半导体器件物理第七章
半导体物理与器件ppt课件
2.23
h h K为波数=2π/λ, λ为波长。 2mE 15 P
2.3薛定谔波动方程的应用
2.3.2无限深势阱(变为驻波方程) 与时间无关的波动方程为:
2 x 2m 2 E V x x 0 2 x
2.13
由于E有限,所以区域I和III 中:
课程主要内容
固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章
1
绪论
什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
分别求解与时间无关的波动方程、与时间有关的波 动方程可得自由空间中电子的波动方程为:
j j x, t A exp x 2mE Et B exp x 2mE Et
2.22
说明自由空间中的粒子运动表现为行波。 沿方向+x运动的粒子: x, t A exp j kx t
18
2.3薛定谔波动方程的应用
无限深势阱(前4级能量)
随着能量的增加,在任意给 定坐标值处发现粒子的概率 会渐趋一致
19
2.3薛定谔波动方程的应用
2.3.3阶跃势函数
入射粒子能量小于势垒时也有一定概率穿过势垒 (与经典力学不同)
20
2.3薛定谔波动方程的应用
2.3.3阶跃势函数 Ⅰ区域 21 x 2mE 2 1 x 0 2.39 2
半导体物理(微电子器件基础 )知识点总结
第一章●能带论:单电子近似法研究晶体中电子状态的理论●金刚石结构:两个面心立方按体对角线平移四分之一闪锌矿●纤锌矿:两类原子各自组成的六方排列的双原子层堆积而成(001)面ABAB顺序堆积●禁带宽度:导带底与价带顶之间的距离脱离共价键所需最低能量●本征激发:价带电子激发成倒带电子的过程●有效质量(意义):概括了半导体内的势场作用,使解决半导体内电子在外力作用下运动规律时,可以不涉及半导体内部势场作用●空穴:价带中空着的状态看成是带正电的粒子●准连续能级:由于N很大,每个能带的能级基本上可以看成是连续的●重空穴带:有效质量较大的空穴组成的价带●窄禁带半导体:原子序数较高的化合物●导带:电子部分占满的能带,电子可以吸收能量跃迁到未被占据的能级●价带:被价电子占满的满带●满带:电子占满能级●半导体合金:IV族元素任意比例熔合●能谷:导带极小值●本征半导体:完全不含杂质且无晶格缺陷的纯净半导体●应变半导体:经过赝晶生长生成的半导体●赝晶生长:晶格失配通过合金层的应变得到补偿或调节,获得无界面失配位错的合金层的生长模式●直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置●间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置●允带:允许电子能量存在的能量范围.●同质多象体:一种物质能以两种或两种以上不同的晶体结构存在的现象第二章●替位杂质:杂质原子取代晶格原子而位于晶格点处。
●间隙杂质:杂质原子位于晶格的间隙位置。
●杂质浓度:单位体积中的杂质原子数。
●施主(N型)杂质:释放束缚电子,并成为不可动正电荷中心的杂质。
●受主(P型)杂质:释放束缚空穴,并成为不可动负电荷中心的杂质。
● 杂质电离:束缚电子被释放的过程(N )、束缚空穴被释放的过程(P )。
● 杂质束缚态:杂质未电离时的中性状态。
● 杂质电离能:杂质电离所需的最小能量:● 浅能级杂质:施(受)主能级很接近导(价)带底(顶)。
半导体物理与器件-第七章 pn结
7.1 pn结的基本结构
冶金结:P区和n区的交界面
突变结 突变结-均匀分布,交界处突变
5
7.1 pn结的基本结构
PN结的形成
Space charge region
空间电荷区=耗尽区(没有可自由移动的净电荷,高阻区)
6
pn结的形成
Байду номын сангаас.2 零 偏
pn结能带图
7.2.1内建电势差
当两块半导体结合成pn结时,按费米能级的意义,电子将 从费米能级高的n区向费米能级低的p区,空穴则从p区流向n区 ,因而FFn不断下移,且EFp不断上移,直至时FFn = EFp为止;这 时pn结中有统一的费米能级EF,pn结处于热平衡状态。
4、对单边突变结,空间电荷区的宽度W取决于轻掺杂一侧杂质的浓度。
7.2零偏
7.2.3空间电荷区宽度
7.3 反 偏
7.3.1空间电荷区宽度与电场
反偏
与内建电场方向相同
外加偏置电压VR(以P端相对于N端电压为定义方向) 正偏:P端接正;
反偏:P端接负。
EF不再统一
n
16
7.3反偏
V=Vbi+VR
第7章 pn结
本章内容
第7章 pn结 7.1 pn结的基本结构 7.2零偏 7.3反偏 *7.4非均匀掺杂pn结 7.5小结
2
引言
PN结是几乎所有半导体器件的基本单元。除金属-半导体接触器 件外,所有结型器件都由PN结构成。PN结本身也是一种器件-整 流器。PN结含有丰富的物理知识,掌握PN结的物理原理是学习其 它半导体器件器件物理的基础。正因为如此, PN结一章在半导 体器件物理课的64学时的教学中占有16学时,为总学时的四分之 一。
半导体物理与器件习题
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体器件物理复习纲要word精品文档5页
第一章 半导体物理基础能带:1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么?1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征及引入空穴的意义。
