等腰三角形集体备课#(精选.)

合集下载

等腰三角形集体备课教案(2024)

等腰三角形集体备课教案(2024)
2024/1/29
讨论内容
让学生讨论等腰三角形的 定义、性质、判定方法以 及在生活中的应用等。
时间安排
给学生10-15分钟时间进 行讨论,期间教师可以巡 视各组,给予必要的指导 和帮助。
22
学生展示:分享解题思路和成果
选择代表
每个小组选派一名代表, 向全班展示本组的讨论成 果。
2024/1/29
展示内容
2024/1/29
19
学生自主练习环节
练习1
已知等腰三角形的一边长为4,另一 边长为8,求该等腰三角形的周长。
练习2
等腰三角形的一个外角为130°,求 该等腰三角形的三个内角的度数。
2024/1/29
练习3
已知等腰三角形ABC中,AB=AC, AD是BC边上的中线,且AD=BC/2 ,求∠BAC的度数。
题。
2024/1/29
02
过程与方法
通过观察、实验、归纳、推理 等数学活动,培养学生的数学
思维和解决问题的能力。
03
情感态度与价值观
激发学生学习数学的兴趣和热 情,培养学生的数学素养和审
美情趣。
6
教学内容与方法
教学内容
等腰三角形的定义、性质、判定方法以及应用举例。
教学方法
采用讲解、演示、讨论、练习等多种教学方法,引导学生积极参与课堂活动,激发学生的学习兴趣和主动性。同 时,注重培养学生的自主学习和合作学习能力,鼓励学生通过小组合作、探究学习等方式加深对等腰三角形的理 解和应用。
学习小组
鼓励学生自发组成学习小组,共 同讨论等腰三角形相关问题,互
相分享学习心得和解题方法。
网络资源
引导学生利用互联网搜索等腰三 角形的相关资料和习题,拓宽学

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。

等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。

)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。

问题4给学生留下悬念。

)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。

〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

等腰三角形教案设计5篇

等腰三角形教案设计5篇

等腰三角形教案设计5篇等腰三角形教案设计5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。

苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》集体备课教案

苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》集体备课教案

苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》集体备课教案一. 教材分析苏教版四年级数学下册第七单元5《等腰三角形和等边三角形》是本单元的重点内容。

