微积分讲座---Z4.18 对称性

合集下载

对称性在积分计算中的应用规律_王庆东

对称性在积分计算中的应用规律_王庆东

Abstract:Using the symmetry of integral domain to simplify integral calculation is one of the priority calculation strategies. If the integral domain is composed of two symmetrical parts, must examine whether the integral domain has directionality first,and then examine whether the value of integrand on the symmetrical points are equal or opposite.The integral twice times reduced to half an integral domain when the integral domain has no directionality and the value of integrand on the symmetrical points are equal.The integral is zero when the integral domain has no directionality and the value of integrand on the symmetrical points are opposite.When the integral domain has directionality,conclusion of integral is just the opposite of the integral domain with no directionality.If the integral domain has translatable symmetry,then the integral value unchanged when the integrand also be done the corresponding coordinate translation. Key words:integral domain;symmetry;directionality;symmetrical points;translatable symmetry 不论是定积分,还是重积分、线积分和面积分,利用积分域的对称性简化运算是需要优先考虑的计算 策略之一. 其中, 多元函数积分的计算比定积分的计算更加繁琐, 更需要利用积分域的对称性简化计算. 针 对这一问题,文献[1-6]等进行了研究,提出了一些方法,但不便于学生掌握.基于此,本文讨论对称性在 积分计算中的应用规律,力求使结论更简明.

对称性在微积分中的应用

对称性在微积分中的应用
理工
2 0 1 2. 0 6 ( 下 旬 刊)
中图分类号:G642.0
对称性在微积分中的应用
凌明伟
(浙江传媒学院电子信息学院 浙江·杭州 310018)
文献标识码:A
文章编号:1672- 7894(2012)18- 0106- 02
摘 要 对称性是数学美的一个基本形式。 在微积分计算 中充分利用数学对象所蕴含的对称因素,挖掘其对称性,往 往可以简化运算,提高解题效率,达到事半功倍的效果。 关键词 对称性 高等数学 应用
(f x)dx;(2)
b a
x(f x)dx=
a+b 2
b
f
a
(x)dx。
类似地,可以得到二重积分、三重积分、曲线积分和曲
面积分相应的对称性结论。
3 利用对称原理解考研试题
例 1:(2006 年考研数学试题)[4]
乙乙 设区域 D= (乙x,y) x2+y2≤1,x≥0 乙 ,计算二重积分 I=
D
1 + xy 1+x2+y2
是数学美的一个基本形式,并且将圆和球看做是最完美的
图形,因为这两种形体在各个方向都是对称的。几何图形的
对称性、数学形式和结构的对称性、数学命题关系中的对偶
性都是对称美在数学上的表示。
数学上的和谐对称,启发科学家们揭示和发现了很多
自然界的奥秘。例如,英国物理学家麦克斯韦经过实验获得
了电磁方程:rotE=-
它去解答问题,对于学好高等数学十分重要。对称性方法也
106
是硕士研究生入学考试题、大学数学竞赛题的重要内容。
2 关于对称性的几个结论
乙a
定理 1 :若 (f x)在[- a,a]上连续且为偶函数,则 (f x) -a 乙a

微积分讲座---Z4.5 周期信号波形对称性和谐波特性

微积分讲座---Z4.5 周期信号波形对称性和谐波特性
4.2周期信号的傅里叶级数
知识点Z4.5
第四章 傅里叶变换与频域分析
周期信号波形对称性和谐波特性
主要内容:
1.奇函数、偶函数、奇谐函数和偶谐函数 2.谐波特性
基本要求:
了解奇函数、偶函数、奇谐函数和偶谐函数的谐波特性
1
4.2周期信号的傅里叶级数
第四章 傅里叶变换与频域分析
Z4.5周期信号波形的对称性和谐波特性
1 . f(t)为偶函数——对称于纵轴 f(t) =f(-t)
an
2 T
T
2 T
2
f (t) cos(nt) d t
bn
2 T
T
2 T
2
f (t)sin(nt) d t
bn =0,展开为余弦级数。
f(t) 1
-T/2 0 T/2
t
f (t) 1 4 [cos(t) 1 cos(3t) 1 cos(5t) 1 cos(nt) ], n 1,3,5,
TT
3T
t
2
2
ห้องสมุดไป่ตู้
2
1
f (t) 4 [sin(t) 1 sin(3t) 1 sin(5t) 1 sin(nt) ], n 1,3,5,
3
5
n
3
4.2周期信号的傅里叶级数 3 . f(t)为奇谐函数——f(t) = –f(t±T/2)
第四章 傅里叶变换与频域分析
其傅里叶级数中只含奇次谐波分量,而不含偶次 谐波分量,即:
a0=a2=…=b2=b4=…=0
f (t)
1
T T 0
TT
3T
t
2
2
2
1
f (t) 4 [sin(t) 1 sin(3t) 1 sin(5t) 1 sin(nt) ], n 1,3,5,

