整式的加减-易错题精选

合集下载

七年级数学上册第二章整式的加减易错题集锦

七年级数学上册第二章整式的加减易错题集锦

(名师选题)七年级数学上册第二章整式的加减易错题集锦单选题1、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.2、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.3、把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9答案:C分析:根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.小提示:本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4、若x+y=2,z−y=−3,则x+z的值等于()A.5B.1C.-1D.-5答案:C分析:将两整式相加即可得出答案.∵x+y=2,z−y=−3,∴(x+y)+(z−y)=x+z=−1,∴x+z的值等于−1,故选:C.小提示:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.5、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.6、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.7、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.8、下面图案是用长度相同的火柴棒按一定规律拼搭而成,若第n个图案需要y根火柴棒,则y与n的函数关系式为()A.y=3n B.y=3n+3C.y=4n+3D.y=4n−1答案:A分析:根据题意可得第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......由此发现规律,即可求解.解:根据题意得:第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......第n个图,火柴棒个数是3+3+3+3+......+3=3n;故选:A.小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.9、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x -(y -z )-m -n =x -y +z -m -n ;第3种:x -(y -z )-(m -n )=x -y +z -m +n ;第4种:x -(y -z -m )-n =x -y +z +m -n ;第5种:x -(y -z -m -n )=x -y +z +m +n ;第6种:x -y -(z -m )-n =x -y -z +m -n ;第7种:x -y -(z -m -n )=x -y -z +m +n ;第8种:x -y -z -(m -n )=x -y -z -m +n ;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.10、代数式1x , 2x +y , 13a 2b , x−y π, 5y 4x , 0.5 中整式的个数( ) A .3个B .4个C .5个D .6个答案:B分析:根据单项式和多项式统称为整式.单项式是字母和数的乘积,单个的数或单个的字母也是单项式.多项式是若干个单项式的和,再逐一判断可得答案.解:整式有2x +y , 13a 2b , x−y π,0.5共有4个;故选:B .小提示:本题考查了整式.解题的关键是掌握整式的定义:单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.填空题11、若34x m −1y 3与−5x 2y 2n −1的和是单项式,则m +n =___.答案:5分析:根据34x m−1y3与−5x2y2n−1的和是单项式,可知34x m−1y3与−5x2y2n−1是同类项,可得m-1=2,2n-1=3,据此即可解答.解:∵34x m−1y3与−5x2y2n−1的和是单项式,∴34x m−1y3与−5x2y2n−1是同类项,∴m-1=2,2n-1=3,解得m=3,n=2,∴m+n=3+2=5,所以答案是:5.小提示:本题考查了同类项概念的应用,熟练掌握同类项的定义是解题的关键.12、计算:3a−a=_____________.答案:2a分析:按照合并同类项法则合并即可.3a-a=2a,所以答案是:2a.小提示:本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.13、多项式4x3y3−5x4y3−3x2−y2+5x+2的次数是________次.答案:七分析:根据多项式的次数的定义解答即可.解:根据多项式以及次数的定义,多项式4x3y3−5x4y3−3x2−y2+5x+2含4x3y3,−5x4y3,−3x2,−y2,5x,2这六项,次数分别为6、7、2、2、1、0,∴多项式4x3y3−5x4y3−3x2−y2+5x+2的次数是七次.所以答案是:七.小提示:本题主要考查多项式的次数的定义.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数.熟练掌握多项式的次数的定义是解题的关键.14、若x3m y2与−2x6y n是同类项,则m+n=______.答案:4分析:根据同类项定义求出m、n值,代入m+n计算即可.解:由题意,得3m=6,2=n,∴m=2,n=2,∴m+n=2+2=4,所以答案是:4.小提示:本题考查同类项,代数式求值,所含字母相同,相同字母指数相同的项叫同类项,根据同类项定义求出m、n值是解题的关键.15、若2x2−3x−2=0,则代数式3−4x2+6x的值为________.答案:-1分析:将2x2−3x−2=0变形为2x2-3x=2,再将3−4x2+6x变形为3-2(2x2-3x),然后整体代入计算即可.解:∵2x2−3x−2=0∴2x2-3x=2,∴3−4x2+6x=3-2(2x2-3x)=3-2×2=-1,所以答案是:-1.小提示:本题考查代数式求值,将式子恒等变形,利用整体思想求解是解题的关键.解答题16、(1)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯131=13,132=169,133=2197,134=28561,135=371293,136=4826809,⋯根据你发现的规律回答下列问题:①32022的个位数字是___________;1399的个位数字是___________;②4399的个位数字是___________;4355的个位数字是___________;(2)自主探究回答问题:①799的个位数字是___________,755的个位数字是___________;②5299的个位数字是___________,5255的个位数字是___________.(3)若n是自然数,则n99−n55的个位上的数字()A.恒为0 B.有时为0,有时非0 C.与n的末位数字相同D.无法确定答案:(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A分析:(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知n99与n55个位上的数字相同即可得出答案.解:(1)①∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯∴3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵2022÷4=505 (2)∴32022的个位数字是9;∵131=13,132=169,133=2197,134=28561,135=371293,136=4826809,⋯∴13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵99÷4=24 (3)∴1399的个位数字是7;所以答案是:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴4399的个位数字是7,4355的个位数字是7;所以答案是:7;7;(2)①∵71=7,72=49,73=343,74=2401,75=16807,76=117649...∴7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴799的个位数字是3,755的个位数字是3所以答案是:3;3②∵21=2,22=4,23=8,24=16,25=32,26=64...∴2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环∴52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴5299的个位数字是8,5255的个位数字是8所以答案是:8;8(3)由(1)(2)中的结论可知n99与n55个位上的数字相同∴n99−n55的个位上的数字恒为0故选A.小提示:本题考查数字的变化规律,找出数字之间的规律是解题的关键.17、如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是答案:(1)甲对乙错(2)①-6n+25 ;②4(3)3或5分析:(1)由题意知,甲只能向东移动才有可能停在数轴正半轴上,则只需考虑①与②的情形即可确定对错;(2)①根据题意乙猜对n次,则乙猜错了(10-n)次,利用平移规则即可推算出结果;②根据题意乙猜对n次,则乙猜错了(10-n)次,利用平移规则即可推算出结果;(3)由题意可得刚开始两人的距离为8,根据三种情况下计算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.(1)解:∵甲、乙两人(看成点)分别在数轴-3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是-3+1=-2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是-3+4=1,停在了数轴的正半轴上.所以答案是:甲对乙错;(2)解:①∵乙猜对n次,∴乙猜错了(10-n)次.∵甲错乙对,乙向西移动4个单位,∴乙猜对n次后,乙停留的位置对应的数为:5-4n.∵若甲对乙错,乙向东移动2个单位,∴乙猜错了(10-n)次后,乙停留的位置对应的数为:m=5-4n+2(10-n)=25-6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.所以答案是:4;(3)解:k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.所以答案是:3或5.小提示:本题主要考查了列代数式,数轴,本题是动点型题目,找出移动后甲乙距离变化的规律是解题的关键.18、如图,用字母表示图中阴影部分的面积.答案:阴影部分的面积为mn−pq分析:根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可.解:由题意得:S阴影=S大长方形−S空白长方形=mn−pq,∴阴影部分的面积为mn−pq.小提示:本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。