在前面的学习中,学生已经掌握了三角形的基本概念和特性,本节课将引导学生进一步探究等腰三角形和等边三角形的性质。

教材通过丰富的实例和生动的图示,帮助学生理解和掌握等腰三角形和等边三角形的性质,培养学生的观察能力、思考能力和实践能力。

二. 学情分析四年级的学生已经具备了一定的观察和思考能力,对三角形的基本概念和特性有一定的了解。

但在学习等腰三角形和等边三角形时,学生可能对它们的性质和区别有一定的困惑。

因此,在教学过程中,教师需要关注学生的认知水平,通过生动的实例和直观的图示,帮助学生理解和掌握知识点。

三. 教学目标1.让学生了解等腰三角形和等边三角形的性质。

2.培养学生观察、思考和实践能力。

3.培养学生合作交流的意识。

四. 教学重难点1.等腰三角形和等边三角形的性质。

2.学生能够运用所学知识解决实际问题。

五. 教学方法1.采用直观演示法,让学生通过观察实例和图示,理解等腰三角形和等边三角形的性质。

2.采用小组合作学习法,培养学生的合作交流能力。

3.采用问题驱动法,激发学生的思考和探究欲望。

六. 教学准备1.准备相关的实例和图示。

2.准备练习题和作业。

3.准备黑板和粉笔。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和特性。

然后提出本节课的学习内容:等腰三角形和等边三角形的性质。

呈现(10分钟)教师通过展示实例和图示,引导学生观察和思考等腰三角形和等边三角形的性质。

引导学生发现等腰三角形的两个底角相等,等边三角形的三个角都相等。

操练(10分钟)教师提出练习题,让学生运用所学知识解决问题。

例如:判断一个三角形是不是等腰三角形或等边三角形,并说明理由。

巩固(10分钟)教师通过出示一些实际的例子,让学生运用所学知识进行判断和解决。

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。

以下是我为大家整理的,感谢您的欣赏。

八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。

等腰三角形教案

等腰三角形教案

等腰三角形教案一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义,掌握等腰三角形的性质和判定方法。

学生能够运用等腰三角形的性质和判定解决相关的几何问题。

2、过程与方法目标通过观察、操作、猜想、推理等活动,培养学生的观察能力、动手能力、逻辑思维能力和创新能力。

让学生经历等腰三角形性质和判定的探究过程,体会从特殊到一般、转化等数学思想方法。

3、情感态度与价值观目标通过对等腰三角形的学习,激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。

在合作学习中,培养学生的团队合作意识和交流能力。

二、教学重难点1、教学重点等腰三角形的性质和判定。

等腰三角形性质和判定的应用。

2、教学难点等腰三角形性质的证明。

等腰三角形判定的应用。

三、教学方法讲授法、演示法、讨论法、探究法四、教学过程1、导入新课展示一些等腰三角形的图片,如等腰三角形的建筑、标志等,让学生观察并思考这些图形的特点。

提问学生:这些图形有什么共同特征?从而引出本节课的主题——等腰三角形。

2、讲解等腰三角形的定义结合图片,给学生讲解等腰三角形的定义:有两边相等的三角形叫做等腰三角形。

相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

3、探究等腰三角形的性质让学生拿出事先准备好的等腰三角形纸片,通过对折,观察等腰三角形的对称性。

引导学生猜想等腰三角形的性质:等腰三角形的两腰相等。

等腰三角形的两个底角相等。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简称“三线合一”)。

证明等腰三角形的性质:证明“等腰三角形的两个底角相等”。

引导学生作等腰三角形顶角的平分线,将等腰三角形分成两个全等的三角形,利用全等三角形的性质证明两个底角相等。

证明“等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合”。

让学生分别作出等腰三角形顶角的平分线、底边上的中线、底边上的高,通过证明三角形全等,得出“三线合一”的结论。

4、等腰三角形性质的应用例 1:已知在等腰三角形 ABC 中,AB = AC,∠A = 50°,求∠B 和∠C 的度数。

等腰三角形集体备课

等腰三角形集体备课

中学数学(汉)集体备课教案师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。

2,探索新知已知:在△ABC中,AB=AC求证:∠ B=∠C通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,证明作AD⊥BC于D在Rt△ADB和Rt△ADC中AD=AD着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,AB=AC∴ Rt△ADB ≌ Rt△ADC∴∠B=∠C归纳等腰三角形性质1得出:∵ AB=AC(已知)∴∠B=∠C(等边对等角)性质1等腰三角形的两个底角相等巩固练习一口答:1、等腰直角三角形每一个锐角的度数是多少度?答:45°,45°2、如果等腰三角形的底角等于40°,答: 100°那么它的顶角的度数是多少?3、如果等腰三角形的顶角是40°,那么它的底角的度数是多少?答:80°,80°4、如果等腰三角形的一个角是40°,那么其它的两个角各是多少度?解:若顶角=400两底角=(1800-400)÷2=700若底角=400分析:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形?提示:作中线AD,或角的平分线AD 由学生口答,或者指导学生思考归纳等腰三角形性质1,并指出它的几何符号语言的书写顶角=180 0-40 0×2=100 0性质2 等腰三角形的顶角的平分线垂直平分底边即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相重合三线合一例1如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AC。

人教版八年级数学上册13.3.1等腰三角形(教案)

人教版八年级数学上册13.3.1等腰三角形(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过两边相等的三角形?”比如,红领巾的一个角就是等腰三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形的奥秘。
3.培养学生的数据分析能力,能够运用等腰三角形的性质解决实际问题,如计算等腰三角形的面积,从而在实际情境中加深对等腰三角形特征的理解。
4.培养学生的数学抽象素养,让学生通过对等腰三角形的学习,抽象出一般性的几何性质,形成对几何图形的深入认识。
5.培养学生的团队合作意识,通过小组讨论、合作探究等腰三角形的性质和应用,提高沟通与协作能力。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的定义、性质、判定和应用。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上学习了等腰三角形这一章节,整体来看,学生们对等腰三角形的定义和性质掌握得还不错。但在教学过程中,我也发现了一些问题。
三、教学难点与重点
1.教学重点
-等腰三角形的定义:明确等腰三角形两条边相等的特征,理解其基本概念。
-等腰三角形的性质:掌握等腰三角形的底角相等、底边上的中线、高线、角平分线互相重合的性质。
-等腰三角形的判定:学会运用判定定理判断一个三角形是否为等腰三角形。
-等腰三角形的应用:掌握利用等腰三角形性质解决实际问题的方法,如计算面积等。
此外,小组讨论环节,有的小组在讨论过程中并未充分展开,部分学生参与度不高。为了提高学生的参与度,我打算在下次课堂中,对讨论主题进行更明确的分工,让每个学生都有任务和责任,以促使他们更积极地参与到讨论中来。