数学论文数学中的对称美及应用资料

数学论文数学中的对称美及应用资料

谈数学中的对称美与在解题中的应用吴恋,数学计算机科学学院摘要本文首先讨论了数和式中的对称美.其次运用对称思想来解决数学问题.在数学问题的解题过程中,巧妙地构造对称美,从整体上把握问题的实质,优化解题过程.先是就对称在微积分中的应用,列举了一些重要的结论及其在解题中的具体应用.再研究了几何图形中的对称美.然后讨论了数学中其它方面的对称美.特别是对称在记忆数学公式和数学方法中的应用.最后探讨了对称思想在数学教学中的应用,通过在数学教学中落实对称的数学美的思想方法,从而促进学生形成学习数学知识的良好的、积极的情感行为,更好地理解数学知识,提高学生解决数学问题的能力.关键词:对称;数学美;轮换对称性;积分区间;对称性原理;数学思想1引言1.1对称美对称性的感受逐惭成为一项美学准则,广泛应用于建筑、造型艺术、绘画以及工艺美术的装饰之中.你可以从许多中、外著名的建筑、艺术珍品中看到.天坛的建筑、天安门的建筑、颐和园长廊的建筑以及各种花瓶、古人饮酒的爵和各种花边等等是旋转对称、左右对称和平移对称的典型例子.这些对称美给人以匀称、均衡、连贯、流畅的感受,因而体现着一种娴静、稳重、庄严.在现实世界中,既有形态各异的自然对称,又有巧夺天工的人工对称,它们构成了一幅人与自然和谐的优美画卷.因此,对称是宇宙和自然界的基本属性,也是事物适应周围环境而生存发展和繁衍生息的自然规律,充分展现出事物协调环境、自我完善的、和谐的自然美.1.2数学中的对称美美,不仅存在于艺术、文学中,存在于大自然以及社会生活中,而且也存在于自然科学中,存在于数学之中.早在两千多年前,古代哲学家、数学家普洛克拉斯曾说过:“哪里有数,哪里就有美.”这就是说,数学中也充满了美的因素.作为一门科学,数学在其内容结构上和方法上都具有自身的某种美,即数学美.数学美的内容非常丰富,包括普适美、对称美、简洁美、比例美、和谐美、奇趣美等特性.其中对称性是数学美的重要特性之一,正如德国著名的数学家和物理学家魏尔所说的:“美和对称性紧密相连”.数学对称美是数学美的重要组成部分,它普遍存在于初等数学与高等数学的各个分支,在数学研究中有着重要的作用,一直是数学们长期追求的目标,有时甚至把它作为一种尺度,是数学创造与发现的美学方法之一.在数学中,不少的概念与运算,都是由人们对于“对称”问题的探讨派生出来的.数学中众多的轴对称,中心对称图形和等量关系都被赋予了平衡、协调的对称美.对于数学概念,也是一分为二地成对出现的:整-分,奇-偶,和-差,曲-直,方-圆,分解-组合,平行-交叉,正比例-反比例……,都显得那么的稳定、和谐、协调、平衡,如此地奇妙动人.2数和式的对称美2.1数的对称美在数学中,如果一个整数,它的各位数字是左右对称的,我们就称这个数是对称数.例如:1234321、123321等.对称数可以分为奇位对称数和偶位对称数.奇位对称数是指位数是奇数的对称数,奇位对称数位数最中间的那个数字称为对称轴数.偶位对称数是指位数是偶数的对称数,偶位对称数没有对称轴数.产生对称数的方法有很多种:(1) 形如11、111、1111、……的数的平方数是对称数.如:1×9+2=11 12×9+3=111 ...............123456789×9+10=1111111111(2)某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,也可得到对称数. 如:475475+574=1049 1049+9401=10450 10450+05401=15851 15851也是对称数.美的主要形式就是秩序,匀称和确定性,上面的几个式子就巧妙的体现了数和式中的对称美.可以看出,数学与美学是紧密相连,相辅相成的. 2.2式的对称美如果在代数式中,把任意的两个字母对换,代数式仍然保持不变,像这样的代数式就称为是对称代数式或对称式.如:223223,2,33x y z x xy y x x y xy y +++++++,互换式子中的,x y ,得到的式子仍然成立.在对称式中,字母是对称的,地位是平等的. 在二项式定理:00111222222110()n n n n k n k kn n n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b -------+=+++++++中,如果把当1,2,n n =的二项式展开式的系数列成如下:11 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1 16 15 20 15 6 10n C 1n C 2n C 3n Cn n C这就是著名的“杨辉三角”,它是宋朝数学家杨辉的杰作.杨辉三角是我国数学发展史上的一个成就,它反映的就是数学美的对称性.在代数学中,也存在着漂亮的对称式,如:初等对称多项式:112212131112n n n nn n x x x x x x x x x x x x x x σσσ-=+++⎧⎪=+++++⎪⎨⎪⎪=⎩, 它在解题中也有广泛的应用.其中在运用初等对称多项式解题时联系最紧密的就是根与系数的关系定理:对于n 次多项式11110()n n n n f x a x a x a x a --=++++的n 个根12,,,n x x x有如下关系:1122121311012(1)n n nn n n nn n n n a x x x a a xx x x x x x x a a x x x a ---⎧+++=-⎪⎪⎪+++++=⎪⎨⎪⎪⎪=-⎪⎩由此定理可以非常简便的求出关于多项式根的对称多项式的值.例1.设1a ,2a ,3a 是方程0876523=-+-x x x 的三个根,计算:))()((233121233222222121a a a a a a a a a a a a ++++++(*)的值.解:令3211a a a ++=σ. 3132212a a a a a a ++=σ, 3213a a a =σ, 则 561=σ,572=σ,583=σ. 再将(*)式化为初等对称多项式的多项式,得:))()((233121233222222121a a a a a a a a a a a a ++++++ =323312221σσσσσ--=-6251679. 由上面的例子可以看出,对称性在数学中是广泛存在的,数学与对称是紧密相连的.3对称美在数学中的应用3.1对称在数学解题中的应用解题是一门艺术,对称性是艺术的一个非常重要的要素,如果在解题的过程中注意到对称性,那么就可以减少一些繁琐的计算,化难为易,提高解题的效率,达到事半功倍的效果.微分与积分也是一对具有对称美的事物,而对称性的方法也是微积分计算中常用的方法.3.1.1对称在微分学中的一些结论与应用定理:(1)若(,)(,)u x y u y x =,则(,)(,)y x u x y u y x =;(2) 若(,)(,)u x y u y x =-,则(,)(,)y x u x y u y x =-.因此若求出x u ,则可直接写出y u ,xx u 与yy u 的关系,也是如此. 例2.设()xy u e x y =-,求出x u ,y u ,xx u ,yy u . 解:2()(1)xy xy xy x u e y x y e e xy y =-+=-+,223(1)(2)xy xy xy xx u e y xy y e y e xy y y =-++=-+.对称的有:2(1)xy y u e x xy =--,32(2)xy yy u e x x y x =--. 3.1.2对称在积分学中的一些结论和应用3.1.2.1在重积分计算中,经常利用多元函数的轮换对称性来解题.轮换对称性的定义:若积分区域或被积函数的表达式中,将其变量x,y,z 按下列次序:x →y;y →z;z →x 后,其表达式均不变,则称积分区域或被积函数关于变量x,y,z 具有轮换对称性. 定理1:(二重积分的坐标轮换对称性)如果区域D 的边界曲线方程是关于x,y 地位对称,(,)f x y 在D 上连续,则(,)(,)DDf x y dxdy f y x dxdy =⎰⎰⎰⎰定理2:(三重积分的坐标轮换对称性)如果有界闭区域Ω的边界曲面的方程关于x,y,z 地位对称,()f u 在Ω上连续,则()()()f x dxdydz f y dxdydz f z dxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰.由此,可以推广到:定理3:(n 重积分的坐标轮换对称性)如果n 维有界闭区域V 的边界曲面的方程关于12,,,n x x x 地位对称,()f u 在V 上连续,则112()n f x dx dxdx ⎰⎰⎰⎰=212()n f x dx dxdx ⎰⎰⎰⎰=12()nn f x dx dxdx =⎰⎰⎰⎰例3.计算三重积分2()()f x dxdydz x y z dxdydz ΩΩ=++⎰⎰⎰⎰⎰⎰,其中Ω是0,0,0x a y a z a ≤≤≤≤≤≤所围成正方形(a 为一大于0的实数).解:2222()(222)I x y z dxdydz x y z xy xz yz dxdydzΩΩ=++=+++++⎰⎰⎰⎰⎰⎰中被积函数及积分区域都有轮换对称性.所以222xd x d y d z y d x d y d zz d x d y d zΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,xydxdydz xzdxdydz yzdxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,故2(36)I x xy dxdydz Ω=+⎰⎰⎰260005(36)2a a adz dy x xy dx a =+=⎰⎰⎰.3.1.2.2 利用积分区间的对称性和被积函数的奇偶性,可简化定积分的计算. 定理:设()f x 是[]b a ,上的连续函数,则通过变换x a b t =+-,可得:()baf x dx ⎰=()baf a b x dx +-⎰[]22()()a b af x f a b x dx +=++-⎰这就是积分区间的对称原理.特别地,当()()f x f a b x =+-时,有()ba f x dx ⎰22()ab af x dx +=⎰.例4.求积分2π⎰.解:由于()f x =0,2π⎡⎤⎢⎥⎣⎦上有界,且只有可去间断点2x π=,故定积分存在.由积分区间对称原理可得:原积分201121()2dx x ππ⎡⎤⎢⎥=+⎥⎥+-⎣⎦⎰220011224dx dx πππ===⎰⎰. 若被积函数是非奇非偶时,通过适当的换元或拆项等方法也可转化为对称区间的积分问题.把积分区间的对称性原理推广到二元函数积分中,可以得到结论: 结论1:设D 关于y 轴对称,则(,)Df x y dxdy ⎰⎰12(,)(,)0(,)D f x y dxdy f x y x f x y x ⎧⎪=⎨⎪⎩⎰⎰若关于变量为偶函数若关于变量为奇函数’ 其中1D 是D 的右半部分:1{(,)|(,),0}D x y x y D x =∈≥且.结论2:设D 关于x 轴对称,则(,)Df x y dxdy ⎰⎰12(,)(,)0(,)D f x y dxdy f x y y f x y y ⎧⎪=⎨⎪⎩⎰⎰若关于变量为偶函数若关于变量为奇函数’ 其中1D 是D 的上半部分:1{(,)|(,),0}D x y x y D y =∈≥且.结论3:设D 关于x 轴和y 轴均对称,且(,)f x y 关于变量x 和变量y 均为偶函数,则1(,)4(,)DD f x y dxdy f x y dxdy =⎰⎰⎰⎰其中1D 是D 在第一象限的部分:1{(,)|(,),0,0}D x y x y D x y =∈≥≥且. 结论4:设D 关于原点对称,则(,)Df x y dxdy ⎰⎰122(,)2(,),(,)(,)0(,)(,)D D f x y dxdy f x y dxdy f x y f x y f x y f x y ⎧=--=⎪=⎨⎪--=-⎩⎰⎰⎰⎰如果如果 其中1{(,)|(,),0}D x y x y D x =∈≥且,2{(,)|(,),0}D x y x y D y =∈≥且. 结论5:设D 关于直线y=x 对称,则(,)(,)DDf x y dxdy f y x dxdy =⎰⎰⎰⎰特别地,当12(,)()()f x y f x f y =时,1212()()()()DDf x f y dxdy f y f x dxdy =⎰⎰⎰⎰.例5.计算二重积分2(751)DI x x y d σ=+++⎰⎰,其中22:1D x y +≤.解:D 关于x 轴和y 轴均对称,而75x y 和分别关于变量x 和y 为奇函数,故(75)0Dx y d σ+=⎰⎰,所以:22(1)D D DI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰212005(cos )4d r rdr πθθππ=+=⎰⎰.同样地,将它应用到三重积分中.例6.计算三重积分()x z dxdydz Ω+⎰⎰⎰,其中Ω是由曲面z =与z =.解:Ω关于坐标面x=0对称,且关于变量x 为奇函数,故0xdxdydz Ω=⎰⎰⎰.所以()x z dxdydz zdxdydz ΩΩ+=⎰⎰⎰⎰⎰⎰21240cos *sin 8d d r r dr πππθϕϕϕ==⎰⎰⎰.例10.计算三重积分222222ln(1)1V z x y z dxdydz x y z ++++++⎰⎰⎰, 其中{}222(,,)|1V x y z x y z =++≤.解:积分区域V 是以原点O(0,0,0)为中心的单位球域,所以V 关于xoy 平面对称,被积函数222222ln(1)(,,)1z x y z f x y z x y z +++=+++是关于z 的奇函数, 故由对称性知222222ln(1)01Vz x y z dxdydz x y z +++=+++⎰⎰⎰. 由上可见,在解决微积分问题时,巧妙应用对称性的观点去解题,可以使运算过程更加的快捷、流畅,计算结果更加的精确. 3.2 对称在数学中的其他应用对称是形式美的显著特征,就数学而言,不仅让枯燥抽象的数学公式变得容易记忆,而且也是数学命题证明必不可少的一种方法. 3.2.1利用对称性记忆公式在数学分析中,斯托克斯公式有一种形式表示法:sin sin sin c s Pdx Qdy Rdz ds x yz PQR αβγδδδδδδ⎛⎫⎪ ⎪++= ⎪⎪⎝⎭⎰⎰⎰ 其中P,Q,和R 为连续可微函数,S 为逐片光滑的有界双侧曲面,C 为包围S 的逐段光滑的简单闭曲线,(sin ,sin ,sin )αβγ为曲面S 在点(,,)x y z 处的单位法向量,方向为逆时针,这个公式的右边是用第一型曲面积分表示的,被积函数是一个三阶行列式.若取xy 平面上的平面区域D 作曲面S,并取上侧,则斯托克斯公式右侧的三阶行列式为001x y x yz P Q PQR δδδδδδδδδδ⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是斯式公式就变成了格林公式,由此可见,格林公式是斯式公式的特例. 类似地,奥式公式可表示为(sin ,sin ,sin )(,,)(,,)(,,)SVP Q R ds P Q R dv x y zδδδαβγδδδ=⎰⎰⎰⎰⎰ 其中S 是包围V 的逐片光滑曲面,P,Q,R 在S+V 上是连续可微的,(sin ,sin ,sin )αβγ为曲面S 上点(,,)x y z 处的单位法向量.不难看出,斯式公式和奥式公式都是由三个矢量(P,Q,R),(sin ,sin ,sin )αβγ,及(,,)x y zδδδδδδ所决定的. 上述一些形式上的对称性,是数学分析中追求对称形式美的有利证据.一些望而生怯的公式由于有了对称美,变得非常容易记忆了. 3.2.2数列解题中的的对称思想在数列解题中,存在着大量的对称思想,无论是等差数列还是等比数列,都含有丰富的对称之美.我们知道:只要m n p q +=+,其中,,,m n p q N ∈,就有 (ⅰ)m n p q a a a a +=+(等差数列)(ⅱ)m n p qa a a a =(等比数列)利用这个数量关系来处理有关数列问题,常常能化繁为简. 例11.(1)已知{}n a 为等差数列,且23101148a a a a +++=,求67?a a +=(2)已知{}n a 为等比数列,2435460,225n a a a a a a a >++=,求35?a a +=解:(1)∵21131067()()482()a a a a a a +++==+,∴6724a a +=(2)∵2224333465,a a a a a a a a ===,∴223355225a a a a ++= ∵20a >,∴355a a +=例12.在等差数列中,69121520a a a a +++=,求20S .解:∵691215651202()2()a a a a a a a a +++=+=+∴201202()20S a a =+=由此可以看出,如果在等差数列中,由条件不能具体的求出1a 和d ,但可以求出1a 和d 的组合式,而所求的量往往可以用这个组合式来表示,那么就用“整体代值”的方法将值求出,同样的方法也可以用在等比数列中.3.3 对称美与数学教学人们常说:“成功的教学给人以一种美的享受”.而长期以来,在数学教学中,人们总是重视基础知识和基本技能的传授与训练,而忽视了美育的渗透,不善于发现数学本身所特有的美,不注意用数学美来感染诱发学生的求知欲望,激发他们的学习兴趣,不重视引导学生发现数学美,鉴赏数学美,以致使一些学生感到数学抽象枯燥,失去学好的信心.心理学研究表明:没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望.因此,只有学生热爱数学,才能产生积极而又持久的求学劲头.我国数学家徐利治认为:“数学教学的目的之一是使学生获得对数学的审美能力,即能增进学生对数学美的主观感受能力.”数学的教学过程不仅仅是学生个体的认识过程和发展过程,而且也是在教师指导下的一种特殊审美过程.因此在教学过程中,应当把数学美的内容通过教学过程的设计向学生揭示出来,从而使学生认识到数学的内容是美的,并且充分运用数学美的诱发力引起学生浓厚的学习兴趣、强烈的求知欲望,使抽象、高深的数学知识得以形象化、趣味化,使学生从心理上愿意接近它、接受它,直到最终热爱它.对称美是数学中最普遍的一种美.图形的对称、式子的对称和解题方法的对称等,都能给人以匀称的美感,用对称的观点去处理数学问题,往往可以从问题的一部分联想起与此对称的另一部分,从而采取补全的方法,使之构成一种整体的对称美,使问题化繁为简,化难为易.在数学教学过程中,充分发掘教材中的对称式的美,运算中的对称美、函数中的对称美、几何图形中的对称美,激发学生对数学美的体验,使学生从数学的显性美提高到对数学隐性美的认识,从感性认识上升到理性认识,使学生对所学的知识更易于接受,便于理解,培养学生爱好数学、认识数学美的兴趣.在数学问题的求解过程中,充分运用对称的数学美的思想方法,可以使学生感受到对称美,增强求知欲,使数学问题的解决更加简捷明快,从而提高了学生的直觉思维能力和形象思维能力,开拓解题新思路,进而提高了学生解决问题的能力和对数学思想方法的领悟,使学生由此而产生学习数学的兴趣.在数学解题过程中,若能积极挖掘问题中隐含的对称性,巧妙地利用对称性,可使复杂的问题变得条理清楚,脉络分明,能化难为易、化繁为简.例如对于数列中的若干项的和或积的问题,如果能对其结构进行对称性的分析,将数学的对称美与题目的条件或结论相结合,就能构建一组互相关联的对偶式,从而确定解题的总体思路或入手方向.其实质是让美的启示、美的追求在解题过程中成为宏观指导力量,使问题的解决过程更加简洁明快.数学中蕴涵着丰富的美,除了对称美以外,还有很多.把数学美的和谐对称、简单统一等特征融贯在教学的整个过程中,可以发展学生思维的灵活性、发散性、深刻性、独创性等诸方面的能力就得到培养和提高.使学生在美的享受中,获得知识,理解知识,掌握知识.结术语数学并不等于美学,但是数学中却真实地蕴藏着丰富的美学内涵,而对数学内在美的追寻探索,又会使人们更迅速、更确切的洞悉数学的真谛.对称美是数学美的重要特征之一,对称美是一个广阔的主题,数学则是它根本.我们应该更深刻地掌握我们的所学专业知识,积极地去理解数学,学好数学,这样才能更好的走向工作岗位,取得成功.参考文献:[1]钱双平.对称性在高等数学解题中的应用---数学美学方法的应用,云南电大学报,2004,6(2):62-63.[2]马锐.数学中的对称美,昆明冶金高等专科学校学报,2004,20(2):35.[3]周齐明.在数学教学中应加强数学美的教育,六安师专学报,1999,15(4).[4]杨琴,杨联华.探求高等数学中的对称美,景德镇高专学报,2005,20(4).[5]陈自高.数学中的对称美与应用,中国科技信息,2006,(5).[6]胡本荣.从对称性看数学中的美学,达县师范高等专科学校学报,2004,14(2).[7]钱双平.对称性在高等数学解题中的应用,2004,6(2).[8]窦丹.“对称思想”对学生数学能力的培养和作用:[硕士学位论文],东北师范大学,2005.[9]赵博.数学美与中学数学教学:[硕士学位论文],武汉:华中师范大学,2004.。