1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为:2222100()()3C k k k E k m m -=+和22221003()6v k k E k m m =-;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=⨯⋅,3109.110m Kg -=⨯,191.610q C -=⨯。
试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。
空穴的意义:引入空穴后,可以把价带中大量电子对电流的贡献用少量空穴来描述,使问题简化。
1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m +2102()k k m -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =22106k m ;∴Eg =E min -E max =221012k m =222012m a π =23423110219(1.05410)129.110(3.1410) 1.610π----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n2222200022833C d E dk m m m =+=;∴ 22023/8C n d E m m dk == ③价带顶电子有效质量m ’ 22206V d E dk m =-,∴2'2021/6V n d E m m dk ==- 掺杂:2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?2-3、什么叫受主?什么叫受主电离?2-4、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
半导体器件物理(第七章) 施敏 第二版
线性区 饱和区
I
Z L
nCi VG
VT
VD
VDsat VG VT
I
Zn S
2Ld1 d0
d
VG
VT
2
对高速工作状态而言,载流子速度 达到饱和,此时饱和区电流、跨导 和截止频率:
Isat Zvsqns ZvsCi (VG VT )
gm ZvsCi
fT
gm
2C总电容
vs
2 L
CP ZCi
肖特基势垒电流电压特性
在热电子发射情况下,金属半导 体接触的电流电压表示为
J
JS
exp
qV kT
1
JS
A*T 2
exp
qBn
kT
A*称为有 效理查逊 常数
少数载流子电流密度
JP
J
P
0
exp(
qV kT
)
1
J P0
qDp ni 2 LP ND
通常,少数载流子电流比多数载 流子电流少数个数量级。
7.2.3 电流电压特性
电流电压方程式
I
IP
VD VP
2 3
VD
VG VP
Vbi
3/2
2 3
VG Vbi VP
3/2
IP
Zn q 2 N D 2a3 2S L
,VP
qNDa2
2 S
线性区
ID
IP VP
1
VG Vbi VP
1/ 2
VD
gm
I D VG
VD
IP 2VP 2
VP VG Vbi
7.1 金属-半导体接触
7.1.1 基本特性
半导体器件物理教案课件
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
半导体物理知识点及重点习题总结
基本概念题:第一章半导体电子状态半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
导带与价带有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
本征半导体既无杂质有无缺陷的理想半导体材料。
空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
空穴是如何引入的,其导电的实质是什么?答:空穴是为处理价带电子导电问题而引进的概念。
半导体器件物理7章MOS原理
第7章MOSFET原理7.1 金属、半导体的功函数在绝对零度时,金属中的电子填满了费米能级EF以下的所有能级,而高于费米能级E的所有能级全部F是空的。
温度升高时,只有费米能级E附近的少数电F子受到热激发,由低于E的能级跃迁到高于F E的能级F上,但大部分电子仍不能脱离金属而逃逸出体外。
这意味着金属中的电子虽然能够在金属中自由运动,但绝大多数电子所处的能级都低于体外(真空)的能级。
要使金属中的电子从金属中逸出,必须由外界给它以足够的能量。
从量子力学的观点看,金属中的电子是在一个势阱运动。
用E表示真空中静止电子的能量。
如图7.1所示。
定义某种材料的功函数为:真空电子能量E与材料的费米能级E的差值。
F则金属的功函数为()07.1m FmW E E =- 半导体的功函数为()07.2s Fs W E E =-功函数的物理意义:表示电子从起始能量等于F E 由金属内逸出(跳到真空)需要的最小能量。
注意:半导体的费米能级随掺杂浓度改变,因而其功函数也随掺杂浓度变化。
图7.1 还显示了从0c E E 的能量间隔χ,χ称谓电子亲和能,表示使处于半导体导带底的电子逃逸出体外(跳到真空能级)需要的最小能量。
