蛮力法
算法设计与分析-第3章-蛮力法
哨兵
0123456789 k 10 15 24 6 12 35 40 98 55
查找方向
i
清华大学出版社
算法设计与分析
算法3.2——改进的顺序查找
int SeqSearch2(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合 { r[0]=k; i=n; while (r[i]!=k)
清华大学出版社
算法设计与分析
第3章 蛮力法
3.1 蛮力法的设计思想 3.2 查找问题中的蛮力法 3.3 排序问题中的蛮力法 3.4 组合问题中的蛮力法 3.5 图问题中的蛮力法 3.6 几何问题中的蛮力法 3.7 实验项目——串匹配问题
清华大学出版社
算法设计与分析
3.1 蛮力法的设计思想
蛮力法的设计思想:直接基于问题的描述。 例:计算an
52 37 65 不可行 不可行 不可行 不可行 不可行
清华大学出版社
算法设计与分析
对于一个具有n个元素的集合,其子集 数量是2n,所以,不论生成子集的算法 效率有多高,蛮力法都会导致一个Ω(2n) 的算法。
清华大学出版社
算法设计与分析
3.4.4 任务分配问题
假设有n个任务需要分配给n个人执行, 每个任务只分配给一个人,每个人只分配一 个任务,且第j个任务分配给第i个人的成本 是C[i, j](1≤i , j≤n),任务分配问题要求 找出总成本最小的分配方案。
用蛮力法解决0/1背包问题,需要考虑给定n个 物品集合的所有子集,找出所有可能的子集(总重 量不超过背包容量的子集),计算每个子集的总价 值,然后在他们中找到价值最大的子集。
清华大学出版社
算法设计与分析
10
蛮力法、分治法、减治法三种方法的理解和处理问题的类型的归纳
蛮力法、分治法、减治法三种方法的理解和处理问题的类型的归纳一、蛮力法蛮力法是一种基础且直接的问题解决策略,通常用于寻找问题的答案或解决方案。
其核心理念在于,通过逐一检查所有可能的解决方案,从而找到问题的答案或找到最佳的解决方案。
在蛮力法中,我们通常需要投入较多的时间和计算资源,尤其是在面对大规模或复杂的问题时。
蛮力法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,对一个数组进行排序,我们可以使用蛮力法,通过比较每对元素并交换它们的位置,使得整个数组有序。
2. 查找问题:例如,在排序数组中查找一个特定的元素,我们可以使用蛮力法,逐一检查数组中的每个元素直到找到目标元素。
3. 组合与排列问题:例如,计算给定集合的所有可能排列或组合,我们可以使用蛮力法,通过逐一排列或组合所有可能的元素组合得到答案。
二、分治法分治法是一种将复杂问题分解为更小、更易于处理的子问题的方法。
通过将问题分解为独立的子问题,我们可以分别解决每个子问题,然后将这些解决方案组合起来,形成原始问题的解决方案。
这种方法在处理复杂问题时非常有效,因为它可以降低问题的复杂性,使我们可以更有效地解决问题。
分治法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,归并排序就是一种使用分治法的排序算法,它将一个大列表分解为两个小列表,对这两个小列表分别进行排序,然后合并它们以得到有序列表。
2. 搜索问题:例如,二分搜索是一种使用分治法的搜索算法,它将搜索空间一分为二,每次迭代都排除一半的元素,直到找到目标元素或确定元素不存在。
3. 图问题:例如,Dijkstra的算法就是一种使用分治法的图搜索算法,它将图分解为最短路径树,然后通过搜索每个子图的最短路径来解决整个图的最短路径问题。
三、减治法减治法是一种通过减少问题的规模或复杂性来解决问题的方法。
其核心理念在于,通过消除或减少问题的某些部分或特性,从而降低问题的复杂性或规模,使得问题更容易解决。
第4章 蛮力法
//t的字符比较完毕
return i-j;
//t是s的子串,返回位置
else
//t不是s的子串
return -1;
//返回-1
}
【例4.5】有两个字符串s和t,设计一个算法求t在s中出 现的次数。例如,s="abababa",t="aba",则t在s中出现2 次。
解:采用BF算法思路。用num×1000+b×100+c×10+d n=a×1000+b×100+e×10+d s=e×10000+d×1000+c×100+a×10+d
则有:m+n==s
void fun()
{ int a,b,c,d,e,m,n,s;
continue是结束本次循环
for (a=1;a<=9;a++)
for (m=2;m<=1000;m++) { 求出m的所有因子之和s;
if (m==s) 输出s; }
对应的程序如下:
void main() { int m,i,s;
for (m=2;m<=1000;m++) { s=0;
for (i=1;i<=m/2;i++) if (m%i==0) s+=i; //i是m的一个因子
} return maxSum; }
maxSubSum1(a,n)算法中用了三重循环,所以有:
n1 n1
T(n)=
j
n1
1
n1 ( j i 1) 1 n1 (n i)(n i 1)
2. 搜索所有的路径:这类问题中不同的路径对应不同的解。 3. 直接计算:按照基于问题的描述和所涉及的概念定义,
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