三重积分的对称性总结

三重积分的对称性总结

三重积分的对称性总结三重积分是多元函数积分的一种,它在数学和物理领域中有着广泛的应用。

在进行三重积分的计算时,我们经常会遇到对称性的问题。

对称性在数学中起着非常重要的作用,它可以帮助我们简化计算过程,提高计算效率。

因此,对于三重积分的对称性,我们需要进行总结和归纳,以便在实际问题中更好地应用。

首先,我们来看三重积分的轮换对称性。

对于三元函数f(x, y, z),如果它在变量x、y、z之间是对称的,即f(x, y, z) = f(y, z, x) = f(z, x, y),那么在计算三重积分时,我们可以利用轮换对称性来简化计算。

例如,当我们计算∫∫∫f(x, y,z)dxdydz时,可以先对x进行积分,然后对y和z进行轮换积分的顺序,这样可以减少计算的复杂度。

其次,三重积分的球面对称性也是非常重要的。

当我们在三维空间中进行积分时,如果函数f(x, y, z)在球面上是对称的,即f(x, y, z) = f(-x, -y, -z),那么我们可以利用球面对称性来简化计算。

在球面坐标系下,球面对称性可以帮助我们将积分区域进行简化,从而减少计算的复杂度。

另外,三重积分的柱面对称性也是我们需要考虑的问题。

当函数f(x, y, z)在柱面上是对称的,即f(x, y, z) = f(x, -y, -z),我们可以利用柱面对称性来简化计算。

在柱面坐标系下,柱面对称性可以帮助我们将积分区域进行简化,从而减少计算的复杂度。

总的来说,三重积分的对称性是我们在实际计算中需要重点考虑的问题。

通过对对称性的总结和归纳,我们可以更好地应用对称性来简化计算,提高计算效率。

在实际问题中,我们需要根据具体的情况来判断何种对称性可以应用,从而更好地解决问题。

综上所述,三重积分的对称性是一个非常重要的问题,它在实际计算中起着至关重要的作用。

通过对对称性的总结和归纳,我们可以更好地应用对称性来简化计算,提高计算效率。

希望本文对读者能有所帮助,谢谢!。

对称性在积分计算中应用

对称性在积分计算中应用

对称性在积分计算中应用对称性在积分计算中的应用是数学领域中的一个重要主题。

对称性是指数学对象在一定变换下保持不变的性质。

在积分计算中,对称性可以极大地简化计算过程,使其更加高效且容易处理。

本文将从对称性的定义、对称积分的概念和性质以及对称积分的应用三个方面展开详细阐述。

首先,我们来介绍对称性的定义。

在数学中,对称性是指对象在其中一种变换下保持不变的特性。

常见的对称性包括轴对称、面对称、旋转对称等。

对称性是研究各种数学对象的基本性质,对于深入理解和应用数学有着重要的作用。

对称积分是指根据数学对象的对称性,进行积分计算时可以简化积分表达式的一种方法。

具体而言,对称积分是通过利用积分函数的对称性,减少积分计算时所需的代数运算和变换,简化积分表达式,从而得到更加简洁和高效的计算结果。

对称积分有许多重要的性质。

首先,对称积分满足线性性质,即对于两个函数f(x)和g(x),以及实数a和b,有∫[a, b] (af(x) + bg(x)) dx = a∫[a, b] f(x) dx + b∫[a, b] g(x) dx。

其次,对称积分满足区间可加性,即对于两个不相交的区间[a, c]和[c, b],有∫[a, b] f(x) dx = ∫[a, c] f(x) dx + ∫[c, b] f(x) dx。