即()07.3c E E χ=-利用电子的亲和能,半导体的功函数又可以表示为 []()[]7.4()S c FS n c FS n W E E e E E e N semiconductor χχφφ=+-=+-=-表7.1 列出了硅在不同掺杂浓度下对应的功函数 ()()()331415161415167.11010101010104.37 4.31 4.25 4.87 4.93 4.99S d a W eV n type N cm p type N cm Si ----表硅的功函数与掺杂浓度的关系(计算值)半导体材料功函数7.2金属-氧化物-半导体场效应晶体管(MOSFET) 引言:MOS 器件的发明先于双极器件,但由于加工工艺条件的限制,双极器件的商品化要早于MOS 器件。
《半导体器件物理》教学大纲(精)
《半导体器件物理》教学大纲(2006版)课程编码:07151022学时数:56一、课程性质、目的和要求半导体器件物理课是微电子学,半导体光电子学和电子科学与技术等专业本科生必修的主干专业基础课。
它的前修课程是固体物理学和半导体物理学,后续课程是半导体集成电路等专业课,是国家重点学科微电子学与固体电子学硕士研究生入学考试专业课。
本课程的教学目的和要求是使学生掌握半导体器件的基本结构、物理原理和特性,熟悉半导体器件的主要工艺技术及其对器件性能的影响,了解现代半导体器件的发展过程和发展趋势,对典型的新器件和新的工艺技术有所了解,为进一步学习相关的专业课打下坚实的理论基础。
二、教学内容、要点和课时安排第一章半导体物理基础(复习)(2学时)第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结(12学时)第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)P 结第二节加偏压的N一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象P-结的直流电流-电压特性第三节理想N一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示Fig2.12)I-特性的温度依赖关系第六节V一、反向饱和电流和温度的关系I-特性的温度依赖关系二、V第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管(10学时)第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系Ebers-)方程第四节爱拜耳斯-莫尔(Moll一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、h FE和I CE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(W T),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE 、τC 、τD及相关推导四、Kirk效应第九节混接 型等效电路一、参数:g m、g be 、C D的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:t d、t r、t f、t s三、解电荷控制方程求贮存时间t s第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结(4学时)第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管(4学时)第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:g l g ml g m C G二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型N—沟耗尽型二、P—沟增强型P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管(10学时)第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节等效电路和频率响应一、参数:g d g m r d二、等效电路三、截止频率第七节亚阈值区一、亚阈值概念二、MOSFET的亚阈值概念第九节MOS场效应晶体管的类型一、N—沟增强型N—沟耗尽型二、P—沟增强型P—沟耗尽型第十节器件尺寸比例MOSFET制造工艺一、P沟道工艺二、N沟道工艺三、硅栅工艺四、离子注入工艺第七章 太阳电池和光电二极管(6学时)第一节半导体中光吸收一、两种光吸收过程二、吸收系数三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m 二、效率的概念%100⨯=inL OC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程二、例1-1,求少子分布,电流分布 三、计算光子收集效率:O