八年级等腰三角形数学教案5篇

八年级等腰三角形数学教案5篇

八年级等腰三角形数学教案5篇初中数学等腰三角形的性质教案篇一一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

等腰三角形教案

等腰三角形教案

等腰三角形教案二、教学目标1.知识与技能:了解等腰三角形的概念,探索并掌握等腰三角形的性质;2.数学思考:使学生经历通过观察、实验、探究、归纳、推理、证明的认识图形的全过程,上实验几何与论证几何有机结合;3.情感态度与价值观:通过剪纸等活动,培养学生的实验意识和探索精神,使学生进一步认识到数学与现实生活的密切联系,感受数学的严谨性以及结果的确定性。

三、教学重、难点1.重点:等腰三角形的性质。

2.难点:“等边对等角”的证明。

四、教学方法动手体验、小组、讨论、合作、交流、探究验证师生互动。

五、教、学具1.教具:长方形纸,剪刀,幻灯片。

2.学具:长方形纸,剪刀。

六、教学媒体:投影仪七、教与学互动设计:一、联系生活实际,创设问题情境。

激发学生兴趣,导入新课师:同学们:我们在剪纸中欣赏了轴对称图形带给我们的享受,中外建筑中也洋溢着轴对称图形的艺术气息,国旗及各种标志中轴对称图形又向我们展示着它独特的社会含义,而我们亲自动手实践中又体会了轴对称图形带给我们的二次惊喜!今天老师给大家带来了这个(展示折纸-----飞机),你们喜欢折纸吗?一页普普通通的纸经过我们灵巧的双手就可以变成飞机、小船和各种有趣的动物建筑特等,其实通过折纸我们还可以发现很多数学知识!下面就让我们折一折,剪一剪,看看会有什么发现?学生活动:要求:(1)拿出事先准备好的长方形纸片,对折,使两部分重合。

(2)对折出一角,沿折痕撕开或剪开,你得到了什么图形?师:板书:15.5等腰三角形。

师:为了更好的掌握这节课的知识,老师把咱们班分了六组,设计了几个环节来完成,希望同学们踊跃的参与各个环节中来,好不好?第一环节:精彩回放《投影1》要求:全班分六组,各组在最短的时间各显其能,展示自己的才华回答方式为抢答。

问题:1、在等腰三角形ABC中,请你介绍。

一下哪个是等腰三角形的腰、底边、顶角和底角?2、你知道等腰三角形的哪些知识?给同学们介绍一下?(1、三角形的两边之和大于第三边2、内角和为180度等)师:各组同学在这个环节中表现的非常出色,连老师也为你们的成功感到骄傲,希望下一个环节再接再励。

等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)等腰三角形的性质教学设计一等奖(精选一三篇)作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的等腰三角形的性质教学设计一等奖(精选一三篇),希望对大家有所帮助。

等腰三角形的性质教学设计一等奖1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。

使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。

通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。

它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。

等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。

由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。

等腰三角形的性质集体备课

等腰三角形的性质集体备课
⑵∵AB=AC,BD=DC
∴∠_=∠_( ),_⊥_( );
⑶∵AB=AC,AD平分∠BAC
∴_⊥_( ),_=_( )
接着让学生回顾,等腰三角形是轴对称图形,对称轴可以更准确的说是顶角平分线所在的直线.
对称轴是折痕所在的直线
学生答辅助线的添法并证明
学生理解
学生思考,
并口答
通过数学活动和相互交流,在主动学习、探究学习的过程中获得知识,培养合作的意识
八年级数学学科集体备课教案
等腰三角形(1)
课时
1课时
主持人
主备人
时间
地点
办公室
参加教师
备课内容与讨论情况
一、教学内容:本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。
练习:教科书51页小练习
学生合作学习讨论例1、2并回答
学生口答
再次巩固所学新知
课堂小结
(由学生自己回忆总结并交流收获和体会)
你对本节课内容有哪些认识与收获?
你学到了什么数学方法?
学生自行总结
通过小结,使学生把所学知识进一步内化、系统化。
布置作业
及时了解学生的学习效果,调整教学安排。
板书设计
12.3等腰三角形(1)
例题分析、
性质运用
例1:已知,AB=AC,∠BAC=110º,AD平分∠BAC.
则BD与CD相等吗?为什么?AD垂直与BC吗?为什么?
学生思考回答,师生共同板书完成解题过程。