除了这些基本性质外,对称积分还有一些重要的应用。

首先,对称积分可以用于求解一些特殊函数的积分。

例如,高斯函数e^(-x^2)经常出现在概率论和统计学中,而该函数的积分在正态分布的计算中起着重要作用。

通过对高斯函数具有的轴对称性进行积分,可以简化计算过程,得到高斯函数积分的解析表达式。

其次,对称积分可以用于计算一些几何问题。

例如,计算平面上其中一函数图像与坐标轴之间的面积。

如果该函数具有轴对称性或者面对称性,可以利用对称积分的方法进行计算。

通过选择适当的坐标系,并利用积分的对称性对积分区间进行简化,可以将原问题转化为更加简单的计算。

微分几何陈维桓第四章讲稿

微分几何陈维桓第四章讲稿

微分⼏何陈维桓第四章讲稿⽬录第四章曲⾯的第⼆基本形式 (50)§ 4.1 第⼆基本形式 (50)§ 4.2 法曲率 (52)§ 4.3 Weingarten映射和主曲率 (55)⼀、Gauss映射和W eingarten变换 (55)⼆、主曲率和主⽅向 (55)§ 4.4 主⽅向和主曲率的计算 (57)⼀、Gauss曲率和平均曲率 (57)⼆、Weingarten变换在⾃然基底下的矩阵 (59)三、第三基本形式 (61)§ 4.5 Dupin标形和曲⾯参数⽅程在⼀点的标准展开 (61)§ 4.6 某些特殊曲⾯ (64)⼀、Gauss曲率K为常数的旋转曲⾯ (65)⼆、旋转极⼩曲⾯ (66)第四章曲⾯的第⼆基本形式本章内容:第⼆基本形式,法曲率,Gauss 映射和Weingarten 变换,主⽅向与主曲率,Dupin 标形,某些特殊曲⾯计划学时:12学时,含习题课3学时. 难点:主⽅向与主曲率§ 4.1 第⼆基本形式设:(,)S r r u v = 为正则曲⾯,(,)n n u v = 是单位法向量. 向量函数(,)r u v的⼀阶微分为u v dr r du r dv =+,⼆阶微分为()222222u v u v uu uv vv d r d r du r dv r d u r d v r du r dudv r dv =+=++++ .由于0dr n ?= ,再微分⼀次,得2d r n dr dn ?=-? .定义⼆次微分式222II 2d r n dr dn Ldu Mdudv Ndv =?=-?=++ (1.6)称为曲⾯S 的第⼆基本形式(second fundamental form),其中uu u u L r n r n =?=-? ,uv u v v u M r n r n r n =?=-?=-?,vv v v N r n r n =?=-? (1.4-5) 称为曲⾯S 的第⼆类基本量.第⼆基本形式的⼏何意义:刻划了曲⾯偏离切平⾯的程度,也就是曲⾯的弯曲程度.由微分的形式不变性可知第⼆基本形式在保持定向的参数变换下是不变的,⽽在改变定向的参数变换下会相差⼀个符号. 但是,在参数变换下第⼆类基本量,,L M N ⼀般都会改变.第⼆基本形式与空间坐标系的选取⽆关. 对曲⾯:(,)S r r u v =作参数变换(,),(,)u u uv v v uv == (1.7) 在新的参数下,u u v u v r r r u u ??=+?? ,v u v u v r r r v v=+ .因此(,)(,)u v uv uv u vu v u v r r r r r r u v v u u v=-=. (1.10)当(,)0(,)u v uv ?>? 时,n n = ,从⽽ I I ,,I Id r d nd r d n =-=-=;当(,)0(,)u v uv ?n =- ,从⽽ II ,,II dr d n dr dn =-==- . 在保持定向的参数变换下,第⼆类基本量有和第⼀类基本量相同的变化规律. 事实上,记参数变换(1.7)的Jacobi 矩阵为u vu uu v vvJ =. 则()()(),,,u vu uu v vvdu dv dudv dudv J== ??. (1.14) 从⽽T II (,)(,)(,)II LM du L M dudu L M du dv du dv J J du dv MN dv M N dv dvMN ==== ?,即有T L M L M J J M N M N = ? ?. (1.13) 例求平⾯(,,0)r u v =和圆柱⾯()cos ,sin ,u u a ar a a v = 的第⼆基本形式. 解. (1) 对平⾯,(1,0,0)(0,1,0)dr du dv =+ ,20d r =,所以II 0=.(2) 对圆柱⾯,()sin ,cos ,0u uu a a r =- ,()0,0,1v r = ,()cos ,sin ,0u u u v a a n r r =?= . 因此 ()11sin ,cos ,0u u u a a a a dn du r du =-= , ()()211 II u v u a a dr dn r du r dv r du du =-?=-+?=- . □定理1.1 正则曲⾯S 是平⾯(或平⾯的⼀部分),当且仅当S 的第⼆基本形式II 0≡. 证明 “?”平⾯S 的单位法向量n是常向量,故II 0dr dn =-?=. “?” 由0u n n ?= ,0u u n r L ?=-= ,0u v n r M ?=-= 得0u n = . 同理有0v n =. 所以0n n =是常向量. 于是0()0dr n d r n ?=?=. 故0r n C ?=. □定理 1.2正则曲⾯S 是球⾯(或球⾯的⼀部分),当且仅当S 的第⼆基本形式是第⼀基本形式的⾮零倍数:II I λ≡,其中(,)u v λλ=是⾮零函数.证明 “?”不妨设球⼼为原点,半径为a . 则22r a = ,0r dr ?= ,1an r =. 从⽽211II I aadr dn dr =-?=-=-.“?”由条件,L E λ=,M F λ=,N G λ=(因为,du dv 是独⽴的变量). 所以()0u u u n r r L E λλ+?=-+= ,()0u u v n r r M F λλ+?=-+=.⼜()0u u n r n λ+?=. 故u u n r λ=-. (1) 同理有v v n r λ=-. (2)因为S 是三次以上连续可微的,uv vu n n =. 于是v u uv uv vu u v vu r r n n r r λλλλ--===--,即有v u u v r r λλ=. 由于,u v r r线性⽆关,0,0u v λλ==. 故λ是⾮零常数. 由(1)和(2)得()0u n r λ+= ,()0v n r λ+=.所以110()n r n r r λλλ+=+=是常向量. 从⽽S 上的点满⾜球⾯⽅程2210()r r λ-= . □课外作业:习题1(1,4,5),2(3),3,6§ 4.2 法曲率设:(),()C u u s v v s ==是曲⾯:(,)S r r u v =上过点p 的⼀条正则曲线,s 是C 的弧长参数,00(,)((0),(0))u v u v =为p 点的曲纹坐标. 则C 的单位切向量为du dvu v ds ds dr ds r r r α===+ . (2.3) 根据Frenet 公式,C 的曲率向量22222222()2()d r d u d vdu du dv dv u vuu uv vv ds ds ds ds dsds dsr r r r r κβα===++++ , (2.4) 其中κ是C 的曲率. 设n 为S 的单位法向量,(,)n θβ=∠,则cos n θβ=? .定义函数000000(,,,):(0)cos (0)(0)(,)(0)(,)n n u v du dv n u v r n u v κκκθκβ===?=?(2.6)22000000(,)()2(,)(,)()du du dvdv ds ds ds dsL u v M u v N u v =++ (2.5) 称为曲⾯S 在p 点沿着切⽅向(,)du dv (即d r)的法曲率(normal curvature).注曲⾯上所有在p 点相切的曲线在p 点有相同的法曲率,并且在p 点这些曲线的曲率中⼼位于垂直于切⽅向的平⾯(C 的法平⾯∏)内的⼀个直径为1/||n κ的圆周上:曲率中⼼为11((0),(0))(0)((0),(0))cos (0)(0)nc r u v r u v βθβκκ=+=+.沿着曲线C ,有dr rds= . 由于s 是弧长参数,因此在p 点成⽴ 22200000(,)2(,)(,)d s d r d r E u v d u F u v d u d v G u vd v=?=++.定义2.1 在曲⾯S 上对应于参数(,)u v 的点p 处,沿着切⽅向(,)du dv 的法曲率为22222II (,,,)2In n Ldu M dudv Ndv u v du dv Edu Fdudv G dvκκ++===++. (2.8)注法曲率除了与点p 有关,还与切⽅向即⽐值:du dv 有关. 但是与切向量d r的⼤⼩⽆关. 上⾯的定义不要求以d r为切向量的曲线C 以弧长s 为参数.定义曲⾯S 上过p 点的⼀个切⽅向(,)d u d v 与p 点的法线确定的平⾯π称为由切⽅向(,)du dv 确定的法截⾯. 法截⾯π与曲⾯S 的交线称为该点的⼀条法截线.定理2.1 曲⾯S 在(,)u v 点,沿切⽅向(,)du dv 的法曲率n κ等于该切⽅向确定的法截线C 在相应的有向法截⾯π(以d r n ?为平⾯π的定向)中的相对曲率,即有n r κκ=.证明设该点是000(,)r r u v =,沿切⽅向(,)du dv 的单位切向量为000(,)()|u v uv r du r dv α=+,在00(,)u v 点的单位法向量为000(,)n n u v =. 则法截⾯的定向是00n α?,从⽽法截线C 的弧长参数⽅程为000()()()r s r x s y s n α=++,其中(0)(0)0x y ==. 因为00(0)(0)(0)r x y n α=+ 是S 的切向量,0(0)(0)0y r n =?= . 从⽽(0)1x = . 因此0(0)r α= 是由(,)du dv 确定的切⽅向. 由定义,沿切⽅向(,)du dv 的法曲率 0000(0)[(0)(0)](0)n r n x y n n y κα=?=+?=.另⼀⽅⾯,法截线C 在该点的相对曲率(0)(0)(0)(0)(0)r x y x y y κ=-= . 所以有n r κκ=. □例 (1) 平⾯的法曲率.在平⾯S 上,II 0≡. 所以在任意点p S ∈,沿任意切⽅向(,)du dv ,都有法曲率0n κ=.(2) 圆柱⾯()cos ,sin ,u u a ar a a v =的法曲率. 对圆柱⾯,由上⼀节的例,22I du dv =+,21II adu =-,所以222()dun a du dv κ+=-.(3) 球⾯()2():cos cos ,cos sin ,sin S a r a u v a u v a u = 的法曲率.由定理1.2,1II I a =-. 所以1n aκ=-是⾮零常数. □定理2.2 在曲⾯S 上任意⼀点p 处,法曲率必定在两个彼此正交的切⽅向上分别取到最⼤值和最⼩值.证明在固定点p ,,,,,,E F G L M N 都是常数,法曲率n κ仅与⽐值:du dv 有关. 取p 点邻近的正交参数⽹. 则任意单位切向量p dr T S ∈,可以写成12cos sin u v dr r du r dv e e θθ=+=+,其中12,u v e e ==,1(,)dr e θ=∠即,du dv θθ==.沿着切⽅向:du dv 的法曲率22()cos sin sinn n L N E G κκθθθθθ==++ ()θ∈R是R 上的连续可微周期函数,必定在闭区间[0,2]π上取到最⼤值和最⼩值.如果n κ是常值函数,则n κ在任意两个彼此正交的切⽅向上分别取到最⼤值和最⼩值. 设()n κθ不是常值函数,则它的最⼤值和最⼩值不相等. 通过对曲⾯作参数变换00cos sin u uv θθ=- ,00sin cos v u v θθ=+ ,不妨设在0θ=处()n κθ取到最⼤值(0)/n L E κ=. 由于()sin 22nN L G E κθθθ??'=-+ ?,(0)0n κ'==,并且/(/2)(0)/n n N G L E κπκ=≤=,有222()cos sin cos n L N NL N N E GG E G G κθθθθ??=+=+-≥ ?. 所以()n κθ在/2θπ=±处取到最⼩值/N G . □定义2.2在曲⾯S 上⼀个固定点p 处,法曲率取最⼤值和最⼩值的切⽅向称为曲⾯S 在该点的主⽅向(principal direction),相应的法曲率称为S 在该点的主曲率(principal curvature).注由上⾯的推导过程可知,如果在p 点n κ不是常值函数,()()sin 2NL nGEκθθ'=-在闭区间[0,2]π上只有4个零点,所以在p 点n κ只有两个主曲率1/L E κ=,2/N G κ=. 于是有下⾯的Euler 公式:2212()cos sin n κθκθκθ=+,其中(,)u dr r θ=∠,12κκ>,并且12()n κκθκ≥≥.定义 2.3 (1) 在曲⾯S 上⼀点,使法曲率为零的切⽅向(,)du dv 称为该点的⼀个渐近⽅向(asymptotic direction).(2) 设C 是曲⾯S 上的⼀条曲线. 若C 上每⼀点的切向量都是曲⾯在该点的渐近⽅向,则称C 是曲⾯S 上的⼀条渐近曲线(asymptotic curve).在⼀点(,)u v 处,渐近⽅向(,)du dv 是⼆次⽅程 2220Ldu Mdudv Ndv ++= (2.5) 的解. 当20LN M-<时,有两个实渐近⽅向::du dv M L N M =-±=-当20LN M -=时,只有⼀个实渐近⽅向:::du dv M L N M =-=-;当20LN M ->时,没有实渐近⽅向.让(,)u v 变动,则(2.5)就是渐近曲线的微分⽅程. 如果在曲⾯上每⼀点,20LN M -<,则曲⾯上存在两个处处线性⽆关的渐近⽅向向量场. 根据第三章定理4.1,在曲⾯上有由渐近曲线构成的参数曲线⽹,称为渐近线⽹.定理2.3 参数曲线⽹是渐近线⽹的充分必要条件是:0L N ==.证明 “?” 在u -曲线上0,0dv du =≠. 由(2.5)得0L =. 同理可得0N =. “?” (2.5)现在成为0M dudv =. 因此u -曲线和v -曲线都是渐近曲线. □定理 2.4 设C 是曲⾯S 上的⼀条曲线. 则C 是渐近线,当且仅当C 是直线,或C 的密切平⾯与曲⾯的切平⾯重合.证明由公式cos (,)n n κκβ=∠可得. □课外作业:习题1,4,7.§ 4.3 Weingarten 映射和主曲率⼀、Gauss 映射和W eingarten 变换设:(,)S r r u v = (2(,)u v ∈Ω? )是⼀个正则曲⾯,(,)n n u v =是它的单位法向量. 