整式的加减易错题

整式的加减易错题

1.下列说法错误的是( )A.0和x 都是单项式;B.3n xy 的系数是3n ,次数是2;C.-3x y +和1x 都不是单项式;D.21x x +和8x y+都是多项式 2.x-(2x-y )的运算结果是( )A.-x+yB.-x-yC.x-yD.3x-y 3.下列各式正确的是( )A.22()a a -=;B.33()a a -=;C.22a a -=-D.33a a -=4.下列算式是一次式的是( )A.8 B.4s+3t C.12ahD.5x5.若a=-2(2)-,b=-3(3)-,c=-2(4)-,则-〔a-(b-c )〕的值是_______.6.计算-5a+2a=_____.7.计算:(a+b )-(a-b )=_______.8.若2x 与2-x 互为相反数,则x 等于___________.9.把多项式3x 3y +3x y+6-422x y 按x 的升幂排列是____________.10.﹣的系数是 _________ ,次数是 _________ .11.若﹣73x m y m+1是7次单项式,则m= _________ .12.若﹣(n+2)x n y 2z 是一个五次单项式,则n= _________ ,这个单项式的系数是 _________ .13.填空:-45a 2b -34ab +1是_____ 次_____项式,其中三次项系数是 _____,二次项为_________ ,常数项为_____,写出所有的项 _____. 14.已知代数式3xn -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件. 15.已知a 、b 是互为相反数,c 、d 是互为倒数,e 是非零实数,求12()22a b cd e ++-的值.16.计算⑥⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+3121543221 ⑥⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+7312121274 ⑦()7110411421+-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+.. ⑧()⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛-2157218515723. 17.化简(x +y -z )+(x -y +z )-(x -y -z )34,2),231232(23)2312(2221-=-=-+---y x y x y x x 其中18.已知:A=2244y xy x +- ,B=225y xy x -+,求(3A-2B )-(2A+B )的值.19.已知数a,b 在数轴上的位置如图所示 化简下列式子:ab b a a --+-)1(ba ab a +---22)2(20.b c a b 3,12=-=,则c b a ++等于( ) A.49-a B.19-a C.29-a D.39-a21.)]([n m ---去括号得 ( )A.n m - B.n m -- C.n m +-D.n m + 22.下列各等式中,成立的是( ) A.)(b a b a +-=+- B.)8(383+=+x xs=12n=4s=8n=3s=4n=2C.)25(52--=-x x D.x x 8412=-23.(7分)解答: 一个多项式减去226x x +-等于7652--x x ,求这个多项式.24.(8分)观察右面的图案,每条边上有n (n ≥2)个方点,每个图案中方点的总数是S.(1)请写出n=5时, S=______________ ; (2)请写出n=18时,S=______________;(3)按上述规律,写出S 与n 的关系式S= . 25.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7 a 3-6 a 3b +3 a 2b )-(-3 a 3-6 a 3b +3 a 2b +10 a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26. 当多项式()()13212x 522--+---x n x m 不含二次项和一次项时,求m 、n 的值.一、选择题(每小题3分,共30分)1、0.2的相反数是( ) A 、15 B 、15- C 、-5 D 、52、下列计算正确的是( )A 、326=B 、2416-=-C 、880--=D 、523--=-3、在有理数2(1)-、3()2--、|2|--、3(2)-中负数有( )个A 、4B 、3C 、2D 、1 4、下列说法中正确的是( )A 、没有最小的有理数B 、0既是正数也是负数C 、整数只包括正整数和负整数D 、1-是最大的负有理数5、2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学计数法表示为( )元 A 、104.510⨯ B 、94.510⨯ C 、84.510⨯ D 、90.4510⨯6、下列说法错误的是( )A 、2231x xy --是二次三项式B 、1x -+不是单项式C 、223xy π-的系数是23π- D 、222xab -的次数是67、下列各式中与多项式2(34)x y z ---相等的是( ) A 、2(34)x y z +-+ B 、2(34)x y z +- C 、2(34)x y z +-- D 、2(34)x y z ++8、若233m x y -与42n x y 是同类项,那么m n -=( )A 、0B 、1C 、-1D 、-29、有理数a 、b 、c 的大小关系为:c<b<0<a ,则下面的判断正确的是( )A 、0abc <B 、0a b ->C 、11c b< D 、0c a ->10、已知a 、b 为有理数,下列式子:①||ab ab >②0a b <③||a ab b=-④330a b +=其中一定能够表示a 、b 异号的有( )个A 、1B 、2C 、3D 、4 二、填空题(每题2分,共20分)11、如果水位升高3m 时,水位变化记作+3m ,那么水位下降5m 时,水位变化记作:______ m12、比较大小12-_____13-(填“<”或“>”) 13、计算:3(3)--=_________14、若a 与b 互为相反数,c 与d 互为倒数,则35()4()a b cd +-=_________ 15、用四舍五入法取近似数,保留3位有效数字后1.804≈__________ 16、一个单项式加上22y x -+后等于22x y +,则这个单项式为________ 17、长方形的长为a cm ,宽为b cm ,若长增加了2 cm ,面积比原来增加了___ 2cm18、已知|1|0a +=,29b =,则a b +=______________19、若“ω”是新规定的某种运算符号,设32a b a b ω=-,则()()x y x y ω+-=_____________20、观察一列数:12,25-,310,417-,526,637-……根据规律,请你写出第10个数是________ 三、解答题21、计算(每小题4分,共24分)(1)15(8)(11)12---+-- (2)71131()()()262142-⨯-⨯÷-(3)222(2)4(3)(4)(2)-+⨯---÷- (4)3222[(4)(13)3]-+---⨯(5)221112()3233ab a a ab --+-- (6)22314[(3)3]22x x x x ---+22、(5分)先化简,再求值22225(31)(35)a b ab ab a b ---+-,其中12a =-,13b =23、(5分)已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:7,5,10,8,9,6,12,4+---+-++(1) 若A 点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明(2)若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?24、(6分)便民超市原有2(510)x x -桶食用油,上午卖出(75)x -桶,中午休息时又购进同样的食用油2()x x -桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有X 的式子表达) (2)当x=5时,便民超市中午过后一共卖出多少桶食用油?25、(10分)已知:b 是最小的正整数,且a 、b 满足2(5)||0c a b -++=,请回答问题请直接写出a 、b 、c 的值.a=__________ b=__________ a=__________ (2).我国股市交易中每卖一次需交0.75﹪的各种费用,某投资者以每股10元的价格买入某股票a 股,当该股票涨到12元时全部卖出. (1)用式子表示投资者实际盈利多少?(2)若该投资者买入1000股,则他盈利了多少元?(3).某地出租车收费标准是:起步价为4元,可乘3km ,3km 到5km ,每km 收费1.2元;5km 后,每km 收费2元,若某人乘坐了x (5>x )km 的路,请写出他支付的费用;若他支付的费用是10.4元,你能算出他乘坐的路程吗?(注:km 为千米)。

整式的加减(易错题)

整式的加减(易错题)

B.(5 n m)元 / 分 钟 4
D.(1 n m)元 / 分 钟 5
点拨:为了弄清各数之间的关系,我们可以借助 方程来求解.假设原收费标准为每分钟x元,可得: (1 20%)(x m) n, 解得 x 5 n m.应选B.
4
例2 若长方形的一边长为a+2b,另一边长比它的3倍 少a-b,求这个长方形的周长?
数的一部分;
3,注意“π”不是字母,而是数字,属于系数的一
部分; 4,计算次数的时候并不是简单的见到指数就相
3,多项式的项数与次数
例3 下列多项式次数为3的是( C )
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
答:长方形的周长为6a+18b
从错误中吸取教训, 从失败中取得进步,
胜利必将是你的!
A x2 x 1
注意:我们在移项的时候是整体移项,不要漏 了添上括号;
2,实际问题中的易错题:
例1 某种手机卡的市话费上次已按原收费标准降低了m 元/分钟,现在再次下调20%,使收费标准为n元/分钟, 那么原收费标准为 ( )B.
5 A.(
n
m)元
/


4
C.(1 n m)元 / 分 钟 5
①a;② 1 ;③x y;④xy;⑤ 2 ;⑥ x 1 ;⑦ x ;
2
x
2
注意:1,单个的字母或数字也是单项式;
2,用加减号把数字或字母连接在一起
的式子不是单项式;
3,只用乘号把数字或字母连接在一起
的式子仍是单项式;

《整式的加减》易错题课件PPt(优秀)

《整式的加减》易错题课件PPt(优秀)
《整式的加减》 易错题
例1“A+2B”类型的易错题: 例1 若多项式 A 3x2 2x 1, B 2x2 x 1; 计 算多项式A-2B;
解:A 2B (3x2 2x 1) 2(2x2 x 1) 3x2 2x 1 4x2 2x 2 3x2 4x2 2x 2x 1 2 7x2 4x 1
(1)本周内最高价是每股
元,最低
价是每股
元;
(2)已知小胡买进股票时付了3‰得手续费,
卖出时需付成交额3‰的手续费和2‰的交易税
,如果小胡在星期五收盘前将全部股票卖出,
他的收益情况如何?
星一