初中数学初二数学上册《等腰三角形》教案、教学设计

初中数学初二数学上册《等腰三角形》教案、教学设计
(三)学生小组讨论,500字
1.教师将学生分成小组,每组发放一张含有等腰三角形的图形,要求学生找出图形中的等腰三角形,并讨论其性质。
2.各小组汇报讨论成果,教师点评并给予鼓励。
3.教师提出问题:“等腰三角形性质在解题过程中有什么作用?”引导学生进一步探讨。
(四)课堂练习,500字
1.教师发放练习题,题目涵盖等腰三角形的性质、判定以及运用等方面。
初中数学初二数学上册《等腰三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握等腰三角形的定义及性质,能够识别并运用等腰三角形的性质解决问题。
2.培养学生运用几何图形、符号、文字等多种表达方式描述等腰三角形的特征,提高学生的数学表达能力。
3.通过对等腰三角形性质的学习,使学生能够运用这些性质进行简单的几何证明,培养逻辑思维能力。
作业要求:
1.学生独立完成作业,确保作业质量,书写规范,答案准确。
2.家长协助监督,关注学生的学习进度,鼓励学生主动思考和解决问题。
3.教师在批改作业时,注意学生的解题思路和方法,及时发现问题,有针对性地进行辅导。
4.学生完成作业后,进行自我检查,确保作业无误,养成良好的学习习惯。
3.结合等腰三角形的性质,思考并完成以下问题:若已知等腰三角形的一腰和底边,如何求解该等腰三角形的面积?请给出解题步骤和答案。
4.小组合作,探讨等腰三角形在生活中的应用,并以图文并茂的形式展示成果,提高学生的合作意识和实践能力。
5.完成课后拓展题:已知等腰三角形ABC,AB=AC,D、E分别是BC、AC上的点,且BD=CE。求证:AD垂直平分CE。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的解答进行展示和点评,强调解题过程中的注意事项,如证明步骤、逻辑关系等。

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。

)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。

想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。

)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。

能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点等边三角形的。

判定定理和直角三角形的性质定理。

教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)

第 1 篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标〔一〕、知识目标1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。

2、理解等腰三角形和等边三角形性质定理之间的联系。

〔2〕、能力目标1、培养学生“转化〞的数学思想及应用意识,初步掌握作辅助线的规律及“分类讨论〞的思想。

2、培养学生进行独立思量,提高独立解决问题的能力。

〔三〕、德育目标通过本节课教学,激发学生探索在现实生活中与数学有关的实际问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。

二、教学重难点1、教学重点:等腰三角形的性质定理及其证明。

2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。

三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。

四、教学过程课的导入:〔一〕、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形)〔二〕、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.〔三〕、普通三角形有那些性质?〔两边之和大于第三边.三个内角的和等于180°〕 . 〔四〕、图片展示等腰三角形在日常生活中的实例。

新课讲解〔一〕、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两个底角还有什么关系?〔二〕、〔电脑或者几何画板演示〕结论:折叠等腰三角形或者改变等腰三角形的腰长后,两底角之间依旧保持相等关系。

