθ,sinθ),(其中0<θ<π)=2+=(﹣2cosθ,﹣2sinθ)+(﹣1﹣cosθ,2﹣sinθ)=(﹣1﹣3cosθ,﹣3sinθ)∴==∵cosθ∈(﹣1,1),∴∈(4,16)故选:D二、填空题(本大题共6小题,每小题4分,共24分,把答案填在题中横线上)9.(4分)已知向量=(1,2),写出一个与共线的非零向量的坐标(2,4).【解答】解:向量=(1,2),与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4).故答案为:(2,4).10.(4分)已知角θ的终边经过点(3,﹣4),则cosθ=.【解答】解:∵角θ的终边经过点(3,﹣4),∴x=3,y=﹣4,r=5,则cosθ==.故答案为:.11.(4分)已知向量,在边长为1 的正方形网格中的位置如图所示,则= 3.【解答】解:由题意可知:=(3,0),=(1,1),则=3×1+1×0=3.故答案为:3.12.(4分)函数(t>0)是区间(0,+∞)上的增函数,则t的取值范围是[1,+∞).【解答】解:函数(t>0)的图象如图:函数(t>0)是区间(0,+∞)上的增函数,所以t≥1.故答案为:[1,+∞).13.(4分)有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从2021年开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg2≈0.3010,lg3≈0.4771)【解答】解:设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×()n,由于第n年快递行业产生的包装垃圾超过4000万吨,∴4000=400×()n,∴()n=10,两边取对数可得n(lg3﹣lg2)=1,∴n(0.4771﹣0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨,故答案为:2021.14.(4分)函数f(x)=sinωx在区间上是增函数,则下列结论正确的是①②③(将所有符合题意的序号填在横线上)①函数f(x)=sinωx在区间上是增函数;②满足条件的正整数ω的最大值为3;③.【解答】解:函数f(x)=sinωx在区间上是增函数,由f(﹣x)=sin(﹣ωx)=﹣sinωx=﹣f(x),可得f(x)为奇函数,则①函数f(x)=sinωx在区间上是增函数,正确;由ω≤,可得∅≤3,即有满足条件的正整数ω的最大值为3,故②正确;由于+==2×,由题意可得对称轴x≥,即有f()≤f(),故③正确.故答案为:①②③.三、解答题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知向量=(sinx,1),=(1,k),f(x)=.(Ⅰ)若关于x的方程f(x)=1有解,求实数k的取值范围;(Ⅱ)若且α∈(0,π),求tanα.【解答】解:(Ⅰ)∵向量a=(sinx,1),b=(1,k),f(x)=,∴f(x)==sinx+k.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)关于x的方程f(x)=1有解,即关于x的方程sinx=1﹣k有解.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵sinx∈[﹣1,1],∴当1﹣k∈[﹣1,1]时,方程有解.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)则实数k的取值范围为[0,2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)因为,所以,即.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)当时,,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)当时,,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)16.