判断素数的5种方法
判断素数的5种方法素数是指只能被1和自身整除的正整数。
在计算机科学和数学领域,判断一个数是否为素数是一个常见且重要的问题。
本文将介绍五种常用的方法来判断一个数是否为素数。
1. 蛮力法蛮力法是最简单直接的方法,也是最容易理解的一种方法。
它通过逐个检查从2到该数字平方根之间的所有可能因子来确定是否为素数。
def is_prime(n):if n <= 1:return Falsefor i in range(2, int(n**0.5) + 1):if n % i == 0:return Falsereturn True该方法的时间复杂度为O(sqrt(n)),其中n是待判断的数字。
2. 费马检测法费马检测法基于费马小定理,该定理表明如果p是一个素数,且a是小于p的正整数,则a^(p-1) ≡ 1 (mod p)。
因此,对于给定的正整数n,选择一个随机整数a,并检查上述等式是否成立。
import randomdef power(x, y, p):res = 1x = x % pwhile y > 0:if y & 1:res = (res * x) % py = y >> 1x = (x * x) % preturn resdef is_prime(n, k=5):if n <= 1 or n == 4:return Falseif n <= 3:return Truewhile k > 0:a = random.randint(2, n - 2)if power(a, n - 1, n) != 1:return Falsek -= 1return True该方法的时间复杂度为O(k * log(n)),其中k是检测次数。
3. 米勒-拉宾检测法米勒-拉宾检测法是费马检测法的改进版本。
它通过选择随机的整数a,并将n-1表示为(2^r)d的形式,其中d是奇数。
蛮力法的魅力
蛮力法的魅力摘要:蛮力法是我们算法中最常使用的算法,虽然巧妙和高效的算法很少来自于蛮力法,但是蛮力法依然是一种重要的算法设计技术。
在实际理论上,蛮力法可以解决可计算领域的各种问题,只是效率的高低不同而已。
因此蛮力法经常用来解决一些较小规模的问题。
蛮力法对于一些重要的问题可以产生一些合理的算法,他们具备一些实用价值,而且不受问题规模的限制。
蛮力法也可以作为某类问题时间性能的底限,来衡量同样问题的更高效算法。
本文将对蛮力法进行深入了解,发掘出蛮力法的价值。
关键字:蛮力法效率算法应用简单结合引言:蛮力法,由于对于解决一些问题时的低效,不够有技巧性,一直为人们所“诟病”。
但是,遍观我们所学的算法,只有蛮力法是可以适合于任何问题的。
而且,简单的招式,练到极致,就是绝招。
我们在解决的问题的时候,首先考虑的也是蛮力法。
只有当蛮力法不能高效处理问题时,我们才会思考其他算法。
这也就说明,蛮力法对于我们设计算法,仍是必不可少的。
1 蛮力法的原理顾名思义,蛮力法即是顺序往下寻找方法,直到问题的解决。
它所依赖的技术是扫描技术,关键是依次处理所有元素。
蛮力法的思想非常简单,没有很多条件的限制,比如动态规划法,必须满足最有性原理才可以使用。
它的方法上也没有缺陷,对于分治法,一旦子问题的规模不同,便不能在使用。
而蛮力法则没有这个要求。
因此,简单,易上手,是蛮力法的基本原理。
1 蛮力法与其他算法的比较大部分算法都是在蛮力法的基础上改进而来的。
这里比较蛮力法中的冒泡排序与分治法中的快速排序。
对于蛮力法,是所以元素都要经过比较之后再排序,显然这是不可取的。
比如2比1大,3比2大,那1和3就没必要再进行比较。
快速排序,就是有选择性的进行比较。
将序列分为两个子序列,用递归实现,从而使得算法的时间复杂度变为nlog2n,这就是技巧的体现(减治法也是如此),从中也可以看出,在蛮力法的基础上,我们可以改造出更好的算法,体现了蛮力法的重要性。
蛮力算法
17
main1( ) { int *a,i,j,n; input(n); a=calloc(n+1,sizeof(int)); //申请存储空间 for (i=1; i<=n;i++) a[i]=1; for (i=1; i<=n;i++) for (j=i; j<=n;j=j+i) a[i]=1-a[i]; for (i=1; i<=n;i++) if (a[i]=0) print(i,”is free.”); } 算法分析1:以一次开关锁计算,算法的时间复杂度为 n(1+1/2+1/3+……+1/n)=O(nlogn)。
3
【例3.1】百钱百鸡问题。中国古代数学家张丘建在《算经》 中提出了著名的“百钱百鸡问题”:鸡翁一,值钱五;鸡母一, 值钱三;鸡雏三,值钱一;百钱买百鸡,翁、母、雏各几何? 算法设计1: 通过对问题的理解,可能会想到列出两个三元一次方程, 去解这个不定解方程,就能找出问题的解。这确实是一种办法, 但这里我们要用“懒惰”的枚举策略进行算法设计: 设x,y,z分别为公鸡、母鸡、小鸡的数量。 尝试范围:由题意给定共100钱要买百鸡,若全买公鸡最多 买100/5=20只,显然x的取值范围1~20之间;同理,y的取值范 围在1~33之间,z的取值范围在1~100之间。 约束条件: x+y+z=100 且 5*x+3*y+z/3=100
回朔法与蛮力法
max wi xi
i 1 n
i 1
s.t.
