第五章 三次样条插值Spline.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 三次样条插值
背景 代数插值 Hermite插值
/* Cubic Spline Interpolation */
高次插值出现龙格现象
分段插值 在节点处不一定光滑
分段Hermite插值 导数值不容易得到
三次样条插值(先由函数值确定导数值,再由分段 Hermite插值解决问题) 应用最为广泛
f(x) H( x ) S( x )
Cubic Spline
三次样条插值函数 S(x) 是否存在唯一? 如何计算?误差估计? 三次样条插值函数是分段三次多项式,在每个小区间 [ x i , x i 1] 上可以写成
S( x) ai x3 bi x 2 ci x di , i 0,1, , n 1,
S ( x ) x xi x x i 1 M i 1 Mi , hi hi
来自百度文库
其中 hi = xi – xi-1 . 对S (x) 积分两次得
( xi x )3 ( x xi 1 )3 S ( x ) M i 1 Mi C1 x C2 6hi 6hi
由式(3.2)有
2 2 ( x x ) ( x x ) y yi 1 h i i 1 S ( xi ) M i 1 i Mi i i M i M i 1 i 2hi 2hi hi 6
Lagrange插 值
Cubic Spline
利用插值条件
S ( xi 1 ) yi 1 , S ( xi ) yi
定出积分常数,可以得到
( xi x ) 3 ( x x i 1 )3 S ( x ) M i 1 Mi 6hi 6hi yi 1 M i 1hi 6 hi yi M i hi ( xi x ) 6 hi (3.1) ( x xi 1 )
三次样条插值问题
定义 设 a x0 x1 ... xn b 。三次样条函数 S( x) C
2
[a, b]
,
且在每个[ xi , xi 1 ]上为三次多项式 /* cubic polynomial */。若它同
时还满足 S( xi ) f ( xi ), (i 0,1, , n) ,则称 S(x) 为 f(x) 在结点 xi ( i = 0, 1, …, n) 上的三次样条插值函数 . 注:三次样条与分段 Hermite 插值的根本区别在于S(x)自 身光滑,不需要知道 f 的导数值(除了在2个端点可能需 要);而Hermite插值依赖于f 在所有插值点的导数值。
此时,对函数值有周期条件 f ( x0 ) f ( xn ).
Cubic Spline由边界条件唯一确定。
定理 三次样条插值问题的解存在且唯一。
Cubic Spline
三弯矩法
/* method of bending moment */
三次样条插值函数 S(x) 可以有多种表达式,有时用二阶 导数值 S( xi ) Mi (i 0,1, , n) 表示时,使用更方便。Mi 在 力学上解释为细梁在 xi 处的弯矩,并且得到的弯矩与相邻两 个弯矩有关,故称用 Mi 表示 S(x) 的算法称为三弯矩法。 由于S(x) 在区间 [ xi 1 , xi ] (i 1, 2, , n) 上是3 次多项式, 故 S (x) 在 [ xi 1 , xi ]上是 1 次多项式, 可表示为
如:汽车、船的外形设计,流体力学等要求流线型(光滑)
木样条的来源
样条是绘图员用于描绘光滑曲线的由一些易弯曲材料制成的 窄条。在绘制需要通过某点的光滑曲线时 ,对它在这些点的位置 上“压铁”,它就被强制通过或接近图表上确定的描绘点。“样 条函数”意在点出这种函数的图像与机械样条画出的曲线很像。
Cubic Spline
x [ xi 1 , xi ], i 1, 2,
,n
这是三次样条插值函数的表达式,当求出Mi 后, S(x)就完全确定.
为了求 Mi ,需要利用S(x)在内结点处一阶导数连续的条件, 由上式可得
( xi x )2 ( x xi 1 )2 yi yi 1 hi S ( x ) M i 1 Mi M i M i 1 (3.2) 2hi 2hi hi 6
共有 4n 个待定参数。S(x) 在[a, b]上二阶导数连续,故在内 结点 xi (i 1, 2, , n -1) 处应满足连续性条件
S
k
xi 0 S k ( xi 0),
k 0,1, 2,
共有 3(n-1) 个条件。再加上 n+1 个插值条件,共有4n-2 个 条件。因此,还需要2个条件才能确定S(x)。通常在区间 端点 a = x0 和 b = xn 上各加一个条件(称为边界条件), 可根据实际问题的要求给定。
(自由边界)
对应的样条函数称为自然样条 /* Natural Spline */.