三四


每股 -0.29 +0.06 -0.12 +0.24 +0.06
涨跌
13
(1)13.05 12.75 (2)他赔了54.55元 星期五每股的收益×股票数-买进手续费-卖出手续费,
出答案;解:一边长为:a+2b; 另一边长为:3(a+2b)-(a-b) =3a+6b-a+b =3a-a+6b+b =2a+7b; 周长为:2(a+2b+2a+7b) =2(a+2a+2b+7b) =2(3a+9b) =6a+18b;
答:长方形的周长为6a+18b
5
三角形的周长为48,第一边长为3a+2b, 第二边长的2倍比第一边少a-2b+2,求 第三边长.
11
2 A和B两家公司都准备向社会招聘人才,两家公司招 聘条件基本相同,只有工资待遇有如下差异:A公司年 薪10000元,从第二年开始每年加工龄工资200元, B公司半年年薪5000元,每半年加工龄工资50元,从 经济收入的角度考虑的话,选择哪家公司有利?

七年级上《第2章整式的加减》拔高题及易错题附答案

七年级上《第2章整式的加减》拔高题及易错题附答案

七年级上《第2章整式的加减》拔高题及易错题附答案(全卷总分150分)姓名得分一、多项选择题(每个子题4分,共40分)1.计算3a3+a3,结果正确的是()a、 3a6b.3a3c.4a6d.4a32.单项式?1a2n?12b4与3a2mb8m是同类项,则(1+n)100?(1?m)102=()a、 B.14c。

4D。

1无法计算3.已知a3bm+xn-1y3m-1-a1-sbn+1+x2m-5ys+3n的化简结果是单项式,那么mns=()a.6b.-6c.12d.-124.若a和b都是五次多项式,则()a、 a+B必须是多形式,B.a-B必须是单个术语c.a-b是次数不高于5的整式d.a+b是次数不低于5的整式5.A-B=5,则3A+7+5b-6(A+13b)等于()a.-7b.-8c.-9d.106.随着服装市场竞争的日益激烈,品牌服装店的一件服装将按原价降价一元,然后再打七折。

如果当前价格为B元,则原价为()a.a?10b7b.a?7b10c、 b?10a7d.b?7a107.如图,阴影部分的面积是()a、 112xyb。

132xyc.6xyd.3xy8.一个多项式a与多项式b=2x2-3xy-y2的和是多项式c=x2+xy+y2,则a等于()a、 x2-4xy-2y2b.-x2+4xy+2y2c.3x2-2xy-2y2d.3x2-2xy9.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()a.-16b.-8c.8d.1610.商品的购买价格为每件1元,按购买价格的25%加价出售。

后来,由于库存积压,价格降低,以销售价格的10%出售,每件都有利可图()a.0.125a元b.0.15a元c.0.25a元d.1.25a元二、填空题(每小题5分,共30分).单项式?23? 2ab4113的系数为,次数为12.已知单项式23xbyc与单项式12xm?2y2n?1的差是axn?3ym?1,则abc?.13、当x=1时,代数公式AX5+BX3+CX+ 1=2022。

整式的加减重难点和易错点

整式的加减重难点和易错点

整式的加减重难点和易错点一、选择题1、整式-(a-(b-c))去括号为()A。

-a-b+cB。

-a+b-cC。

-a+b+cD。

-a-b-c2、在(a-b+c)(a+b-c)=[a+(b-c)][a-(b-c)]的括号内填入的代数式分别()A。

c-b,c-bB。

b+c,b+cC。

b+c,b-cD。

c-b,c+b3、当k取1/3时,多项式x^2-3kxy-3y^2+xy-8中不含xy 项。

A。

0B。

1C。

1/9D。

-1/34、如果多项式(a+1)x^4-bx-3x-5是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-55、若|a|=2,|b|=3,且a>b,则|a-b|的值是()A、-5或-1B、1或-1C、5或3D、5或16、若|m|=3,|n|=7.且m-n>0,则m+n的值()A、10B、4C、-10或-4D、4或-47、若M=3x^2-5x-2,N=3x^2-4x-2,则M,N的大小关系()A、M>NB、M=NC、M<ND、以上都有可能8、设a是最小的自然数,b是最大的负整数,c,d分别是单项式-xy^2的系数和次数,则a,b,c,d四个数的和是()A、-1B、0C、1D、39、若多项式y^2+(m-3)xy+2x|m|是三次三项式,则m的值为()A、-3B、3C、3或-3D、210、如果a是最小的正整数,b是绝对值最小的数,c与a^2互为相反数,那么(a+b)^2009-c^2009=11、当a<3时,|a-3|+a=12、有理数a,b满足a|b|,则代数式|a+b|+|2a-b|化简后结果为___________13、去括号a-b)-(-c-d)a-b)+(c-d)________________14、化简(x+2)-(x-3x)4x-(-6x)+(-9x)=15、化简3-5x-4(x-x+3x)/22=16、当a^2+b^2=1时,(a+b)^2的最小值为__________17、计算m+n-(m-n)的结果为2n。