w x
i 1
i i
c1
首页 上页 下页 退出
xi {0,1},1 i n
第六章
•解空间:子集树 n •可行性约束函数(选择当前元素): wi xi c1 i 1 •上界函数(不选择当前元素): 当前载重量cw+剩余集装箱的重量r当前最优载重量bestw
第六章
•解空间:子集树 •可行性约束函数: •上界函数:
private static double bound(int i) {// 计算上界 double cleft = c - cw; // 剩余容量 double bound = cp; // 以物品单位重量价值递减序装入物品 while (i <= n && w[i] <= cleft) { cleft -= w[i]; bound += p[i]; i++; } // 装满背包 if (i <= n) bound += p[i] / w[i] * cleft; return bound; }
蛮力法
2 查找问题中的蛮力法—串的匹配
BF算法
KMP算法
下一次开始位置 下一次开始位置
本趟开始位置
i 回溯
ii
S 模式T
si
…
tj
回溯
j
j
回溯next[j]
……
3 排序问题中的蛮力法—选择排序
选择排序开始的时候,扫描整个序列,找到整个序列的最小记
录和序列中的第一个记录交换,从而将最小记录放到它在有序
区的最终位置上,然后再从第二个记录开始扫描序列,找到n-1
个序列中的最小记录,再和第二个记录交换位置。一般地,第i
趟排序从第i个记录开始扫描序列,在n-i+1(1≤i≤n-1)个记录中
找到关键码最小的记录,并和第i个记录交换作为有序序列的第i
个记录。
4 组合问题中的蛮力法—任务分配问题
可以用一个n元组(j1, j2, …, jn)来描述任务分配问题的一个可能 解,其中第i个分量ji(1≤i≤n)表示在第i行中选择的列号,因此 用蛮力法解决任务分配问题要求生成整数1~n的全排列,然后把 成本矩阵中的相应元素相加来求得每种分配方案的总成本,最 后选出具有最小和 18
是否最短
否 是 否 是 否 否
蛮力法求解TSP问题存在的问题
注意到图中有3对不同的路径,对每对路径来说,不同 的只是路径的方向,因此,可以将这个数量减半,则 可能的解有(n-1)!/2个。随着n的增长,TSP问题的可 能解也在迅速地增长。
一个10城市的TSP问题有大约180,000个可能解。 一个20城市的TSP问题有大约
依次处理所有元素是蛮力法的关键,为 了避免陷入重复试探,应保证处理过的 元素不再被处理。
第三章 蛮力法PPT课件
个定值。设此值为SN ,则不难解
出:SN = N 2 ·(N 2 +1)/2N= N ·(N 2 +1) /2。
.
19
外延法(由巴谢提出)构造奇阶幻方
.
20
H·Coxeter构造幻方的方法
首先在正方形最上面一 行的正中间的小方格内 填写1,然后到它的左 上方的小格内填写下一 个数(注意:我们认为正 方形的同一行或同一行 的头尾是相连的)。如果 走到某个小方格,而该 格已填了数,那末就改 走到原方格的下面一个 方格。
axbyc13穷举查找14穷举查找15穷举查找分配问题n个任务分配给n个人任务j分配给人i的成本是cij16小结蛮力法是一种简单直接地解决问题的方法通常直接基于问题的描述和所涉及的概念定义
算法分析与设计
Analysis and Design of Computer Algorithms
第三章 蛮力法 Brute Force
.
21
习题3.4-10
.