(12分)已知二次函数f(x)=x2+bx+c满足f(1)=f(3)=﹣3.(Ⅰ)求b,c的值;(Ⅱ)若函数g(x)是奇函数,当x≥0时,g(x)=f(x),(ⅰ)直接写出g(x)的单调递减区间:[﹣2,2] ;(ⅱ)若g(a)>a,求a的取值范围.【解答】解:(Ⅰ)二次函数f(x)=x2+bx+c满足f(1)=f(3)=﹣3,∴解的b=﹣4;c=0.(Ⅱ)由(Ⅰ)可得f(x)=x2﹣4x,∵函数g(x)是奇函数,∴g(﹣x)=﹣g(x),假设x<0,则﹣x>0,则g(﹣x)=f(﹣x)=x2+4x,∴g(x)=﹣x2﹣4x,∴g(x)=,(i)g(x)的单调减区间为[﹣2,2].故答案为:[﹣2,2].(ⅱ)若g(a)>a,则或解得a>5或﹣5<a<0.综上,a的取值范围为a>5或﹣5<a<0.17.(12分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(Ⅰ)请将上表数据补充完整,函数f(x)的解析式为f(x)=f(x)=2sin(2x+)(直接写出结果即可);(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)求函数f(x)在区间上的最大值和最小值.【解答】解:(Ⅰ)把表格填完整:根据表格可得=﹣,∴ω=2.再根据五点法作图可得2×+φ=,∴φ=,故函数的解析式为:.(Ⅱ)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数f (x)的单调递增区间为,k∈Z.(Ⅲ)因为,所以,故有.所以,当即时,f(x)在区间上的最小值为﹣2.当即x=0时,f(x)在区间上的最大值为1.18.(10分)定义:若函数f(x)的定义域为R,且存在非零常数T,对任意x ∈R,f(x+T)=f(x)+T恒成立,则称f(x)为线周期函数,T为f(x)的线周期.(Ⅰ)下列函数,①y=2x,②y=log2x,③y=[x],(其中[x]表示不超过x的最大整数),是线周期函数的是③(直接填写序号);(Ⅱ)若g(x)为线周期函数,其线周期为T,求证:函数G(x)=g(x)﹣x 为线周期函数;(Ⅲ)若φ(x)=sinx+kx为线周期函数,求k的值.【解答】解:(Ⅰ)对于①f(x+T)=2x+T=2x2T=f(x)2T,故不是线周期函数对于②f(x+T)=log2(x+T)≠f(x)+T,故不是线周期函数对于③f(x+T)=[x+T]=[x]+T=f(x)+T,故是线周期函数故答案为:③(Ⅱ)证明:∵g(x)为线周期函数,其线周期为T,∴存在非零常数T,对任意x∈R,g(x+T)=g(x)+T恒成立.∵G(x)=g(x)﹣x,∴G(x+T)=g(x+T)﹣(x+T)=g(x)+T﹣(x+T)=g(x)﹣x=G(x).∴G(x)=g(x)﹣x为周期函数.(Ⅲ)∵φ(x)=sinx+kx为线周期函数,∴存在非零常数T,对任意x∈R,sin(x+T)+k(x+T)=sinx+kx+T.∴sin(x+T)+kT=sinx+T.令x=0,得sinT+kT=T;令x=π,得﹣sinT+kT=T;①②两式相加,得2kT=2T.∵T≠0,∴k=1检验:当k=1时,φ(x)=sinx+x.存在非零常数2π,对任意x∈R,φ(x+2π)=sin(x+2π)+x+2π=sinx+x+2π=φ(x)+2π,∴φ(x)=sinx+x为线周期函数.综上,k=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年北京市海淀区高一(上)期末数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)已知集合A={1,2},B={x|0<x<2},则A∩B=()A.{1}B.{1,2}C.{0,1,2}D.{x|0<x≤2} 2.(4分)已知向量=(m,6),=(﹣1,3),且∥,则m=()A.18B.2C.﹣18D.﹣23.(4分)下列函数中,既是奇函数又在(0,+∞)上是增函数的是()A.f(x)=2﹣x B.f(x)=x3C.f(x)=lgx D.f(x)=sin x 4.(4分)命题p:∀x>2,x2﹣1>0,则¬p是()A.