npt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响理解Fig7-9,Fig7-10所反映的物理意义第六节提高太阳能电池效率的考虑一、光谱考虑(多媒体演示)二、最大功率考虑三、串联电阻考虑四、表面反射的影响五、聚光作用第七节肖特基势垒和MIS太阳电池一、基本结构和能带图二、工作原理和特点阅读§7.8第九节光电二极管一、基本工作原理二、P-I-N光电二极管三、雪崩光电二极管四、金属-半导体光电二极管第十节光电二极管的特性参数一、量子效率和响应度二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP)四、探测率(D)、比探测率(D*)第八章发光二极管与半导体激光器(4学时)第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节LED的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节LED的特性参数一、I-V特性二:量子效率:注射效率γ、辐射效率rη、内量子效率iη,逸出概率oη、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布,峰值半高宽FWHM,峰值波长,主波长,亮度第四节可见光LED一、GaP LED二、GaAs1-x P x LED三、GaN LED第五节红外LED一、性能特点二、应用光隔离器阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件(阅读,不做作业和考试要求)第十章电荷转移器件(4学时)第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用三、教学方法板书、讲授、多媒体演示四、成绩评价方式闭卷考试加平时作业、课堂讨论五、主要参考书目1、孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005-6第二次印刷。
电工学第7章半导体器件
6
Si
Si
BS–i
Si
硼原子 接受一个 电子变为 负离子
掺入三价元素 空穴 掺杂后空穴数目大量
增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数 载流子。
无论N型或P型半导体都是中性的,对外不显电性。
7
三、PN 结
外电场
+–
内电场被
削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
PN 结加反向电压(反向偏置) P接负、N接正
PN 结变宽
--- - -- --- - -- ---- - -
++ + ++ + ++ +
+ ++ + ++ + ++
UCC = 15 V UBB1 = 5 V UBB2 = 1.5 V
晶体管处于放大状态。
RB1 = 500 k RB2 = 50 k
RC = 5 k
(2) 开关 S 合向 b 时
IB =
UBB1 RB2
=
5 50×103 A = 0.1 mA
RB1
IC
=
UCC RC
=
15 5×103 A = 3 mA
点接触型、面接触型。
P
(2) 按材料分类
阳极
硅管、锗管。
(3) 按用途不同分类
普通管、整流管、开关管等。
N
阴极
13
(a) 点接触型 结面积小、
半导体物理与器件第四版答案
半导体物理与器件第四版答案半导体物理与器件第四版答案【篇一:半导体物理第五章习题答案】>1. 一个n型半导体样品的额外空穴密度为1013cm-3,已知空穴寿命为100?s,计算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1013u1017cm?3?s ?6100?102. 用强光照射n型样品,假定光被均匀吸收,产生额外载流子,产生率为gp,空穴寿命为?,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度?n=?p,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率gp和复合率u的代数和构成,即 d(?p)?p gp? dt?d(?p)0,于是由上式得⑵稳定时额外载流子密度不再随时间变化,即dtp?p?p0?gp?3. 有一块n型硅样品,额外载流子寿命是1?s,无光照时的电阻率是10??cm。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm3?s,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度p??n?gp??1022?10?6?1016 cm-3取?n?1350cm2/(v?s),?p?500cm/(v?s),则额外载流子对电导率的贡献2pq(?n??p)?1016?1.6?10?19?(1350?500)?2.96 s/cm无光照时?0?10.1s/cm,因而光照下的电导率02.96?0.1?3.06s/cm相应的电阻率 ??110.33??cm 3.06少数载流子对电导的贡献为:?p?pq?p??pq?p?gp?q?p代入数据:?p?(p0??p)q?p??pq?p?1016?1.6?10?19?500?0.8s/cm∴p?00.80.26?26﹪ 3.06即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命? =10?s,今用光照在其中产生非平衡载流子,问光照突然停止后的20?s时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为p(t)??p0e?因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为t??p(t)e? ?p0t当t?20?s?2?10?5s时20??p(20)e10?e?2?0.135?13.5﹪ ?p05. 光照在掺杂浓度为1016cm-3的n型硅中产生的额外载流子密度为?n=?p= 1016cm-3。