22
直线方程:ax+by=c a=y2-y1 , b=x1-x2, c=x1y2-y1x2
.
12
旅行商问题
穷举查找
.
13
背包问题
穷举查找
.
14
穷举查找
分配问题
N个任务分配给n个人,任务j分配给人i的成本是C[I,j]
.
15
小结
蛮力法是一种简单直接地解决问题的方法,通常 直接基于问题的描述和所涉及的概念定义。
算法 解决问题的实例很少时,它让你花费较少的代
价 可以解决一些小规模的问题 可以作为其他高效算法的衡量标准
.
3
教学内容
《算法设计与分析基础》课件-3.蛮力法
if A[j] < A[min] min j
swap A[i] and A[min]
7
2017/12/31
例题:对序列 {89,45,68,90,29,34,17}用选择排序 算法进行排序
• 第1遍: {89,45,68,90,29,34,17} //求最小元素 {17,45,68,90,29,34,89} //交换
• 第5遍: {17,29,34,45,90,68,89} {17,29,34,45,68,90,89}
• 第6遍: {17,29,34,45,68,90,89} {17,29,34,45,68,89,90} //排序结束
8
CHD
(本动画中,参与排序的是R[1]到R[n],R[0]作为交换中转的空 间;变量j对应前面算法中的变量min)
2017/12/31
ALGORITHM BubbleSort(A[0,…,n – 1]) // 冒泡排序算法在数组上的应用 // 输入:数组A,数组中的元素属于某偏序集 // 输出:按升序排列的数组A for i 0 to n – 2 do
for j 0 to n – 2 – i do if A[j+1] < A[j] swap(A[j], A[j+1])
CHD
(4)对解决一些小规模的问题实例仍然有效
(5)可作为衡量其他算法的参照。
2
2017/12/31
Brute Force Examples:
1. Computing an (a > 0, n a nonnegative integer)
2. Computing n!
3. Multiplying two matrices
蛮力法 (2)
11
【例】贴纸问题 有A、B、C、D、E五人,每人额头上都帖了一张黑或白的纸。五人对 坐,每人都可以看到其他人额头上的纸的颜色。五人相互观察后, A说:“我看见有三人额头上帖的是白纸,一人额头上帖的是黑纸” B说:“我看见其他四人额头上帖的都是黑纸” C说:“我看见有一人额头上帖的是白纸,其他三人额头上帖的是黑纸” D说:“我看见其他四人额头上帖的都是白纸” E说:什么也没有说 现在已知额头上帖黑纸的人说的都是谎话,额头上贴白纸的人说的都 是实话,请你编写程序,求出这五个人谁的额头上帖的白纸,谁的额 头上帖的黑纸。
蛮力算法的优缺点:
(1)可以用来解决广阔领域的问题; (2)算法设计思想简单明了; (3)可以解决一些小规模的问题; (4)算法的效率不高,随着问题规模的增大,算法效率急剧下降; (5)问题规模过大时,在时间上,有些蛮力算法不可行。
15
作业1:用蛮力算法求解古堡问题
福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式: ABCDE * ? = EDCBA 他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!” 华生:“我猜也是!” 于是,两人沉默了好久,还是没有算出合适的结果来。 请你利用计算机的优势,找到破解的答案。 把 ABCDE 所代表的数字写出来。
蛮力法
1
蛮力法
蛮力法是基于计算机运算速度快这一特性,在解决问题 时采取的一种“懒惰” 策略。这种策略不经过(或者说经过 很少)思考,把问题所有情况或所有过程交给计算机去一 一尝试,从中找出问题的解。 蛮力策略应用:选择排序、冒泡排序、插入排序、顺序 查找、朴素的字符串匹配等。比较常用还有枚举法、盲目
搜索算法等。
2
1 枚举法
枚举法(穷举法)是蛮力策略的一种表现形式,根据问题 中条件将可能情况一一列举出来,逐一尝试从中找出满足 问题条件的解。但有时一一列举出的情况数目很大,则需 要进一步考虑,排除一些明显不合理的情况,尽可能减少 问题可能解的列举数目。 通常从两个方面进行算法设计: 1)找出枚举范围:分析问题所涉及的各种情况。 2)找出约束条件:分析问题的解需要满足的条件,并 用逻辑表达式表示。
蛮力法
算法设计2: 在公鸡(x)、母鸡(y)的数量确定后,小 鸡 的数量 z就固定为100-x-y,无需再进行枚举了 此时约束条件只有一个:5*x+3*y+z/3=100 算法2如下:
8
Z能被3整除时,才会判断“5*x+3*y+z/3=100
main( ) 枚举尝试20*33=660次 { int x,y,z; for(x=1;x<=20;x=x+1) for(y=1;y<=33;y=y+1) { z=100-x-y; if(z%3==0&&5*x+3*y+z/3==100) { print("the cock number is",x);
蛮力字符串匹配:即朴素模式串匹配
4
蛮力法解题步骤
根据问题中的条件将可能的情况一一列举出 来,逐一尝试从中找出满足问题条件的解。但有 时一一列举出的情况数目很大,如果超过了我们 所能忍受的范围,则需要进一步考虑,排除一些 明显不合理的情况,尽可能减少问题可能解的列 举数目。 用蛮力法解决问题,通常可以从两个方面进行算 法设计:
16
1)找出枚举范围:分析问题所涉及的各种情况。
2)找出约束条件:分析问题的解需要满足的条件,并用 逻辑表达式表示。
5
例1 百钱百鸡问题。中国古代数学家张丘建在他的 《算经》中提出了著名的“百钱百鸡问题”:鸡翁一, 值钱五;鸡母一,值钱三;鸡雏三,值钱一;百钱买 百鸡,翁、母、雏各几何?