整式的加减易错题

整式的加减易错题

第二章整式的加减易错题一.选择题(共4小题)1.下列说法中,正确的是()A.单项式的系数是B.单项式5×105t的系数是5C.单项式m既没有系数,也没有次数D.﹣2005是单项式2.下列说法正确的是()A.32ab3的次数是6次B.x+不是多项式C.x2+x﹣1的常数项为1D.多项式2x2+xy+3是四次三项式3.下列各组的两项是同类项的为()A.3m2n2与﹣m2n3 B.xy与2yx C.53与a3D.3x2y2与4x2z24.若﹣2xy m和x n y3是同类项,则()A.m=1,n=1 B.m=1,n=3 C.m=3,n=1 D.m=3,n=3二.填空题(共15小题)5.在代数式xy,﹣3,x﹣y,﹣m2n,,4﹣x2中,单项式有:;多项式有:.6.若单项式(k﹣3)x|k|y2是五次单项式,则k= .7.多项式x+7是关于x的二次三项式,则m= .8.代数式是由、、、几项的和组成.9.单项式﹣x3y2的系数是,次数是.10.单项式﹣的系数是.11.单项式的系数是;次数是.12.单项式的系数是;多项式a2﹣2ab+1是次项式.13.单项式的系数是,次数是.14.若﹣x m﹣2y5与2xy2n+1是同类项,则m+n= .15.有一个关于x的二次三项式,它的二次项系数为3,一次项系数和常数项都是﹣1,试写出这个多项式.16.对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x+y)※(x﹣y)]※3x化简后得到.17.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是.18.3a﹣(﹣2b﹣c)去括号得.19.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= .三.解答题(共4小题)20.先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.21.若(a+2)2与2|3a﹣b|互为相反数,求3[2(2a﹣b)﹣3(a﹣2b)]﹣4(a+2b)的值.22.已知多项式(a+3)x3﹣2x2y+y2﹣(5x3+y2+1)中,不含x3项,计算(a3﹣2a2+4a ﹣1)的值.23.有一道化简求值题:“当x=2,y=﹣1时,求3x2y+[2x2y﹣(5x2y2﹣y2)]﹣5(x2y+y2﹣x2y2)的值.”小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的,请你解释一下原因.参考答案与试题解析一.选择题(共4小题)1.(2009秋?厦门校级期中)下列说法中,正确的是()A.单项式的系数是B.单项式5×105t的系数是5C.单项式m既没有系数,也没有次数D.﹣2005是单项式【分析】分别根据单项式及单项式的系数及次数的定义进行解答.【解答】解:A、单项式的系数是﹣,故本选项错误;B、单项式5×105t的系数是5×105,故本选项错误;C、单项式m的系数是1,次数也是1,故本选项错误;D、因为﹣2005是常数项,所以﹣2005是单项式,故本选项正确.故选D.【点评】本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号.2.(2015秋?南通期中)下列说法正确的是()A.32ab3的次数是6次B.x+不是多项式C.x2+x﹣1的常数项为1D.多项式2x2+xy+3是四次三项式【分析】依据单项式、多项式的概念回答即可.【解答】解:A、是4次单项式,故A错误;B、分母中含有字母,不是整式,故B正确;C、x2+x﹣1的常数项为﹣1,故C错误;D、多项式2x2+xy+3是2次三项式,故D错误.故选:B.【点评】本题主要考查的多项式、单项式的概念,掌握相关概念是解题的关键.3.(2016?白云区一模)下列各组的两项是同类项的为()A.3m2n2与﹣m2n3 B.xy与2yx C.53与a3D.3x2y2与4x2z2【分析】依据同类项的定义回答即可.【解答】解:A、3m2n2与﹣m2n3字母n的指数不同不是同类项,故A错误;B、xy与2yx是同类项,故B正确;C、53与a3所含字母不同,不是同类项,故C错误;D、3x2y2与4x2z2所含的字母不同,不是同类项,故D错误.故选:B.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.4.(2016秋?阳信县期中)若﹣2xy m和x n y3是同类项,则()A.m=1,n=1 B.m=1,n=3 C.m=3,n=1 D.m=3,n=3【分析】根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=1,即可求出n,m的值.【解答】解:∵﹣2xy m和是同类项,∴故选C.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.二.填空题(共15小题)5.在代数式xy,﹣3,x﹣y,﹣m2n,,4﹣x2中,单项式有:xy,﹣3,﹣m2n ;多项式有:x﹣y,4﹣x2.【分析】根据数与字母的积是单项式,单独一个数或一个字母也是单项式,可得单项式,再根据几个单项式的和是多项式,可得多项式.【解答】解:单项式有:xy,﹣3,﹣m2n;多项式有:x﹣y,4﹣x2,故答案为:xy,﹣3,﹣m2n;x﹣y,4﹣x2.【点评】本题考查了多项式、单项式,利用定义解题是解题关键,注意是分式.6.(2014秋?昌乐县期末)若单项式(k﹣3)x|k|y2是五次单项式,则k= ﹣3 .【分析】利用单项式次数的定义求解即可.【解答】解:∵单项式(k﹣3)x|k|y2是五次单项式,∴|k|=3,k=±3,∵k﹣3≠0,∴k=﹣3,故答案为:﹣3.【点评】本题主要考查了单项式,解题的关键是熟记单项式次数的定义.7.(2015秋?夏津县期末)多项式x+7是关于x的二次三项式,则m= 2 .【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.8.代数式是由﹣xy2、yx 、﹣x3、﹣1 几项的和组成.【分析】每个单项式叫做多项式的项,依此即可求解.【解答】解:代数式是由﹣xy2、yx、﹣x3、﹣1几项的和组成.故答案为:﹣xy2、yx、﹣x3、﹣1.【点评】考查了多项式,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.9.(2012秋?高淳县期中)单项式﹣x3y2的系数是﹣1 ,次数是 5 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式﹣x3y2的系数是﹣1,次数是5.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.系数是1或﹣1时,不能忽略.10.(2012秋?洪湖市期中)单项式﹣的系数是﹣.【分析】根据单项式系数的定义进行解答即可.【解答】解:∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣.故答案为:﹣.【点评】本题考查的是单项式系数的定义,即单项式中的数字因数叫做单项式的系数.11.(2015秋?南长区期中)单项式的系数是﹣;次数是 3 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是3.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.(2015秋?绍兴校级期中)单项式的系数是π;多项式a2﹣2ab+1是二次三项式.【分析】根据单项式与多项式的有关概念求解.【解答】解:单项式的系数是π,多项式a2﹣2ab+1是二次三项式.【点评】解答此题的关键是熟知以下概念:单项式的系数是指单项式中的数字因数;多项式中的每个单项式叫做多项式的项;多项式里次数最高项的次数,叫做多项式的次数.13.(2014秋?红塔区期末)单项式的系数是,次数是 3 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数是,次数是3,故答案为:,3.【点评】本题考查了单项式,解决本题的关键是明确单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.14.(2016春?龙泉驿区期中)若﹣x m﹣2y5与2xy2n+1是同类项,则m+n= 5 .【分析】利用同类项的定义求出m与n的值,即可确定出m+n的值.【解答】解:∵﹣x m﹣2y5与2xy2n+1是同类项,∴m﹣2=1,2n+1=5,∴m=3,n=2,∴m+n=3+2=5.【点评】此题考查了同类项,熟练掌握同类项的定义是解本题的关键.15.(2013秋?邹平县校级期末)有一个关于x的二次三项式,它的二次项系数为3,一次项系数和常数项都是﹣1,试写出这个多项式3x2﹣x﹣1 .【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式,二次项系数是3,一次项系数和常数项是﹣1,根据前面的定义即可确定这个二次三项式.【解答】解:∵关于x的二次三项式,二次项系数是3,∴二次项是3x2,又一次项系数和常数项是﹣1,则一次项是﹣x,常数项为﹣1,则这个二次三项式,3x2﹣x﹣1,故填空答案:3x2﹣x﹣1.【点评】本题考查多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.16.(2016秋?南开区月考)对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x+y)※(x﹣y)]※3x化简后得到21x+6y .【分析】根据题意,(x+y)相当于a,(x﹣)相当于b,先计算前面的部分,然后再与后面的进行计算即可.【解答】解:由题意得(x+y)※(x﹣y)=3(x+y)+2(x﹣y)=5x+y,所以[(x+y)※(x﹣y)]※3x=(5x+y)※3x=3(5x+y)+2?3x=21x+3y.【点评】该题目考查了整式的加减,关键是理解题意中的新定义.17.(2014秋?蚌埠期末)有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是x2﹣15x+9 .【分析】根据多项式加法的运算法则,用和减去这个多项式,即可求出另外一个.【解答】解:2x2﹣x+3﹣(x2+14x﹣6)=2x2﹣x+3﹣x2﹣14x+6=x2﹣15x+9.原来的多项式是x2﹣15x+9.【点评】要正确运用多项式加法的运算法则.18.(2012秋?闸北区校级期中)3a﹣(﹣2b﹣c)去括号得3a+2b+c .【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,求解即可.【解答】解:原式=3a+2b+c.故答案为:3a+2b+c.【点评】本题考查了去括号和添括号,解答本题的关键是掌握去括号的法则.19.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= 2m﹣4 .【分析】先根据绝对值的性质把原式化简,再去括号即可.【解答】解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.【点评】本题考查绝对值的化简方法和去括号的法则,比较简单.三.解答题(共4小题)20.(2014秋?金昌期中)先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入2A﹣B中去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:(1)原式=﹣x2+5x+4﹣5x+4﹣2x2=﹣3x2+8,当x=﹣2时,原式=﹣12+8=﹣4;(2)∵A=x2+5x,B=3x2+2x﹣6,∴2A﹣B=2x2+10x﹣3x2﹣2x+6=﹣x2+8x+6,当x=﹣3时,原式=﹣9﹣24+6=﹣27.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.若(a+2)2与2|3a﹣b|互为相反数,求3[2(2a﹣b)﹣3(a﹣2b)]﹣4(a+2b)的值.【分析】利用互为相反数两数之和为0列出等式,利用非负数的性质求出a与b的值,原式去括号合并后代入计算即可求出值.【解答】解:根据题意得:(a+2)2+2|3a﹣b|=0,可得a+2=0,3a﹣b=0,解得:a=﹣2,b=﹣6,则原式=12a﹣6b﹣9a+18b﹣4a﹣8b=﹣a+4b=2﹣24=﹣22.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.已知多项式(a+3)x3﹣2x2y+y2﹣(5x3+y2+1)中,不含x3项,计算(a3﹣2a2+4a ﹣1)的值.【分析】多项式去括号合并后,根据结果不含x3项,求出a的值,代入原式计算即可得到结果.【解答】解:多项式(a+3)x3﹣2x2y+y2﹣(5x3+y2+1)=(a﹣2)x3﹣2x2y﹣1中,不含x3项,得到a﹣2=0,即a=2,则原式=a3﹣a2+2a﹣=4﹣4+4﹣=3.【点评】此题考查了多项式,熟练掌握运算法则是解本题的关键.23.(2015秋?庄浪县期中)有一道化简求值题:“当x=2,y=﹣1时,求3x2y+[2x2y﹣(5x2y2﹣y2)]﹣5(x2y+y2﹣x2y2)的值.”小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的,请你解释一下原因.【分析】根据整式的加减混合运算法则把原式去括号合并得到最简结果,即可做出解释.【解答】解:原式=3x2y+2x2y﹣5x2y2+y2﹣5x2y﹣5y2+5x2y2=﹣4y2,结果与x无关,且y=1与y=﹣1结果相同,则小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.。