半导体物理学第七章知识点
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
《半导体物理》教案
《半导体物理》教案第一章 半导体中的电子状态§1.1 晶体结构预备知识,半导体晶体结构本节内容:1.晶体结构的描述(有关的名词)格点:空间(一维或多维)点阵中的点(结点)晶列:通过任意;两格点所作的(晶列上有一系列格点)晶向:在坐标系中晶列的方向(确定晶向的方法待定)用晶向指数表示;如[110]。
晶面:通过格点作的平面。
一组平行的晶面是等效的,其中任意两晶面上的格点排列是相同的,且面间距相等。
晶面用晶面指数(密勒指数)表示,如(111),(100)……反映晶体周期性的重复单元,有两种选取方法:在固体物理学中——选取周期最小的重复单元,即原胞。
在晶体学中——由对称性取选最小的重复单元,即晶胞(单胞)基矢:确定原胞(晶胞)大小的矢量。
原胞(晶胞)以基矢为周期排列,因此,基矢的大小又成为晶格常数。
晶轴:以(布拉菲)原胞(或晶胞)的基矢为坐标轴——晶轴格矢:在固体物理学中,选某一格点为原点O ,任一格点A 的格矢A R =1l 1a +2l 2a +3l 3a ,1l 、2l 、3l 为晶轴上的投影,取整数,1a 、2a 、3a 为晶轴上的单位矢量。
在结晶学中(用的较多),选某一格点为原点O ,任一格点A 的格矢A R =1l a +2l b +3l c ,1l 、2l 、3l 为对应晶轴上的投影,取有理数,a 、b 、c 为晶轴上的单位矢量。
晶列指数及晶向:格矢在相应晶轴上投影的称作晶列指数,并用以表示晶向,即格矢所在的晶列方向。
固体物理学中,表示为[1l 2l 3l ],投影为负值时,l 的数字上部冠负号。
等效晶向用< >表示。
晶面:通过格点作的平面,用晶面指数表示。
晶面指数:表示晶面的一组数。
晶向与晶面的关系:在正交坐标系中,晶面指数与晶面指数相同时,晶向垂直于晶面。
2.几种晶格结构结晶学晶胞:1) 简立方:立方体的八个顶角各有一个原子。
2) 体心立方:简立方的中心加进一个原子。
半导体物理与器件1.1——第七章
C1' eN a 2 xp 2 s
2 eN a x x xp 2 s
x
p
x 0
半导体物理与器件
同样的,对n区内的电势表达式积分,可求出:
x E x dx
eN d
s
xn x dx
eN d x2 ' x xn x C2 s 2
dQ eNd dxn eNa dxp
'
可以看到,电荷的变化量,正比于空间电荷区宽度的变化 量。空间电荷区宽度与反偏电压的关系为:
1 2 s Vbi VR N a xn e N N N d d a
半导体物理与器件
从物理到器件
固体物理 量子力学 统计物理 平衡半导体 能带理论 载流子输运 非平衡半导体
pn结
MS结
异质结
pn结二极管 双 极 晶 体 管
肖特基二极管
欧姆接触
JFET、 MESFET、 MOSFET、 HEMT
半导体物理与器件
§7.1 pn结的基本结构
若在同一半导体内部,一边是p 型,一边是n 型,则 会在p 型区和n 型区的交界面附近形成pn 结,它的行 为并不简单等价于一块p型半导体和n 型半导体的串联。 这种结构具有特殊的性质:单向导电性。pn结是许多 重要半导体器件的核心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
缓变波导
突变波导的BH激光器中高阶模的截止条件
要求d 0.25m,W 0.5m高阶模才截止 工艺实现很难-——生长手段:垂直容易水平方向难
模式截止条件
dm 2
m
n22
n2 1,3
Wm.n 2(
n0
NI2I
N2 I ,III
)m
载流子的分布
载流子的注入不但对激光器的增益有贡献,而且对折射率也 有贡献
20
一维化结电压模式
J
x=
1 Rs
d 2Vy dy 2
1
Rs
y
2 e
d 2 d2
Je | y | s 2
1
2
在
l0
Je
Je
J j (y) Jx (y)
y
条区内外载流子 分布的解析解
1
l0
1
Rs
y
2 e
(|
|
yS 处
2
y S 2
S 2
2
y S 2
2
2
2)2 Rs
Jx
S 2
sh
S 2Ln
A Ln
解出n(0)和A’,得到
n(y
)
gL2n
1
ch
S 2Ln
ch
y Ln
Ln Ln
sh
S 2Ln
n(y )
gL2n
Ln Ln
sh
S 2Ln
|y | S 2
e Ln
ch
S 2Ln
Ln Ln
sh
S 2Ln
如果 Ln Ln
y S 2
n(y
)
gL2n
1
S
e 2Ln
Dn
d 2n dy 2
0
解得
电子的复合率
Rn
n n0
n
n n0
可写成
d 2n(y ) dy 2
n(y L2n
)
g
d 2n(y ) n(y ) dy 2 Ln2 0
g J Dnqed
|y | S
y S 2
y S 2
n(y )
gL2n
[n(0)
gL2n
]ch
y Ln
,
y S 2
2
n(y ) Ae Ln
其中 Je JSeVe
令
y
Vy
ye
y e
1 RsJe
d 2 d2
e
边界条件
yS 2
解得
ln (
2
2 )2
Iy
L
Rs
dVy dy
L
Rs y e
d d
2L Rsye (
2L
2L 2) Rs(y