算法设计1:
通过对问题的理解,可能会想到列出两个三元一次方程, 去解这个不定解方程,就能找出问题的解。这确实是一种 办法,但这里我们要用“懒惰”的枚举策略进行算法设计: 设x,y,z分别为公鸡、母鸡、小鸡的数量。
蛮力法详解
算法3.1——顺序查找
int SeqSearch1(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合
{ i=n;
基本语句 ?
while (i>0 && r[i]!=k)
i--;
return i;
}
算法3.1的基本语句是i>0和r[i]!=k,其执行次数为:
n
2020/6/14
Chapter 3 Brute force method
教学要求 理解 掌握
√
√ √ √
√ √ √
熟练掌握 √ √
√
4
3.1 概述:蛮力法的设计思想
蛮力法中“力”是指计算机的“计算能 力”,不是人的智“力”。
蛮力法的设计思想:直接基于问题的描述, 从有限集合中,逐一列举集合的所有元素, 对每一个元素逐一判断和处理,从而找出 问题的解。
如已知:公钥为:KU={e, n},私钥为: KR={d, n},则 对明文m的加密/解密算法如下:
加密 明文: M<n 密文: C=Me (mod n)
密文: 明文:
解密 C M=Cd (mod n)
注:计算an算法的效率直接影响到RSA算法的性能
2020/6/14
Chapter 3 Brute force method
2020/6/14
Chapter 3 Brute force method
7
蛮力法的设计思想
因要穷举待处理的元素,故蛮力法的时间性能往往最低, 但基于以下原因,蛮力法也是一种重要的算法设计技术:
(1)理论上,蛮力法可以解决可计算领域的各种问题。 (2)蛮力法经常用来解决一些较小规模的问题。 (3)对于一些重要的问题(例如排序、查找等)蛮力法 可以产生一些合理的算法,他们具备一些实用价值,而且 不受问题规模的限制。 (4)蛮力法可以作为某类问题时间性能(不是复杂性, 两者恰好相反)的下界,来衡量同样问题的更高效算法。
蛮力法的实验报告
一、实验目的1. 理解蛮力法的基本概念和原理。
2. 掌握蛮力法的实现步骤。
3. 通过具体实例,验证蛮力法在解决实际问题中的效果和局限性。
二、实验原理蛮力法,也称为穷举法或枚举法,是一种直接基于问题描述的简单解决方法。
其基本思想是通过遍历所有可能的解空间,从中找出可行解,进而得到问题的最优解。
蛮力法的解题步骤如下:1. 找出解空间:确定问题可能的所有解的范围。
2. 遍历解空间:按照一定的顺序,逐一尝试所有可能的解。
3. 找出可行解:对每个解进行判断,确定其是否满足问题的约束条件。
4. 选取最优解:从所有可行解中,根据问题要求选择最优解。
三、实验内容本实验以“求一个三位数,个位数字比百位数字大,百位数字又比十位数字大,且各位数字之和等于各位数字相乘之积”的问题为例,采用蛮力法进行求解。
1. 解空间该问题的解空间为三位数,即100-999之间的所有整数。
2. 遍历解空间按照从100到999的顺序,逐一检查每个数是否满足以下条件:(1)个位数字比百位数字大;(2)百位数字比十位数字大;(3)各位数字之和等于各位数字相乘之积。
3. 找出可行解在遍历过程中,对于每个数,首先判断其是否为三位数。
如果是,再分别取出其百位、十位和个位数字,并判断是否满足上述条件。
4. 选取最优解由于该问题没有明确要求求解最优解,因此只需找出所有满足条件的解即可。
四、实验步骤1. 编写程序,实现蛮力法求解上述问题。
2. 运行程序,观察结果。
五、实验结果与分析1. 实验结果经过计算,发现满足条件的三位数有以下几个:- 145(1+4+5=10,1×4×5=20,不满足条件)- 261(2+6+1=9,2×6×1=12,不满足条件)- 352(3+5+2=10,3×5×2=30,不满足条件)- 463(4+6+3=13,4×6×3=72,不满足条件)- 514(5+1+4=10,5×1×4=20,不满足条件)- 625(6+2+5=13,6×2×5=60,不满足条件)- 736(7+3+6=16,7×3×6=126,不满足条件)- 847(8+4+7=19,8×4×7=224,不满足条件)- 959(9+5+9=23,9×5×9=405,不满足条件)2. 实验分析(1)蛮力法能够找到所有满足条件的解,但效率较低。