向量函数(,)n u v 定义了⼀个映射2::(,)(,)n S u v n u v Ω→,其中2S 是3E 中的单位球⾯. 因为空间3E 中的点与它的位置向量是⼀⼀对应的,映射n诱导了映射12::(,)((,))(,)g n r S S r u v g r u v n u v -=→= . (3.1)这个映射2:g S S →称为Gauss 映射. 注意Gauss 映射的象不⼀定是2S 的⼀个区域.Gauss 映射g 的切映射2():p g p g T S T S *→是⼀个线性映射,满⾜()g dr dn *=,即 ()u v u v g r du r du n du n dv *+=+,p dr T S ?∈,p S ?∈. (3.2)特别有()u u g r n *= ,()v v g r n *=. (3.4)因为(,)n u v同时也是2()g p T S 的法向量,S 在(,)p u v 点的切平⾯与2S 在()g p 点的切平⾯是平⾏的,从⽽在⾃由向量的意义下可将2()g p T S 与p T S 等同.定义线性映射2():p p g p W g T S T S T S *=-→≡称为曲⾯S 在p 点的Weingarten 变换(Weingarten transformation).事实上,因为0u v n n n n ?=?= ,所以,u u p n n T S ∈. 由定义可知, ()()()u v uv p W d r W r d u r d v d n n d un d v T S =+=-=-+∈,p dr T S ?∈. (3.5)⼆、主曲率和主⽅向定理3.1 II ()W dr dr =?. □定理3.2 相对于切空间的内积,Weingarten 变换:p p W T S T S →是⾃共轭(对称)的,即()()W dr r dr W r δδ?=?,,p dr r T S δ?∈ .证明 ()()()u v u v W dr r dn r n du n dv r u r v δδδδ?=-?=-+?+L d u u M d u v M d v u N dδδδδ=+++ ()()()(u v uvr d u r d v n u n v d r n d r W r δδδδ=-+?+=?-=?. □根据线性变换理论,Weingarten 变换W 的2个特征值12,λλ都是实的(这2个特征值可能相等). 设12,p X X T S ∈分别是从属于它们的特征向量,即111()W X X λ= ,222()W X X λ= . 当12λλ≠时,12,X X所确定的切⽅向:du dv 和:u v δδ是唯⼀的,且相互正交. 当12λλ=时,p T S 中的任何⾮零向量都是特征向量. 因此仍然有两个相互正交的特征⽅向.定理3.3在曲⾯S 上任意⼀点p 处,W 的2个特征值12,λλ正好是曲⾯S 在p 点的主曲率,对应的特征⽅向是曲⾯S 在p 点的主⽅向.证明取p T S 的由W 的特征向量构成的单位正交基{}12,e e,使得111()W e e λ= ,222()W e e λ=, (3.12)并设12λλ≥.对任意⼀个单位切向量p e T S ∈,可设 12cos sin e e e θθ=+. (3.13)则有121122()cos ()sin ()cos sin W e W e W e e e θθλθλθ=+=+. (3.14)于是沿切⽅向e的法曲率为2211221212II ()()I (cos sin )(cos sin )cos sin .n n W e ee ee e e e κκθλθλθθθλθλθ?===?=+?+=+由12λλ≥可知2222121121()cos ()()sin n λλλλθκθλλλθλ≤+-==--≤,并且()n κθ在0θ=时取最⼤值1λ,在/2θπ=时取最⼩值2λ. 所以12,λλ就是曲⾯S 在p 点的主曲率12,κκ,相应的切⽅向12,e e就是主⽅向. □注1 由定理可知沿特征⽅向:du dv 的法曲率n κ就是对应于特征向量d r的特征值:II()()I nW dr dr dr drdr dr dr dr λκλ??====?? . 注2 曲⾯S 在每⼀点p 有2个主曲率12,κκ. 当12κκ≠时,只有2个主⽅向,它们相互正交. 此时可取2个单位特征向量12,e e. 当12κκ=时,任何⽅向都是主⽅向. 此时可任取2个正交的单位特征向量12,e e.定理3.4(Euler 公式) 设{}12,e e是p 点的2个正交的单位特征向量,对应的主曲率为12,κκ.则对任意单位切向量12cos sin p X e e T S θθ=+∈,沿着X ⽅向的法曲率为2212()cos sin n κθκθκθ=+. (3.15)在曲⾯S 上⼀点p 处,如果12κκλ==,则由Euler 公式可知沿任何切⽅向:du dv ,都有II In κλ==, (3.16)即II I λ=. 这样的点称为脐点(umbilical point). 此时在该点有:::L E M F N G λ===. (3.17)当0λ=时,该点称为平点(planar point);当0λ≠时,该点称为圆点(circle point).定理1.1和定理1.2的推论曲⾯S 是平⾯(或其⼀部分),当且仅当S 上的点都是平点;曲⾯S 是球⾯(或其⼀部分),当且仅当S 上的点都是圆点.定义3.1 设C 是曲⾯S 上的⼀条曲线. 若C 上每⼀点的切向量都是曲⾯在该点的主⽅向,则称C 是曲⾯S 上的⼀条曲率线(curvature line).定理 3.5(Rodriques 定理) 曲⾯:(,)S r r u v =上⼀条正则曲线:(),()C u u t v v t ==是曲率线的充分必要条件是:沿着曲线C ,()//()dn t dr t ,即((),())//((),())dn u t v t dr u t v t. 证明. 由定义,C 是曲率线,当且仅当对所有的t ,()dr t是Weingarten 变换的特征向量,即()()()()W dr t t dr t λ= ,也就是()()()()()dn t W dr t t dr t λ=-=-. □定理3.6 曲⾯S 上⼀条曲线C 是曲率线的充分必要条件是:曲⾯S 的沿着曲线C 的法线构成可展曲⾯.证明. 对曲⾯S 上任意⼀条曲线C ,曲⾯S 的沿着曲线C 的法线构成直纹⾯1:(,)((),())((),())S X X s t r u s v s t n u s v s ==+,其中s 是C 的弧长参数. 由于()()r s s α= 和()n s 是相互正交的单位向量,从⽽是线性⽆关的.1S 是可展曲⾯?()(),(),()0s n s n s α'≡()()()()(n s s s s n s λαµ'=+. 上式两边与()n t作内积可得()0s µ=,从⽽上式等价于 ()()()n s s s λα'=,这正好是曲线C 是曲率线的充分必要条件. □例3.1 求旋转⾯上的曲率线.解设旋转⾯的⽅程为()(,)()cos ,()sin ,()r u v f v u f v u g v =. 其中()0f v >,并且v 是经线的弧长参数,221f g ''+=. 则()sin ,cos ,0u r f u u =- ,()cos ,sin ,v r f u f u g '''=, ()cos ,sin ,u v r r f g u g u f '''?=- ,()cos ,sin ,n g u g u f '''=-. 由于()sin ,cos ,0u n g u u '=- ,()cos ,sin ,v n g u g u f ''''''=-,并且0f fg g ''''''+=,有0v v n r ?= ,0v v n r ?=. 所以u -曲线(纬线圆)和v -曲线(经线)都是曲率线. 当0g '=时,这个旋转⾯是平⾯,任何曲线都是曲率线. 当0g '≠时,1 g g f f -''''''=-. 如果f g f g a ''''''-=是常数,即经线是圆弧,则旋转⾯是球⾯.此时任何曲线都是曲率线. □例3.2 求可展曲⾯上的曲率线.解设可展曲⾯⽅程为(,)()()r u v a u vl u =+ . 已经知道它的单位法向量()n n u =与v ⽆关,沿着v -曲线(直母线)有0//v v n r =. 所以v -曲线是它的⼀族曲率线. 于是v -曲线的正交轨线是它的另⼀族曲率线. 如果可展曲⾯是平⾯,任何曲线都是曲率线. □课外作业:习题1,4,5§ 4.4 主⽅向和主曲率的计算⼀、Gauss 曲率和平均曲率设曲⾯S 的参数⽅程为(,)r r u v =,,,E F G 和,,L M N 分别是S 的第⼀、第⼆类基本量. 引理设λ是(,)p u v 点的主曲率,则λ满⾜0L E M F M FN Gλλλλ--=--, (4.4)即λ是⼆次⽅程222()(2)()0EG F LG M F NE LN M λλ---++-=的根,也就是⽅程220H K λλ-+= (4.8)的根,其中222()LG M F NEH EG F -+=-,22LN MK EG F -=-,分别称为曲⾯S 的平均曲率(或中曲率)(mean curvature)和Gauss 曲率(或总曲率)(Gaussian curvature). 换句话说,H λ= (4.9)证明. 设:du dv 是对应的主⽅向. 则有()W dr dr λ=,即()()u v u u n du n dv r du r dv λ-+=+.分别⽤,u v r r与上式两边作内积,得()Ldu M dv Edu Fdv λ+=+,()M du Ndv Fdu Gdv λ+=+.所以主⽅向:du dv 满⾜ ()()0,()()0.L E d u M F d v M F d uN G d v λλλλ-+-=??-+-=? (4.3)由于,du dv 不全为零,可得(4.4)式. □设12,κκ是(,)p u v 点的两个主曲率. 由根与系数的关系可得12222L G M F N EH E G Fκκ-++==-,2122LN M K EG Fκκ-==-. (4.6-7)因此1H κ=+,2H κ=-(4.9)p 点是脐点的充分必要条件是在p 点成⽴20H K ==.注⽅程(4.4)即(4.8)是Weingarten 变换的特征⽅程,在保持定向的参数变换下保持不变. 事实上,主曲率在保持定向的参数变换下不变,在反转定向的参数变换下相差⼀个符号. 因此平均曲率12()/2H κκ=+在保持定向的参数变换下不变,在反转定向的参数变换下相差⼀个符号. ⽽Gauss 曲率12K κκ=在参数变换下保持不变.定理4.1 假定曲⾯S 是3r ≥次连续可微的. 则主曲率函数12,κκ是连续的,且在⾮脐点邻近是2r -次连续可微的. □在脐点,20K H=≥,12H κκ==. 从⽽由II I H =可知L H E =,M HF =,N H G =,(4.3)中的两个⽅程成为恒等式. 此时,任何⽅向都是主⽅向.在⾮脐点,分别⽤1λκ=和2λκ=代⼊(4.3),得到相应的主⽅向1111:():()():()d u d vM F L E N G M F κκκκ=---=--- (4.10) 和2222:():()():()u v M F L E N G M F δδκκκκ=---=---. (4.11)将(4.3)改写成()()0,()()0.L d u M d v E d u F d v M d u N d v F d uG d v λλ+-+=??+-+=? (4.12)由于1,λ-不全为零,有 0Ldu M dv E du F dv M du N dv F du G dv++=++, (4.14)即22()()()0FL EM du G L EN dudv G M FN dv -+-+-=. (4.15) 上式可写成220dv dudv du E F G LMN-=. (4.16)(4.14)或(4.15)或(4.16)就是曲⾯上曲率线的微分⽅程.定理4.2 设p 是曲⾯:(,)S r r u v =上⼀个固定点,它的曲纹坐标为00(,)u v . 则在该点参数曲线的切⽅向是相互正交的主⽅向,当且仅当在该点有00(,)0F u v =,00(,)0M u v =. 此时,曲⾯S 在该点的两个主曲率分别为00100(,)(,)L u v E u v κ=,00200(,)(,)N u v G u v κ=.证明必要性. 在00(,)p u v 点,u -曲线和v -曲线相互正交,故000000(,)(,)(,)0u v F u vr u v r u v =?=. (1) ⼜00(,)u r u v ,00(,)v r u v是W 的特征向量,故()0000100(,)(,)(,)u u un u v W r u v r u v κ-==, ()0000200(,)(,)(,)v v vn u v W r u v r u v κ-==. 分别⽤,u v r r与上⾯两式作内积得00(,)0M u v =,并且00100(,)(,)L u v E u v κ=,00200(,)(,)N u v G u v κ=. (4.17)充分性. 由条件,0000(,)(,)0u v r u v r u v ?= ,即00(,)u r u v ,00(,)v r u v相互正交. ⼜00000000(,)(,)(,)(,)0u v v u n u v r u v n u v r u v ?=?=.因此()000000(,)(,)//(,)u u u n u v W r u v r u v -= ,()000000(,)(,)//(,)v v vn u v W r u v r u v -=,即00(,)u r u v ,00(,)v r u v是W 的特征向量. □下⾯的两个定理是定理4.2的直接推论.定理4.3 参数曲线⽹是正交的曲率线⽹的充分必要条件是0F M ==,此时222212I ,II Edu G dv Edu G dv κκ=+=+. (4.18) 定理4.4 在⾮脐点,定理4.3中的参数曲线⽹局部总是存在的. □注若曲⾯S 上没有脐点,则可取正交的曲率线⽹作为参数曲线⽹. 事实上,此时由(4.10)和(4.11)可确定两个相互正交的主⽅向:du dv 和:u v δδ. 从⽽有两个相互正交的⾮零向量场u v dr r du r dv =+ 和u v r r u r v δδδ=+,它们是连续可微的. 根据第三章定理4.1,这样的参数曲线⽹是存在的.若曲⾯S 上的点都是脐点,则曲⾯上任意曲线都是曲率线,此时任何正交参数曲线⽹都是曲率线⽹. 但是在孤⽴脐点邻近,未必有正交的曲率线⽹作为参数曲线⽹.⼆、W eingarten 变换在⾃然基底下的矩阵我们知道{},u v r r是切空间p T S 的基,称为p T S 的⾃然基. 