2L
2ye )
Rs
|
y
|
S 2
ye
2
Rs y e
令
2L
2
Rs
|
y
|
S 2
Rs y e
17
载流子分布测试与计算结果比较
College of Electronics Science and Engineering, Jilin University
18
一维化结电压模式
欧姆定律得
Iy
(Iy Iy ) 2 IyVy来自1 R31 R4
Vy
3
1 y d3L
4
1 y d4L
LVy y
College of Electronics Science and Engineering, Jilin University
3
园谐分析 远离截止近似
突变波导
等效折射率近似
College of Electronics Science and Engineering, Jilin University
厚度缓变波导结构
三层平板波导的边界条件
tg(kId )
kI (488 466 ) kI2 488 466
tg(2I )
kI (488 466 ) kI2 488 466
三层平板波导的模式截止条件
……
dm 2
m0
n22
n2 1,3
Wmn 2(
n0
NI2I
N2 I ,III
)m
近似
W0
0 8Ne Ne
College of Electronics Science and Engineering, Jilin University
Ne 3 104
6
三种方法的数值计算结果
College of Electronics Science and Engineering, Jilin University
y S 2
College of Electronics Science and Engineering, Jilin University
15
突变分布的载流子分布
ny
dn
及 dy
在
| y | s 2
在处连续的边界条件
gL2n
n(0) gL2n
ch
S 2Ln
A
n(0) gL2n
1 Ln
第六章 半导体激光器侧向模式的选择性
问题的提出 突变波导
等效折射率近似 几种波导分析
缓变波导 复合腔波导互补激光器
College of Electronics Science and Engineering, Jilin University
2
问题的提出
侧向模式的稳定性
侧向模式的选择性
21
条形增益导引双异质结激光器波导模型
有源区内外 其中
(x, y ) / 0 [~(0) a~2y 2 ]/ 0
| x | d 2
~(0) r (0) ii (0)
a~ ar iai
(x, y ) / 0 1 / 0
| x | d 2
考虑 Emyn 模 2Ey 20Ey 0
Ey (x, y,z) Ey (x)Ey (y )eizz
y
S
y
S
n(y )
1
Ien qeSLd coth(S 2Ln
)
l02
1 L2n
I0n qeLd
l0 Ln coth(S 2Ln ) 1 coth(S 2Ln )
e
2 Ln
l0
l
2 0
1 L2n
I0n qeLd
e
2 l0
College of Electronics Science and Engineering, Jilin University
7
强、弱折射率波导
强折射率波导
矩形波导
弱折射率波导
脊形波导
College of Electronics Science and Engineering, Jilin University
8
矩形波导结构
掩埋异质结激光器结构(BH)
双沟道平面掩埋异质结构激光器DCPBH)
掩埋异质结激光器导波模式截止区和导波模式
Iy Ly
Js e Vy
1
Jse Vy
其中
qe 2 KT
Iy 0 y 0
dI y dy
LJSe Vy
d 2Vy dy 2
Rs L
dI y dy
RsJSe Vy
| y | S 2
V Ve
S
Vy Ve Vy
y y 2
d 2Vy dy 2
RsJSe Ve e Vy
RsJee Vy
2Ey x
(x
2
)
2 x
Ey
(x
)
0
Ey
(
x
)
d
2Ey dy
(y
2
)
k02 0
2x
2z
Ey (x)Ey
(y )
0
d 2Ey (y ) dy 2
k02
[~(0) 0
a~2
y
2
]
1k02 (1 0
)
2x
~z2
Ey
(y
)
0
d
Γ是限制因子,是积分得出来的
2 d
|
Ey (x)
|2
dx
|
Ey
(x)
College of Electronics Science and Engineering, Jilin University
9
脊形波导结构、Ridge/Rib波导结构
脊形波导结构/有源区厚度变化波导 Ridge波导结构
Rib波导结构
College of Electronics Science and Engineering, Jilin University
ar2
0
4n
(0)n S2
4n (0)n S2
2
0
gn S 2
(0)
2
1 2
0
1
0gn(0) 2 S2
w 4 1.920S2 n (0)g
College of Electronics Science and Engineering, Jilin University
23
22
条形增益导引双异质结激光器波导模型
基模是 高斯型
1
|
Ey
(y
)
|2
e
0
2
ar k0y 2
有效折 射率
n~
~ (0) a~2y~2
0
1
2
n
ik
1
n (y )
r (0) 0