关于算法--蛮力法--字符与字符串匹配
关于算法--蛮⼒法--字符与字符串匹配⼀、顺序查找1、步骤:简单的将给定列表中的连续元素与给定的查找键作⽐较,直到遇到⼀个匹配的元素或遇到匹配元素前就遍历了整个列表2、JavaScript代码实现1 <!DOCTYPE html>2 <html lang="en">3 <head>4 <meta charset="UTF-8">5 <title>SelectionFind</title>6 </head>7 <body>89 </body>10 <script type="text/javascript">11var search = function(arr, k) {12var n = arr.length;13 arr[n] = k;14var i = 0;15while(arr[i] != k){16 i ++;17 }18if( i < n){19return i;20 }else{21return -1;22 }2324 };25var num = search(['a','b','c','d','e','f','g'], 'b');26 console.log(num);27 </script>28 </html>3、算法分析:顺序查找算法具有蛮⼒法的优点(简单)和缺点(效率低),是⼀个线型算法⼀、蛮⼒字符串匹配1、步骤(需要从m个“⽂本”中取出n个“模式”字符串) a、将模式对准⽂本的前m个字符,从左向右匹配每⼀对响应的字符,直到m对字符全部匹配(此时算法停⽌)或者遇不到⼀对匹配的字符串 b、在后⼀种情况下,模式向右移⼀位,然后从模式的第⼀个字符开始,继续把模式和⽂本中的对应字符作⽐较2、JavaScript代码实现1 <!DOCTYPE html>2 <html lang="en">3 <head>4 <meta charset="UTF-8">5 <title>蛮⼒法字符串匹配</title>6 </head>7 <body>89 </body>10 <script type="text/javascript">11var search = function(arrT, arrP) {12var m = arrT.length;13var n = arrP.length;14for(var i = 0; i < m - n ; i++){15var j = 0;16while(( j < m ) && (arrP[j] == arrT[j + i])){17 j++;18 }19if(j == n){20return i;21 }22 }23return -1;24 };25 console.log(search(['a','b','c','d','e','f','g'],['c','d','e']));26 </script>27 </html>3、算法分析移动“模式”之前,可能做⾜m次⽐较,⽽n-m+1次尝试都有可能出现,最坏的情况下,算法属于Θ(mn),平均效率下,算法属于Θ(m+n)=Θ(m)。
蛮力法
蛮力法
设计与开发大赛
一、蛮力法概述
蛮力法(也叫穷举法、暴力法)它 要求设计者找出所有可能的方法,然后 选择其中的一种方法,若该方法不可行 则试探下一种可能的方法。 显然蛮力法(也叫穷举法)不是一 个最好的算法选择,但当我们想不出别 的更好的办法时,它也是一种有效的解 决问题的方法。
2
14
常州大学信息学院
设计与开发大赛
蛮力法的一般模式
1、问题解的可能搜索范围: 用循环或循环嵌套结构实现。 2、写出符合问题解的条件: 用条件语句实现判断。 3、对程序做一些优化,以便 缩小搜索范围,减少程序运行时间。
15
常州大学信息学院
设计与开发大赛
四、蛮力法练习
练习 1:36块砖,36个人搬。男搬 4,女搬3,两个小儿抬一砖。要求 一次搬完。问需男、女、小儿个若 干(必须都有)? 类似问题:一张100元,换成20, 10,5,1面值的零钞,每种至少一 张,共有哪些换法?总计多少种换 法?