〔三〕、证明结论,得出性质1、性质定理的证明。

〔1〕学生找出文字命题的题设、结论、画图,换成符号语言。

〔2〕引导学生寻觅辅助线、如何添加辅助线。

〔3〕电脑显示证明过程。

〔4〕说明“等边对等角〞的作用。

2、推论 1 的证明。

〔1〕进一步启示学生得到“等腰三角形三线合一〞的性质。

〔2〕说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。

等腰三角形教案

等腰三角形教案

等腰三角形教案一、教学目标1. 理解等腰三角形的定义和性质。

2. 能够识别等腰三角形,并能够使用等腰三角形的性质解决问题。

3. 发展学生的逻辑思维和分析问题的能力。

二、教学内容1. 等腰三角形的定义和性质。

2. 等腰三角形的边和角的关系。

3. 等腰三角形的分类。

三、教学过程1. 导入(5分钟)教师可以利用实物或图片展示等腰三角形,向学生提问:“你在这个图形中看到了什么规律?”引导学生发现等腰三角形的特点。

2. 知识讲解(15分钟)教师向学生详细讲解等腰三角形的定义和性质。

强调等腰三角形的两边相等,并且两等长边所对的两个角也相等。

3. 案例分析(20分钟)教师给学生提供一些实际问题,让学生运用等腰三角形的性质来解决。

例如:“一个房顶是等腰三角形,两边长为6米,底边长为10米,求房顶的高度是多少?”通过这样的案例分析,学生可以意识到等腰三角形的性质在实际问题中的应用。

4. 练习与巩固(25分钟)学生进行一些练习题,巩固等腰三角形的知识和应用能力。

教师可以设计一些填空、选择或计算题目,加深学生对等腰三角形的理解。

5. 拓展(10分钟)教师向学生介绍其他类型的三角形,如直角三角形、锐角三角形和钝角三角形,并与等腰三角形进行比较。

通过比较不同类型三角形的性质,学生可以加深对等腰三角形的理解。

6. 归纳总结(5分钟)教师与学生一起归纳总结等腰三角形的定义和性质,并鼓励学生自主思考和提问。

四、教学评价教师可以通过观察学生在练习和案例分析中的表现,以及学生提问和参与讨论的情况来进行评价。

同时,教师可以设计一些小测验或考试来检验学生对于等腰三角形的理解和应用能力。

五、教学延伸为了进一步提高学生对等腰三角形的认识和运用能力,教师可以组织学生进行团队合作的小组活动,让学生通过多种方式解决问题。

同时,教师还可以引导学生自主学习,探究等腰三角形的其他性质和应用场景。

六、教学反思等腰三角形是初中数学中重要的基础概念之一。

通过本节课的教学,学生能够通过实例理解等腰三角形的定义和性质,并能够运用等腰三角形的性质解决实际问题。

等腰三角形教研活动(3篇)

等腰三角形教研活动(3篇)