第2章《整式的加减》易错题集(06):2.2+整式的加减

第2章《整式的加减》易错题集(06):2.2+整式的加减

第2章《整式的加减》易错题集(06):2.2整式的加减第2章《整式的加减》易错题集(06):2.2 整式的加减选择题2.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()2和和9.已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是()4n n11.下列计算正确的有()(1)5a3﹣3a3=2;(2)﹣10a3+a3=﹣9a3;(3)4x+(﹣4x)=0;(4)(﹣xy)﹣(+xy)=﹣xy;222222.C.24.三个连续整数的积是0,则这三个整数的和是()填空题26.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是_________.27.3x n y4与﹣x3y m是同类项,则2m﹣n=_________.28.若﹣x2y4n与﹣x2m y16是同类项,则m+n=_________.29.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=_________.30.(﹣4)+(﹣3)﹣(﹣2)﹣(+1)省略括号的形式是_________.第2章《整式的加减》易错题集(06):2.2 整式的加减参考答案与试题解析选择题2.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()5.π2与下列哪一个是同类项()和和是分式,不是同类项.8.下列各组中的两项是同类项的是()9.已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是()4n n11.下列计算正确的有()(1)5a3﹣3a3=2;(2)﹣10a3+a3=﹣9a3;(3)4x+(﹣4x)=0;(4)(﹣xy)﹣(+xy)=﹣xy;xy xy22222220.下列计算正确的是().为最简分数,不能再进行约分.C.x+y=x+y=填空题26.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是4.27.3x n y4与﹣x3y m是同类项,则2m﹣n=5.28.若﹣x2y4n与﹣x2m y16是同类项,则m+n=5.29.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=2m﹣4.30.(﹣4)+(﹣3)﹣(﹣2)﹣(+1)省略括号的形式是﹣4﹣3+2﹣1.参与本试卷答题和审题的老师有:MMCH;HJJ;wdxwzk;zhangCF;cook2360;lanchong;wangming;CJX;wdxwwzy;ln_86;HLing;zhjh;bjf;zxw;张长洪;py168;caicl;zhehe;hnaylzhyk;wwf780310;自由人;fengling(排名不分先后)菁优网2014年11月4日。

整式的加减易错题

整式的加减易错题

整式的加减易错题大集合一:选择题1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A、三次多项式B、四次多项式或单项式C、七次多项式D、四次七项式2、多项式2错误!未找到引用源。

-3×错误!未找到引用源。

x错误!未找到引用源。

+y的次数是()A、10次B、12次C、6次D、8次3、多项式2错误!未找到引用源。

-错误!未找到引用源。

+错误!未找到引用源。

+25的次数是()A、二次B、三次C、四次D、五次4、关于多项式错误!未找到引用源。

-3错误!未找到引用源。

+错误!未找到引用源。

+错误!未找到引用源。

+错误!未找到引用源。

+x的说法正确的是()A、是六次六项式B、是五次六项式C、是六次五项式D、是五次五项式5、如果多项式(a+1)错误!未找到引用源。

- 错误!未找到引用源。

-3x-54是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-56、若A与B都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A、5B、4C、3D、27、x表示一个两位数,现将数字5放在x的左边,则组成的三位数是()A、5xB、10x+5C、100x+5D、5×100+x8、两列火车都从A地驶向B地.已知甲车的速度是x千米/时,乙车的速度是y 千米/时.经过3时,乙车距离B地5千米,此刻甲车距离B地()A、[3(-x+y)-5]千米B、[3(x+y)-5]千米C、[3(-x+y)+5]千米D、[3(x+y)+5]千米9、已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为()A、-1B、1C、0D、210、若|a|=2,|b|=3,且a>b,则|a-b|的值为()A、-5或-1B、1或-1C、5或3D、5或111、任选一个大于-4的负整数填在□里,任选一个小于3的正整数填在◇里,对于“□+◇”运算结果为负数的情况有()种.A、2种B、3种 C 、4种D、512、若|m|=3,|n|=7,且m-n>0,则m+n的值是()A、10B、4C、-10或-4D、4或-413、一个圆柱体的底面半径扩大为原来的3倍,高为原来的错误!未找到引用源。

第三章整式的加减易错题

第三章整式的加减易错题

第三章整式的加减一、基本概念中的易错题1,单项式的定义例1,下列各式子中,是单项式的有_________________ (填序号)1 2 x 1 x①可②2;③x y;④xy;⑤匚;⑥〒;⑦—;注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:n ”当作数字,而不是字母)2单项式的系数与次数例2指出下列单项式的系数和次数;3,多项式的项数与次数例3下列多项式次数为3的是()A. 5x2 6x 1B. x2 x 1C.a2b ab b2D.x2y2 2x3 1注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,n”当作数字,而不是字母例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;(1)25______________ x2y xy3是____________________________ 次项式,最高次项是 ____ ,常数项是_________________________ ;3 2 2 1(2)—U—1是次项式,最高次项是,常数项是34,书写格式中的易错点例5下列各个式子中,书写格式正确的是( )1A.a bB. 1 abC.a 32a2bD.a3 E . 1ab F .31、代数式中用到乘法时,若是数字与数字乘,要用’乂”若是数字与字母乘,乘号通常写成” •或省略不写,如3X y应写成3 y或3y,且数字与字母相乘时,字母与字母相乘,乘号通常写成“ •或省略不写;2、带分数与字母相乘,要写成假分数;3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号;4、系数一般写在字母的前面,且系数“1往往会省略;例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______ 人。

冀教版(2024新版)七年级数学上册易错疑难专练 整式的加减

冀教版(2024新版)七年级数学上册易错疑难专练 整式的加减

【解析】 由 +2 3 与 − 2 4 3 是同类项,得 + 2 = 4 ,解得 =
2 .由它们的和为0,得 4 3 + − 2 4 3 = − 2 + 1 4 3 = 0 ,则
− 2 + 1 = 0 ,解得 = 1 ,所以 = 2 .
整式的加减
教材易混易错集训
易错点1 相关概念理解不透
1.下列说法正确的是(
D )
2
A.整式 没有系数
B. −
的系数是 −5
5



C. −2 不是整式
D.整式 + + 是一次三项式
2
3
4
2
1
【解析】 A项, 的系数是1;B项, −
的系数是 − ;C项, −2 是
5
5
整式.故A,B,C错误.
字母相同且相同字母的指数也相同,是同类项,故D符合题意.
【解题通法】
判断同类项的方法
按照同类项的定义来判断,单项式中数字与字母之间都是乘法关
系,与字母的排列顺序无关,只要所含字母相同,并且相同字母
的指数也相同即同类项.
2
变式 若 +2 3 与 − 2 4 3 是同类项,且它们的和为0,则 = ___.
A. − − − = −
B. 2 + 2 − 2 = 2 + 2 − 2
C. 5 − − 1 = 5 − + 1
2
D. 3 −
1
4
2

2
= 3
2
1 2

4

1 2

《易错题》初中七年级数学上册第二章《整式的加减》(培优专题)