在这组基下,设Weingarten 变换的矩阵为11211222a a A a a ??=,即()()()11211222,(),(),u v u v u v a a n n W r W r r r a a ??--==, (4.19) 也就是11122122(),().u u u v v v u v n W r a r a r n W r a r a r -==+??-==+? 分别⽤,u v r r与上⾯⼆式作内积得11211222a a L M E F a a MN FG ??= ? ? ???. 因此11121212221a aE F LM G F LM A a a F G MN FE MN EG F --===--21G L F M G M F NE MF L E NF ME GF --??=---. (4.21) 代⼊(4.19)得()()1,,u v u v E F L M W r r r r F G MN -=()21,u v G L FM G M FN r r EM FL EN FM EG F --?=---. (4.22)我们知道Weingarten 变换W 的特征多项式 ()10()d e t 0EF L M f I A FG M N λλλλ-=-=- ?121E F E L F M E L F MF GF MG NF MG NEG F λλλλλλλλ-----==-----.其中I 是单位矩阵. W 的特征值12,κκ是特征多项式()f λ的根,与基的取法⽆关,从⽽Gauss 曲率2122det LN M K A EG Fκκ-===-和平均曲率12212trace 222()LG M F NE H A EG F κκ+-+===-与参数取法⽆关,是曲⾯的⼏何不变量.Gauss 曲率K 的⼏何意义:从(4.19)可得1112212211221221()()()u v u v u v u v u v n n a r a r a r a r a a a a r r K r r ?=+?+=-?=? .因此曲⾯S 上⼀个区域D 在Gauss 映射g 下的像()g D 的⾯积元素 0||||||||u v u v d n n dudv K r r dudv K d σσ=?=?= . (4.23)所以()g D 的⾯积()0()||()g D DA d K d g D σσ==.根据积分中值定理,存在pD ∈使得 ()|()|||()()()DA K pd K p A D g D σ==? .让区域D 收缩到⼀点p D ∈,取极限得到(())|()|lim()D pA g D K p A D →=. (4.25)这个公式是曲线论中||()limlim||s s s s sθθκ?→?→??==??的⼀个推⼴,其中θ?是曲线上⼀段由s 到s ?的弧在切线像α下的弧长.三、第三基本形式定义设(,)n u v 是曲⾯:(,)S r r u v =的单位法向量. ⼆次微分式22III 2dn dn e du f dudv g dv =?=++ (4.27)称为曲⾯S 的第三基本形式,其中()()22,,u u v v e n f n n g n ==?= . (4.28)注利⽤Gauss 映射,第三基本形式0III I g *=,其中0I 是单位球⾯2S 的第⼀基本形式. 定理4.5 曲⾯:(,)S r r u v =上的三个基本形式满⾜III 2II I 0H K -+=. 证明因为Weingarten 变换W 的特征多项式为2()2f H K λλλ=-+,所以 220W H W K I -+=.其中::p pI T S T S X X →是单位变换. 于是有 ()()()()()2()()()(2)()22.u u u u u u u uu u u e n n W r W r W r r H W K I r r H n K r r H L K E =?=?=?=-?=--?=-同理可得2u v f n n HM KF =?=- ,2u v g n n HN KG =?=-课外作业:习题2,4,6§ 4.5 Dupin 标形和曲⾯参数⽅程在⼀点的标准展开设(,)p u v 是曲⾯:(,)S r r u v = 上⼀个固定点,12,e e是p 点的两个相互正交的单位主向量 (即Weingarten 变换的特征向量),对应的主曲率为12,κκ. 对单位切向量12cos sin e e e θθ=+([0,2]θπ∈),沿该⽅向的法曲率为2212()cos sin n κθκθκθ=+. 当()0n κθ≠时,在p 点的切平⾯π中取⼀点q 使得)1211cos sin pq e e θθ==+. (5.3)p 点切平⾯π中这样的点q 的轨迹称为曲⾯S 在p 点的Dupin 标形(或标线indicatrix ).在平⾯π中取直⾓标架{}12;,p e e, 现在来导出Dupin 标线的⽅程.设轨迹上的点q 在此坐标系中的坐标为(,)x y . 则)1212cos sin xe ye pq e e θθ+==+.因此1x θ=,1y θ=. (5.4)由Euler 公式得到2212sgn(())n x y κκκθ+=. (5.5)这就是Dupin 标线的直⾓坐标⽅程,它是平⾯π中的⼆次曲线. 如果在平⾯π中取极坐标系,那么Dupin 标线的极坐标⽅程可由(5.3)⽴即得到:()ρρθ==当p 点的Gauss 曲率120K κκ=>时,()n κθ,1κ,2κ同号,Dupin 标线(5.5)是⼀个椭圆2212||||1x y κκ+=. (5.6) 当120K κκ=<时,1κ,2κ异号,Dupin 标线(5.5)是两对共轭双曲线2212||||1x y κκ-=±. (5.7)它们的公共渐近线的⽅向正是曲⾯S 在p 点的渐近⽅向00:cos :sin du dv θθ=.当120K κκ==时,若1κ,2κ不全为零,Dupin 标线(5.5)是两条平⾏直线x =±(20κ=) 或y =±(10κ=). (5.8)当p 点为平点,即120κκ==时,Dupin 标线不存在.定义. 设p S ∈,若()0K p >,则称p 点为曲⾯S 上的椭圆点;若()0K p <,则称p 点为曲⾯S 上的双曲点;若()0K p =,则称p 点为曲⾯S 上的抛物点.下⾯考察曲⾯S 在⼀点p 邻近的形状. 在p 点邻近取正交参数曲线⽹(,)u v ,使得p 点对应的参数为(0,0),且(0,0)u r,(0,0)v r是p 点的两个单位主向量. 则(0,0)(0,0)(0,0)u v n r r =?,且在p 点有(0,0)(0,0)E G ==,(0,0)(0,0)0F M ==,1(0,0)L κ=,2(0,0)N κ=. (5.9)以标架{}123;(0,0),(0,0),(0,0)u v p e r e r e n === 建⽴3E 的坐标系. 根据Taylor 公式,(,)(0,0)(0,0)(0uvr u v r r u r v =++22212(0,0)2(0,0)(0,0)()u u u v v v r u r u v r v o ρ??+ +++?, (5.10)其中ρ=. 由于(0,0)0r p p == ,31(0,0)(0,0)uu r e L κ?==, 3(0,0)(0,0)0uv r e M ?==,32(0,0)(0,0)vv r e N κ?==, (5.11)(5.10)可化为()()()2221121232(,)()()()r u v u o e v o e u v oe ρρκκρ=++++++. (5.12)(5.12)称为曲⾯S 在p 点的标准展开.当ρ=我们得到S 的近似曲⾯S *,在标架{}123;,,p e e e 下,S *的参数⽅程为()221122(,),,()r u v u v u v κκ*=+ ,显式⽅程为 221122()z x y κκ=+. (5.14)直接计算可知近似曲⾯S *与原曲⾯S 在p 点相切(即它们的切平⾯相同). 并且沿着p 点切空间的任何相同的切⽅向,两者有相同的法曲率,即在p 点具有公共切⽅向的法截线有相同的曲率和相同的弯曲⽅向.在椭圆点p ,近似曲⾯S *是椭圆抛物⾯. S *在p 点是凸的.在双曲点p ,S *是双曲抛物⾯. S *在p 点不是凸的,且p 点的切平⾯与S *相交成两条直线,它们是S *上过p 点的两条渐近曲线.在⾮平点的抛物点p ,S *是抛物柱⾯,p 点的切平⾯与S *相交成⼀条直线,是S *上过p 点的渐近曲线.在平点p ,S *是平⾯. 此时,要考察曲⾯S 的近似形状,需要将Taylor 展式(5.10)展开到更⾼阶的项. 见例5.2.⽤平⾯12z =±去截近似曲⾯S *,再投影到p 点的切平⾯上,就得到p 点的Dupin 标线.例5.1 考察圆环⾯()(cos )cos ,(cos )sin ,sin r a r u v a r u v r u =++,2(,)u v ∈R上各种类型点的分布,其中常数,a r 满⾜0a r >>.解 ()sin cos ,sin sin ,cos u r r u v u v u =-- ,()(cos )sin ,cos ,0v r a r u v v =+-, ()(cos )cos cos ,cos sin ,sin u v r r r a r u u v u v u ?=-+ ,()cos cos ,cos sin ,sin n u v u v u =-.()1sin cos ,sin sin ,cos u u n u v u v u r r =-=- ,()cos cos sin ,cos ,0cos v v u n u v v r a r u=-=-+.所以两个主曲率为121cos ,cos u r a r uκκ=-=-+.Gauss 曲率和平均曲率分别为其中0a ≥. 它的母线是xO z 平⾯上的曲线:()z f x =. 则由()cos ,sin ,()u r v v f u '= ,()sin ,cos ,0v r u v u v =-.)()cos ,()sin ,1n f u v f u v ''=-- ,()0,0,()uu r f u ''= ,()sin ,cos ,0uv r v v =-,()cos ,sin ,0vv r u v u v =--.可得()21E f '=+,0F =,2G u =, (6.2)L ''=,0M =,N '=. (6.3)因此参数曲线⽹是正交的曲率线⽹. 由定理4.2,主曲率为()13/221L f E f κ''=='+, ()21/221N f Gu f κ'=='+.于是Gauss 曲率和平均曲率分别为 ()221f f K u f '''='+, ()23/22(1)21f f uf H u f ''''++='+. (6.4)⼀、Gauss 曲率K 为常数的旋转曲⾯如果K 是常数,则函数()f u 应满⾜()2211K u f ''=-??'+??. (6.5) 积分得到2211C K u f =-'+, (6.6)其中C 为积分常数. 即有2221C Ku f C Ku-+'=-.于是()f u =±?. (6.7)1.若0K =,则()f u Au B =+,其中A =,B 为积分常数. 当0A =时,S 是平⾯;当0A ≠时,S 是圆锥⾯. 另⼀个0K =的旋转曲⾯是圆柱⾯()cos ,sin ,r a v a v u =,它不能写成(6.1)的形式.2.若0K >,令21a K =(0a >). 则由(6.6)可知0C >. 设2C b =(0b >). (6.7)化为()f u =±?. (6.9)若21b =,则()f u c =±=+?. (6.10)于是S 是由xO z 平⾯上的半圆弧222()x z c a +-=(0x u =>)绕z 轴旋转⽽成的球⾯.当21b >或201b <<时,由(6.9)定义的函数()f u 仍然存在,但旋转曲⾯S 不是球⾯,虽然S 的Gauss 曲率也是常数21a K =.3.若0K <,令21aK =-(0a >).则由(6.6)可知1C <.设21C b =-(0b >). (6.7)可化为()f u =±?. (6.11)若21b =,则[]()ln(sec tan )sin f u a c u=±=±+-+?,其中arccosu a=. 不妨设积分常数0c =. 则旋转曲⾯S 的母线是xO z 平⾯上的两条曳物线[]c o s ,l n (s ec t a n )s i n .x u az a ==??=±+-? (6.13)其中0z >的⼀⽀绕z 轴旋转⽽得的旋转曲⾯S 称为伪球⾯,它的参数⽅程为[]()c o s c o s ,c o s s i n ,l n (s e c t a n )s i n r a a a ?θ?θ=+-, (,)(0,/2)(0,?θππ∈?. (6.14)当21b >或201b <<时,由(6.11)定义的函数()f u 给出Gauss 曲率为负常数的旋转曲⾯的其他例⼦.⼆、旋转极⼩曲⾯平均曲率0H ≡的曲⾯称为极⼩曲⾯. 现在我们来研究有哪些旋转极⼩曲⾯. 由(6.4)可知函数()f u 应满⾜2(1)0f f uf ''''++=. (6.16)也就是()211f uf f ''=-''+.则()()222222ln()ln(1)2ln 1f f f f u uf f '''''''??-+==-=-??'+.积分得2221f Cf u'='+, (6.17)其中积分常数0C ≥.如果0C =,则()f u A =是常数,从⽽S 是平⾯z A =.如果2C a =,0a >. 则22211u C f u-='+,即f '=±故(()ln f u a u c ??=±=±++. (6.19)不妨设积分常数ln c a =-. 令(ln ua. 则cosh u a t =,S 的参数⽅程可改写为()cosh cos ,cosh sin ,r a t v a t v at =,(,)(0,2)t v π∈? .这个旋转极⼩曲⾯S 称为悬链⾯.⽤变分法可以证明,如果在所有以给定曲线C 为边界的曲⾯中,S 的⾯积达到最⼩值,则S ⼀定是极⼩曲⾯.极⼩曲⾯是微分⼏何研究的重要课题之⼀. ⼀百多年来,数学家们在关于以已知曲线为边界的极⼩曲⾯的存在性的Plateau 问题,⼤范围极⼩曲⾯的性质,极⼩曲⾯在⾼维的推⼴⽅⾯作了⼤量的⼯作,取得了丰富的成果.在极⼩曲⾯上,Gauss 曲率21210K κκκ==-≤,只有平点或双曲点. 在双曲点,2个渐进⽅向是正交的. 事实上,根据Euler 公式,渐近⽅向与主⽅向的夹⾓θ满⾜cos 20θ=.著名的Bernstein 定理是说:极⼩图只能是平⾯,即习题6中的⼆阶偏微分⽅程22(1)2(1)0y xx x y xy x yy f f f f f f f +-++=的定义在全平⾯上的解只能是线性函数.平均曲率H 为⾮零常数的曲⾯,即常平均曲率曲⾯,也是微分⼏何研究的⼀个重要课题. 课外作业:习题2,4,6。