第1篇一、活动背景等腰三角形作为平面几何中的基本图形,是学生学习几何知识的重要载体。

为了提高教师对等腰三角形教学的理解和把握,促进教师专业成长,我校数学教研组于2023年3月15日开展了以“等腰三角形”为主题的教研活动。

本次活动旨在通过集体备课、教学观摩、评课议课等形式,提升教师对等腰三角形教学策略的掌握,激发学生的学习兴趣,提高教学质量。

二、活动内容1. 集体备课活动伊始,教研组全体成员齐聚一堂,针对等腰三角形的定义、性质、判定条件、应用等方面进行了深入探讨。

在集体备课过程中,教师们结合教材、学情,共同确定了教学目标、重难点、教学方法和评价方式。

2. 教学观摩为使教研活动更具实效性,教研组安排了一位教师进行等腰三角形教学的公开课展示。

公开课以“探索等腰三角形的性质”为主题,通过小组合作、探究活动,引导学生发现、归纳等腰三角形的性质,培养学生的几何思维能力和创新精神。

3. 评课议课公开课后,教研组成员围绕教学目标、教学内容、教学方法、教学效果等方面进行了评课议课。

在评课过程中,教师们各抒己见,既肯定了公开课的优点,也指出了不足之处,为今后的教学提供了有益的借鉴。

三、活动总结1. 教学目标达成通过本次教研活动,教师们对等腰三角形的定义、性质、判定条件、应用等方面有了更深入的理解,教学目标基本达成。

2. 教学方法改进在评课议课过程中,教师们提出了许多改进教学方法的建议,如加强课堂互动、关注学生个体差异、注重启发式教学等。

3. 学生兴趣激发公开课展示环节,教师通过小组合作、探究活动等形式,激发了学生的学习兴趣,提高了学生的参与度。

4. 教研氛围浓厚本次教研活动充分体现了教研组团结协作、共同进步的精神,为教师们提供了交流学习的平台,营造了浓厚的教研氛围。

四、活动反思1. 教师专业成长通过本次教研活动,教师们对等腰三角形的教学有了更深入的认识,提高了自身的专业素养。

2. 学生学习效果本次活动有助于提高学生的学习兴趣,培养学生的几何思维能力,为学生今后的学习打下坚实基础。

等腰三角形集体备课

等腰三角形集体备课

汇报人:XX
等腰三角形在数学竞赛中的应用
等腰三角形在几何证明题中的应用 等腰三角形在平面几何问题中的应用 等腰三角形在代数问题中的应用 等腰三角形在数学竞赛中的重要性
备课前的准备
确定教学目标: 明确学生应掌 握的等腰三角 形的知识点和
技能点。
了解学生情况: 了解学生的学 习基础、学习 习惯和兴趣点, 以便因材施教。
实施教学: 按照备课 方案进行 教学,并 不断反思 和改进教 学方法
集体备课的经验和启示
备课前的准备:明确教学目标,收集教学资料,了解学生需求 备课中的协作:共同探讨教学方法,交流教学心得,分工合作完成备课任务 备课后的反思:总结备课过程中的优点和不足,提出改进措施,为下一次集体备课提供经验 集体备课的意义:提高教学质量,促进教师专业发展,培养学生学习兴趣和思维能力
准备教学资料: 收集和整理有 关等腰三角形 的教材、教案、 课件和教具等。

制定教学计划: 根据教学目标 和学生情况, 合理安排教学 内容和教学进 度。
备课中的重点和难点
重点:等腰三角形的性质和判定定理
难点:如何引导学生理解等腰三角形的性质和判定定理,并能够灵活运用
备课后的反思和总结
回顾教学目标:确保备课内容与教学目标一致 总结教学重点和难点:回顾本节课的重点和难点,总结教学方法和效果 反思教学方法:评估教学方法的有效性,思考如何改进 收集学生反馈:了解学生对本节课的感受和收获,为后续教学提供参考
等腰三角形的判定
定义:两边相 等的三角形是
等腰三角形
性质:等腰三 角形两底角相 等,轴对称,
三线合一
判定方法:通 过角平分线、 中线、高线、 垂直平分线等 性质判定等腰
三角形
判定定理:在三 角形中,如果一 个角的对边相等, 那么这个角是等 腰三角形的顶角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学数学(汉)集体备课教案
师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角
教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想
师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴
教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。

2,探索新知
已知:在△ABC中,AB=AC求证:
∠ B=∠C
通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,
证明作AD⊥BC于D
在Rt△ADB和Rt△ADC中
AD=AD 着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,
AB=AC
∴ Rt△ADB ≌ Rt△ADC
∴∠B=∠C
归纳等腰三角形性质1
得出:
∵ AB=AC(已知)
∴∠B=∠C(等边对等角)
性质1等腰三角形的两个底角相等巩固练习一
口答:
1、等腰直角三角形每一个锐角的度数是多少度?
答:45°,45°
2、如果等腰三角形的底角等于40°,
答: 100°
那么它的顶角的度数是多少?
3、如果等腰三角形的顶角是40°,那么它的底角的度数是多少?
答:80°,80°
4、如果等腰三角形的一个角是40°,那么其它的两个角各是多少度?
解:若顶角=400
两底角=(1800-400)÷2
=700
若底角=400分析:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形?提示:作中线AD,或角的平分线AD 由学生口答,或
者指导学生思考
归纳等腰三角形性质1,并指出它的几何符号语言的书写
顶角=180 0-40 0×2=100 0
性质2 等腰三角形的顶角的平分线垂直平分底边
即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相
重合三线合一
例1如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AC。

求△ABC各角的度数。

解:∵AB=AC , BD=BC=AD
∴∠ABC=∠C=∠BDC
∠A=∠ABD (等边对等角)设∠A=x,则
∠BDC=∠A+∠ABD=2X
从而
∠ABC=∠C=∠BDC=2X
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°解得x=36°
所以,在△ABC中,∠A=36°,∠ABC=∠C=72°
例2 如图在△ABC中,AB=AC,BAC=120°,点D、E是底边的两点,且BD=AD,CE=AE,求∠DAE 教师引导学生,根据等要三角形的性质1来做,等腰三角形的两个底角相等
的度数
解:∵AB=AC
∴∠B=∠C
又∵∠BAC=1200
解:∵AB=AC
∴∠B=∠C
又∵∠BAC=1200
∴∠B=∠C=(180-120)÷2=300又∵BD=AD,CE=AE
∴∠BAD=∠B, ∠CAE=∠C
∠DAE=1200-∠BAD-
∠CAE=1200-300-300
=600
巩固训练2
填空:
(1)如图,△ABC 中, AB =AC, ∠A =36°, 则∠B
= 72 °;
(2)如图,△ABC 中, AB =AC, ∠B =36°, 则∠A = °教师引导学生,根据等要三角形的性质1来做,等腰三角形的两个底角相等
最新文件仅供参考已改成word文本。

方便更改如有侵权请联系网站删除。

相关文档
最新文档