《易错题》初中七年级数学上册第二章《整式的加减》(培优专题)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.下列代数式的书写,正确的是( ) A .5n B .n5C .1500÷tD .114x 2y A 解析:A 【分析】直接利用代数式书写方法分析得出答案. 【详解】解:A 、5n ,书写正确,符合题意; B 、n5,书写错误,不合题意; C 、1500÷t ,应为1500t,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意;故选:A . 【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C 解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义. 4.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义. 5.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷ A解析:A【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.6.已知 2x6y2和﹣3x3m y n是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m,n的值,根据代数式求值,可得答案.【详解】由题意,得3m=6,n=2.解得m=2,n=2.9m2﹣5mn﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.如图所示,直线AB、CD相交于点O,“阿基米德曲线”从点O开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A.射线OA上B.射线OB上C.射线OC上D.射线OD上C解析:C【分析】由图可观察出负数在OC或OD射线上,在OC射线上的数为-4的奇数倍,在OD射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC或OD射线上,排除选项A,B,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + C 解析:C 【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2. 【详解】解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C . 【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1. 10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .nC .m n +D .m ,n 中较大者D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .12.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.13.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个 B .2个C .3个D .4个A解析:A 【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦. 【详解】字母可以表示任意数,当a <0时,-a >0,故①错误; 0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误; 若a=1,b=-2,a b >,但是22a b <,故④错误;235x y的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键. 14.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 15.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B 【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.1.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008 【解析】a 2=−|a 1+1|=−|0+1|=−1, a 3=−|a 2+2|=−|−1+2|=−1, a 4=−|a 3+3|=−|−1+3|=−2, a 5=−|a 4+4|=−|−2+4|=−2, …,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n;a 2016=−20162=−1008. 故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.4.a-b,b-c,c-a三个多项式的和是____________0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.5.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可. 【详解】 这列数可以写为12,33,54,75, 因此,分母为从2开始的连续正整数,分子为从1开始的奇数, 故第n 个数为211n n -+. 故答案为:211n n -+. 【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键 解析:0.8π-【分析】根据单项式系数的定义进行求解即可. 【详解】单项式20.8a h π-的系数是0.8π- 故答案为:0.8π-. 【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+,∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 11.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.1.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 2.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;∴所挡的二次三项式为x2﹣8x+4.(2)当x=﹣2时,x2﹣8x+4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.3.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求a b﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b﹣m|﹣|a+m|=b﹣m+(a+m)=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.4.窗户的形状如图所示(图中长度单位:cm),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.。

《易错题》初中七年级数学上册第二章《整式的加减》经典复习题(专题培优)

《易错题》初中七年级数学上册第二章《整式的加减》经典复习题(专题培优)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B 解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.6.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.7.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.8.下列各式中,符合代数书写规则的是( ) A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误;【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.如图所示,直线AB、CD相交于点O,“阿基米德曲线”从点O开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A.射线OA上B.射线OB上C.射线OC上D.射线OD上C解析:C由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.11.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 1.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 3.化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 4.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.5.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.6.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.7.已知|a|=-a ,b b =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.10.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=- 故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+314A)﹣(2b+37B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣312.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.2.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x 的二次三项式,求(a﹣b)2的值.解析:16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.3.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.4.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。

数学北师大版七年级上册整式及其加减中的易错题

数学北师大版七年级上册整式及其加减中的易错题

《整式的加减》中的易错题知识结构:整式的加减整式的概念整式的计算整式的应用单项式多项式系数次数项,项数,常数项,最高次项次数同类项与合并同类项去括号化简求值用字母来表示生活中的量一、基本概念中的易错题二、运算过程中的易错题1,同类项的判定与合并同类项的法则:例1 判断下列各式是否是同类项?323232)3(xyyx与22102)2(与-2232)4(yxyx-与323222)1(yxba与点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同,相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类项;对于(2),虽然好像它们的次数不一样,但其实它们都是常数项,所以,它们都是同类项;对于(4),虽然它们的系数不同,字母的顺序也不同,但它依然满足同类项的定义,是同类项;答:(2)、(4)是同类项,(1)(3)不是同类项;练一练:)2(3)22)(2()3()123)(1(222222ab b a ab b a x x x x ---++--+-234)1(2--x x 原式=解:224)2(ab b a +-原式=1,化简下列各式:整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.4,多重括号化简的易错题]2)1(32[3,1222x x x x +---化简:]2332[3222x x x x ++--解:原式=22223323x x x x --+-=32)233(222---+x x x x =3242--x x =注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;拓展练习 正式的应用中的易错题1,“A+2B ”类型的易错题:例1 若多项式计算多项式A -2B ;;12,12322++-=+-=x x B x x A )12(2)123(222++--+-=-x x x x B A 解:22412322--++-=x x x x 21224322-+--+=x x x x 1472--=x x 注意:列式时要先加上括号,再去括号;例2 一个多项式A 加上得,求这个多项式A ?2532+-x x 3422+-x x 342)253(22+-=+-+x x x xA 解:因为)253(34222+--+-=x x x x A 所以25334222-+-+-=x x x x A 23543222-++--=x x x x A 12++-=x x A 注意:我们在移项的时候是整体移项,不要漏了添上括号;例2 若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?分析:如果直接列式的话,非常麻烦,我们可以先求出另一边长,再求周长,这样就比较容易求出答案;解:一边长为:a+2b;另一边长为:3(a+2b)-(a-b)=3a+6b-a+b=3a-a+6b+b=2a+7b;周长为:2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(3a+9b)=6a+18b;答:长方形的周长为6a+18b从错误中吸取教训,从失败中取得进步,胜利必将是你的!。

(完整版)整式的加减拔高及易错题精选

(完整版)整式的加减拔高及易错题精选

拔高及易错题精选整式的加减)(得分全卷总分100分姓名分30(分,共每小题)3一、选择题33 a 3a 1),结果正确的是(+.计算6363 4a D C4a A3a B3a ....12n?142m8m 100102= n3a) b ?a(1?m) , b (1+2).单项式是同类项?则与(21 D C A B..无法计算..144s+3n2m51n13msn+13--1--m yabb xa+xmns=y 3)-+.已知的化简结果是单项式,那么(12 D. C. 12 A. 6 B.6 --AB 4)和.若都是五次多项式,则(B. AB A. AB 一定是单项式-一定是多式+ D. AB C. AB的整式+的整式-是次数不低于是次数不高于551b) ab=53a75b6(a 5).+-+,那么-+等于(3D. 10C. 9 B. 8 A. 7 ---7a6元后,再次打.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价b)折,现售价为元,则原售价为(b710b?aa? BA ..107a7a10?b?b D C ..107 7).如图,阴影部分的面积是(13113xyD C6xy A. xy B. xy ..222222y2x 3xyyACx xy AB 8)-,-则的和是多项式.一个多项式+与多项式==(等于+2222 4xy2y Bx4xy2y A x +-+-.-.2222xyD3x 2y C 3x 2xy---..1)(1ab) bx1axb12(a 9)--.当,则=+时,+的值为(+-的值为-8 BA16 .-.-16D C 8 ..25a10%出售,后因库存积压降价,按售价的九折出.一种商品进价为每件元,按进价增加)售,每件还盈利( D. 1.25a C. 0.25a B. 0.15a A. 0.125a 元元元元)(18分每小题分,共二、填空题423?ab2 11?.的系数是.单项式,次数是3.1212?nm?2cb1m?n?3yxyx 12yax,则.已知单项式与单项式.的差是?abc235353+cx1=axax +bx+bx+cx+1=2017x=1x=1 13.+时,,当.当时,代数式-2(a?b)4(a?b)a?b??314.已知.的值为,代数式a?b3(a?b)a?b abc|ab||bc||ca| 15.在数轴上的位置如图所示,化简:--++.已知=,+,“”“16中.平移小菱形◇可以得到美丽的图案,下面四个图案是由◇平移后得到的类似中国结”20 .的图案,按图中规律,第个图案中,小菱形的个数是国结(52)分三、解答题共(5)ABCx2yBA=BC17,、、三点,位置如图,分别对应的数为.分,若,已知数轴有、、4x+4y+30 的值。