∀x>2,x2﹣1≤0B.∀x≤2,x2﹣1>0C.∃x>2,x2﹣1≤0D.∃x≤2,x2﹣1≤05.(4分)已知,sinα<0,则cosα=()A.B.C.D.6.(4分)若角α的终边经过点(1,y0),则下列三角函数值恒为正的是()A.sinαB.cosαC.tanαD.sin(π+α)7.(4分)为了得到函数的图象,只需把函数y=sin x的图象上的所有点()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度8.(4分)如图,在平面直角坐标系xOy中,角α以Ox为始边,终边与单位圆O相交于点P.过点P的圆O的切线交x轴于点T,点T的横坐标关于角α的函数记为f(α).则下列关于函数f(α)的说法正确的是()。

A.f(α)的定义域是B.f(α)的图象的对称中心是C.f(α)的单调递增区间是[2kπ,2kπ+π],k∈ZD.f(α)对定义域内的α均满足f(π﹣α)=f(α)二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.9.(4分)已知f(x)=lnx,则f(e2)=.10.(4分)已知=(1,2),=(3,4),则•=;|﹣2|=.11.(4分)已知集合A={1,2,3,4,5},B={3,5},集合S满足S⊊A,S∪B=A.则一12.x≥0时,,则不等式f(x)13.(的长为2,则所对的圆心角的大小为弧是上的一个动点,则当取得最大值时,14.(4分)已知函数f(x)=(Ⅰ)若函数f(x)没有零点,则实数a的取值范围是;(Ⅱ)称实数a为函数f(x)的包容数,如果函数f(x)满足对任意x1∈(﹣∞,a),都存在x2∈(a,+∞),使得f(x2)=f(x1).在①﹣;②;③1;④;⑤中,函数f(x)的包容数是.(填出所有正确答案的序号)三、解答题:本大题共5小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(11分)已知函数.(Ⅰ)求T的最小正周期T;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)在给定的坐标系中作出函数的简图,并直接写出函数f(x)在区间上的取值范围.16.(10分)已知函数f(x)=x2+bx+c,存在不等于1的实数x0使得f(2﹣x0)=f(x0).(Ⅰ)求b的值;(Ⅱ)判断函数f(x)在f(1,+∞)上的单调性,并用单调性定义证明;(Ⅲ)直接写出f(3c)与f(2c)的大小关系.17.(11分)如图,在四边形OBCD中,,,∠D=90°,且||=||=1.(Ⅰ)用表示;(Ⅱ)点P在线段AB上,且AB=3AP,求cos∠PCB的值.18.(12分)设函数f(x)定义域为I,对于区间D⊆I,如果存在x1,x2∈D,x1≠x2使得f (x1)+f(x2)=2,则称区间D为函数f(x)的ℱ区间.(Ⅰ)判断(﹣∞,+∞)是否是函数y=3x+1的ℱ区间;(Ⅱ)若[]是函数y=log a x(其中a>0,a≠1)的ℱ区间,求a的取值范围;(Ⅲ)设ω为正实数,若[π,2π]是函数y=cosωx的ℱ区间,求ω的取值范围.19.(5分)附加题:声音靠空气震动传播,靠耳膜震动被人感知.声音可以通过类似于图①和图②的波形曲线来描述,图①和图②是一位未成年女性和一位老年男性在说“我爱中国”四个字时的声波图,其中纵坐标表示音量(单位:50分贝),横坐标代表时间(单位:2.3×10﹣5秒).声音的音调由其频率所决定,未成年女性的发声频率大约为老年男性发声频率的2倍.下面的图③和图④依次为上面图①和图②中相同读音处的截取的局部波形曲线,为了简便起见,在截取时局部音量和相位做了调整,使得二者音量相当,且横坐标从0开始.已知点(800,0)位于图④中波形曲线上.(Ⅰ)描述未成年女性声音的声波图是;(填写①或②)(Ⅱ)请你选择适当的函数模型y=f(x),x∈[0,2000]来模仿图④中的波形曲线:f(x)=(函数模型中的参数取值保留小数点后2位).2018-2019学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵A={1,2},B={x|0<x<2};∴A∩B={1}.