(2)已知两端的一阶导数值,即 mn . S( x0 ) f0 m0 , S( xn ) fn (3)周期边界条件
(II类)
(III 类)
S k ( x0 ) S k ( xn ), k 0,1, 2.
x [ xi 1 , xi ], i 1, 2,
,n
S ( x ) M i 1
( xi x ) ( x xi 1 ) yi yi 1 h Mi M i M i 1 i (3.2) 2hi 2hi hi 6
2 2
Cubic Spline
Cubic Spline
常用边界条件 /* boundary conditions */
(1)已知两端的二阶导数值,即
Mn . S( x0 ) f0 M0 , S ( xn ) f n
(I 类)
其特殊情况为
S ( x0 ) 0, S ( xn ) 0,
背景 代数插值 Hermite插值
/* Cubic Spline Interpolation */
高次插值出现龙格现象
分段插值 在节点处不一定光滑
分段Hermite插值 导数值不容易得到
三次样条插值(先由函数值确定导数值,再由分段 Hermite插值解决问题) 应用最为广泛
f(x) H( x ) S( x )
Cubic Spline
三次样条插值函数 S(x) 是否存在唯一? 如何计算?误差估计? 三次样条插值函数是分段三次多项式,在每个小区间 [ x i , x i 1] 上可以写成
S( x) ai x3 bi x 2 ci x di , i 0,1, , n 1,
S ( x ) x xi x x i 1 M i 1 Mi , hi hi
来自百度文库
其中 hi = xi – xi-1 . 对S (x) 积分两次得
( xi x )3 ( x xi 1 )3 S ( x ) M i 1 Mi C1 x C2 6hi 6hi
由式(3.2)有
2 2 ( x x ) ( x x ) y yi 1 h i i 1 S ( xi ) M i 1 i Mi i i M i M i 1 i 2hi 2hi hi 6
Lagrange插 值
Cubic Spline
利用插值条件
S ( xi 1 ) yi 1 , S ( xi ) yi
定出积分常数,可以得到
( xi x ) 3 ( x x i 1 )3 S ( x ) M i 1 Mi 6hi 6hi yi 1 M i 1hi 6 hi yi M i hi ( xi x ) 6 hi (3.1) ( x xi 1 )
三次样条插值问题
定义 设 a x0 x1 ... xn b 。三次样条函数 S( x) C
2
[a, b]
,
且在每个[ xi , xi 1 ]上为三次多项式 /* cubic polynomial */。若它同
时还满足 S( xi ) f ( xi ), (i 0,1, , n) ,则称 S(x) 为 f(x) 在结点 xi ( i = 0, 1, …, n) 上的三次样条插值函数 . 注:三次样条与分段 Hermite 插值的根本区别在于S(x)自 身光滑,不需要知道 f 的导数值(除了在2个端点可能需 要);而Hermite插值依赖于f 在所有插值点的导数值。
此时,对函数值有周期条件 f ( x0 ) f ( xn ).
Cubic Spline由边界条件唯一确定。
定理 三次样条插值问题的解存在且唯一。
Cubic Spline
三弯矩法
/* method of bending moment */
三次样条插值函数 S(x) 可以有多种表达式,有时用二阶 导数值 S( xi ) Mi (i 0,1, , n) 表示时,使用更方便。Mi 在 力学上解释为细梁在 xi 处的弯矩,并且得到的弯矩与相邻两 个弯矩有关,故称用 Mi 表示 S(x) 的算法称为三弯矩法。 由于S(x) 在区间 [ xi 1 , xi ] (i 1, 2, , n) 上是3 次多项式, 故 S (x) 在 [ xi 1 , xi ]上是 1 次多项式, 可表示为
如:汽车、船的外形设计,流体力学等要求流线型(光滑)
木样条的来源
样条是绘图员用于描绘光滑曲线的由一些易弯曲材料制成的 窄条。在绘制需要通过某点的光滑曲线时 ,对它在这些点的位置 上“压铁”,它就被强制通过或接近图表上确定的描绘点。“样 条函数”意在点出这种函数的图像与机械样条画出的曲线很像。
Cubic Spline
x [ xi 1 , xi ], i 1, 2,
,n
这是三次样条插值函数的表达式,当求出Mi 后, S(x)就完全确定.
为了求 Mi ,需要利用S(x)在内结点处一阶导数连续的条件, 由上式可得
( xi x )2 ( x xi 1 )2 yi yi 1 hi S ( x ) M i 1 Mi M i M i 1 (3.2) 2hi 2hi hi 6
共有 4n 个待定参数。S(x) 在[a, b]上二阶导数连续,故在内 结点 xi (i 1, 2, , n -1) 处应满足连续性条件
S
k
xi 0 S k ( xi 0),
k 0,1, 2,
共有 3(n-1) 个条件。再加上 n+1 个插值条件,共有4n-2 个 条件。因此,还需要2个条件才能确定S(x)。通常在区间 端点 a = x0 和 b = xn 上各加一个条件(称为边界条件), 可根据实际问题的要求给定。
(自由边界)
对应的样条函数称为自然样条 /* Natural Spline */.
(2)已知两端的一阶导数值,即 mn . S( x0 ) f0 m0 , S( xn ) fn (3)周期边界条件
(II类)
(III 类)
S k ( x0 ) S k ( xn ), k 0,1, 2.
x [ xi 1 , xi ], i 1, 2,
,n
S ( x ) M i 1
( xi x ) ( x xi 1 ) yi yi 1 h Mi M i M i 1 i (3.2) 2hi 2hi hi 6
2 2
Cubic Spline
Cubic Spline
常用边界条件 /* boundary conditions */
(1)已知两端的二阶导数值,即
Mn . S( x0 ) f0 M0 , S ( xn ) f n
(I 类)
其特殊情况为
S ( x0 ) 0, S ( xn ) 0,