人教版七年级数学第二章《整式的加减》易错题训练 (1)含答案解析

人教版七年级数学第二章《整式的加减》易错题训练 (1)含答案解析

第二章《整式的加减》易错题训练 (1) 一、选择题(本大题共15小题,共45.0分)1.在下列式子中:3xy−2、3÷a、12(a+b)、a⋅5、−314abc中,符合代数式书写要求的有()A. 1个B. 2个C. 3个D. 4个2.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是()A. 3B. 9C. 6D. 83.下列选项中的整式,次数是5的是()A. x4+x2y3B. x5+x3y3C. x5yD. 5x4.下列选项中,不是单项式的式子是A. −3B. 12x3y C. 2a3−1 D. m5.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个6.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个7.在代数式3x2y4、7(x+1)8、13(2n+1)、y2+y+1y中,多项式的个数是()A. 1B. 2C. 3D. 48.已知下列各式:5abf,1π,x+3y,6,x−y5,5b,其中是单项式的有()A. 2个B. 5个C. 3个D. 4个9.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有()A. 5个B. 6个C. 7个D. 8个10.已知:2xy23,1x,−a,0,4x+1,1+x2,中单项式有()A. 6个B. 5个C. 4个D. 3个11.在式子:2xy,−12ab,x+y2,1,2x2y3,1x,x2+2xy+y2中,整式的个数是()A. 3B. 4C. 5D. 612.已知正方形的边长为a,若边长增加50%,则它的面积增加()A. 0.5a2B. 1.5a2C. 1.25a2D. 0.25a213.代数式12a ,4xy,a+b3,a,2014,12a2bc,−3mn4中单项式的个数有()A. 3个B. 4个C. 5个D. 6个14.下列式子中代数式的个数有()个.−2a−5,−3,2a+1=4,b,x+y>2,1y,3x3+2x2y4A. 2B. 3C. 4D. 515.一个长20分米的方木的横截面是边长为m分米的正方形,将它锯掉8分米后,方木的体积比原来减少()。

初中七年级上册整式的加减经典易错题

初中七年级上册整式的加减经典易错题

整式的加减复习题一、选择题1.对于单项式22r π-的系数、次数分别为( )A.-2,2B.-2,3C.2,2π-D.3,2π-2. 下列说法正确的是( )A .单项式23x -的系数是3- B .单项式3242π2ab -的指数是7 C .1x是单项式 D .单项式可能不含有字母 3.)]([n m ---去括号得 ( )A 、n m -B 、n m --C 、n m +-D 、n m +4.减去m 3-等于5352--m m 的式子是( )A 、)1(52-mB 、5652--m mC 、)1(52+mD 、)565(2-+-m m 5.若A 和B 都是五次多项式,则( )A .AB +一定是多项式 B .A B -一定是单项式C .A B -是次数不高于5的整式D .A B +是次数不低于5的整式6.若m 、n 都是自然数,多项式222m n m n a b ++- 的次数是( )A .mB .2nC .2m n +D .m 、2n 中较大的数7. 把(x-3)2 -2(x-3)-5(x-3)2 +(x-3) 中的(x-3)看成一个因式合并同类项,结果应是( )A. -4(x-3)2+(x-3)B. 4(x-3)2-x (x-3)C. 4(x-3)2-(x-3)D. -4(x-3)2-(x-3)二、填空题1. 多项式65243525343245--+-+-x y y x y x xy y x 最高次项系数是 ,按字母x 升幂排列为 。

2.单项式b a 25102.1π⨯-的系数是 ,次数是 。

3.若5233m n x y x y -与的和是单项式,则n m = 。

4.3116x ax bx =-++=若时,代数式,311x ax bx =++=则时,_________. 5.已知532++x x 的值为3,则代数式1932-+x x 的值为6.如果225a ab +=,222ab b +=-,则224a b -=22252a ab b ++=8.已知一个三位数的个位数字是a, 十位数字比个位数字大3,百位数字是个位数字的2倍,这个三位数可表示为________________.9.已知实数ba、与c的大小关系如图所示:求cbacba ---+-2)(32=10.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x本,付款金额为y元,请填写下表:x(本) 2 7 10 22y(元)1611.长方形的一条边长为3a+2b,另一条边比它小b-2a.则这个长方形的周长是12.下面的一列单项式:x,-2x2,4x3,-8x4,…根据你发现的规律,第7个单项式为______;第n个单项式为______.13.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有( )个正方形.三、解答题1.已知()0522=++++baa,求()[]ababaabbaba-----22224223的值.2.有这样一道题“当22a b==-,时,求多项式()()22233322a ab b a ab b-----+的值”,马小虎做题时把2a=错抄成2a=-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由。

整式的加减拔高及易错题精选

整式的加减拔高及易错题精选

整式的加减 拔咼及易错题精选(全卷总分100分)姓名 得分 一、选择题(每小题3分,共30分)1.计算3a? + a ,结果正确的是( )A . 3a 6B . 3a 3C . 4a 61 2 .单项式-—a2 D. 4a3 2n-1b 4与 3a 2m b 8m 是同类项,则(1+ n)100?(1- m)102=( A .无法计算 B . 4 3m — 1 1 — & n+1 , —a b +x 3.已知 a 3b m + x n —1yA. 6B. — 6 4 .若A 和B 都是五次多项式,则( A. A + B 一定是多式C. A — B 是次数不高于5的整式1 5 . a — b=5,那么 3a+ 7+ 5b — 6(a+ - b )等于( 3 A. — 7 B. — 8 C. — 9 D. 10 6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价 折,现售价为b 元,则原售价为( 2m —5 s+3n y 12 C. 的化简结果是单项式,那么 D. — 12B. A — B 一定是单项式 D. A + B 是次数不低于10b 7ba B . a 710 ,10a,7a b D . b 710 ) ) A. C. mns=( 5的整式a 元后,再次打73xy 7. 如图,阴影部分的面积是( “ 11 f 13A. xyB. xy2 2 8. —个多项式A 与多项式B = 2x 2— 3xy — y 2的和是多项式C = x 2+ xy + y 2,则A 等于(A. C. 9. 当 A. C .C. 6xy 2 2 2 2x — 4xy — 2y B. — x + 4xy+ 2y 2 2 2 3x 2— 2xy — 2y 2 D . 3x 2— 2xy x = 1 时,ax+ b+ 1 的值为一2,则(a+ b —1)(1 — a — b)的值为( —16 B . — 8 8 D . 16 10 . 一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出 售,每件还盈利( ) A. 0.125a 元 B. 0.15a 元C. 0.25a 元D. 1.25a 元 、填空题(每小题分,共18分) 23二2ab 4 11.单项式-十的系数是 ,次数是a —b14.已知三",代数式2(a b) a -b4(a -b)-3(a b)的值为 22.(5分)已知xyx y=2,求代数式 3x - 5xy 3y -x 3xy _ y 的值 (1)填写下表:图案序号 1 23 4 … N12•已知单项式3xb y c 与单项式期4^的差是ax,'则皿——-13.当 x=1 时,代数式 ax 5+bx 3+cx+仁2017,当 x= — 1 时,ax 5+bx 3+cx+ 1= __________15. ____________________________________________________________________ 已知a ,b ,c 在数轴上的位置如图所示,化简:|a — b|+ |b+ c|+ |c — a|= _____________________________________ IIMUH.心e ob16. 平移小菱形◊可以得到美丽的 中国结”图案,下面四个图案是由◊平移后得到的类似中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 __________ .三、解答题(共52分)仃.(5分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为 x 、2、y,若,BA=BC , 求 4x+4y+30 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减易错题一、选择题(每小题3分,共30分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.单项式 −21a 2n −1b 4 与 3a 2m b 8m 是同类项 , 则 (1+n )100⋅(1−m )102= ( )A .无法计算B .14C .4D .13.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A. 6 B. -6 C. 12 D. -12 4.若A 和B 都是五次多项式,则( )A. A +B 一定是多式B. A -B 一定是单项式C. A -B 是次数不高于5的整式D. A +B 是次数不低于5的整式5.a -b=5,那么3a +7+5b -6(a +31b)等于( )A. -7B. -8C. -9D. 106.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( )A .710b a +B .107ba + C .710ab + D .107a b +7.如图,阴影部分的面积是( ) A.211xy B. 213xy C .6xy D .3xy 8.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( ) A .x 2-4xy -2y 2 B .-x 2+4xy +2y 2 C .3x 2-2xy -2y 2 D .3x 2-2xy 9.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( ) A .-16 B .-8 C .8 D .1610.一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( )A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元 二、填空题(每小题分,共18分)11.单项式32423ab π-的系数是 ,次数是 .12.已知单项式23b c x y 与单项式22112m n x y +-的差是31n m ax y ++,则abc = .13.当x=1时,代数式ax 5+bx 3+cx+1=2017,当x=-1时,ax 5+bx 3+cx +1= . 14.已知3a ba b-=+,代数式2()4()3()a b a b a b a b +---+的值为 . 15.已知a ,b ,c 在数轴上的位置如图所示,化简:|a -b|+|b +c|+|c -a|= .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 .三、解答题(共52分)17.(5分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为x 、2、y ,若,BA=BC ,求4x+4y+30的值。