故选:A.2.【解答】解:∵;∴3m+6=0;∴m=﹣2.故选:D.3.【解答】解:根据题意,依次分析选项:对于A,f(x)=2﹣x,是指数函数,不是奇函数,不符合题意;对于B,f(x)=x3,为幂函数,既是奇函数又在(0,+∞)上是增函数,符合题意;对于C,f(x)=lgx,是对数函数,不是奇函数,不符合题意;对于D,f(x)=sin x,是正弦函数,在(0,+∞)上不是增函数;故选:B.4.【解答】解:命题p:∀x>2,x2﹣1>0,则¬p是:∃x>2,x2﹣1≤0,故选:C.5.【解答】解:由,得,即sinα=,代入sin2α+cos2α=1,得cosα=±,∵sinα<0,tanα>0,∴α为第三象限角,则cosα=.故选:D.6.【解答】解:角α的终边经过点(1,y0),∴x=1,y=y0,r=,故cosα==>0,而sinα==,正负号不确定,tanα==y0,正负号不确定,故选:B.7.【解答】解:把函数y=sin x的图象上的所有点向左平移个单位长度,可得y=sin(x+)=sin(x+π﹣)=﹣sin(x﹣)的图象,故选:A.8.【解答】解:由三角函数的定义可知:P(cosα,sinα),则以点P为切点的圆的切线方程为:x cosα+y sinα=1,由已知有cosα≠0,令y=0,得:x=,即函数f(α)=,由cosα≠0,得:α≠2kπ±,即函数f(α)的定义域为:±,k∈z,故A错误,由复合函数的单调性可知:函数f(α)的增区间为:[2kπ,2k),(2k2kπ+π],k∈Z,故C错误,由函数的周期得:f(α)的周期为2π,故D错误,函数f(α)的对称中心为(k,0),k∈Z,故B正确.故选:B.二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上. 9.【解答】解:∵f(x)=lnx,∴f(e2)=lne2=2.故答案为:2.10.【解答】解:=1×3+2×4=11,=5,=25,|﹣2|====.故答案为:11;.11.【解答】解:∵集合A={1,2,3,4,5},B={3,5},集合S满足S⊊A,S∪B=A.∴一个满足条件的集合S是{1,2,3,4}(或{1,2,4,5}或{1,2,4}).故答案为:{1,2,3,4}(或{1,2,4,5}或{1,2,4}).12.【解答】解:∵x≥0,为增函数,f(x)是R上的偶函数;∴f(1)=2;∴由f(x)﹣2>0得,f(x)>f(1);∴f(|x|)>f(1);∴|x|>1;解得x<﹣1,或x>1;∴原不等式的解集为{x|x<﹣1,或x>1}.故答案为:{x|x<﹣1,或x>1}.13.【解答】解:由弧长公式得:θ==2,即所对的圆心角的大小为2弧度,由三角函数定义可建立以点O为坐标原点,OA所在直线为x轴的直角坐标系,易得:A (1,0),B(cos2,sin2),设=θ,则P(cosθ,sinθ)(0≤θ≤2),则=cosθ﹣cosθcos2﹣sinθsin2=(1﹣cos2)cosθ﹣sinθsin2=2sin21cosθ﹣2sin1cos1sinθ=2sin1sin(1﹣θ),又0≤θ≤2,所以﹣1,≤1﹣θ≤1,当1﹣θ=1即θ=0时,取得最大值2sin21,故答案为:2,0.14.【解答】解:(Ⅰ)函数f(x)=,由x<a时,f(x)=2x﹣1>0,无零点;若x≥a时,f(x)=2a﹣x2,当a<0时,f(x)<0,无零点;当a≥0时,由2a﹣x2=0,即2a=x2,由x≥a时,y=x2递增,可得y≥a2,由2a<a2,可得a>2,f(x)无零点;综上可得a<0或a>2;(Ⅱ)由题意可得f(x1)的值域为f(x2)的值域的子集,当a=﹣时,由x<﹣时,f(x)=2x﹣1∈(0,2);由x≥﹣时,f(x)=﹣1﹣x2∈(﹣∞,﹣1],],(0,2)⊈(﹣∞,﹣1],不满足题意;当a=时,由x<时,f(x)=2x﹣1∈(0,2);由x≥时,f(x)=1﹣x2∈(﹣∞,],(0,2)⊆(﹣∞,],满足题意;当a=1时,由x<1时,f(x)=2x﹣1∈(0,1);由x≥1时,f(x)=2﹣x2∈(﹣∞,1],(0,1)⊆(﹣∞,1],满足题意;当a=时,由x<时,f(x)=2x﹣1∈(0,2);由x≥时,f(x)=1﹣x2∈(﹣∞,﹣1],(0,2)⊈(﹣∞,﹣1],不满足题意;当a=时,由x<时,f(x)=2x﹣1∈(0,2);由x≥时,f(x)=1﹣x2∈(﹣∞,﹣],(0,2)⊈(﹣∞,﹣],不满足题意.