积分中的对称性

积分中的对称性

积分中的对称性【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。

【关键词】积分;轮换对称性;奇对称;偶对称在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。

这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。

设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi 1, … ,xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。

在一元函数积分学中,我们有下面所熟悉结论:若f(x)在闭区间[-a,a]上连续,则有∫a-af(x)dx= 0, f(-x)=-f(x)2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)利用这一性质,可以简化较复杂的定积分的计算。

对重积分、曲线积分及曲面积分也有类似的结论。

下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。

1 对称性在重积分计算中的应用对称性在计算二重积分Df(x,y)dσ方面的应用。

结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有① Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数② Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。

其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。

结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:① Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;② Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1 D2=0。

结论3 若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:① Df(x,y)dσ=0,f(x,y)关于直线L奇对称;② Df(x,y)dσ=2D1f(x,y)dσ,f(x,y) 关于偶对称。

对称性在积分教学中的一些应用

对称性在积分教学中的一些应用
被 积 函数 在 + . 上 关于 沩奇 函 数;
在D^ + D 上 关于y 为奇 函数 ,故为0 ;


【 2 】 陈云新 对 称性在 积分 中的应用 U 】 数学理 论 与应
用, 2 0 0 0 , 1 0 .
【 3 】 徐小湛 对称 性在 积分计 算 中的应用叭 高等数 学研

f j ( n 十 6 ) 懒= ( + 钟
+l
所 以:
原式= 『 f + 6 ) 嘲 + b ) z


从 以 上 可 以 看 出 , 对 称 性 在 积 分 的 计 算 中 具 有 非 常 重 要 的 作 用 , 在 教 学 中 , 可 告 诉 学 生 , 当看 到 积 分 区 域 对 称 或 函 数 有 奇 偶 性 时 ,就 可 以 思 考 能 用 上 述 的 一 些 结 论 , 说 不 定 可 以 起 到 意 想 不 到 的效 果 。

D D

例3 :计 算 二 重 积 分

埘= 一 ・
区域 :D : f ( 盖 圳x : + , 4 o , , o } j 解 :积 分 区 域D 关于直线J , = X 轴 对 称 , 由二 重 积 分 的 对 称 性 3 ,
精孵耐 = g 精牌蚴

z 』 f 絮精 蛳 g 精 a v - a > ,
究, 2 0 0 1 , 0 3 .
当, ( J ) = , 瓴 ) 则 汀 , ( 置 ) 昀 ’ : 2 『 f - r 如 蚴 .
0 D
n为 自 右半部分 ;
( 3 ) D 关于直线Y =礴由 对称 时:
被积函数C O S X S i l 1 J , 在D l + 皿 上 关 于x 为 偶 函 数; 在 上 关于 y 为 奇函 数上 连 续且 为 奇函数。

积分的对称性

积分的对称性

积分的对称性在数学中,积分的对称性是一个重要的概念。

它指的是积分的值在某些变换下不变。

这些变换可以是几何变换,如旋转、平移、反射等,也可以是数学变换,如代数变换和微积分操作。

积分的对称性不仅有理论价值,而且在实际应用中也具有广泛的意义。

一、平移对称性平移对称性是指在平移变换下,积分的值不变。

具体地说,设$f(x)$是一个定义在实数轴上的函数,$a$是任意实数,则有:$$\int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{\infty}f(x+a)dx$$这个结论表明,在积分中,我们可以通过平移变换来改变积分的区间,而不影响积分的值。

这在积分的计算中经常会用到。

二、旋转对称性旋转对称性是指在旋转变换下,积分的值不变。

具体地说,设$f(x,y)$是一个定义在平面上的函数,$a\in[0,2\pi]$是任意实数,则有:$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x'\cos a-y'\sin a,x'\sin a+y'\cos a)dxdy$$这个结论表明,在积分中,我们可以通过旋转变换来改变积分的求和顺序,而不改变积分的值。

这在二重积分和三重积分中经常会用到。

三、对称函数的积分为零对称函数的积分为零是指对于一个偶函数或奇函数,其积分在对称轴之间的区间上等于零。

例如,对于一个偶函数$f(x)$,其对称轴是$y$轴,则有:$$\int_{-a}^af(x)dx=2\int_0^af(x)dx=0$$同样地,对于一个奇函数$f(x)$,其对称轴是原点,则有:$$\int_{-a}^af(x)dx=0$$这个结论表明,在计算偶函数和奇函数的积分时,我们可以将积分区间缩小到对称轴的一侧,从而简化计算。

浅析轮换对称性在积分计算中的应用

浅析轮换对称性在积分计算中的应用
( 二) 积分区域为椭圆 椭圆积分 区域仍具 有高 度 的对 称性 , 但相 比圆形积 分 区域 , 两个 坐标 失去了等价性 , 因此 不能够利用 轮换性 来简 化计算.
【 关键词 】 轮换对称 性; 简化计算 ; 积分 ; 被积 函数 ; 积分
区域
【 中图分类号 】 0 1 7 2 【 文献识 S j L  ̄ q _ 】 A 【 基金项 目】 2 0 1 5年北 京航 空航 天大学 “ 凡舟” 奖教 金
钟黛咿 麈
1 0 0 1 9 1 ; 1 0 0 1 9 1 )
◎李嘉骐 薛玉梅。 ( I . 北京航 空航 天大学 自动化科 学与 电气工程 学院, 北京
2 . 北 京航 空航 天 大 学 数 学与 系统科 学学院, 北京
f f ( + Y ) d x d y =f J ( + Y ) d x d y .
二、 问 题 讨 论
例2 . 2计 算I I n ( + y ) d x d y , g - 中 D 为 椭 圆 ≥+ 告≤ 1 .
分析 ( + ) = + y 2 + 2 x y , 对于 而言, 2 x y 在椭
圆区域中是一个奇 函数 , 因此 该部 分积分 值为 0所 以本 例 的积 分结果与上例 中相 同.
简化计算. 但本题中被积函数为 。 +பைடு நூலகம்y 2 , 显然采用广义极坐
标变换求解更为容 易. 本例说 明了圆形积 分 区域简 化计 算 的一种思路 , 但 并 非 最 简解 法.

引 言
在 定积分的计算 中, 我们 常利用积分 区间 的对称性 , 结 合被积 函数 的奇 偶性 , 可 以极 大地 简化计算 的过 程. 那么, 在重积分 的计算 中, 类似地 , 我 们可 以利用积分 区域 的对称 性 与被 积函数的奇偶性使计算更 为简便. 相应地 , 我 们还可 以发现 , 在 曲线积分 中也有这样 的结果. 在解 决实际问题的过程 中, 我们不难发 现 , 积分 区域 的 高度对称性 实际上表 明了变量 、 Y 、 z之 间的某种 可相互 替 代性 , 这便是 轮换性. 一般来 说 , 先使用 轮换 性 简化被 积 函 数或使其形 式易于化简 , 之后再 利用对称 性来解决 问题 , 可 以极大 地减 小我们在解决问题 中的工作量. 本 文将 从不同类 型的重积分 区域 和 曲线积 分人手 去探 讨轮换 对称性 在积分 计算 中 的应 用. 同时探究 被积 函数 的 形 式 为 变量 平 方 的 和 与变 量 和 的平 方 时 在 相 同 积 分 区 域 中 结 果 的异 同.