18.(5分)先化简,再求值:2xy -21(4xy -8x 2y 2)+2(3xy -5x 2y 2), 其中x =31,y =-3.19.(5分)多项式a 2x 3+ax 2-4x 3+2x 2+x+1是关于x 的二次三项式,求a 2+21a +a 的值.20.(6分)已知多项式(2x 2+ax -y +6)-(bx 2-2x +5y -1). (1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式2(a 2-ab +b 2)-(a 2+ab +2b 2),再求它的值.21.(5分)若代数式2x 2+3y+7的值为8,求代数式6x 2+9y+8的值.22.(5分)已知yx xy +=2,求代数式y xy x yxy x -+-+-3353的值。

23.(6分) 按如下规律摆放五角星:(1)填写下表:图案序号 1 2 34… N 五角星个数47…(2)若按上面的规律继续摆放,是否存在某个图案,其中恰好含有2017个五角星?24.(7分)在边长为a 的正方形的一角减去一个边长为的小正方形(a>b ),如图①① ②(1)由图①得阴影部分的面积为 .(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为 . (3)由(1)(2)的结果得出结论: = . (4)利用(3)中得出的结论计算:20172-2016225.(8分)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋 x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本); (3)当x =1500时,求每天的生产成本与每天获得的利润.成本(元/个)售价(元/个)A 2 2.3 B33.5参考答案一、选择题(每小题4分,共40分)1.计算3a3+a3,结果正确的是(D)A.3a6B.3a3C.4a6D.4a31a2n−1b4与 3a2m b8m是同类项 , 则 (1+n)100⋅(1−m)102= (B)2.单项式−2A .无法计算B .14C .4D .13.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( D ) A. 6 B. -6 C. 12 D. -12 4.若A 和B 都是五次多项式,则( C )A. A +B 一定是多式B. A -B 一定是单项式C. A -B 是次数不高于5的整式D. A +B 是次数不低于5的整式5.a -b=5,那么3a +7+5b -6(a +31b)等于( B )A. -7B. -8C. -9D. 106.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( A )A .710b a +B .107ba + C .710ab + D .107a b +7.如图,阴影部分的面积是( A ) A.211xy B. 213xy C .6xy D .3xy 8.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( B ) A .x 2-4xy -2y 2 B .-x 2+4xy +2y 2 C .3x 2-2xy -2y 2 D .3x 2-2xy9.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( A ) A .-16 B .-8 C .8 D .1610.一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( A )A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元 二、填空题(每小题5分,共30分)11.单项式32423ab π-的系数是 382π- ,次数是 5 .12.已知单项式23b c x y 与单项式22112m n x y +-的差是31n m ax y ++,则abc = 5 .13.当x=1时,代数式ax 5+bx 3+cx+1=2017,当x=-1时,ax 5+bx 3+cx +1= -2015 . 14.已知3a ba b-=+,代数式2()4()3()a b a b a b a b +---+的值为 2 . 15.已知a ,b ,c 在数轴上的位置如图所示,化简:|a -b|+|b +c|+|c -a|= -2a .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 800 .三、解答题(共80分)17.(8分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为x 、2、y ,若,BA=BC ,求4x+4y+30的值。

解:结合图形可知BA =2-x ,BC =y -2.∵BA=BC , ∴2-x =y -2, ∴x +y =4,∴4x +4y +30=4(x +y)+30=4×4+30=46. 18.(8分)先化简,再求值:2xy -21(4xy -8x 2y 2)+2(3xy -5x 2y 2), 其中x =31,y =-3.解:原式=2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2.当x =31,y =-3时,原式=6×31×(-3)-6×(31)2×(-3)2=-6-6=-12.19.(8分)多项式a 2x 3+ax 2-4x 3+2x 2+x+1是关于x 的二次三项式,求a 2+21a +a 的值. 解:∵多项式a 2x 3+ax 2-4x 3+2x 2+x+1是关于x 的二次三项式 ∴(a 2-4)=0 ∴a=±2 又∵a+2≠0 ∴a≠-2 ∴a=2 ∴a 2+21a +a=22+221+2=4+41+2=425 20.(8分)已知多项式(2x 2+ax -y +6)-(bx 2-2x +5y -1). (1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式2(a 2-ab +b 2)-(a 2+ab +2b 2),再求它的值. 解:(1)原式=2x 2+ax -y +6-bx 2+2x -5y +1=(2-b)x 2+(a +2)x -6y +7.因为多项式的值与字母x 的取值无关, 所以a +2=0,2-b =0,解得a =-2,b =2. (2)原式=2a 2-2ab +2b 2-a 2-ab -2b 2=a 2-3ab.当a =-2,b =2时,原式=4-3×(-2)×2=16.21.(8分)若代数式2x 2+3y+7的值为8,求代数式6x 2+9y+8的值. 解:∵2x 2+3y+7=8∴2x 2+3y=1∴6x 2+9y+8=3(2x 2+3y)+8=3×1+8=11.22.(10分)已知yx xy +=2,求代数式y xy x yxy x -+-+-3353的值。

解:∵yx xy+=2 ∴xy=2(x+y)∴y xy x y xy x -+-+-3353=xy y x xy y x 3533+---+=xy y x xy y x 3)(5)(3++--+=)(23)()(25)(3y x y x y x y x +⨯++-+⨯-+ =)(6)()(10)(3y x y x y x y x +++-+-+ =)(5)(7y x y x ++-=57- 23.(10分) 按如下规律摆放五角星:(1)填写下表:图案序号 1 2 34… N 五角星个数4710 13…3n +1(2)若按上面的规律继续摆放,是否存在某个图案,其中恰好含有2017个五角星? 解:(1)观察发现,第1个图形五角星的个数是,1+3=4, 第2个图形五角星的个数是,1+3×2=7, 第3个图形五角星的个数是,1+3×3=10, 第4个图形五角星的个数是,1+3×4=13, …依此类推,第n 个图形五角星的个数是,1+3×n=3n+1; (2)令3n+1=2017, 解得:n=672故第672个图案恰好含有2017个五角星.24.(12分)在边长为a 的正方形的一角减去一个边长为的小正方形(a>b ),如图①① ②(1)由图①得阴影部分的面积为 .(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为 . (3)由(1)(2)的结果得出结论: = . (4)利用(3)中得出的结论计算:20172-20162 解:(1)图①阴影部分的面积为a 2-b 2.(2)图②阴影部分的面积为(2a+2b)(a -b)÷2=(a+b)(a-b). (3)由(1)(2)可得出结论:a 2-b 2=(a+b)(a -b). (4)20172-20162=(2017+2016)(2017-2016)=4033. 25.(12分)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋 x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本); (3)当x =1500时,求每天的生产成本与每天获得的利润. 解:(1)2x +3(4500-x)=-x +13500,即每天的生产成本为(-x +13500)元.(2)(2.3-2)x +(3.5-3)(4500-x)=-0.2x +2250,即每天获得的利润为(-0.2x +2250)元.成本(元/个)售价(元/个)A 2 2.3 B33.5. . .. . .(3)当x=1 500时,每天的生产成本:-x+13500=-1500+13 500=12000元;每天获得的利润:-0.2x+2250=-0.2×1500+2 250=1950(元)... .专业. .。

相关文档
最新文档