综上可得函数f(x)的包容数是②③.故答案为:a<0或a>2;②③.三、解答题:本大题共5小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.【解答】(本小题满分11分)解:(Ⅰ).……………………(2分)(Ⅱ)由,k∈Z,……………………(4分)可得:,k∈Z.所以函数f(x)的单调递增区间是:,k∈Z.……………………(6分)(Ⅲ)列对应值表如下:通过描出五个关键点,再用光滑曲线顺次连接作出函数的简图如图所示.……………………(8分)可得函数在区间上的取值范围是.……………………(11分)注:中每一个端点正确给(1分),括号正确(1分).16.【解答】解:(Ⅰ)根据题意,对于函数f(x)=x2+bx+c,因为实数x0使得f(2﹣x0)=f(x0),所以,即(2b+4)(x0﹣1)=0.因为x0≠1,所以2b+4=0,即b=﹣2;经检验,b=﹣2满足题意,所以b=﹣2.(Ⅱ)根据题意,函数f(x)=x2﹣2x+c,在(1,+∞)上单调递增,证明如下:任取1<x1<x2,则f(x1)﹣f(x2)=,又由1<x1<x2,则x1﹣x2<0,x1+x2﹣2>0,则f(x1)﹣f(x2)<0,则函数f(x)在(1,+∞)上为增函数;(Ⅲ)当c=0时,有3c=2c,则有f(3c)=f(2c);当c≠0时,有3c>2c>1或0<3c<2c<1,则有f(3c)>f(2c).17.【解答】解:(Ⅰ)∵,,∴,所以.∴=2++=﹣﹣.(Ⅱ)因为∥,,所以点O,A,D共线.因为∠D=90°,所以∠O=90°.以OA为坐标原点,OA所在的直线为x轴,建立如图所示的平面直角坐标系.因为A(2,0),B(0,1),C(3,2),A(2,0),B(0,1),C(3,2),A(2,0),B(0,1),C(3,2),所以A(2,0),B(0,1),C(3,2).所以,.因为点P在线段AB=3AP上,且AB=3AP,所以.所以.因为,所以.……………………(11分)18.【解答】解:(Ⅰ)(﹣∞,+∞)不是函数∀x∈(﹣∞,+∞)的ℱ区间,理由如下:因为对∀x∈(﹣∞,+∞),3x>0,所以3x+1>1.所以∀x1,x2∈(﹣∞,+∞)均有,即不存在x1,x2∈(﹣∞,+∞),(﹣∞,+∞),使得(﹣∞,+∞).所以(﹣∞,+∞)不是函数的ℱ区间.(Ⅱ)由是函数(其中)的ℱ区间,可知存在,log a x1+log a x2=2,使得log a x1+log a x2=2.所以.因为所以,即.又因为a>0且a≠1,所以.(Ⅲ)因为[π,2π]是函数x1,x2∈[π,2π]的ℱ区间,所以存在x1,x2∈[π,2π],cosωx1+cosωx2=2,使得cosωx1+cosωx2=2.所以所以存在k,l∈Z,使得不妨设π≤x1<x2≤2π.又因为ω>0,所以ωπ≤ωx1<ωx2≤2ωπ.所以ω≤2k<2l≤2ω.即在区间[ω,2ω]内存在两个不同的偶数.①当ω≥4时,区间[ω,2ω]的长度2ω﹣ω≥4,所以区间[ω,2ω]内必存在两个相邻的偶数,故ω≥4符合题意.②当0<ω<4时,有0<ω≤2k<2l≤2ω<8,所以2k,2l∈{2,4,6}.(i)当时,有即3≤ω≤4.所以3≤ω<4也符合题意.(ii)当时,有即ω=2.所以ω=2符合题意.(iii)当时,有即此式无解.综上所述,{2}∪[3,+∞)的取值范围是{2}∪[3,+∞).19.【解答】解:(Ⅰ)未成年女性的发声频率大约为老年男性发声频率的2倍,即有未成年女性的发声周期大约为老年男性发声周期的一半,由图③和图④,可得图③的周期为图④周期的2倍,描述未成年女性声音的声波图为②;(Ⅱ)由图④可设f(x)=cosωx,x∈[0,2000],由f(800)=cos800ω=0,可得800ω=kπ+,由图④可得ω=×≈0.03,可得f(x)=cos0.03x,x∈[0,2000],故答案为:②,cos0.03x,x∈[0,2000].。

相关文档
最新文档