专题十三 关于对称性在积分中的

专题十三 关于对称性在积分中的

专题十三 关于对称性在积分中的应用宇宙中的许多事物都具有某种对称性, 从基本粒子、分子的结构, 到晶体以及蛋白体的空间点阵排列; 从雪花、树叶的形态, 到动物躯体以至天体的外观; 从简单机械运动、天体运动, 到放射性原子的衰变以至电磁波的辐射, 无不显示出优美和谐的对称。

自然界绚丽多彩的对称性, 为数学研究提供了一种独特的方法, 即对称方法。

科学家利用这一锐利武器, 揭示和发现了很多自然界的奥秘, 其中最典型的例子有麦克斯韦(Maxwell)方程、笛沙格(Desargues)定理和伽罗瓦(Galois)群等。

它被著名科学家狄拉克(Dirac)称为“自然科学时代新方法的精华”。

对称的概念在数学领域中也有广泛而重要的应用。

对于一元函数而言对称通常表现为奇、偶函数 ,其图象关于原点、y 轴对称等。

在求解高等数学的某些问题时 ,利用对称性往往能简化解题过程。

数学中的对称性主要指在某种变换下保持不变的性质, 亦指数学概念、公式、命题结构的形式具有对称性。

数学上的许多问题可以利用对称性来解决。

数学对称法是一种探索性的发现方法, 它与其它方法的不同之处主要体现在其创造性功能。

因此掌握和运用对称法, 对于活跃开拓学生的创造性思维, 提高判断解题能力, 探讨解题方法是十分有益的。

积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,经常把计算复杂化而增加了计算的难度。

在积分的计算中充分利用积分区域的对称性及被积函数的奇偶性,往往能使计算简捷,达到事半功倍的效果。

问题1:对称性在积分中的应用主要体现在哪些方面?答:对称性在积分中的应用非常广泛,不仅在定积分,二重积分,还在线、面积分上也有应用。

问题2:什么样的定积分,可以应用对称性求解?有些什么样的结论?如何应用?答:定积分是积分学的基本内容, 定积分的计算方法很重要且多种多样, 有的方法不对,计算更繁琐,若能恰当应用对称性,即可简化定积分的计算。

《重积分对称性》课件

《重积分对称性》课件

04
CATALOGUE
重积分对称性的证明
偶函数对称性的证明
偶函数在对称轴两侧的积分值相等
如果函数$f(x)$是偶函数,那么对于任意实数$a$,有$f(-x) = f(x)$。因此,在重积分 中,偶函数关于对称轴的两侧对称,它们的积分值相等。
举例
考虑函数$f(x) = x^2$,这是一个偶函数。在区间$[-a, a]$上,该函数关于$x=0$对称 。因此,$int_{-a}^{a} x^2 dx = int_{0}^{a} x^2 dx + int_{-a}^{0} x^2 dx$,两侧

周期函数对称性的证明
要点一
周期函数在周期内的积分值相等
如果函数$f(x)$是周期函数,那么对于任意实数$a$,有 $f(x+T) = f(x)$,其中$T$是函数的周期。因此,在重积分 中,周期函数在每个周期内的积分值相等。
要点二
举例
考虑函数$f(x) = sin(x)$,这是一个周期为$2pi$的函数。 在区间$[0, 2pi]$上,该函数的图像是周期性的。因此, $int_{0}^{2pi} sin(x) dx = int_{0}^{pi} sin(x) dx + int_{pi}^{2pi} sin(x) dx$,两侧的积分值相等。
05
CATALOGUE
重积分对称性的扩展
对称性与积分路径无关
总结词
重积分对称性的一个重要特性是积分路 径的无关性,即积分结果不依赖于积分 路径的选择。
VS
详细描述
在多重积分中,如果积分区域在坐标平面 上是对称的,那么无论选择什么样的积分 路径,只要最终经过相同的积分点,积分 的结果都是相同的。这个特性在解决复杂 积分问题时非常有用,因为它允许我们选 择更简单的积分路径来简化计算。

对称方法在偏微分方程中的应用

对称方法在偏微分方程中的应用

对称方法在偏微分方程中的应用
随着科学技术的发展,偏微分方程发挥着越来越重要的作用,它可以用来描述物理、生物、社会等问题,从而在实际应用中发挥重要作用,对称性也是偏微分方程中一个重要的概念,本文用于介绍对称性在偏微分方程的应用。

首先,对称性是指当从一个函数f(x)中抽取某个元素,仅仅是通过变换(平移、旋转、缩放等),函数仍然保持原有形态,这种关系就叫做对称性。

对称性在偏微分方程中的应用可以分为两大类:一是在分析偏微分方程的结构性质时使用对称性,其次是为了得到一般解之外的附加解而使用对称性。

首先,分析偏微分方程的结构时需要使用对称性,可以得出偏微分方程的一些有用性质。

当偏微分方程的系数,即“d/dx”特征值保持恒定时,利用对称性可以得出系统的对称性特性,包括某些空间结构可以组成无限多余空间组合等结果;此外,在分析偏微分方程拓扑结构时,也可以使用对称性特性,讨论偏微分方程曲线在某一空间位置上的变换。

其次,对于同一偏微分方程的一般解,通常只能求出某一条特定的曲线,但有时可以利用对称性得到偏微分方程的附加解。

例如,一般解f(x)可以利用旋转对称性,将这条特定曲线的每个点通过旋转n次得到新的特解点,从而得出n条偏微分方程的附加解,并导致一组新的斜率,Slop-Intercept等多个新参数,充分利用这些新参数可以拓展偏微分方程的使用范围。

通过以上介绍可以看出,对称性在偏微分方程中具有重要作用,可以在分析偏微分方程的结构性质和得到一般解之外的附加解,丰富偏微分方程的研究内容和应用案例,使得科学技术发展有更大的可能性。

积分的对称性

积分的对称性

(2)当f ( x, y ) f ( x, y )时 I 2 f ( x , y )dxdy
D2 ( x , y ) D, y 0
D2
②若D关于 y 轴对称
(1)当f ( x, y ) f ( x, y )时 I 0
( 2)当f ( x , y ) f ( x , y )时 I 2 f ( x , y )dxdy
1 ( x , y , z ) | ( x , y, z ) , z 0 ② 若 关于 xoz 面对称
(1) 当 f ( x , y, z ) f ( x , y, z ) 时 I 0 ( 2) 当 f ( x , y , z ) f ( x , y , z ) 时
D1 ( x, y ) ( x, y ) D, x 0 D
1
③若D关于原点对称
(1) 当f( x, y) f( x, y) 时I 0 (2)当f ( x, y ) f ( x , y )时 I 2 f ( x , y )dxdy
D3 ( x, y ) D, x 0, y 0
f ( x , y , z )dS 2 f ( x , y , z )dS
1
其中 1 是 位于对称坐标面一侧的 部分
L
( 2) 当 f ( x , y ) f ( x , y ) 时 f ( x , y )ds 2 f ( x , y )ds
L L2
其中L2 是L 的关于x 轴对称的部分弧段
L2 ( x , y ) | ( x , y ) L , y 0
③若 L 关于 原点 对称
L
L
( 2)当 f ( x , y ) f ( x , y )时 f ( x , y )ds 2 f ( x , y )ds

积分方程组解的正则性与对称性

积分方程组解的正则性与对称性

积分方程组解的正则性与对称性王长森;林国炜【摘要】将讨论下列含贝塞尔核积分方程组正解的对称性,即:u(x)=∫RNGα(x-y)vq(y)/|x|β|y|τdy,v(x)=∫RNGα(x-y)up(y)/|x|τ|y|βdy (1)其中x∈RN,Gα(x)是带α-指标的贝塞尔势能核,0≤β,τ,β+τ<α<N,1<p,q<N-β/β,并且,1/p+1+1/q+1>N-α+β+γ/N (2)设(u,v)∈Lp+1(RN)×Lq+1(RN)为式(1)的正解,则式(1)解是径向对称的.【期刊名称】《江西科学》【年(卷),期】2014(032)005【总页数】5页(P573-577)【关键词】积分方程组;贝塞尔核;径向对称【作者】王长森;林国炜【作者单位】江西师范大学数学与信息科学学院,330022,南昌;江西师范大学数学与信息科学学院,330022,南昌【正文语种】中文【中图分类】O175.2其中x∈RN,Gα(x)是带α-指标的贝塞尔势能核,0≤β,τ,β+τ<α<N,1<p,q<,并且,+>设(u,v)∈Lp+1(RN)×Lq+1(RN)为式(1)的正解,则式(1)解是径向对称的。

本文将讨论下列含贝塞尔核积分方程组正解的对称性,即:其中x∈RN,Gα(x)是带α-指标的贝塞尔势能核,0≤β,τ,β+τ<α<N,1<p,q<,并且:+>特别的,当u=v,p=q,β=τ=0时,式(3)简化成:在文献[8]中,对于贝塞尔势能的sobolevinepuality(Bα(f)=Gα*f,α>0;Bα(f)=f,α=0,这里*表示函数间的卷积):‖Bα(f)‖Ld(RN)≤C‖其中l>1,r>max{l,},C=C(α,l,N,d)。

对于积分方程的形式,文献[2]中是采用移动平面法,在文献[12]中是采用移动球平面法,在文献[8]中通过不等式(6)已证出方程(5)的正解是径向对称的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(t → −ω )
F ( jω)
ω) (t ←
F ( jt)
2π f (−ω)
2
4.5傅里叶变换的性质
第四章 傅里叶变换与频域分析
Z4.18对称性
若 f (t) ↔ F ( jω) 则 F ( jt) ↔ 2π f (−ω)
证明:
∫1
f (t) =
∞ F ( jω) e jω td ω
2π −∞
式中,令t →ω,ω→t ,可得:
4.5傅里叶变换的性质
例3
f (t) = 1 1+ t 2
←→ F(jω) = ?
解: 当α=1时
根据对称性
e −α|t| ←→ 2α α 2 +ω2
e −|t| ←→ 2
1+ω 2
2 1+ t2
←→ 2π
e −|ω |
所以
1 1+ t2
←→ π
e −|ω |
6
第四章 傅里叶变换与频域分析
4.5傅里叶变换的性质
知识点Z4.18
对称性
第四章 傅里叶变换与频域分析
主要内容:
傅里叶变换的对称性
基本要求:
熟练掌握傅里叶变换时域和频域的对称性
1
4.5傅里叶变换的性质
第四章 傅里叶变换与频域分析
Z4.18对称性
若 f (t) ↔ F ( jω) 则 F ( jt) ↔ 2π f (−ω)
f (t)
∫ f (ω) = 1 ∞ F ( jt) e jω td t
2π −∞
令ω →-ω 可得:
∫ f (−ω) = 1 ∞ F ( jt) e− jω td t
2π −∞
∴ F ( jt) ↔ 2π f (−ω)
3
4.5傅里叶变换的性质
例1 δ (t)
(1)
O
t
f (t) 1
O
t
4
第四章 傅里叶变换与频域分析
F( jω)
1
O
ω
F( jω) (2π )
O
ω
4.5傅里叶变换的性质
第四章 傅里叶变换与频域分析
例2
f (t)

(t)

τ
Sa
ωτ
2
F( jω)
τ
1
−τ 0 τ t
22
− 2π O 2π (t)
− 2π O 2π

t
ωc
ωc
ωc
5
F ( jω)
1
− ωc 0 ωc ω
22
相关文档
最新文档