设计与开发大赛
for(i=1;A<=5;i=i+1) { G2=G1; E1=E1/10; G1=E1%10; if(G1<>G2) break; } If(i==6) printf(“%d*%d=%d”F,A,E); }
12
常州大学信息学院
设计与开发大赛
算法优化:将算式由乘变为除。 算法优化 DDDDDD/A = ABCAB 尝试范围:3≤A≤9;1≤D≤9; 尝试范围 约束条件:每次除法所得的商的万 约束条件 位、十位与除数相同,商的千位与 个位相同。
8
常州大学信息学院
设计与开发大赛
例 2:编写算法解如下数字迷。 A B C A B × A D D D D D D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
搜索所有的解空间 搜索所有的路径 直接计算 模拟和仿真
一个简单的例子——百元买百鸡问题
3.1.5 蛮力法解题步骤
用蛮力法解决问题,通常可以从两个方面进行算 法设计:
找出枚举范围:分析问题所涉及的各种情况。 找出约束条件:分析问题的解需要满足的条件,并
用逻辑表达式表示。
逻辑清晰,编写程序简洁 对于一些重要的问题(比如:排序、查找、矩阵 乘法和字符串匹配),可以产生一些合理的算法 解决问题的实例很少时,可以花费较少的代价 可以解决一些小规模的问题(使用优化的算法没 有必要,而且某些优化算法本身较复杂) 可以作为其他高效算法的衡量标准
3.1.4 使用蛮力法的几种情况
问题描述:旅行家要旅行n个城市然后回到出发 城市,要求各个城市经历且仅经历一次,并要求 所走的路程最短。该问题又称为货郎担问题、邮 递员问题、售货员问题,是图问题中最广为人知 的问题。 用蛮力法解决TSP问题,可以找出所有可能的旅 行路线,从中选取路径长度最短的简单回路。 求解: 一个加权连通图中的最短哈密顿回路问题。
2.2.1 如果weight+wj<C,则 weight=weight+wj;value=value+vj; 2.2.2 否则,转步骤2考察下一个子集;
2.3 如果maxValue<value,则maxValue=value;S=T;
3. 输出子集S中的各元素。
3.2.4 TSP——图问题
思考:求所有的三位数,它除以11所得的余数等于 它的三个数字的平方和。——找出枚举范围和约 束条件
分析:
枚举范围:100~999,共900个。 约束条件:设三位数的百位、十位、个位的数字分 别为x,y,z。则有x2+y2+z2≤10,进而1≤x≤3, 0≤y≤3, 0≤z≤3。
解:所求三位数必在以下数中:
3.1 如果S[i]等于T[j],则继续比较S和T的下一对字符; 3.2 否则,下一趟匹配的开始位置index++,回溯下标 i=index, j=0;
4. 如果T中所有字符均比较完,则返回匹配的开始位 置index;否则返回0。 T=‘aaab’
KMP算法
i
TSP问题有着简单的表述、重要的应用、以及和其他NP完全 问题的重要关系,它在近100年的时间里强烈地吸引着计算机 科学工作者。
a 5 c
序号 1 2 3 4 5 6 路径 a→b→c→d→a a→b→d→c→a a→c→b→d→a a→c→d→b→a a→d→b→c→a a→d→c→b→a
2 8
求an(n为非负整数) 用连续整数检测算法计算GCD(m, n)
蛮力法不是一个最好的算法(巧妙和高效的算法 很少出自蛮力),但当我们想不出更好的办法时,它 也是一种有效的解决问题的方法。 它可能是惟一一种几乎什么问题都能解决的一般 性方法,常用于一些非常基本、但又十分重要的 算法。
3.1.3 蛮力法的优点
3.2.3 0/1背包问题——组合
问题描述:给定n个重量为 {w1, w2, … ,wn}、价值为{v1, v2, … ,vn}的物品和一个容 量为 C 的背包,求这些物 品中的一个最有价值的子 集,且要能够装到背包中。
在n个物品中找到所有总重量不超过背包容量的子 集,计算每个可能子集的总价值,然后找到价值 最大的子集。 例如,给定4个物品的重量{7, 3, 4, 5},价值{42, 12, 40, 25},和一个容量为10的背包。蛮力法求解 过程为:
i
a b c a b c a c b \0 a b c a c
a b c a b c a c b \0 a b c a c
k
j
k
j
T[j-k]~T[j-1] = S[i-k]~S[i-1]
T[0]~T[k-1] = S[i-k]~S[i-1]
T[0]~T[k-1] = T[j-k]~T[j-1]
,当j=0时 1 next[ j ] Max{k | 0 k j且' p1...pk 1 ' ' p j k 1...p j 1 '} ,当此集合不空时 0 ,其他情况
包容量C 量是2n,所以,不论生成子集的算法效率有 多高 , 蛮力法都会导致一个 Ω( 2 n ) 的算法 . 输出:装入背包的物品编号 1. 初始化最大价值maxValue=0;结果子集S=Φ; 2. 对集合{1, 2, …, n}的每一个子集,执行下述操作:
2.1 初始化背包的价值value=0;背包的重量weight=0; 2.2 对子集T的每一个元素j
5 10
40
25 54
12
13 14
{1, 2, 3}
{1, 2, 4} {1, 3, 4}
14
15 16
不可行
不可行 不可行
7
8
{1, 3}
{1, 4}
11
12
不可行
不可行
15
16
{2, 3, 4}
{1, 2, 3, 4}
12
19
不可行
不可行
0/1背包问题算法伪代码描述:
输入:重量{w1, w {v1, v2, …, v,n },背 对于一个具有 n 个元素的集合 其子集数 2, …, wn},价值
第3章 蛮力法
学习要点:
掌握蛮力法的设计思想 应用蛮力法思想,设计求解问题的算法,并分析算
法时间复杂性
3.1 概述
3.1.1 蛮力法的设计思想
蛮力法是指采用遍历(扫描)技术,即采用一定 的策略将待求解问题的所有元素依次处理一次, 从而找出问题的解。 依次处理所有元素是蛮力法的关键,为了避免陷 入重复试探,应保证处理过的元素不再被处理。
3.1.2 关于蛮力法的思考
蛮力法(枚举法、穷举法、暴力法)要求设计者 找出所有可能的情况,然后选择其中一种情况, 若该情况不可行(或不是最优解)则试探下一种 可能的情况。 蛮力法是一种直接解决问题的方法,常常直接基 于问题的描述和所设计的概念定义。 “力”——指计算机的能力,而不是人的智力。 蛮力法常常是最容易应用的方法。
蛮力法求解TSP问题,只能解决问题规模很小的实例。
算法的C++语言描述:
int ClosestPoints(int x[ ], int y[ ], int n) { int index1, index2; //记载最近点对的下标 int d, minDist = 1000; //假设最大距离不超过1000 for (int i = 0; i < n - 1; i++) for (int j = i + 1; j < n; j++) //只考虑i<j的点对 { d = (x[i]-x[j])* (x[i]-x[j]) + (y[i]-y[j])* (y[i]-y[j]); if (d < minDist) { minDist = d; index1 = i; index2 = j; } } cout<<"最近的点对是:"<<index1<<"和"<<index2<<endl; return minDist; }
w={7, 3, 4, 5}
序号 1 2 3 子集 Φ {1} {2}
v={42, 12, 40, 25}
重量 0 7 3 价值 0 42 12 序号 9 10 11
C=10
子集 {2, 3} {2, 4} {3, 4} 重量 7 8 9 价值 52 37 65
4
5 6
{3}
{4} {1, 2}
4
KMP算法的伪代码描述:
输入:主串S,模式T 输出:T在S中的位置
算法的时间复杂性T(n)=O(n)
1. 在串S和串T中分别设置比较的起始下标i=0, j=0; 2. 重复下述操作, 直到S或T的所有字符均比较完毕:
2.1 如果S[i]等于T[j],则继续比较S和T的下一对字符; 2.2 否则,将下标j回溯到next[j]位置,即j=next[j]; 2.3 如果j等于-1,则将下标i和j分别加1,准备下一趟 比较;
100,101,102,103,110,111,112, 120,121,122,130,200,201,202, 211,212,220,221,300,301,310。 不难验证只有100,101两个数符合要求。
3.2 各类问题中的蛮力法
3.2.1 串匹配问题——查找
BF算法
本趟开始位置
KMP算法
本章小结
蛮力法的设计思想:采用一定的策略将待求解问 题的所有元素依次处理一次,从而找出问题的解 。 求解步骤:
找出枚举范围 找出约束条件
课后作业
P53:2~8,按学号完成相应的题目:
学号尾数mod7=1,完成2
学号尾数mod7=2,完成3
学号尾数mod7=3,完成4 学号尾数mod7=4,完成5 学号尾数mod7=5,完成6 学号尾数mod7=6,完成7 学号尾数mod7=0,完成8
1 7
b 3 d
路径长度 18 11 23 11 23 18 是否最短 否 是 否 是 否 否
用蛮力法求解TSP问题存在的问题:
注意到图中有3对不同的路径,对每对路径来说,不同的 只是路径的方向,因此,可以将这个数量减半,则可能 的解有(n-1)!/2个。随着n的增长,TSP问题的可能解也在 迅速地增长。 一个10城市的TSP问题有大约180,000个可能解。 一个20城市的TSP问题有大约 60,000,000,000,000,000个可能解。 一个50城市的TSP问题有大约1062个可能解,而一个行 星上也只有1021升水。